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INTRODUCTION

The goal of this research is to develop a viable, noncontacting NDE
technique for the inspection of orbiter thermal protection system (TPS) tile
bonds. Phase II, discussed here, concentrated on developing an empirical
understanding of the bonded and unbonded vibration signatures of acreage
tiles. Controlled experiments in the laboratory have provided useful
information on the dynamic response of TPS tiles. It has been shown that
several signatures are common to all the "pedigree" tiles. This degree of
consistency in the tile-SIP (strain isolation pad) dynamic response proves
that an unbond can be detected for a known tile and establishes the basis

for extending the analysis capability to arbitrary tiles for which there are
no historical data.

The field tests of the noncontacting laser acoustic sensor system,
conducted at Kennedy Space Center (KSC), investigated the vibrational
environment of the Orbiter Processing Facility (OPF) and its effect on the
measurement and analysis techniques being developed. The data collected
showed that for orbiter locations, such as the body flap and elevon, the
data analysis scheme, and/or the sensor, will require modification to
accommodate the ambient motion. Several methods have been identified for

accomplishing this, and a solution is seen as readily achievable. It was
established that the tile response was similar to that observed in the
laboratory [I]. Of most importance, however, is that the field environment
will not affect the physics of the dynamic response that is related to bond
condition. All of this information is fundamental to any future design and
development of a prototype system.

DEVELOPMENT OF ACOUSTO-OPTIC TECHNIQUES

Phase II has seen important progress in the area of sensor
development. There is now a much better understanding of the sensor's
capabilities and limitations. The sensor response has been modeled and
verified with experiments using a piezo pusher. In addition, a long focal
length lens has been incorporated that allows data collection at up to i0 m
away [2].

The laser cavity response to light scattered from vibrating surfaces
has been successfully modeled. The model has been used to explain several
characteristics of the signal that arise when the vibration amplitude
exceeds half the light wavelength [2]. If the model's criteria are
violated, then nonlinear effects are predicted. These nonlinear effects
have been observed. Frequency doubling occurs when the vibration
displacement approaches the magnitude of a wavelength of laser light.
Signal attenuation and frequency doubling are observed when the "at rest"
distance to the sample violates nonlinearity. This understanding will
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result in improved performance with the existing hardware and possibly

development of an improved servo scheme that will allow the sensor to

accommodate large amplitude vibrations, such as the ambient vibrations

encountered in the OPF. The model is presently being used to study improved

methods for extracting the vibration signal.

TILE RESPONSE STUDIES

The goal of the tile response studies was to develop an empirical

understanding of the bonded and unbonded vibration signatures of acreage
tiles covering the underside of the orbiter. Pedigree tiles were used in

controlled unbonding experiments to reduce effects due to differences in

tile geometry. A limited number of unbond geometries were simulated using a
vacuum mounting fixture specially designed for this project. The

experimental work clearly shows that bond condition affects tile response in
consistent and quantifiable ways.

The vacuum mounting fixture will first be described to facilitate an

understanding of experimental methods. Experimental results will then be

presented.

Vacuum Chuck

A vacuum chuck for easy simulation of unbonds was developed. (During
Phase I, unbonds were simulated by first bonding the tile to an aluminum

plate and then slicing through regions of the SIP with a razor blade to

mimic unbonds. An easier and more repeatable method of simulating unbonds

was needed.) The vacuum chuck is an aluminum plate with a nearly square

array of vacuum holes, slightly smaller than the 5 x 5 in. SIP (Figure I).

When a SIP is mounted backwards on a tile, such that the RTV side faces out,

the tile can be securely held by placing the RTV-sealed SIP against the face

of the chuck and drawing a vacuum. Unbonds are simulated by taping over

regions of vacuum holes. Tests were conducted to study the repeatability of

tile response with bonds simulated using the vacuum chuck. Tiles were

mounted on the vacuum chuck at times separated by a few weeks with little

effect on the dynamic response.

Tile Bond Analysis

The central thesis of this work is that bond condition can be

determined by studying the vibrational response of a tile excited by

acoustical energy. Investigations have centered on identifying response

characteristics that reliably predict unbonds. A number of characteristics

have emerged as promising candidates for this purpose and will be discussed

in this section. The primary focus of the discussions will be on results

obtained with the pedigree tiles, using the vacuum chuck to simulate

unbonds. Before considering response characteristics of unbonded tiles, a

brief description of tile vibrational modes is in order.
The vibrational modes of a TPS tile can be of either the rigid body

type or the flexural type. In rigid body modes, vibration results from

rocking, piston, or twisting actions of the rigid tile against the spring

action of the SIP. Twisting motions will not be considered here because the

displacement sensors used for this work detect only motion normal to the
tile surface. In the flexural modes the tile bends as it vibrates; tile
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stiffness provides most of the spring action. For TPS tiles examined to

date, the frequencies of the two types of vibrational modes fortuitously

separate into distinct nonoverlapping ranges; the rigid body modes appear

below 1400 Hz, while the flexural modes appear above 1600 Hz. This

separation aids in the interpretation of some of the phenomena observed in

tile vibrational responses.
A number of characteristics have emerged as promising candidates for

unbond indicators. They are listed here and explained in the text which

follows.

I. Downward frequency shift of rigid body modes.
2. Amplitude of the vibrational response.
3. Elongation of initial oscillations in transient tile response.
4. Asymmetrical response characteristics in unbonded tiles.
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Downward Frequency Shift of Riqid Body Modes

In order to quantify the frequency shifts as unbonding progresses, a
measure of the center frequency for each unbond condition is needed. Four
measures of the center frequency of the rigid body modes were developed and
evaluated. All operate on spectra over the rigid body frequency range of 0
to 1400 Hz. Spectra are calculated using fast Fourier transform (FFT)
without windowing. The magnitude of the FFT terms is used in two of the
center frequency calculation methods; magnitude squared is used in the
remaining two.

The methods were evaluated by applying them to data collected during
unbonding experiments with three pedigree tiles--9073, 9074, and 9075. The
vacuum chuck was used to simulate unbonds. Data were collected from the
three tiles under four bond conditions: fully bonded, 25% unbonded, 50%
unbonded, and 100% unbonded. The 25% unbond was a 2-I/2-in. square region
in the upper right corner of the 5-in. square SIP. The entire top half of
the SIP was unbonded in the 50% unbond tests. The 100% unbond data were
collected while the tile was lying face-up on the optical table; this is
also referred to as a back shop measurement. Filler bar was present for all
measurements, except, of course, for the 100% unbond case. Data were
collected at three points on each tile, as illustrated in Figure 2: top
center, center, and lower center. Results from the three tiles, for the top
center point, are summarized in Figure 3.

Center frequency (as defined above) shows promise of being a reliable
unbond indicator when the sample point is near an unbond. To use center
frequency for unbond determination, the "good" center frequency must be
known beforehand. It may be possible to determine this from knowledge of
tile geometry. However, it may not be possible if center frequency is very
sensitive to minor variations in geometry or to random variations introduced
during mounting. If the latter is true, center frequency may still be used
for bond analysis, but it would require an empirical determination of the
"good" value after mounting. The technique would not then be useful for
inspecting initial tile installations but would be used for postflight
examinations. Results obtained from the pedigree tiles suggest that "good"
center frequencies may be accurately predicted from nominal geometries.
More study of center frequency and the factors that affect it is required.

Amplitude of the Vibrational Response

Larger vibrational amplitudes have been found to correlate with
unbonds. Figure 4 shows time series data collected from tile 9074. A
relationship between amplitude and the presence of an unbond is evident.
However, amplitude also depends on the relative locations of the unbond and
sample point. The peak-to-peak amplitude is largest when the unbond is
across the bottom. When this is the case, the sample point is over the
unbond, and the peak-to-peak amplitude is double the amplitude of the fully
bonded tile. When the unbond is along the right side, the sample point is
also over the unbond, but the increase in amplitude is only 36%. When the
sample point is not over the unbond, the increase is less evident or absent.

The amplitude data discussed here were not collected with the point
sensor developed for this work. That sensor has some outstanding
characteristics, but measuring absolute amplitude is not one of them. The
problem stems from the fact that measurements are proportional to the
brightness of reflected light, as well as displacement. The reflectivity of
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tiles varies from point to point, thereby precluding comparison of amplitude
data from two different points on a tile. Amplitude data were collected

with a laser vibrometer that requires attaching a mirror to the tile. This

system is suitable only for laboratory use because of the mirror

requirement. The existing sensor could be used on the orbiter if it were

possible to calibrate it at each sample point. A fairly simple method of

calibration using a dither signal has been proposed. If amplitude is

determined to be a necessary measurement for unbond detection, it is felt

that an appropriate sensor could be developed with existing technology.

Elonqation of Initial Oscillations in Transient Tile Response

The first few milliseconds of tile vibration following excitation

exhibit a characteristic that predicts unbonds in the pedigree tiles.
This characteristic is the duration of the first few oscillations in the

timeseries data. Figure 5 shows the first 3 ms of time series data for

three bond conditions. As unbonding increases, an elongation of the
oscillations occurs and the time between zero crossings increases. This

phenomenon may be the time domain equivalent of the downward frequency
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Fig. 4. Effects of unbonds on amplitude.

shifts observed in the rigid body modes. If so, there may be little to gain
in studying both phenomena as the bond condition information contained in
one may be duplicated in the other. On the other hand, the two may not be
that closely related. The time domain phenomenon may provide information
about resonance modes not observable in estimated spectra. Spectra
estimated using FFT techniques necessarily represent time averages of the
frequency content of a signal. The frequency content of a transient
process, such as tile dynamic response, changes with time (the process is
nonstationary). A time average may not adequately represent the frequency
content at a particular time, especially if dominant resonance modes at that
time are rapidly decaying. Hence, there is reason to continue consideration
of this time domain unbond indicator.

Unbond effects on initial oscillations are affected by the relative
locations of the sample point and unbond. Elongation of initial
oscillations diminishes as the distance between sample point and unbond
increases. Evidence suggests that the relative positions of speaker and
unbond may also be significant. This is very similar to the behavior of
unbond indicators already discussed. The data from unbonded tiles plotted
in Figure 5 were collected at points over the unbonds.
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Fig. 5. Effects of the unbond on the initial oscillation.

Asymmetrical Response Characteristics in Unbonded Tiles

The tile response characteristics discussed above exhibit a dependence
on the relative locations of the sample point, unbond, and speaker
(excitation). This behavior suggests that an asymmetrical response may be
useful for identifying unbonds. Asymmetrical behavior of an unbonded tile
is illustrated in Figure 6, which shows the response of a bonded tile at two
measurement point locations, top left and top right. The speaker position
is the same for all plots. It is apparent that the differences in top right
and top left spectra are greater when an unbond is present; the spectrum at
a given point is apparently more sensitive to changes in speaker location
when an unbond is present.

This unbond indicator is particularly attractive since it does not
require prior assumptions about "good" tile behavior. It is based on the
following two premises:

I , An asymmetrical bond results in asymmetrical tile dynamic response
characteristics.

, Asymmetrical behavior normally observed in bonded tiles is much smaller
than asymmetrical behavior due to significant unbonds.
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More work is required to verify these two assumptions, as well as
devise a method of quantifying spectral asymmetry. Finally, it is clear
that this unbond indicator would not detect symmetrical unbonds.

Tile 9074

Bonded, top right tile point

Fig. 6.

25% unbond in top right corner
Top left tile point

A_ 25% .unbond in !op right corner

I l I
0 500 1000 1500

Frequency (Hz)

Effect of sample point location.
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FIELD TESTS

The field tests conducted in July of 1988 verified that tile resonances

were detectable in the Orbiter Processing Facility environment. The field

tests established that the vibration isolation of the sensor system, the

long focal length optics, and the excitation methods could function in a

field environment. There was no difficulty in obtaining an adequate

reflection from the normal tile surfaces, and the pneumatic tires on the
cart carrying the laser provided sufficient vibration isolation for the

system. However, the measurements, which were made on the Orbiter Columbia,

also showed that the sensor response was complicated by ambient motion of
the orbiter. While small (-10 #m at 20 Hz), these motions were detected

by the sensor and frequently masked the induced excitation. Figure 7 shows
TPS data collected near the external tank doors. The data in the two

unaveraged data sets in Figure 7a changed phase during our collection period
of 50 ms due to the ambient motion. For the 25 averaged data sets shown in
Figure 7b, the collection period could be reduced from 50 to 8 ms due to

signal cancellation caused by the ambient motion. The motion taking place
on the orbiter has reduced the amount of information that the current

collection technique can obtain.

Due to the large ambient motion; a fieldable system will require
modification of either the sensor or the way the resonance information is

extracted with the existing sensor. Details of these options are given

below; an evaluation of these approaches is being conducted as part of
ongoing work.

There are at least two approaches to overcoming the difficulty caused
by the ambient motion of the orbiter. The first is to modify the data
analysis so that the sensor nonlinearities do not obscure the desired

information. This is possible because the large amplitude ambient

vibrations do not change the physics of the bond's effect on the tile's

dynamic response; a different measurement technique may be required, but the
effect is still there. Some possible modifications are to confine the

analysis to the first 5 ms after excitation or to measure peak amplitudes of

resonance vibrations induced by a CW tone. The latter technique was

actually used during the field test at selected resonances. Figure 8
presents data collected on one of the control surfaces. Here a CW tone was

used to excite a tile vibration resonance. The data show that during a

"turnaround" point the CW tone can be captured and used for data analysis.

The second approach would be to continue sensor development to obtain a

sensor that is linear over the required range of vibrations. The approach

taken to date has been to use the existing sensor capability, unless and

until it is necessary to expend additional resources to acquire a sensor

capable of handling large ambient motion. These two approaches are
currently being evaluated.

The most significant finding of the field tests is that the response of

the tiles on the orbiter is similar to that observed in the laboratory.
While it was not possible, or intended, to vary bond conditions on the tiles

examined, it was possible to excite resonances and measure their existence

with the acousto-optic sensor in a different fashion than the standard data

collection method. Quantification of the ambient vibrations of the OPF

environment was also significant as their impact can now be incorporated

into any future design of analysis techniques and/or sensors.
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Fig. 7. KSC field data near external tank door.

EXTERNAL CAVITY

Now that the OPF vibrational environment has been characterized, it

is necessary to choose a sensor to operate in this environment. An

external cavity has been added to the existing sensor. The cavity

consists of a mirror mounted on a piezo pusher and placed in the beam

path to the tile. As excessive motion of the tile is sensed, the mirror

is moved in an opposite direction to compensate for the motion. The two

types of vibrations are separable by filtering since the large amplitude

vibrations are generally of lower frequency than the signal of interest.

The cavity can compensate for large low-frequency ambient vibrations of

less than 100 Hz (Figure 9). The control signal for this cavity

variation is derived from the displacement signal output from the laser
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Fig. 9. External cavity block diagram.

sensor. The external cavity has been used to prevent phase inversion of

the signal, proving in principle that the approach is capable of

improving the fidelity of the signal.
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CONCLUSIONS

The past year's work had two basic objectives. The first was to
continue development of the sensing technology to the point where

preliminary field measurements on the orbiter could be made. This goal

was achieved, thanks in large part to the development of the long focal

length optics. Valuable information obtained from the field experiments

clearly identifies areas where future efforts should be applied.

The second goal was to advance the state of understanding of the

physics of tile vibration and vibration measurement to the point where an

informed decision could be made on whether or not this approach is viable

for field detection of real flaws on the orbiter TPS. This goal was also

achieved; concentrating on the pedigree tiles, a number of quantifiable

unbond signatures were identified.

The following conclusions summarize the results of Phase II work on
this project.

I . Vibration signatures associated with bond flaws are significant,

repeatable, and consistent between similar tiles with similar bond

flaws. A number of promising bond flaw signatures have been

identified. These signatures are quantifiable and consistent among
the pedigree tiles. Signatures include frequency and time domain

features of the dynamic response, as well as symmetry observations.

. The measurement techniques developed for this project can work in a

field environment. An optical table is not required to make

extremely sensitive displacement measurements; the sensor can

operate in normal workplace "noise."

. Modifications to the sensor or to analysis techniques are necessary

to accommodate the large ambient motion present in some areas of the
orbiter.

The field tests revealed that the ambient vibration of the orbiter

is too large for the current sensing method and/or analysis techniques.

The current sensor is very good at sensing vibrations with peak-to-peak
amplitudes less than 0.5 #m. Motions greater than 13 #m were

measured in some areas of the orbiter during the field tests.
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ANALOG UT INSPECTION

CRITERIA

- Amplitude Exceedin 9 a Threshold in a
Time Gate

- Echo DBnamic Pattern of Indications

PROBLEMS

- Threshold Alarm Alerts Inspector of
Indication, but not its Identity

- Inspector._ Expertise is Often Not

Adequate for Proper Decision

No Wa B for Independent Third Party
Evaluation without Repeatin 9 Entire
Inspection 8, Relyin 9, once more, on

Another Inspector_ Expertise
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DIGITAL UT INSPECTION

- If the Transducer Signal is Digitized &
Recorded Durin 9 the Initial Inspection,

Further Analyses can be made -- both by

Individuals & b_ Software Alg.orithm s _.
without Repeatin 9 the Inspection

- This Archival Capability also Permits the

Waveform to be Compared -- Along with
its Features-- to Data Recorded in Other
Inspections

- Digital Storafle of UT RF Waveformx also
permits Signal-to-Noise Enhancement

A19orithms to be applied to Eliminate, or
at least 9reatl_l reduce -- Undesirable

Sifnal Contaminants such as Grain Noise,
etc.
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WHY PCs ?

FIELD WORTHY - Designed to operate in
Office / Work Area w/out Need for

Specialltl Controlled A/C Environment

SIZE- Portable Versions

& Easel to Transport

are quite Ru99ed

ARCHITECTURE- PC Bus Architecture

allows the Inteflration 8, Intelligent
Control of User-Supplied Boards;
mass storage is ver_ cheap

- PRICE- Verdi Inexpensize

POWER- With 3S6-class Machines,

have Main Frame Speeds

PCs

- PARTS- Readil_ Available World-Wide

i66



PC-Based Workstation for NDE
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COMPONENTS OF UT SIGNAL PROCESSING

TRANSDUCER CHARACTERIZATION

- Transducer Evaluation -- time/frequency
- Sound Beam Profiler -- immersion/contact

- Auto Specs + User Specs

DATA ACQUISITION & PROCESSING

- Data Acquisition (multi-channel)
- Clustering
- 3-D Graphics (CAD-like)
- Signal Processing/Filtering (SIN enhance.)
- Lotus 1-2-3 Spreadsheet i'face
- dBase Ill i'face

- Communications (modem) _,

- Word Processing/Reportilig
- User-Supplied S'ware

FLAW CLASSIFICATION

- Training (auto. Pattern Recognition)
- Analysis

IMAGING
-C- and B-Scans
- 3-D C-scans
- Off-line C-scan Reconstruction

- Image Processing functions
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COMPONENTS OF UT SIGNAL PROCESSING

EDDY CURRENT

- Phase Plane analysis
- Multi-Channel

- Multi-Frequency
- Auto. Mixing Algorithm
- Store on Hard Disk for further analyses

SIGNAL QUALIFICATION

- Flaw Detector raised to higher level
- Multiple Gates (inc. overlap)
- Threshold "sense"

-"Analysis" Gate (real-time _law classif.)
- Alarm menu

- Alarm-disposition menu
- Real-Time SIN Enhancement display
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Date Purchased: 2-Feb-86

I RBC_Nr/_IEB
Manufacturerg Infometrics

Model/TMpez PCPR-100
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Gain: 10de
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TestPro" DAP ENHANCEMENT (cont'd)...

CLuSTERIN3 (CLS) MODULE

r

U_J I'o

elm ! :_

am I aa

h'luspoi(_Mq,omo¢_oil od_

_-IiJtl_l hlo Illo_ II'ltsll,_l lloil_l'l tlNI

-k,Fl.lal, md(l,,,,n [_._lldvd_l d/lol-_411i41#_ hlilJ

Infomctrics

_IIGIN_L PAGE IS
OF' POOR _.JALITY
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3 - D PLOTTING

WAVEFORM PLOT

-[,. p

WAVEFORM FEATURE k_,P
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SIGNAL PROCESSING / FILTERING

Input File: \testpeoM_UUNC.FJl
OutputFile:

1,01
$1¢,JMLI_NETERS
................. ,Sa
$eq, No,: 1

Sup, liate: 2B,ill 1 ,_iGt Stet (pts):
Ct Stet (l_ec): 66,20 -,50
Gt l,ng(pts): 256
gt _! (_ec): 12,75 -1,00

12-Jul-U
Vgain:1,E-D1

t

66,20 7i,45 74,7i 71,_
III_L_SISPtUI_LtB Ygain: l,E-iii

BegFeeq (MltZ): ,0 ,5_'"'"','"'"" '"_'__':'-'"":"-'"
_,i Fm (Ills): 10,0
LogS_©teu: NO • ..... '

Min,lovTg_'. _CTIHGULill ................. _+_...................
Filte, ,gpe: MI@P,. + i .... ',
Cutoff Feeqs: 1.8, 3.0-

66,21 ?i, 45 74,70 78,95

ORIGINAL PAGE IS

OF POOR QUAL#TY

177



Automated Flaw Classification

RF Haveform

LI

"Tru6=

Class

Compute Waveform Time/Frequency
Domain Features

Create Signal Classiflsrs I
) via Pattern Recognition

A]gorithms

Signal Classifier

Spectrum Naveform
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ANALYSIS

TestPro" FCE ENHANCEMENT (cont'd)...

ANALYsis (ANL) MODULE
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Zn[on_trJcs
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EXAMPLE OF TWO DIMENSIONAL DISPLAY OF DEFECTS USING
TESTPRO
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EXAMPLE OF TWO DIMENSIONAL DISPLAY OF DEFECTS USING

TESTPRO

ORIGINAL PAGE IS
OF POOR QUALITY
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C - SCAN.....3 -D VIEWS
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Campcs _.e- Impoc t Oemege- ToF
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Co_,po_'-Lte-lmpact Demege - Amp.

Co_po; _Lo-lmpect. Demege_-a_.
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SUMMARY

- PC-Based Signal Processing is
Revolutionizing UT Inspection

NDE Data are Pieces of Information -- PCs

are Information Management Sgstems

- Changes can be made Relativel U Easil_
because these Instruments are
Software-Based

- Main Benefits to User incl_ie .....

-- Better QC of Field Inspections
-- Elimination of 3rd Partg

Re-Inspections
-- Minimize Reliance on Field

Personnel as Signal Interpreters

- These SBstems Represent the Next
Generation of NDE Instruments
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