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Summary

An experimental investigation of the compres-

sion behavior of laminated specimens made from

graphite-epoxy tape (AS4-3502), graphite-thermo-

plastic tape (AS4-PEEK), and graphite-thermoplastic

fabric (AS4-PEEK) was conducted. Specimens with
five different stacking sequences were loaded to fail-

ure in uniaxial compression. Some of the speci-

mens had central circular holes with diameters up to

67 percent of the specimen width. Other specimens

were subjected to low-speed impact with impact en-

ergies up to 35 J prior to compressive loading. This

investigation indicates that graphite-thermoplastic

specimens with holes have up to 15 percent lower
failure stresses and strains than graphite-epoxy spec-

imens with the same stacking sequence and hole

size. However, graphite-thermoplastic specimens

subjected to low-speed impact have up to 15 percent

higher failure stresses and strains than graphite-epoxy

specimens with the same stacking sequence and im-

pact energy. Compression tests of graphite-thermo-
plastic specimens constructed of fabric and unidirec-

tional tape indicate that the material form has little

effect on failure strains in specimens with holes or

low-speed impact damage.

Introduction

Lightweight composite materials are increasingly
being used in aircraft structures. The structural re-

sponse of laminated composites containing thermo-

plastic resin must be evaluated before they can be

considered for application to civil transport aircraft

structures. Quasi-isotropic graphite-thermoplastic

laminates have been evaluated (e.g., ref. 1), but other
stacking sequences should be considered since all

laminates do not exhibit the same behavior. An

experimental investigation of the compression be-

havior of laminated specimens made from graphite-
epoxy tape (AS4-3502), graphite-thermoplastic tape

(AS4-PEEK), and graphite-thermoplastic fabric

(AS4-PEEK) has been conducted, and the results of

the investigation are presented in the present paper.

Results for specimens in two categories are presented:
specimens with 0 ° plies and specimens with no 0°

plies. Specimens with thicknesses ranging from 0.11
to 0.46 cm were constructed and loaded to failure in

uniaxial compression. Some specimens had central

circular holes with diameters up to 65 percent of the

specimen width. Other specimens were subjected to

low-speed impact with impact energies up to 35 J

and then loaded to failure in uniaxial compression.

Test Specimens

The graphite-epoxy specimens tested in this in-

vestigation were fabricated from commercially avail-

able Hercules AS4 graphite fiber and 3502 thermo-

setting epoxy resin. Graphite-epoxy specimens

were made from unidirectional tape and are desig-

nated with the letter E in table I. The graphite-

thermoplastic specimens were fabricated from com-

mercially available Hercules AS4 graphite fiber and

ICI PEEK resin. Graphite-thermoplastic specimens

made from unidirectional tape are designated with

the letter T in table I. Graphite-thermoplastic speci-

mens in which the +45 ° plies were made from woven

fabric are designated with the letter F in table I. The

five stacking sequences considered are as follows:

Stacking sequence 1

[(-[-45) 2/04/90/:t: 45/02/901s

Stacking sequence 2

[(-t-45)3/02/90/(+45) 2/0/9--O-Is

Stacking sequence 3

[+45/06/+45/06]s

Stacking sequence 4

[±45/06/-l- 45/06/90]s

Stacking sequence 5

[(±45)2/90]s

Each specimen type is designated by a letter in-

dicating the material and a number indicating the
stacking sequence. Individual specimens are iden-

tified by a specimen type followed by a number

from 1 through 15. For example, the first specimen

tested was made from graphite-thermoplastic tape

with stacking sequence [(+45)2/04/90/±45/02/90]s
and is designated TI-1. The stacking sequences,

specimen designations, and the number of specimens

tested of each type are listed in table I. All speci-

mens were nominally 25.4 cm long and either 7.62 or
10.16 cm wide. Centrally located circular holes were

machined into some of the specimens with diamond-

impregnated-core drills. Specimen cross-sectional
area and hole size are listed in tables II and III. Nom-

inal material properties of both material systems are

listed in table IV. The loaded ends of each speci-
men were machined flat and parallel to permit uni-

form end displacement. All specimens were ultrason-

ically C-scanned to establish specimen quality prior

to testing.

Apparatus and Tests

Test specimens were loaded in uniaxial compres-

sion using a hydraulic testing machine. The loaded

ends of the specimen were clamped by fixtures dur-

ing testing, and the sides were simply supported by

restraints to prevent the specimen from buckling as
a wide column. A typical specimen mounted in the

support fixture is shown in figure l(a). Electrical re-

sistance strain gages were used to monitor strains,



anddc differentialtransformerswereusedto moni-
tor displacements.Thelocationsof theback-to-back
straingagesusedto monitorthe far-fieldlaminate
strainsin all specimensandalonga horizontalline
betweenthe edgeof the holeand the sideof the
specimenareshownin figure1. All specimenswere
paintedwhiteononesideto givea reflectivesurface
so that a moir@fringetechniquecould be used to

monitor out-of-plane deformation patterns.

Far-field
strain gages

Impact
site

(a) Typical specimen in test fixture.

Far-field
strain gages

Hole

Impact In[If" URn

site

Strain _]

gages --- l

(b) Strain gage pattern for a typical specimen with a hole.

Figure 1. Specimen configuration.

A procedure detailed in reference 2 was used in

the current study for impacting specimens. Alu-

minum spheres 1.27 cm in diameter were used as

impact projectiles. The projectiles were directed nor-

mal to the plane of the specimen at speeds from 15

to 153 m/see corresponding to impact energies from

0.35 to 35 J. All specimens were impacted at the
center of the test section. The applied load, the dis-

placement of the loading platen, and the strain gage

signals were recorded at regular intervals.

Results and Discussion

Test results for specimens constructed with five

stacking sequences (listed in table I) are presented

in this section. A comparison is made between spec-

imens with the same stacking sequence constructed

from graphite-epoxy tape and graphite-thermoplastic

tape, specimens with the same stacking sequence

constructed from graphite-thermoplastic tape and
fabric, and specimens constructed from graphite-

thermoplastic tape or graphite-epoxy tape with clus-

tered 0 ° plies and separated 0 ° plies. Specimen stiff-

ness, strain concentrations around holes, and the
effects of holes or impact damage on failure strain

are discussed. Postbuckling of thin specimens is also
discussed.

Control Specimens

Control specimens (those without holes or im-

pact damage) were constructed with each stacking
sequence studied. Control specimens made from

graphite-epoxy and graphite-thermoplastic materials
with stacking sequence [(=[=45)2/04/90/± 45/02/90]s,

designated El-1 and Tt-1, respectively, in table II,

buckled prior to failure. Moir@ fringe patterns indi-

cate that control specimen El-1 buckled into three
half-waves while control specimen TI-1 buckled into

one half-wave at about 70 percent of the failure load.

The stress-strain relationships for these control spec-

imens are shown in figure 2. The slope of these curves

indicates that the prebuckling stiffness of specimen

El-1 (which is 5 percent thicker than specimen TI-1)
is about 8 percent higher than the prebuckling stiff-

ness of specimen TI-1 even though they have the
same stacking sequence. A change in slope (stiffness)
in the stress versus strain curve indicates the onset of

buckling. A slight reduction in stiffness at buckling

can be seen in figure 2 at a stress of about 400 MPa.
Both control specimens El-1 and TI-1 failed near a

clamped edge.
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Figure 2. Compression stress-strain behavior for control spec-
imens El-1 and TI-1 with stacking sequence [(=t=45)2/04/

90/+45/02/90]s. A is cross-sectional area.

Control specimens with stacking sequence

[(+45)3/02/90/(=t=45)2/0/9--0-]s made from graphite-

thermoplastic tape and woven fabric, designated
T2-1 and F2-1, respectively, buckled into three half-

waves immediately prior to failure near a clamped

edge. The stress-strain relationships for control spec-

imens of types T2 and F2 are shown in figure 3.

Since these specimens contain 69 percent ±45 ° plies,

their stress-strain relationships are nonlinear, indi-

cating nonlinear material properties. The slope of
the curves indicates that the difference in prebuck-

ling stiffness of the two specimens is approximately
the same. The fabric specimen failed at a higher

stress and strain than the tape specimen.
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¢

- / ----- Fabde
-f

I I 1 I
.004 .008 .012 .016

Strain,_L

Figure 3. Compression stress-strain behavior for control spec-

imens T2-1 and F2-1 with stacking sequence [(-t-45)a/02/

90/(=L-45)2/0/9--0]_. A is cross-sectional area.

In graphite-epoxy specimens, conventional stack-

ing sequences rarely contain many plies of the

same orientation clustered together. To determine

whether clustering many 0° plies in the center of

a graphite-thermoplastic laminate influences failure

due to uniaxial compressive loading, two stacking se-

quences were studied. Control specimens made from

graphite-thermoplastic tape with stacking sequences

[+45/06/=E 45/06]s and [-t-45/06/+ 45/06/9--_s, des-

ignated T3-1 and T4-1, respectively, did not buckle

prior to failure. Both control specimens T3-1 and

T4-1 failed near a clamped edge at approximately the

same failure strain. The damage in the failed speci-

men was confined to a region within about 3 cm of

the clamping fixture. Specimen T4-1 is about 5 per-
cent thicker and stiffer than specimen T3-1. Con-

trol specimens made from graphite-epoxy tape with

the same two stacking sequences, designated E3-1

and E4-1, buckled prior to failure and failed near
a clamped edge. The failure of specimen E3-1 in-

volved delamination of the outer two plies over ap-

proximately one third of the specimen. Interior de-

laminations were apparent in approximately half of

the specimen. Specimen E4-1 failed in the same way

as specimen T4-1. Failure strains for these four con-
trol specimens differ by less than 5 percent.

All previously mentioned specimens contain 28 or

more plies. These relatively thick specimens display

a different behavior than specimens containing signif-

icantly fewer plies. To compare relatively thin spec-

imens, graphite-epoxy tape, graphite-thermoplastic

tape, and graphite-thermoplastic fabric specimens

(designated as specimen types E5, T5, and F5, re-
spectively) with stacking sequence [(+45)2/9--0"]s were

studied. The stress-strain relationships for the con-

trol specimens of specimen types E5, T5, and F5

are shown in figure 4. The fabric specimen is

ubout 12 percent thinner and about 10 percent less
stiff than the tape specimens. The control spec-

imens of specimen types E5, T5, and F5 buckled

into four half-waves of approximately equal wave-

length then failed at midlength of the specimen
(along a nodal line). Each specimen carried load

well into the postbuckling range. Failure strain for

the graphite-epoxy control specimen was 35 percent

and 20 percent lower than the failure strain for the

graphite-thermoplastic fabric and tape specimens, re-
spectively. The graphite-thermoplastic fabric spec-

imen had the highest failure strain, 0.0138. The

change in stiffness in the stress-strain curve indi-

cates that buckling occurred in all three specimens

at a stress of approximately 75 MPa. The pre-

buckling stiffness in the graphite-epoxy specimen is

about 10 percent higher than the prebuckling stiff-

ness in the graphite-thermoplastic specimens. The

postbuckling stiffness in the graphite-epoxy speci-

men is about 25 percent higher than the postbuckling
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stiffness in the graphite-thermoplastic specimens.

The shear stiffness of a graphite-thermoplastic 0°

lamina is 15 percent lower than the shear stiff-

ness of a graphite-epoxy 0° lamina. Since this

[(±45)2/9---0]s laminate is 88 percent +45 ° plies, the

graphite-thermoplastic specimens have lower lami-
nate stiffnesses.

150 -

_I_, <,_" P

5100 -

Axial /'_" _W_

stress, 75
P/A,
MPa

50 h" Graphite-epoxy tape
f Graphite-thermoplastic tape

25 / Graphite-thermoplastic fabric

1 I I I
0 .004 .008 .012 .016

Strain,5/L

Figure 4. Compression stress-strain behavior for control

specimens of types Eh, Th, and F5 with stacking sequence

[(+45)2/9--0]s. A is cross-sectional area.

Specimens With 0 ° Plies

Specimens With Holes

Strain distributions around holes. An analysis

was conducted using the finite-element code EAL

(ref. 3) to examine strain distributions around a hole
for specimens of types E1 and T1. In the finite-

element analysis one quarter of the specimen was

modeled. The finite-element grids contained approx-

imately 175 quadrilateral elements. The elements
used near the hole edge were smaller than those away

from the hole. Specific grid configurations varied

from one hole size to the next. Typical properties of

AS4-3502 are shown in table IV. Properties of AS4-

PEEK presented in the literature (refs. 4-6) vary

somewhat. The properties shown in table IV were

used in this study.
Normalized strain distributions based on strain

gage measurements and analytical predictions for

specimens with hole diameters of 0.794 and 2.54 cm

tributions around holes presented in reference 7 in-
dicates that the difference in strain concentration at

the edge of the hole is a finite-width effect, i.e., de-

pendent upon a/w, where a is the hole diameter

and w is the plate width. The strain concentra-

tion is higher for the graphite-thermoplastic speci-

men than for the graphite-epoxy specimen for the

larger hole size shown, indicating that the graphite-

thermoplastic specimens are more notch sensitive

(ref. 7) than the graphite-epoxy specimens.

Experiment

• O Graphite-epoxy
• [] Graphite-thermoplastic

7-
Finite-element analysis

6 - Graphite-epoxy
..... Graphite-thermoplastic

5- a/w=
0.333

Measured t
strain 4 - a/w = I

Far-fietd 0.104 IIt

strain 3 l• I_. _x
2

I I I I I
0 .2 .4 .6 .8 1.0

x/(w/2)

Figure 5. Longitudinal strain distribution at hole for speci-

mens with stacking sequence [(+45)2/04/90/+45/02/90]s.

Failure characteristics. The effect of hole size on

failure strain is shown in figure 6(a) for graphite-

epoxy and graphite-thermoplastic specimens with

stacking sequence [(4-45)2/04/90/+45/02/90]s (spec-
imens of types E1 and T1). Specimen geometry, fail-

ure stress, and failure strain are shown in table iI for

all specimens of types E1 and T1 tested.
All specimens of types E1 and T1 with holes

failed through the hole and exhibited no buckling

behavior. Failure strain is 5 to 30 percent higher
for specimens of type E1 then for specimens of type

T1 with the same hole size. Failure of each speci-

men involved delamination between plies and lami-

nate failure in transverse cracking across the spec-

imen, as shown in the photographs of specimens

are shown in figure ,5. For the specimens :with the El-7 and T1-5 in figure 6(b).

larger hole, the strains predicted for the graphite-
thermoplastic specimens are slightly higher than

those predicted for the graphite-epoxy specimens.
This trend is not apparent in the experimental re-
sults. No difference between the strain distributions

of the two material systems can be seen for the spec-

imens with the smaller hole. A study of strain dis-

Failed fibers be-

came wedged between other fibers during failure.

The failure of the graphite-thermoplastic specimens

at consistently lower stresses and strains than the

graphite-epoxy specimens may be related to the lower
shear stiffness of the AS4-PEEK material. However,

since this [+452/04/90/+45/02/90]s laminate con-
tains only 43 percent 4-45 ° plies, matrix shearing is



Axial
strain,

percent

4.2

I

1.0

.6 -

.4 -

.2 --

O Graphite*epoxy

[] Graphite-thermoplastic

0o
OD° o I*-. -*1

[] O
[]

El

I I I I
.2 .4 .6 .8

Hole size, a/w

(a) Failure strain as a function of hole size.

1.0

i.08 2.54 ]_;m cm

Specimen E1-7 Specimen T1-5

L-91-0I

(b) Failure mode.

Figure 6. Results for specimens with stacking sequence [(=k45)2/04/90/=k45/02/90]s.



not the dominant failure mode. No matrix shearing

bands (ref. 8) are evident after failure. C-scans of

specimens after testing indicate that off-axis (in the

-{-45° directions) and longitudinal (in the 0 ° direc-

tion) cracking occurred during loading in both the

graphite-epoxy and the graphite-thermoplastic spec-

imens. The graphite-thermoplastic specimens be-

haved similar to the graphite-epoxy specimens with

small hole sizes (a/w < 0.25), but the graphite-epoxy

specimens failed at significantly higher strains than

the graphite-thermoplastic specimens when larger
' holes were present.

The effect of hole size on failure strain is shown

in figure 7 for specimens with stacking sequence

[(+45)3/02/90/(+45)2/0/9-0]s made from graphite-

thermoplastic tape and graphite-thermoplastic wo-

ven fabric, designated as specimen types T2 and F2,

respectively. Average specimen cross-sectional area
away from the hole and the range of hole sizes con-

sidered are presented in table III. All specimens of

types T2 and F2 with holes failed through the hole

and exhibited no buckling behavior. Failure strains

are almost identical for specimens of the same hole

size for the two material forms, as shown in figure 7.
C-scans made of specimens after failure indicate that

no off-axis cracking occurred in any of the specimens

of type T2 or F2. Some longitudinal cracking oc-

curred in the specimens with large holes.

1.0

Axial
strain, .8

percent
.6

1,6 --

1.4-

1.2-

_2

-- [] A
[]

.4 _

.2 _

[] Tape
A Fabric

I*- w-_
[]

1 1 I I I
0 .2 .4 .6 .8 1.0

Hole size, a/w

Figure 7. Failure strain as a function of hole size for

graphite-thermoplastic specimens with stacking sequence

[(+45)3/02/90/( +45)2/0/9_s.

To determine whether clustering many 0° plies in

the center of a graphite-thermoplastic laminate influ-

ences the failure of specimens with holes, graphite-
thermoplastic specimens made from tape with stack-

ing sequences [-t-45/06/+45/06]s and [t45/06/

-F45/06/9--0-]s, designated as specimen types T3 and
T4, respectively, were examined. Graphite-epoxy

specimens with the same two stacking sequences, des-

ignated E3 and E4, were also tested. The average

far-field cross-sectional area of these specimens and

the range of hole sizes considered are presented in
table III. The effect of hole size on failure strain is

shown in figure 8(a) for these specimens. A compar-

ison of the failure strains of the specimens indicates
that there is no consistent difference in the results

for the two stacking sequences. The clustered 0 °

plies do not induce premature failure in the graphite-

thermoplastic specimens with holes. However, there
is a significant difference in the failure strains for

the graphite-epoxy specimens of the two stacking se-
quences with holes. Specimens of type E3 carried up

to 26 percent more strain before failure than spec-

imens of type E4. The clustering of 0 ° plies does

influence the failure strain and does cause premature

failure in the graphite-epoxy specimens with holes.

No specimens of type T3 or T4 buckled prior

to failure, but specimens of types E3 and E4 with

a/w = 0.104 did buckle before failure. All speci-
mens with holes failed through the hole. A photo-

graph of the edge of the hole in specimen T4-6 with

a 5.08-era-diameter hole is shown in figure 8(b). De-

lamination between 0° and +45 ° or -45 ° plies is

the primary cause of failure in graphite-thermoplastic

and graphite-epoxy specimens with these stacking se-

quences. Delamination can be seen at the edge of the
hole. Transverse cracks formed across the width of

the specimen, starting at the points on the edge of

the hole closest to the unloaded edges in specimens

of types T3 and T4. However, specimens of types

E3 and E4 exhibited a different failure mode. Spec-

imens of types E3 and E4 with holes of geometry

a/w = 0.333 exhibited stress concentrations and ini-
tial failures at points on the hole edge 45 ° away from

the longitudinal centerline, as shown by the moir5

fringe pattern of specimen E4-3 at 86 percent of the

failure load (fig. 8(c)). The 90 ° ply in the center of

the graphite-epoxy specimen prevents the specimen

from delaminating in the way the graphite-epoxy

specimen with the clustered 0° plies does and, there-

fore, the failure strain is higher and a different failure
mechanism results. C-scans of failed specimens indi-

cate that graphite-epoxy specimens exhibited longi-

tudinal cracking while graphite-thermoplastic speci-
mens did not.

Specimens With Impact Damage

The effect of impact damage on failure strain

is shown in figure 9 for specimens with stacking

sequence [(-t-45)2/04/90/+ 45/02/90]s made from

graphite-epoxy tape and graphite-thermoplastic tape,

=

.
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Figure 8. Results for graphite-thermoplastic and graphite-epoxy specimens with stacking sequences [+45/06/± 45/06]s and

[±45/06/_5/06/_s.



designated as specimen types E1 and T1, respec-

tively. Specimen cross-sectional area, impact en-

ergy, failure stress, and failure strain are presented

in table II for all specimens of types E1 and T1

tested. Graphite-epoxy specimens not impacted or

impacted at about 30 m/see (1.4 J of impact energy),
specimens El-1 and El-8 in table II, buckled into

three half-waves and failed at an end of the specimen.

Axial
strain, .6

percent

1.2

1.0[_

o
[]

_On

.4

.2

o

0 Graphite-epoxy
[] Graphite-thermoplastic

[]
[]

0 [] []
0

0 0

I I I I I I I
0 5 10 15 20 25 30 35

Impact energy, J

Figure 9. Failure strain as a function of impact energy

for specimens with stacking sequence [(4-45)2/04/90/
4-45/02/90]s.

Graphite-thermoplastic specimens not impacted or

impacted at about 30 m/see, specimens TI-1 and
T1-8 in table II, buckled into one half-wave and failed

at an end of the specimen. Specimen El-9 (3.17 J
of impact energy) also buckled into three half-waves

but failed through the impact site. No other spec-

imens buckled. All other specimens failed through
the impact site. Failure loads for specimens with end

failures were about the same, independent of ma-

teriaJ or impact damage. Specimens subjected to

impact speeds greater than 31 m/see show signifi-

cant reduction in load-carrying ability due to impact

damage in both materials; however, this reduction is

more pronounced in the graphite-epoxy specimens.

For impact speeds greater than 92 m/sec (12.5 J
of impact energy), failure strain remains constant

as impact speed increases. C-scans made of spec-

imens after impact but before compressive loading

reveal that for impact speeds less than 92 m/sec, the

graphite-epoxy specimens have more damage than
the graphite-thermoplastic specimens for each im-

pact speed. However, for impact speeds greater than
92 m/sec, the graphite-thermoplastic specimens sus-

tained more damage than the graphite-epoxy speci-

mens. C-scans made for specimens subjected to all

impact speeds indicate that damage is confined to an

oval around the impact site. There is no longitudi-

nal splitting or off-axis damage propagation for either

type of material. The graphite-epoxy and graphite-

thermoplastic specimens subjected to severe impact

damage (impact speeds greater than 92 m/sec) failed

at about 33 percent and 45 percent, respectively,

of the failure strain of the undamaged specimens.
The failure mode in impacted specimens that did not

buckle, as in the specimens with holes, involved de-

laminations. The same failure mode (dominated by
delamination) as described in reference 9 for quasi-

isotropic graphite-epoxy specimens subjected to im-

pact damage is seen in specimens of both material

systems in this study.

The effect of impact damage on failure strain is

shown in figure 10 for graphite-thermoplastic speci-

mens with stacking sequence [(:1=45)3/02/90/(=t=45)2/
0/9-0Is made from tape (specimens of type T2) and

from woven fabric (specimens of type F2). The range

of impact energies is presented in table III. All spec-

imens subjected to impact speeds of 31 to 46 m/sec
(impact energies of 1.4 to 3.3 J) buckled prior to fail-

ure. Specimens subjected to higher impact speeds

did not buckle. Specimens impacted at 31 m/see

failed at one end of the specimen. The tape specimen
impacted at 47 m/see buckled into three half-waves

then failed at a nodal line, away from the impact

site. All other impact-damaged specimens failed at

the impact site. The mode of failure in all specimens

involved delamination and fiber breakage. The tape
specimens exhibited more delamination than the fab-

ric specimens because in the fabric specimens each
pair of -4-45° plies is woven together and cannot de-
laminate. Failure strains are almost the same for

tape and fabric specimens, as shown in figure 10.
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Figure 10. Failure strain as a function of impact energy for

graphite-thermoplastic specimens with stacking sequence
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To determine whether clustering many 0 ° plies in

the center of a graphite-thermoplastic or a graphite-
epoxy laminate influences the failure of specimens

subjected to low-speed impact, graphite-thermo-

plastic and graphite-epoxy specimens made from

tape with stacking sequences [±45/06/+45/06]s

(specimen types T3 and E3) and [+45/06/+45/
06/9-0]s (specimen types T4 and E4) are examined.

The range of impact energies considered is listed in

table III. No specimens of type T3 or T4 buckled

prior to failure. Those impacted with energies less

than 1 J failed near a clamped edge. Specimens of

types E3 and E4 impacted with energies less than

3 J buckled prior to failing near a clamped edge. All

other impacted specimens failed through the impact

site. Delamination was the primary cause of failure.

Transverse cracks formed across the specimen as the

matrix failed. Despite the high percentage of 0° plies

(75 percent), C-scans made after severe impact and

compressive loading reveal no indication of longitudi-
nal cracks as are described in reference 9 for failures

of unidirectional laminates in graphite-thermoplastic
specimens; however, longitudinal cracks axe evident

in the graphite-epoxy specimens. The effect of im-

pact damage on failure strain is shown in figure 11 for

the specimens of types T3, T4, E3, and E4.

Graphite- Graphite-
epoxy thermoplastic

O _ [+45/06/+45/06]s

ix A [+45/06/+45/06/9-0]s

Axial
strain, .4

percent

.8 Ix

O

.2

A

<>
A

I I I I I I5 10 15 20 25 30 :_5
Impactenergy,J

Figure ll. Failure strain as a function of impact energy
for graphite-epoxy and graphite-thermoplastic specimens

with stacking sequences [+45/06/+45/06]s and [±45/06/
+45/0d 8.

There is no consistent difference between the failure

strains of graphite-thermoplastic specimens of the

two stacking sequences. The clustered 0° plies do not

induce premature failure in graphite-thermoplastic

specimens subjected to impact damage. Specimens

of type E4 have slightly higher failure strains than

specimens of type E3 but not a significant enough

increase to clearly indicate that the clustering of
0 ° plies induces premature failure in graphite-epoxy

specimens subjected to impact damage.

Specimens With No 0 ° Plies

Specimens With Holes

Strain distributions around holes. Normalized

prebuckling strain distributions based on strain gage

measurements and analytical predictions for speci-

mens with hole diameters of 0.794, 2.54, and 3.81 cm
are shown in figure 12. These distributions indicate

that the graphite-thermoplastic tape specimens have
the highest ratio of local strain to far-field strain

and that the graphite-thermoplastic fabric specimens
have the lowest ratio for all hole sizes. Material

properties for fabric specimens are assumed to be

the same as for tape specimens made of graphite-
thermoplastic material, but the thickness of the

specimens differs by about 7 percent. The calcu-

lated strain ratios are the same for the graphite-

thermoplastic fabric and tape specimens.

Experiment
• [] Graphite-thermoplasticta
• z_ Graphite-thermoplasticfa_c
• o Graphite-epoxytape7-

Finite-element analysis

6 - Graphite-epoxy
..... Graphite-thermoplastic

5-

Measured a0w5= _x
strain 4 - a/w = .El I)_l

Far-field a/w = 0 333 \1_ L.___I

strain 3 -0.104 " _ A_'_XD _W-M

I I I I I
0 .2 .4 .6 .8 1.0

x/(w/2)

Figure 12. Longitudinal strain distribution at hole for speci-

mens with stacking sequence [(:h45)2/9--_s.

Failure characteristics. The prebuckling stiffness

of a finite-width specimen may be affected by the
size of a hole. The prebuckling stiffness of speci-

mens with large holes is not the same as the prebuck-

ling stiffness of control specimens or specimens with

small holes. This difference in prebuckling stiffness

for graphite-epoxy tape specimens with stacking se-

quence [(±45)2/9-0-]s is shown in figure 13. Specimens

of this type with large holes buckle at much lower

loads than specimens with smaller holes. This reduc-

tion in prebuckling stiffness and in buckling load is

caused by a combination of the effect of the large hole

9



andthesignificantanisotropiceffectsinherentin this
stackingsequence.Forthislaminate,theratiosofthe
anisotropictermsto the longitudinalbendingstiff-
ness,D16/Dll and D26/D11, are approximately 0.25.

All three types of specimens demonstrate a similar re-

duction in prebuckling stiffness as hole size increases

for this stacking sequence.

Axial
stress,

P/A,
MPa

150 -

125

100

75

50

25

f:o:::
y. 0°67

f • Failure _ w -')'{

I I I t
0 .004 .008 .012 .016

Strain, 5/L

Figure 13. Change in stiffness of graphite-epoxy specimen

with stacking sequence [(=k45)2/9--_s as hole size changes.
A is cross-sectional area.

The effects of hole size on failure stress are shown

in figure 14 for specimens with stacking sequence

[(=k45)2/9--0]s made from graphite-epoxy tape (spec-
imen type E5), graphite-thermoplastic tape (spec-

imen type Th), and graphite-thermoplastic fabric

(specimen type Fh). The range of hole sizes con-

sidered is presented in table III for all specimens

of types Eh, T5, and F5 tested. The specimens of

types Eh, Th, and F5 with holes buckled into three
or more half-waves (often with different wavelengths)
with one half-wave centered around the hole. Buck-

ling became evident in moir4 patterns at or below

40 percent of the failure load of the undamaged speci-

men in specimens with small holes. Buckling became
evident in moir4 patterns at less than 20 percent of

the failure load of the undamaged specimen for spec-

imens with large holes. The failure mode of all speci-
mens involved delamination and transverse cracking.

C-scans made after testing indicate that no longitu-

dinal or off-axis cracking occurred in the graphite-

thermoplastic specimens, but both types of cracks

appeared in the graphite-epoxy specimens. The spec-
imens with smaller holes failed at a nodal line in

the top half of the specimen. Holes with a/w <
0.4 have almost no effect on failure stress for all

three types of specimens. The graphite-epoxy spec-

imens with a/w < 0.4 have 20 percent lower failure

stresses than the graphite-thermoplastic specimens.

The specimens with larger holes (a/w > 0.4) fail

10

through the hole. Failure stresses for graphite-epoxy

specimens with larger holes are slightly lower than
those for the graphite-thermoplastic specimens. The

graphite-thermoplastic fabric specimens can with-
stand 10-20 percent higher stress than the graphite-

epoxy specimens. The failure stresses of the graphite-

thermoplastic tape specimens are 5-10 percent above

those of the graphite-epoxy specimens.

175 -

15(

12! -

Axial 10( -
stress,

P/A,
MPa 75 -

50-

25-

O Graphite-epoxytape
[] Graphite-thermoplastictape
/k Graphite-thermoplasticfabric

AA
A

A
DD D D

00 o
0

P

o

_w-_t

I I l I I
0 .2 .4 .6 .8 1.0

Hole size, a/w

Figure 14. Failure strain as a function of hole size for
specimens with stacking sequence [(=E45)2/9---_s. A is
cross-sectional area.

Specimens With Impact Damage

The effects of impact damage on failure stress are

shown in figure 15 for specimens with stacking se-

quence [(=k45)2/9---0]s made from graphite-epoxy tape

(specimen type Eh), graphite-thermoplastic tape
(specimen type T5), and graphite-thermoplastic fab-

ric (specimen type Fh). The range of impact energies

considered is presented in table III for all specimens

of types Eh, Th, and F5 tested.

All impacted specimens buckled prior to fail-

ure. Specimens subjected to low impact energies

(less than 5.5 J with impact speeds less than about

61 m/sec) failed the same way that the control spec-
imens failed. The specimens buckled into four half-

waves with a nodal line through the impact site.

The specimens failed at this nodal line by transverse

cracking across the width of the specimen. Similar

results are presented in reference 10 for specimens
with thicknesses ranging from 0.20 to 0.33 cm and

impacted at speeds up to 95 m/sec.
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Figure 15. Failure strain as a function of impact energy

for specimens with stacking sequence [(±45)2/9--0_s (open

symbols represent cases when the impact projectile did

not fully penetrate the specimen, filled symbols represent

cases when the impact projectile did). A is cross-sectional
area.

Specimens subjected to impact energies greater

than 6 J buckled into three, four, or five half-

waves with one half-wave centered on the impact

site, and the specimens failed through the impact

site by transverse cracking. The wavelengths of

each half-wave within a specimen were not neces-

sarily the same. Off-axis cracking is evident in the

specimens after impact and before compressive load-

ing for all specimens with impact speeds more than

about 61 m/see (impact energy of 5.5 J). All impact
specimens failed through the center of the specimen

(impact site) except the fabric specimen impacted
at 107 m/see (impact energy of 17 J), which buck-
led into two half-waves then failed near the center of

one of the half-waves. C-scans made after the test

of this specimen indicate that no longitudinal or off-

axis cracking occurred. All three types of specimens

have approximately the same failure stress for impact

speeds less than about 61 m/sec. Above 61 m/sec,
all three types of specimens exhibit a reduction in

failure stress due to impact damage.

A comparison of failure stresses for the three

types of specimens, shown in figure 15, indicates

that the graphite-thermoplastic fabric specimens

withstand about 12 percent more stress than the

graphite-epoxy specimens for impact speeds below

about 61 m/see (impact energy of 5.5 J). Graphite-

thermoplastic tape specimens withstand 5 percent
more stress than the graphite-epoxy specimens for

impact speeds below 61 m/sec. However, the re-
duction in failure stress due to impact damage is

larger in both types of graphite-thermoplastic spec-

imens than in the graphite-epoxy specimens. This

difference may be related to the amount of dam-

age sustained when the impact projectile penetrates

and passes through the specimens rather than bounc-

ing off the specimens. The impact projectile fully

penetrates the graphite-epoxy specimens at impact

speeds of more than 73 m/sec (impact energy of

8 J), the fabric specimens at speeds of more than

84 m/sec (impact energy of 10.5 J), and the tape

graphite-thermoplastic specimens at speeds of more

than 99 m/sec (impact energy of 14.7 J). The filled

data points in the figure represent impacts for which

the impact projectile penetrated the specimen, and

the open data points represent impacts for which

the impact projectile bounced off the specimen.

C-scans of some specimens after impact indicate

that the graphite-epoxy specimens have the small-

est damaged area for a given impact energy. In some

cases the graphite-thermoplastic tape specimens have

damaged areas up to three times as large as the dam-
aged areas of the graphite-epoxy specimens for the

same impact energy. The graphite-thermoplastic fab-

ric specimens have damaged areas up to twice as large

as the damaged areas of the graphite-epoxy speci-

mens for the same impact energy. The size of the

damaged area does not directly correlate to the re-
duction in failure stress.

Concluding Remarks

An experimental investigation of the compres-

sion behavior of laminated specimens made from

graphite-epoxy tape (AS4-3502), graphite-thermo-

plastic tape (AS4-PEEK), and graphite-thermo-

plastic fabric (AS4-PEEK) was conducted. Speci-

mens with no damage prior to compressive loading,
specimens with central circular holes with diameters

up to 67 percent of the specimen width, and spec-

imens subjected to low-speed impact damage were

loaded to failure in uniaxial compression.

Graphite-thermoplastic tape specimens with holes
have up to 15 percent lower failure stresses and

strains than graphite-epoxy specimens with the same

stacking sequence and hole size. However, graphite-

thermoplastic specimens have higher failure stresses

and strains than graphite-epoxy specimens of the

same stacking sequence and impact energy. Test

results for graphite-thermoplastic specimens con-

structed from unidirectional tape and from fabric
indicate that the material form has little effect on

failure stresses associated with circular holes or with

low-speed impact damage. Compression test re-
sults for graphite-thermoplastic specimens with holes

or with impact damage and with many clustered

plies of the same orientation indicate that having

many clustered 0° plies does not influence the static-

load-carrying ability of the specimen. The results

for the specimens tested indicated that postbuckled

graphite-thermoplastic specimens with holes carry

11



more load than similar postbuckled graphite-epoxy

specimens.

NASA Langley Research Center

Hampton, VA 23665-5225

January 17, i991
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Table I. Stacking Sequence and Specimen Designation

Number of

specimens

Designation* Stacking sequence Material tested

Specimens with 0 ° plies

T1

T2

T3

T4

E1

E3

E4

F2

[(+45)2/04/90/+ 45/02/90]s

[(+45)3/02/90/(+45)2/0/_]s

[+45/06/+45/06]s

[+45/06/+45/06/9-0-]s

[(+45)2/04/90/± 45/02/90]s

[±45/06/±45/06]s

[+45/06 / + 45/06 / 9--0]s

[(±45)3/02/90/(±45)2/0/9--0-Is

AS4-PEEK, tape

AS4-PEEK, tape

AS4-PEEK, tape

AS4-PEEK, tape

AS4-3502, tape

AS4-3502, tape

AS4-3502, tape

AS4-PEEK, fabric

14

14

14

14

15

8

8

15

Specimens with no 0 ° plies

E5

T5

F5

[(±45) 2/9--0-Is

[(±45)2/9--0]s

[(+45)2/9--0]s

AS4-3502, tape

AS4-PEEK, tape

AS4-PEEK, fabric

15

15

13

*Letter refers to material and construction type; number refers to stacking sequence.
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Table II. Description of [(±45)2/04/90/+45/02/90]s Specimens

Cross-sectional Hole diameter, a, Impact energy, Failure stress, Failure

Specimen area,* A, cm 2 cm J MPa strain
El-1
E1-2
El-3
E1-4
E1-5
El-6
El-7
El-8
El-9
El-10
EI-ll
El-12
El-13
El-14
El-15
TI-1
T1-2
T1-3
T1-4
T1-5
T1-6
T1-7
T1-8
T1-9
TI-10
TI-ll
Tl-12
Tl-13
Tl-14

2.81
2.82
2.83
2.83
2.83
2.84
2.82
2.82
2.81
2.80
2.84
2.84
2.81
2.84
2.80
2.89
2.94
2.90
2.99
2.92
2.92
2.90
2.88
2.88
2.88
2.88
2.89
2.92
2.95

0.00
.79

1.27
1.91
2.54
3.81
5.08

0
0
0
0
0
0
0
0
0
.79

1.27
1.91
2.54
3.81
5.08

0
0
0
0
0
0
0

0
0
0
0
0
0
0

1.36
3.17
3.09
5.77

10.6
15.8
16.9
24.9

0
0
0
0
0
0
0

1.33
3.09
5.64

10.6
17.9
24.6
33.9

536.4
418.4
345.6
394.3
316.3
251.5
165.4
578.1
501.8
408.9
293.4
195.5
167.0
183.0
193.6
532.7
379.9
329.6
288.5
240.9
192.4
132.0
526.0
398.5
347.8
314.5
242.8
211.8
202.0

0.00902
.00681
.00584
.00697
.00563
.00537
.00447
.01080
.00870
.00640
.00490
.00441
.00339
.00395
.00331
.01110
.00666
.00577
.00550
.00451
.00415
.00367
.00990
.00670
.00620
.00567
.00500
.00449
.00440

*Nominal length is 25.4 cm; width is 7.62 cm; thickness is 0.38 cm.
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TableIII. Descriptionof [(±45)3/02/90/(+45)2/0/9-0]s,[±45/06/=t=45/06]s,
[±45/06/+45/06/9--_s,and[(+45)2/9--0-]sSpecimens

Specimen
designation

T2
T2
F2
F2
T3
T3
T4
T4
E3
E3
E4
E4
E5
E5
T5
T5
F5
F5

Average
cross-sectional
area,*A, am 2

2.99
4.03
2.85
3.86
3.33
3.36
3.43
3.41
3.26
3.24
3.32
3.34

.965

.953

.966

.939

.886
.921

Range of
hole diameters, a,

cm

0-5.08

0-5.08

0-5.08

0-5.08

0-5.08

0-5.08

0-5.08

0 5.08

0-5.08

Range of
impact energies,

J

0-28.1

0-29.0

0-34.8

0-33.9

0-34.7

0-34.3

0-22.7

0-34.8

0-22.9

*Nominal length is 25.4 cm; width is 7.62 cm in all specimens except impacted T2 and F2. Thickness
is 0.38 cm for stacking sequence 2, 0.43 cm for stacking sequences 3 and 4, and 0.127 cm for stacking

sequence 5.

Table IV. Material Properties

Material

Longitudinal Young's modulus, El, GPa . .
Transverse Young's modulus, E2, GPa ....
Shear modulus, G12, GPa ..........

Poisson's ratio, #12 .............

AS4-3502

graphite-epoxy
127.6

11.3
6.0

.3

AS4-PEEK

graphite-thermoplastic
133.8

8.9
5.1
.38
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