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PREFACE TO THE SECOND ANNUAL SOLID STATE

TECHNOLOGY BRANCH DIGEST

The last year has seen a significant growth in the size of the Solid State Technology Branch with the addition of
three new persons, two with EE degrees and one with a physics degree. This growth is a reflection of the increase in

in-house research activities. Specifically, although not yet indicated in publications, the year saw a large increase in
interest in low-temperature electronics: superconductor-based, semiconductor-based, and ultimately, hybrid super-
conductor/semiconductor circuitry. In most areas, work has continued atapproximately the same level as in the pre-
vious year.

The present volume represents a collection of papers and presentations authored by members of the branch

between June 1989 and June 1990. As in last year's inaugural version of this digest, the papers are organized into
four sections. Section I deals with research in microwave circuits and includes full integrated circuits, the demon-

stration of optical/RF interfaces, and the evaluation of some contractually developed hybrid circuitry. Examination
of the review paper on solid-state amplifiers will reveal that Lewis contractors have made significant strides in
solving the problems of interstage matching and device development in high efficiency multistage mm-wavelength
power amplifiers. In the optical/RF interface area, the papers reveal that work has moved, to a large extent, to the
arena of subsystem demonstrations. Consequently, most of this work has been transferred to a more system-oriented
organization here at Lewis.

Section II indicates developments in coplanar waveguide and its use in breadboard circuits. This includes both

an in-house 30-GHz demonstration array and a 2-GHz investigation for an ATDRSS-type array.

Section III presents one of the most active areas within the branch for the last year. This collection of papers
and presentations on high temperature superconductivity includes a wide range of subjects, from thin film deposition

to transport measurements of films characteristics, RF surface resistance measurements, substrate permittivity
measurements, measurements of microstrip line characteristics at cryogenic temperatures, patteming of supercon-
ducting films, and evaluation of simple passive microstrip circuitry based on YBaCuO films.

Finally, in section IV of the digest, those papers on materials and material characterization (other than supercon-
ductors) are included. These represent work with a wide variety of materials, including carbon films, silicon
carbide, GaAs/AIGaAs, and HgCdTe.

In addition to these articles, it seems worth noting the publication of three books by Solid State Branch person-
nel in the last yea_. "Optical Control of Microwave Devices," a textbook on microwave-optical interactions by
R. Simons, a branch-sponsored contractor; "Characterization of Amorphous Carbon Films," a comprehensive
collection of articles by internationally recognized authors which J. Pouch and S. Alterovitz edited and contributed

to; and "Synthesis and Properties of Boron Nitride," a similar collection, also done by Pouch and Alterovitz.
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I. MONOLITHIC MICROWAVE INTEGRATED CIRCUITS





N91-18298
NASA Developments in Solid State Power Amplifiers

Regis F. Leonard
NASA Lewis Research Center

Over the last ten years, NASA has undertaken an extensive

program aimed at development of solid state power amplifiers for

space applications. Historically, the program may be divided into

three phases. The first efforts were carried out in support of

the Advanced Communications Technology Satellite (ACTS) program,

which is developing an experimental version of a Ka-band

commercial communications system. These first amplifiers

attempted to use hybrid technology. The second phase was still

targeted at ACTS frequencies, but concentrated on monolithic

implementations, while the current third phase is a monolithic

effort, but focusses on frequencies appropriate for other NASA

programs and stresses amplifier efficiency.

I. 20 GHZ HYBRID AMPLIFIERS

As required by the ACTS program, the first solid state

amplifiers developed by NASA Lewis were at 20 GHz. Two of the

units (designed and built by TRW and Texas Instruments) utilized

GaAs MESFET technology, while a third was based on GaAs IMPATT

devices. All were based on discrete devices and external power

combining to achieve the required power levels. The results of
these three efforts are shown in Table i.

TABLE i.

PERFORMANCE OF HYBRID 20 GHZ AMPLIFIERS

BANDWIDTH (GHZ)

GAIN (dB)

POWER OUTPUT (W)

EFFICIENCY (%)

TI TRW TRW

GaAs FET GaAs FET IMPATT

2.5 1.5 0.220

30 39. 29.0

9.0 8.2 15.5

<8. <8. i0.

As a result of these three efforts, all of which ended about

1984, and all of which were aimed at the production of a single

port amplifier which would be appropriate as a tube replacement,

NASA concluded that solid state amplifiers were not yet at a

level where a 20 GHz single port amplifier at this power level

was feasible for space applications. This decision was based

primarily on the efficiency achieved at that time. Efforts since

then have concentrated on the development of improved devices

(efficiencies better than 30%) and their incorporation into

monolithic low power (< 1 watts) amplifiers.

II. 20 GHZ MONOLITHIC MESFET POWER AMPLIFIERS

This work has been carried out under contract and has been

aimed at several potential applications. The first round of

PRECEDING PAGE BLANK NOT FILMED



developments was again centered out at 20 GHz. The target

application again was an ACTS-like commercial satellite,

requiring multiple, steerable beams. The development of

appropriate monolithic power amplifiers (and receivers and phase

shifters) would permit such a system to be implemented using

phased array antennas rather than the extensive network of

ferrite phase shifters and power dividers use_by ACTS. This

phase of the NASA program, carried out between approximately 1983

and 1986, produced two 20 GHz monolithic amplifiers, each

designed and built by Texas Instruments, and each based again on

GaAs MESFET technology. The first of these, a variable power

module, was a four stage amplifier which utilized dual gate FETs

to achieve power variations while maintaining efficiency. A

summary of its performance compared to design goals is shown in
Table 2.

TABLE 2

TEXAS INSTRUMENTS 20 GHZ VARIABLE POWER AMPLIFIER

BANDWIDTH (GHZ)

MAX POWER OUTPUT (W)

EFFICIENCY AT MAX OUTPUT (%)

GAIN (dH)

4TH STAGE GATE WIDTH (MM)

DESIGN GOAL PERFORMANCE

2.5 2.5

0.5 0.25

15 ---

20 20

1.2

The second 20 GHz chip was focussed entirely on the

production of the maximum possible 20 GHZ power in a monolithic

chip. Once more the contractor was Texas Instruments. This effort

resulted in a three stage amplifier using single gate FETs. The

performance of this chip is summarized in Table 3.

TABLE 3.

TEXAS INSTRUMENTS 20 GHZ HIGH POWER AMPLIFIER

DESIGN GOAL

BANDWIDTH 2.5

MAX POWER OUTPUT (W) 2.5

EFFICIENCY AT MAX POWER (%) 20

GAIN (dB) 15

LAST STAGE GATE WIDTH (MM)

PERFORMANCE

2.5

>2.0

16

18

3.6

It is clear, however, that both of these units, although

they constituted a benchmark achievement at this frequency,

suffered from the same problem as the earlier hybrid

implementations of solid state technology. Their efficiencies

make their use marginal for space applications, except in very

limited numbers, such as would be required if they were used as a

driver for a higher efficiency final stage. An attempt to use

multiple chips with any kind of combining would lead to

prohibitively large prime power requirements.
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III. HIGH EFFICIENCy MONOLITHIC POWER AMPLIFIERS

At the present time NASA Lewis is sponsoring the development

of four monolithic power amplifier chips. One of these at 15 GHz

is a candidate for use in the proximity communications system of

the space station. Two at 32 GHz are for possible use in the

space (transmitter) portion of the deep space communications

network. The fourth at 60 GHz is intended for application to

intersatellite communications, such as might be required by

Advanced TDRSS or lunar/Mars exploration.

The space station proximity communications system is

intended to provide communications within a radius of several

10's of kilometers of the space station. Users would include free

flying experimental platforms, the orbital maneuvering vehicle

(OMV), and astronauts in EVA. The original planning for this

system utilized frequencies in Ku-band. It is not clear at this

time whether that assignment will be maintained, inasmuch as

there exist possible interferences with commercial, fixed

satellite services. Nevertheless, several chips have been

developed at 13-15 GHz to accommodate this application. The most

challenging of these was a variable power amplifier intended

primarily for use by astronauts during EVA. The system design

requires approximately 1 watt of output power. Power variability

is necessary because of the wide variation in range experienced

by the astronaut. Of course, high efficiency is also a prime

consideration. The development of the chip was undertaken by

Texas Instruments in January 1987. Their design is a four stage

monolithic circuit using dual gate GaAs MESFET technology. The

chip is shown in Figure I.

FIGURE i. 15 GHZ MONOLITHIC VARIABLE POWER AMPLIFIER

The performance of the amplifier, compared to the design goals,

is shown in Table 4.

ORIGINAL PAGE IS
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TABLE 4.

15 GHZ HIGH EFFICIENCY VARIABLE POWER AMPLIFIER

BANDWIDTH (GHZ)

GAIN (dB)

MAX POWER OUTPUT (W)

EFFICIENCY AT MAX POWER (%)

FINAL STAGE GATE WIDTH (MM)

DESIGN GOAL PERFORMANCE
2.0 20

15.0 29.6

1.0 .92

35 30.

--- 1.5

Both the power output and the efficiency achieved by this program

essentially meet the system requirements formulated originally by

the space station designers. The only problem at the present time

is that the chip operates at a center frequency of 17 rather than

14 GHz.

In another application the NASA deep space communications

network is considering a conversion to Ka-band. The primary

motivation for such a change is the significant increase in

antenna gain (for a fixed aperture size) and the corresponding

decrease in power requirements (for a fixed data rate). Increased

antenna gain, however, implies smaller beams and therefore more

stringent pointing requirements. Such a situation, of course, is

ideal for implementation of an electronically steerable phased

array, which does not disturb other critically-pointed spacecraft

instruments in the way a mechanically steered antenna would. To

support breadboard evaluations of such a system, 32 GHz power

amplifier modules are under development. The contractors

executing these efforts are Texas Instruments and Hughes

Aircraft. The TI work has been under way since May, 1985, and is

near completion, while the Hughes effort was initiated in June

1988.

TI proposed and originally designed amplifiers using GaAs

MESFET technology, but was directed, after approximately 18

months work, to concentrate on heterojunction devices.

Specifically, they have investigated AIGaAs/GaAs HEMT structures

and pseudomorphic InGaAs/GaAs structures. At this point it is

clear that the pseudomorphic technology outperforms both the

AiGa_s HEMT and the GaAs MESFET technology by a significant

margin at 32 GHz. The specific pseudomorphic structure which TI

has adopted is shown in Figure 2.

GaAs 400_ 2 x 1018
t"

n + cap ,_ A| = 0

layer %.. Graded AIGaAs 300A 2 x 1018

AI -- 0.24

AI0,24 Ga0.76 As 500A 2 x 1018

2D --_ ........ In0.15Ga0.85As 100_ 2x1018
e-gas ,..

GaAs 80_ 2x1018

--- GaAs Buffer I_m

FIGURE 2. Texas Instruments' Pseudomorphic Power Amplifier

Structure
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The performance parameters for two of the pseudomorphic chips
developed under this program are shown in Table 5.

TABLE 5.

TEXAS INSTRUMENTS 32 GHZ MONOLITHIC POWER AMPLIFIER PERFORMANCE

AMP

BANDWIDTH (GHZ)

GAIN (dB)

GATE LENGTH (uM)

FINAL STAGE GATE WIDTH (MM)

POWER OUTPUT (mW)

EFFICIENCY (%)

3-STAGE AMP I-STAGE

2.0 2.0

23 4.6

0.25 0.25

.25 .25

190 460

30 24

The layouts of the two chips are shown in Figures 3 and 4.

FIGURE 3. TI's 3-STAGE MONOLITHIC 32 GHZ AMPLIFIER

- .... /

FIGURE 4. TI's ONE-STAGE MONOLITHIC 32 GHZ POWER AMPLIFIER

In a parallel 32 GHz effort Hughes Aircraft Corporation's

Microwave Products Division and Malibu Research Laboratories are

collaborating on the development of a 32 GHz variable power

amplifier. The design goals for this chip are shown in Table 6.

ORIGINAL PAGE IS
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TABLE 6.

DESIGN GOALS FOR HUGHES 32 GHZ VARIABLE POWER AMPLIFIER

BANDWIDTH (GHz) 2.0

MAX POWER OUTPUT (mW) 150

EFFICIENCY AT MAX POWER(%) 40

GAIN AT 1 DB COMP. (dB) 15.0

The Hughes contract, like most such developments at this time is

to be carried out in several phases. These will consist of (i)

the optimization of a single gate device design, (2) the

development of a single stage amplifier, (3) the development of a

dual gate device, (4) the design, fabrication, and test of a

three-stage, single gate amplifier, and finally, (5) a three

stage dual gate amplifier. In the 16 months that the Hughes team

has been under contract, they have carried out the first two

phases. The epitaxy which they have selected for the basic device

is similar to that utilized by TI, except that Hughes has elected

not to dope the active layer, it does,however, utilize a single

active InGaAs layer with donors on each side. The layout and

performance parameters for the basic 32 GHZ device are shown in

Figure 5.

FREQUENCY

GAIN*

POWER OUTPUT*

EFFICIENCY*

GATE WIDTH

GATE LENGTH

32.0

4 (5) as

222 (123) mW

23(41)%

300 uM

0.2 uM

*tuned for max power(eff)

Figure 5. Layout and Performance of Hughes 32 GHZ Power MODFET

This device has been incorporated into a single stage amplifier,

whose performance is shown in Table 7. This amplifier is intended

as the third stage of the final monolithic module.

TABLE 7.

Performance of Huqhes 32 GHz Single Staqe Amplifier

GAIN (dB)

POWER OUTPUT (mW)

EFFICIENCY (%)

5.5

125

21

These results represent the first iteration of this chip, and

significant improvement is expected before the program ends.

ORIGINAL PAGE iS
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In addition, under the same contract, Hughes is developing a

60 GHz monolithic power amplifier. The justification for this

program is eventual application in intersatellite links. Although

NASA's plans for the Advanced Tracking and Data Relay Satellite

(ATDRS) do not presently call for 60 GHz crosslinks, it seems

likely that if such technology were available it would eventually

find application in that area. The performance goals for the

program, are shown below in Table 8.

TABLE 8. Performance Goals for Huahes' PseudomorDhiC 60 GHz

Power Amplifier

BANDWIDTH (GHz)

MAX POWER OUTPUT (W)

GAIN (dB)

EFFICIENCY (%)

2.0

0.I

15

30.

At 60 GHz Hughes is using the same basic pseudomorphic device

structure as at 32 GHz, although the gate lengths have been

shortened somewhat (0.i to 0.15 uM). The layout and the

performance achieved for a single stage amplifier are shown in

Figure 6. As in the 32 GHz module, the amplifier shown is

intended as the third (high power) stage of the completed

monolithic amplifier.

POWER OUT 112 mW

GAIN 6 dB

EFFICIENCY 26%

FIGURE 6. Hughes Single Stage Monolithic 60 GHz Amplifier

IV. FUTURE ACTIVITIES

The 32 GHz power amplifier modules developed by Texas Instruments

and described here are scheduled to be incorporated into a

breadboard transmitter array antenna which will also utilize

phase shifters developed under NASA Lewis sponsorship. This work

is being carried out at NASA's Jet Propulsion Laboratory, where a

two dimensional array is expected to be completed late in

calendar year 1990.

The Hughes work at both 32 Ghz and 60 Ghz is probably at least a

year away from being used even in a breadboard system. Although

the contract is scheduled for completion in early 1991, it has

ORIGINAL PAGE IS
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yet to address what has been one of the major difficulties in the

fabrication of a multistage power amplifier - inadequate large

signal device models. It has been a common experience for a

designer to develop excellent individual stage amplifiers, which

meet all the requirements of the overall power and gain budget,

only to find that the multistage module performance falls far

short of the program requirements. Consequently, it appears

optimistic to expect that Hughes will complete their development

by 1991. 1992 would appear to be more realistic. At that time, it

is anticipated that a 60 GHz breadboard array will be built,

either at JPL or at NASA Lewis. As with the Ka-band array, it

will utilize monolithic phase shifters which are being developed

in parallel at Hughes.
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PERFORMANCE OF FIVE 30 GHz SATELLITE RECE:VERS

Robert O. Kerczewski, George E. Ponchak, and Rober_ R. Romanofsky

Natlonal Aeronautics and Space Administratlon
Lewis Research Center

Cleveland, Ohio 44135

Technology development contracts Funded by
NASA have resulted in five 30 GHz satellite

receivers of various design. Thls paper

presents and discusses the results of tests
performed at NASA Lewis Research Center to
determine the operating characteristics of the
receivers and their abillty to perform in a

digital satellite link.

Introduction

For the past lO years, NASA has been develop-
Ing technology Intended to enhance the performance
of future sate111te communication systems. This
work has focused on systems operating at 30 GHz

uplink and 20 GHz downlink Frequencies. A ma_or
part of this technology thrust is the development
of 30 GHz low noise satellite receivers. As a

result of technology development contracts, five
receivers of various design have been delivered.
These receiver models have undergone extensive

testing at NASA Lewis Research Center to determine
their operating characteristics and their per-
Formance in a satellite communication system trans-

mitting high rate digital data. In the following
sections, the design of the receivers will be

described, and the results of performance measure-
ments will be presented and discussed.

30 GHz Low Noise Satellite Receiver Designs

The delivery of completed hardware from the

Five development contracts spanned the time period

of 1982 through 1987. Two parallel contracts,
under the management of NASA Lewis, were completed
In late 1982 by LNR Communications, Inc. and ITT
0efense Communications Division. Figure I shows
the basic functional design of these receivers. I

Both LF;Rand ITT used an Image-enhanced diode mixer
For the receiver front end, Followed by a FET IF
amplifler. The designs varied In method of local
oscillator (LO) generation and operating Frequency.
The resulting hardware consisted of a complete

receiver unit, requiring only dc bias and an
LO reference.

NASA Goddard Space F]ight Center Initiated a
contract with Hughes Aircraft Company, Hlcrowave
Product Division, which resulted In the delivery
of completed receiver models In the fall of 19B4.
One receiver was sent to NASA Lewis for evaluation

under the Lewls satellite communication system czm-
portent test program. AS shown In Fig. 2, the
Hughes design consists of a hybrid combination of
GaAs FET microwave integrated clrcuits (MIC's)

developed by Hughes For thls project. 2 The
receiver front end Is a 30 GHz GaAs FET low noise

ampllfier (LNA) MIC, which Is followed by an MiC

mixer and an IF amplifier. The LO Is an Internally
generated 22 GHz FET dielectric resonator oscilla-

tor. The complete receiver package requires only
adc bias.

These three receivers are generally intended
For use In 30/20 GHz satellite communicaticn sys-
tems with single-feed satellite receive an:e_ca

systems. Such an antenna system may consist o_ a
single feed horn or a Feed-horn cluster which _ou:c

permit a beam-bopoing system. Thls system wculc
consist of an array where different group_ of fee_

horns are switched on to provide receive c_verage
scanning geographically isolated areas. Zn a_I
these cases, the received signal Is colIe:ted and

combined to provide an input signal to a sing_e
receiver.

For electronica]ly scanned antenna systems, a
multi-e]ement phased array antenna is used. Thls

system consists of an array of antenna elements,
each connected to an individual receiver which

includes control]able phase shifters and variab]e
galn amplifiers. Control of these elements a]]ows

the antenna beam to be spatially scanned. Eacn

receiver processes on]y a portion of the signal
incident on the antenna. The receiver output_ are

then combined into slng]e received signal. For
this type of system, a mono1!thic microwave In_e-
grated clrcuit (MMIC) receiver is required. There-

fore, a development program was Initiated by NASA
Lewls in ]982. Contracts were awarded to Hughes
Aircraft Co., Microwave Products Divlsion 5 and

Honeywell Sensors and Signal Processing Lab 5 for
the development of a 30 GHz monolithIc receiver.

The receivers consist of an LNA, mixer, gain con-
trol amp]ifier (GCA), and phase shifter. A]though

both contractors were to meet the same program
goals, Hughes and Honeywell used different design
approaches. Honeywel] performed all amplification

and phase shlftlng at 30 GHz, while Hughes did the
phase shifting at the LO Frequency and the GCA at
the IF. Extra Filtering and amplification were

added by NASA Lewls to create a complete satellite
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receiver In order to a11ow testing. The block dla-

grams of the Honeywell and Hughes MHIC receivers
are shown In Flg. 3 and 4, respectlvely.

Test Results

To determine their performance In a hlgh data
rate dlgitaI satellite transmission system, the
receivers were tested In the automated measurement

system shown In Flg. 5. The system simulates an
end-to-end satellite communications link, operating

at a data rate of 220 Mbps. The modulatlon type Is
serial minimum shift keylng (SMSK). Discrete
amounts of noise are added at the system output to
allow measurement of the BER as a functlon of

Eb/No. 4 An examp]e of the results of such a meas-
urement Is shown In Fig. 6 for the five receivers
tested at an Input power ]evel of -30 dBm.

A summary of the test results obtained is

given in Table I. The RF test data Is presented
in detail In Refs. I to 3, 5 and 6. The BER data

given represents the degradation of the measured
curve, In dB, compared to the theoretical curve,
at a BER of 10-@. For a typlcal system, the

receiver wlth the highest galn and lowest noise
figure should give the lowest BER. At the |ower
power ]evels, the BER performance Is directly

related to the noise figure of the receiver. A
BER of 10-6 could not be obtained for the Honeywell

receiver below a -50 dBm Input and for the Hughes
MMIC receiver below -30 dBm input because of their

high nolse flgure. The Hughes MMIC receiver
performed poorly because the LNA operated optimally
at 32-34 OHz: at 30 GHz, the noise figure was very

high and no gain was obtained. The Honeywel] MMZC
receiver used a two-stage LNA. HoneyweIl's final

design will use a six-stage LNA, which wil] provide
a significant gain Increase and noise figure
reduction. In NASA's tests, the MMIC receivers,

conslsting of two Or more interconnected MMIC fix-
tures, suffered significantly from interstage mls-
match problems.

At higher power levels, the noise flgure was
not a factor In BER performance except for the
Hughes MMIC receiver. The most Important factor
above -50 dBm was the frequency response of the

combined recelver and test system. Due to the var-
ious output operatlng frequencies of the receivers,

it was not always possible to test them at their

optimum design frequency and the band center of
the test system simultaneously. Therefore, the
variation of BER results between the receivers at

the hlgher power levels does not necessarily
Indicate slgnlflcant performance dlfferences. We

consider any BER degradation less than 3.0 dB to
Indicate acceptable receiver performance.

Conclusion

In general, dlgltal satellite communication
systems are requlred to provide a maxlmum BER of

I0-6, The Hughes MMIC receiver Is the only one
which dld not meet thls criteria at the power lev-

els tested. The other receivers met this criteria

wlth a maximum Eb/No degradation of 2.6 dB for an
input power of.-30 dBm. System performance degra-
dation Is observed when the receiver input power is

reduced to the noise figure limit of the recetver.

Thus, the receiver noise figure Is a limiting Fac-
tor In system performance. The three hybrid

receivers performed well For Input powers as low
as -50 dBm.

The MMIC recelvers performed p_rly rela:!ve
to the hybrid recelvers. Since an MMIC Scanning
antenna system would combine the outputs of many
MMIC recelvers, the system EblNo obtained would _e
higher than for each Indlvldual recelver. There-
fore, adequate system performance may still be
obtained wlth these receivers. In addition, fur-

ther improvements In MMIC design and optimization

are likely to Improve performance.
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TABLE I. - SUII_WARY OF TEST RESULTS FOR FIVE 30 GHz SATELLITE RECEIVERS

Parameter

Input band, GHz

Output band. GHz

LO frequency. GHz

Galn (maximum), dB

Galn variation

over 2.5 GHz, dB

Noise F_gure (minimum), dB

Input VSWR
(Max. over 2.5 GHz)

Output VSWR

(Maw. over 2.5 GHz)

i dB Compresslcn polnt

mldband (Input), dBm

BER degradation,

-30 dBm In, HPA saturated, dB

BER degradation,

-40 dBm In, HPA saturated, dB

BER degradation,

-SO dBm In, HPA saturated, dB

BER degradatlon,
-60 dBm In, HPA saturated, dB

Dynamic range

at -IO dBm Input, dB

Insertion ohase envelope

as a Function of gain, de_

Gain envelope as a

function of phase state, dB

Phase shift/

phase shift Increment. deg

Design topology

Receiver

LNR

C_unicatlons

I382

27.5 to 30.O""

3.7 to 6.2

23.8

22

3.@

S.@

2.3:1

1.7:I

-7

1.1

1.O

1.Z

3.8

N/A

N/A

N/A

N/A

Hybrid

ITT Defense

Cc_nmunlcations

IgB2

27.5 to 30.0

2.3 to 4.a

25.2

Ig

4.8

6.g

3.4:!

1,4:]

-8

2.0

2.1

2.5

6.6

N/A

N/A

N/A

N/A

HAC Microwave

Products Divlson

1984

H_bri_

27.5 to 30.0

5.5 to 8.0

22.0

4t

5.2

3.7

al.3:l

2.8:1

-27

Z.6

1.5

2.5

2.5

N/A

N/A

N/A

N/A

Hybr!d - MIC

Honeywell

Sensors and Signal

Process Lab

I987

.27.5 to 30.0

4.5 to 7.0

?.3.0

13

5.2

14.0

3.6:I

8.5:]

-3

0.9

2.5

1B.4

)13

=!0

--2

360/

11.25

Mu! t _,p'.e-chlp
MM:C

HAC Microwave

Products Division

27,5 to 30.0

3.0 to 5.5

24.5

-5.2

S.0

>20

)I0:1

3.8:1

-2

6.8

--_S

=2

180/
Ccntl nuous

Mul tip}e-ch_.o
MM:C

aHughe_ measurement

RF INPUT _ I IMAGE- _ IF OUTPUT
I GUIDE _ ENHANCED LNR: 3.7 - 6.2 GHz)

27.S-30.0GHz IINPUT I IMIXER (ITT:2.3-4.BGHz)

T

LOCAL _ 3H"_Iz _"OSCILLATOR

OSCIL- I PH/_ ' CHAIN
LATOR LOC (23.8 GHz}
CHAIN

(25,2 GHz)

1,68 GHz 5(3(3 MHz

REFERENCE REFERENCE

(fiT) (LNR)

Figure I. - Functional block diagram for the LNFI Communications, Inc., and ill- Defense Communications 30 GHz

low noise receivers.
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RF INPUT
27.5 - 30.0 GHz

sFET ] _ I'_ I

LOW NOISE H PASS__ _ =r_c_

MPLIFIERJ IFILTER I _ I

22 GHz FET

DIELECTRIC
RESONATOR
OSCILLATOR

AMPLIFIER

IF OUTPUT
5.5 - 8.0 GHz

Figure 2. - Functional block diagram for the Hughes Hybrid - MIC 30 GHz low noise receiver.
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27.5 - 30.0 GHz

NASA LEWIS COMPONENTS

INTERCONNECTED MMIC's 1

ILOW I _ I GAIN I I _ I ....... I tl.F.... I
NOISE [_ PHASE H CONTROL I'+"J PASS J--I _7_ I-"J ISOLATOR J-"l AMPLIFIER

AMPLIFIER I [SHIFt23.0 GHz LO.I I I (AVANTEK) I

HONEYWELL MMIC's @ + 14 dBm

Figure 3. - Honeywell MMIC receiver test configuration.

IF OUTPUT
(4.5 - 7.0 GHz)
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27.5 - 30.0 GHz

INTERCONNECTED MMIC's

LOW _ MMIC
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AMPLIFIER

T
24,5 GHz LO.

ISOLATOR

NASA LEWIS COMPONENTS

Figure 4. - Hughes MMIC receiver test configuration.
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220 Mbps
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DATA

GENERATOR

2,5 GHz BW
27.5-30.0 GHz WITHIN

3.373 GHz VARIABLE 2.0 - 8.0 GHz
CENTER CENTER DEPENDENT
FREQUENCY FREQUENCY ON RECEIVER 17.7- 20.2 GHz

220Mbps I I IGROUND IRECEIVERI I SATELLITE
_._ UNDER _I_IF MATRIX SATELLITE [

t
14.0 GHz L.O.

SATELLITE
DOWNLINK
AMPLIFIER

t '"'°"i ,It
CENTER FREQUENCY 20 Mbps

GROUND NOISE I I DATA

TERMINAL INSERTION/ i"1 220 Mbps _._ CHECKER/
DOWN- E b ?No SMSK II BER

CONVERTER CALIBRATION DEMODULATOR i ICALCULATION

t t

EXPERIMENT CONTROL JAND MONITOR COMPUTER

Figure 5. - Block diagram of the receiver BER measurement system.

.O. LNR

10 "1 C]' ITT

HUGHES

10-2 _ HONYWELL MMIC
HUGHES MMIC

<<: 10.3 THEORETICAL

10 ,5

_' 10.6 m-

10"7

lo8 - I I 1 I I
4 6 8 10 12

Eb/No, dB

14 i6 18

Figure 6. - Measured BER curves, for the LNR, I'FT Hughes

Hybrid-MIC, Honeywell MMIC, and Hughes MMIC

receivers. Input power to the receivers is -30 dBm, and the

satellite high power amplifier is in saturation,
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ABSTRACT

Optical distribution of control signals in electronically steered phased array antennas
is being considered. This paper describes a demonstration experiment in which a
high speed hybrid GaAs optoelectronic integrated circuit (OEIC) was used to
control an eight element phased array antenna. The OEIC, which accepts a serial
optical control signal as input and converts it to 16 demultiplexed parallel outputs,
was used to control the monolithic GaAs phase shifters of a Ka-band patch panel
array antenna. Antenna pattern switching speeds of 2.25 lzs, limited by interface
circuitry, were observed.

1. INTRODUCTION

Because of advantages such as low weight and high beam steering speeds
offered by phased array antennas, future NASA missions such as Mars Rover and
Mission Planet Earth call for the use of such antennas for purposes of
communication and radiometry.[ 1] While the development of steerable microwave
frequency phased arrays has been stymied in the past by the lack of small phase
shifters and power amplifiers, recent advances in GaAs monolithic microwave
integrated circuit (MMIC) technology have resulted in the development of high
quality integrated power amplifiers and phase shifters.[2] With these advances,
large arrays, on the order of 100 to 1000 elements, are becoming feasible.

The use of such a large number of elements at millimeter wave frequencies
presents unique challenges in the distribution of RF and control signals to each
element because of the small element spacings involved. As a way to surmount
this problem, various fiber optic-based solutions have been proposed and
investigated. Optical fibers hold much promise for use in large phased arrays
because of their light weight, low attenuation, mechanical flexibility, large
bandwidth, and immunity to cross talk and EMI. As the operational frequencies of
arrays increase, the amount of available space for interconnection of elements
decreases, so multiplexing of control signals onto a single fiber would clearly be
advantageous. This would allow beam control data to be brought from a data
source and be distributed locally to the phase shifters and amplifiers while

simultaneously achieving a reduction in weight and space consumed.[3] When this
is done, the input data rate becomes high even though the rate to an individual
control line may be low. In this paper we describe the use of a single optical fiber
to distribute control data to the phase shifiers of an eight-element array.

*NASA Resident Research Associate at Lewis Research Center.
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2. EXPERIMENTAL ARRANGEMENT

A system consisting of a phased array antenna, an optoelectronic integrated
circuit (OEIC) controller, and optical source and fiber, and the necessary
electronics, shown schematically in Fig. 1, was set up to demonstrate optical
control of a phased array antenna. The OEIC, which has been described in a
previous publication,[4] is a hybrid device that requires a serial optical bit stream
input, as well as electrical clock and synchronization inputs, and produces 16
parallel, demultiplexed, electrical outputs and a data valid (clock divided by 16)
output. It is capable of operation at speeds up to approximately 300 Mb/sec.

The antenna, shown in Fig. 2, was developed by HoneywelI[5] for
another program, and is a narrow band, eight element system that is tuned to
28.2 GHz. It has an eight-way corporate feed network that divides the input
power equally among eight phase shifters that, in turn, feed the eight radiating
elements, each of which consists of 10 patches spaced by 1.94 cm. Each phase

shifter is a 4-bit device that has 16 possible delay settings in 22.5 o increments from

0 ° to 337.5°.[6,7] The 64 control lines are brought out to two ribbon connectors
on opposite sides of the antenna. A phase look-up table was available to permit
compensation for path length differences within the feed network in establishing an
antenna beam direction. As a result of process tolerances the pinchoff voltages of
the FET's in the antenna phase shifters ranged from -5 V to -6 V, and a voltage
control circuit to accommodate this was obtained from Honeywell.

Since the OEIC and the antenna phase shifters were not designed to be

directly interfaced, voltage level shifting was required between the two systems.
The OEIC was therefore used to control an electronic switch which, in turn

controlled the voltages applied to the phase shifters. Rather than controlling alI 32

bits of the array (8 shifters x 4 bits/shifter), eight bits were strategically selected so

that by changing only these bits the antenna pattern could be switched between

normal to the plane of the antenna and 20 ° from the normal to the plane. For the
optical control experiment an oscillator/amplifier combination was used to feed a
28.2 GHz signal, at +21 dBm, to a 25 dB horn that served as a transmitter

radiator. An HP 8018 data source was programmed to output a sequence of data
so that the demultiplexed outputs of the OEIC, that controlled the previously
selected eight antenna phase shifter bits, would alternate between high and low
levels at 200 KHz. The array was centered on and perpendicular to the horn axis,
with a separation of 3 m.

3. EXPERIMENTAL RESULTS

Toggling the phase shifiers between the two states caused the array pattern

to alternately point directly toward the transmitter, then 20 ° from it, with the result
that the output signal from the antenna alternated from a maximum to nearly zero, as
shown in Fig. 3. In the figure the top trace is one OEIC output data line and the
lower trace is the amplified detector output. (In the lower trace the response speed
was limited by the time constant of the detector that was used to record the antenna

output.) In this experiment the clock frequency was 50 MHz, the average optical
power to the OEIC was 200 I.tW and the beam switching rate was 3.2 Its. By
rearranging the data pattern the switching rate could be reduced to 2.25 Its, but in
all cases the maximum switching speed was limited by the interface circuitry.
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4. CONCLUSIONS

In this paper we have reported the results of an experiment involving the
optical control of a 28.2 GHz phased array antenna. In this work an eight element
antenna was controlled by the demultiplexed output of a single optically fed
controller, demonstrating the feasibility of applying such devices to the antenna
control problem. The speed of switching was limited by the interface circuitry to
2.25 its.

The authors wish to acknowledge the assistance and support of Doug Carlson,
Mark Vickberg, and Vladimir Sokolov of Honeywell's Sensors and Signals
Technology Center.
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Fig. 1. The 8-element Ka-band phased array antenna.
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Fig. 2. Experimental arrangement.

Fig. 3. Antenna switching results. Top trace: Single data line of antenna control
signal. Vertical scale: 601.tV/div.; Bottom trace: Detector output. Vertical
scale: 4 mV/div. Horizontal scale for both traces: 2 I.ts/div.
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ABSTRACT

Optical interconnects are being considered for the high speed distribution of

multiplexed control signals in GaAs MMIC-based phased array antennas. This paper

describes the performance of a hybrid GaAs optoelectronic integrated circuit (OEIC),

along with a description of its design and fabrication. The OEIC converts a 16-bit

serial optical input to a 16 parallel line electrical output using an on-board 1:16

demultiplexer and operates at data rates as high as 305 Mbps. The performance char-

acteristics as well as potential applications of the device are presented.

INTRODUCTION

The advantages of large directly radiating phased array antennas for rapid beam

scanning are well known, but conventional hardware is heavy and bulky, and architec-
tures for implementing these arrays have resulted in cumbersome, topologically com-

plex, and high loss internal distribution systems. GaAs monolithic microwave inte-

grated circuits (MMIC's), which have undergone extensive development and which could

be used as array output modules, represent a major step toward improved and light
weight arrays I. Yet, the interconnection of these devices into a beam formation

network (BFN), is still a rather formidable problem. Conventional methods carrier

and control signal distribution to the radiating elements suffer from cross talk and

electromagnetic interference between elements. To alleviate these problems, several

optics-based signal distribution methods have been proposed as solutions. Among the

propose methods are those which use fiber optics to interconnect the BFN's 2-5, and
those which use optical processing within the BFN's. e-9

The work described here is addressed toward the meeting of needs of fiber optic

interconnected BFN's. The GaAs MMIC's in a phased array antenna are relatively com-

plex. They include a variable phase shifter and a variable power amplifier which

permit the creation of the aperture phase and amplitude distribution that is appro-

priate to the desired radiated beam configuration. Some proposed architectures also
include a local oscillator and a mixer at each antenna element. I°,11 In fiber optic

interconnected systems, optical fibers would be used to carry the control signals to

the variable phase shifters and amplifiers as well as the signal to be transmitted
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and the local oscillator phase locking signal. All control signals for the array
including phase shifter and amplifier control signals could be multiplexed onto one
optical channel as seen in Fig. 1. Although the actual rate at which a single phase
shifter or power amplifier requires data may be low, the large number of elements

involved necessitates a high overall data transfer rate, and thus a wide bandwidth

channel will be required. Some demonstrations of the use of optical interconnects

in phased array applications, using discrete components, have been reported Iz, and

Crow et. al., have reported a demultiplexing OEIC 13 In this paper we report on the

design and fabrication of a hybrid, high speed GaAs MESFET integrated circuit opti-
cal receiver/demultiplexer.

The constructed device is a hybrid optoelectronic integrated circuit (OEIC).

Two GaAs circuits, an optical receiver and a demultiplexer, are packaged together in

a 34-pin flatpack with a fiber pigtail attached for optical input. The inputs to

the OEIC are a 16 bit optical serial data stream at 830 nm, an electrical high-speed
clock, and a synchronization signal (F-WBO). The outputs are 16 parallel TTL-level

electrical outputs and an input clock divided by 16.

DESIGN AND FABRICATION

A PIN photodiode was chosen in place of the conventional MSM photodetector

because of its superior noise performance, its speed capability, and its enhanced

photosensitivity. It also has the advantage over the MSM or NPN structures commonly
used for monolithic integration in that it can be operated in the photovoltaic mode

if necessary since it is an asymmetric device. It was implemented using an inter-

digitated structure (2 pm finger width, 5 l_n finger spacing) with an overall size of

40 pm x 60 IJm. To achieve high speed and sensitivity a multi-stage differential

amplifier is used to boost the signal from the detector up to logic levels. This

amplifier consists of a transimpedance input stage followed by two additional capa-

citively coupled stages, each with a gain of approximately 10 dB. A constant output

level is achieved by using a digital amplifier output section. The output from the

receiver chip is fed into the 1:16 demultiplexer, that employs direct coupled FET

logic (DCFL) circuitry. Although this does not necessarily provide the optimum

speed and power dissipation characteristics, it permits circuit construction using

established design rules which have been proven during previous development pro-

grams. In order to keep the electrical power consumption as low as possible and to

reduce the number of high speed circuits, the demultiplexer design incorporated a
high speed front end followed by lower speed stages. The outputs of the demulti-

plexer chip were designed to drive a TTL load and therefore are the major power con-
sumers in the OEIC.

Optical input to the circuit is achieved through the use of a pigtailed optical

multimode fiber with a 50 l_mcore. The fiber is mounted flush on top of the optical

receiver wafer. By polishing the end of the fiber at a 58 degree angle, total

internal reflection occurs and the light is forced to exit through the side of the

fiber. This scheme allows the use of a planar photodiode without the need to bring

the fiber in perpendicular to the device. In addition, some focusing of the light
is provided by the fiber's curved surface.

All of the circuits were designed using Honeywell GaAs E/D MESFET design and

layout rules, and the entire OEIC is amenable to monolithic integration on a single

chip. The design was implemented using Honeywell's GaAs Self-Aligned Gate MESFET
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process, which is based on selective ion implantation into 3-inch GaAs substrates.

Efforts were made initially to fabricate the integrated optical detectors using the

standard E/D MESFET implants. In the final fabrication, however, the process was

modified to add deep n+ and p+ implants for the PIN detector to permit more effi-
cient collection of carriers that are photogenerated below the wafer surface. The

basic process uses I I_m gate length FET's with VT'S of -0.6 V for Dmode and +0.3 V

for Emode devices. Photolithography is accomplished using a projection aligner with

die-by-die alignment. (A cross-sectional view of a wafer at various points in the

fabrication process is shown in Fig. 2) In this process, Be and Si are implanted

through a thin Si3N4 implant cap to form the p-buried layer as well as the enhance-

ment and depletion channels, as shown in Fig. 2a. After channel activation the

anneal cap is stripped and the refractory metal gate is sputter-deposited and pat-

terned using reactive ion etching. This gate metal then serves as. the self-aligned

implant mask for the n+ source and drain implants of the FET's, with photoresist

masking outside the device areas. (Fig. 2b) Finally, the PIN detector is photo-

lithographically defined and the deep n+ and p+ implants are made, then annealed

with a Si3N4 cap, using a rapid optical annealer. Ohmic contacts are formed by

evaporation using a AuGe-based metal and then lifted off and sintered (Fig. 2c), and

interconnect metallization consists of two-level metals defined by a dielectric-

assisted liftoff (DAL) technique. This DAL process, together with filled VIA's for

interlevel interconnects, permits a complete planarity of the chip topology, which

is important in obtaining a high yield for LSI/VLSI fabrication. Both interconnect

levels have sheet resistances less than 0.07 ohms per square, which provides for low

IR drops and small RC time constants in complex high-speed circuits.

OPERATION

For testing and characterization the completed circuits were packaged in a 34

lead flatpack with a fiber pigtail. These flatpacks were then mounted in a test

fixture for an initial performance test. The test fixture is a circuit board with a

card edge connecter for the power supply inputs, and coaxial connections for the RF

inputs and demultiplexer outputs. A compression clamp connects the flatpack leads

to the circuit board tracings. An HP 8080 serial word generator was used to

directly modulate an Ortel laser through an HP bias tee, which in turn fed into the

optical controller. The word generator was programmed to cycle a 64 bit word output

in an NRZ format, and by viewing the demultiplexer outputs on an HP sampling oscil-

loscope the operation of the device was confirmed. Because of the 1:16 demulti-

plexer, each output of the controller cycled a 4 bit word. The maximum clock fre-

quency of the controller, limited by the demultiplexer, was found to be 305 MHz.

Due to the oscilloscope's 50 Q inputs, the waveforms were limited to an amplitude of

less than 800 mY. Fig. 3 shows three of the 16 output channels along with the data

valid line as viewed with a sampling oscilloscope. In this plot the clock frequency

was 240 MHz, and the input data was a repeated 64 bit word.

The controller requires less than 200 _W of optical input power. Although

tests at Honeywell have demonstrated that powers as low as I NW are sufficient,

equipment limitations precluded operation of the device at such low optical powers.

The electrical power consumption of the controller was found to be always less than

370 mW, and was measured to be as low as 120 mW in some cases. Because most of the

power is consumed by the TTL drivers, the terminations of the output leads affected

the power consumption greatly.
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Initial tests of the device showedthat the outputs had uncertainties. A clean
output with a definite bit pattern could only be obtained by adjusting the clock
frequency to certain values. In addition, the bit pattern sent to a specific output
did not necessarily appear on that output. The latter problem was immediately
identified as a timing problem in the synchronization (FWBO)signal; the FWBOpulses
were not arriving at the proper momentso that the demultiplexer would know which
bit was the first. Becausethe data was input through the laser, fiber and detec-
tor/amplifier while the FWBOwas input directly into the demultiplexer, the FWBO
arrived before the corresponding data. Likewise, the output uncertainty problem was
found to be caused largely byte timing of the high speed clock input, which was
out of phase with the optically input data because of propagation path length dif-
ferences. These problems were overcome by using a pulse generator with a variable
delay control to regenerate both the clock and FWBOsignals shifted in time.

APPLICATIONS

The optical controller described in this paper was developed primarily for use

as a phased array antenna controller. As such, the use of the device has been

demonstrated in the control of monolithic Ka-Band phase shifter, TM and in the con-

trol of a 30 GHz 8-element phased array antenna. Is However, many other applications

are conceivable as shown in Fig. 4. The built in demultiplexer makes this OEIC

suitable for many high data rate transfer applications including neural networks,

signal processing interconnections, and integrated modulator/detector arrays.

CONCLUSION

We have described a hybrid MESFET optical controller capable of data rates as

high as 300 Mbps. The device uses less than 370 mW of electrical power and requires

less than 200 _W of optical power. Because of the on-board demultiplexer, the OEIC

has many potential applications beyond its intended phased array antenna applica-
tion. A fully monolithic version of this device has been fabricated and will be

tested in the near future. This device shows that optical and digital technologies

are monolithically integratable, and any additional circuitry such as coding or

clock recovery that can be fabricated using E/D MESFET design can easily be added to
address a specific application.
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Summary

In:erdigitated photoconductive detectors have
been fabricated on microwave device structures,

making them easily integratable with MMIC's.
Detector responslvity as high as 2.5 A/W and an
external Quantum efficiency of 3.81 were measured.

Response speed was nearly independent of electrode

geometry, and all detectors had usable response at
frequenc'es to 6 GHZ. A small signal model of the
detector: based on microwave measurements is also

develope=.

Introduction

Over the past few years technology advances
have occurred which have increased the possibility

that in the near future phased array antennas com-
posed of monolithic microwave integrated circuits
_MMIC'S) will become a practical reality. I To take

maximum advantage of the potential size reduction
that this advance represents it will be essential
to effect a similar size reduction in the chip-to-

chip high frequency interconnects that the System
will require. Varlous authors have suggested that
Fiber optic links, which are small and lightweight,

may be a viable alternative to coaxial cables and
waveguides for.this application. 2 If these links
are to be practical, however, high frequency opti-
cal transmitters and receivers must be available,

and it would be particularly desirable that opti-
cal components be process- and material-compatible
with GaAs heterostructure MMIC's so that they can

be integrated onto the same chip.

In thls paper we report the results of a study
of the optical and electrical characteristics of
interdigitated photoconductive detectors of various

geometrles that were fabricated on a HEMT-type het-
erostructure materla1. The operating wavelength
was chosen to be 820 rim.

"P.O, Claspy is a National Research Council -
NASA Senior Research Associate. Permanent address:
Department of Electrical Englneerlng and Applied

Physics, Case Western Reserve University,
Cleveland, Ohio 44106.

Oezector F_Dricaticn

The detector: were fabricated cn the MSZ-

grown GaAIAs/GaAs heteros:-ucture material _own
schematically in Fig. I. A typ!cal detector is
shown in Flg. 2. Interdig_tated electrode geome-
tries, with finger spacing_ ranging gram I to _ _m,
were u_ed because they increase the effective
active area of the detector while keeping the tran-
sit distance small. Since the GaAIAS window :_T

remain_ after fabrication is essent!_ily trans_a"-
ent to the incident 820 nm radiation, almost a'l of

the photon absorption, and therefore the electr= _-
hole pair generation, OCt:its within the un¢cce_

GaAs layer. For testing, the de:ezzors were _oun:_
directly on the Teflon insd}aticn Of a specially_
prepared length of semi-rigio coaxial ca_!e, ,..H
short wire-bonded leads to the c_ter c3nduczor

and the shie!d.

Ootical Retconse Measurements

Frequency doma:n response measurements we-e
made over the range 0.01 to 10 GHz dsing the system
shown schematically in Fig. 3, and normalized

responses of detectors of three different geometries
are shown in Fig. 4. The detectors exhibit nearly
identical re;ponse dispersion, with a 3 dB cutoff
frequency at approximately 185 MHZ. The gain

decays at about 12 dB/decade in the decade betweeq
I00 MHz and 1 GHz, with a small pla:eau aT 510:4_z.
then falls off at 20 dB/decade after a larger pla-
teau at I GHz. The shape of the response sugge_t_
that device characteristics are limited by trap_in]
effects. 3

Detector responslvities at 500 MHz, R(500 M_:),
were measured using an Ortel SL520 dicde laser, _d
tie in the range 0.13 to 0.31 A/W. On the basis of
measurements at 500 MHz, the low frequency respon-

sivity of the 1 by l pm detector was calculated to
be 2.S A/W. The (internal) quantum efficiency of

this detector Is 5.44, and the external quantum

efficiency is 3.81, all of which are comparable to
results reported for GaAs detectors.
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Microwave Impedance Measurements and Mode]

DC and AC Impedance characteristics of the
detectors were studied under various levels of

illumination. DC I-V curves for our detectors were

taken using white light illumination, and a typical
result Is given In Fig. 5. The DC resistance of
the detectors Is low and constant for small bias,
smoothly increases as the bias Is increased, becom-
Ing very large at hlgh bias as a result of carrier
velocity saturation. The decrease of resistance

wlth Increasing optical power Is also shown in
Fig. 5.

The reflection coefficient, SIt, was measured
over the Frequency range 0.5 to 5.5 GHz at various
bias levels and Incident white light intensities
using an HP-4910 Network Analyzer. Some results of

these measurements are shown in Figs. 6 to 8. Fig-
ure 6 shows that SII decreases with detector Fea-
ture slze, Flg. 7 shows that it increases with bias
voltage, at moderate ll]umination, and Fig. 8 shows

that It decreases with increasing illumination, at
moderate bias.

A small-slgnal, hlgh Frequency model, conslst-
Ing o? a parallel RC combination with an Inductance
In series wlth each node of the RC network, as

shown In Fig. g(a), was developed from the measured
SIl results. The model, which IS slmIlar to that
developed by WoJtczuk and BaIlantyne 4 leads to a
complex impedance given by

R(V,¢) + j_ {(L I _ L2) - CR2(_,@)}
Z - (l)

I + _CR2(V,¢)

where the resistance, R(V,@), is a Function of both
the DC bias and the illumination.

The light Intensity primarily affects R,
which at low bia_ drops from well over I00 O at

ambient to only a few tens of ohms at hlgh intensity.
Therefore, at low blas and hlgh light level the low
resistance effectively short-clrcuits the device

capacltance, reducing the Impedance to

Z = R • jw(L 1 ÷ L2), (2)

as shown In F!g. g(b). The AC resistance was

observed to increase significantly with bias, so
that at hlgh bias the complex impedance eventually
slmpliftes to

z. R J_
_CR 2 - _C '

(3)

as shown in Fig. g(c). Thls change From Inductive

to capacitive behavior suggests the possibility of
a zero reactance operating point by the eIImlna-
tion of any RC or R/L tlme constants If the

detector Is time constant limlted. The impedance

OF the zero reactance point IS determined by set-
ring the imaginary part of Eq. (I) equal to zero.
Then, if (_CR2) << I, the impedance reduces to

_/(LI , L2)IC, c_)Z =

which For our devices Is about 250 Q at somewhat
less than 3 V bias.

Summary and Concluslon

The high FreQuency characteristics of inter-
digitated photoconductive detectors fabricated on

a HEMT structure have been presented. The fa0rl-

cation process was completely compatible with that
used to fabricate MCDFET's making these detectors
easily integrable for _MIC usage, iz should _e
noted that _vhile the detectors did no: e,nibi: an
extremely high bandwidth, they did posses_ usable

response well Into the GHz range, _nd the change
from inductive to capacitive reactance wl:n bia_

suggests the possibility of a zero reactance oper-
ating point. In concluslon, then, the combination

of Fabrication compatibility and performance char-
acteristics makes these devices interesting for
interconnection appiicatlons.
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A High-Speed GaAs MESFET Optical Controller
P. C. CLASPY, SENIOR MEMBER, IEEE, M. RICHARD, K. B. BHASIN, SENIORMEMBER, IEEE,

M. BENDETT, MEMBER,[EEE, G. GUSTAFSON, ANDW. WALTERS

Abstract--Optical interconnects are being considered for control signal OPTICAL RECEIVER DEMUL3qPLEXER

.......................... '" ........................ : D_ta Out
distribution in phased array antennas. This paper describes a packaged : ::

is suitable [or this application. The controller, which was fabricated

using enhancement/depletion mode MESFET technology, operates at

demultiplexer-limited input data rates up to 305 Mbils/s and requires

less than 200 laW optical input po_'er.

INTRODUCTION" O!i!!!_'..........

"r]IHASED array antennas are being considered for mi- -- ----
at crowave and millimeter wave communication systems that b

will be used on future satellites and space vehicles [1]. The

requirement for control of the phase and amplitude of signals

at each of the several hundred monolithic microwave inte-

grated circuits (MMIC's) that would constitute such an array

necessitates the transfer of a large amount of control data to

phase shifters and amplifiers in a short period of time when

the beam direction is to be changed. One possible method of

transmitting these data, with a concurrent reduction in weight

and power consumption over more conventional methods, is

to multiplex the control signals onto optical carriers, transmit

the resulting signals to optical receiver-demultiplexers on the

antenna, and distribute the demultiplexed control signals lo-

cally [2]. The requirements imposed upon optical links for this

application are different from those imposed by telecommu-

nications applications because of the short distances involved

and the burst nature of the data. Furthermore, this type of link

places an emphasis on reducing power, weight, and size over

considerations such as dispersion and attenuation. Therefore,

integration of the complete receiver/demultiplexer can provide

a significant enhancement of the system.

Over the past several years, various authors have re-

ported optoelectronic integrated circuits ranging from a

diode-preamplifier combination [3] to detector-amplifier cir-

cuits [4] to an optical receiver with clock recovery [5]. In this

letter, we report on the design, fabrication, and characteris-

tics of a packaged hybrid integrated circuit optical controller

consisting of two integrated submodules. As shown schemat-

ically in Fig. 1, the integrated submodules of our controller

Manuscript received July 11, 1989; revised August 30, 1989.

P. C. Claspy is a National Research Council Senior Research Associate at

the National Aeronautics and Space Administration, Lewis Research Center,

Cleveland, OH, on leave from Case Western Reserve University. Cleveland,

OH.

Fig. 1, Block diagram of the controller.
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Fig. 2, BIock diagram of the optical receiver section of the controller.

are an optical receiver, consisting of a photodetector and a

three-stage amplifier with a comparator-based output, and a

demultiplexer with output line drivers. The required input sig-

nals to the controller are an 830 nm optical serial data stream

to the detector and electrical clock and synchronization signals

to the demultiplexer. The output is 16 parallel TTL-compatible

data streams and a clock at 1/16 of the input clock rate.

FABRICATION

Since the intended application of the controller is in satellite-

based systems, low power consumption was a primary design

criterion. To ensure this low power consumption as well as

for process simplicity and reproducibility we chose to em-

ploy enhancement/depletion mode (E/D-mode) GaAs MES-

FET technology for both the receiver and the demultiplexer.

This common technology will also permit future monolithic

integration of the controller. The fabrication was based upon a

refractory metal self-aligned gate process which is similar to a
submicron process that was previously reported [6]. The only

modifications to that process were that a 1 _m gate length

was used here and that deep n+ and p+ implant steps were

added so that the p-i-n photodiodes could be fabricated.

CIRCUIT DESIGN

M. Richard is with Case Western Reserve University. Cleveland. OH.
K. B. Bhasin is with the National Aeronautics and Space Administration. " The receiver section, shown schematically in Fig. 2. con-

Lewis Research Center, Cleveland. OH. Sists of an interdigitated p-i-n photodiode, a three-stage arnpli-

M. Bendett, G. Gustafson, and W. Wahers are with Sensors and Signal fief, and an output comparator. The optical input is laterally
Processing Laboratory, Honeywell, Inc., Bloomington, MN.

IEEE Log Number. coupled through the cladding of a multimode fiber (50 u.m

1041-1135/89/1100-0389501.00 © 1989 IEEE

@1989 IEEE. Reprinted, with permission, from IEEE Photonics Technology

Leuers; Vol. l, No. t I, 389-391; November 1989.
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Fig. 3, Block diagram of the demultip[¢xe:'-output driver -;ection of the

controller

core) to the photodiode. The fiber is mounted with its axis __.j_j_L_IL _L.j _ h
parallel to the wafer surface and the fiber end is polished at r'i "-1 _ _f-l_ _ (" ("1 ["

a 58 ° angle to ensure total internal reflection. The light exits ..,] L U ,..3 L ....I__J ._J ki/ LJ

through the curved side of the fiber, which provides some to- /_ _ _
cusing onto the detector [71. The three-stage amplifier consists .._.J! L_ _"_' i ]', t L
of a transimpedance input amplifier followed by a two-stage t - -

high-gain differential amplifier to increase sensitivi_" while l___/i_. J_ .___1 !____jr--_'] • _j[-"- /"h[ _'-'-] _allowing high speed. Capacitive coupling is used between am- _ __....J I
plifier stages to reduce sensitivity to dc offsets resulting from

mismatch between the complementary amplifier stages. Each _j t_ i _'---- -"-]lstage of the amplifier produces a gain of 8-11 dB, and the _._J [ L.
power consumption of the amplifier is less than I00 roW.

The demuItiplexer was designed using direct-coupled FET Fig. 4. Example of controller _utputs. Top lrace is the output clock and t/',e
remaining traces are three output data channels. The input data was a 64

logic (DCFL) in a multistage circuit which operates at input hi, _,ord stream at a clock rate of 240 MHz. The ordinate for each trace

data rates greater tha_2_ Mbits/s. Fig. 3 is a block diagram is 200 mV'div and the :_bscissais I00 ns/div.

of the circuit, which has a high-speed front end followed by

lower speed stages. This design reduces power consumption nets. To characterize the controller, the data output (NRZ for-

and limits the number of circuits that must be tight[3,' cou- mat) from a word generator was used to directly modulate the

pied to the high-speed clock. It was used largely because it output of a laser diode, which in turn provided data input to
the receiver section. Concurrently, the clock and first word bitis based upon existing circuitry, although it does not neces-

sarily provide optimum power and speed characteristics. The zero (FWB0) from the word generator were input as electrical

output drivers were designed for TTL levels and as a result

they are the most power-consuming portion of the chip. The

power dissipation in this stage is dependent upon the output

logic states and upon the specific voltage level required of the
TTL load driver.

OPERATION

The packaged controllers were tested in a fixture that per-

mits separate observation of any of the 16 data output chan-

signals directly to the demultiplexer section of the controller,

as shown schematically in Fig. 1.

The demultiplexed outputs of the controller were observed

with a sampling oscilloscope, and an example of three of

these, along with the output clock, is shown in Fig. 4. In

this example, the input clock was 240 MHz and the input data

was a repeated 64 bit word. By adjusting the dc operating

point of the laser and the level of the ac drive.power to it,

the minimum average optical power required by the controller
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was found to be less than 200 #W, The maximum clock rate

of the tested controller, which is limited by the demultiplexer,

was measured to be 305 MHz.

CONCLUSION

In this paper, we have described the design and operating

characteristics of a packaged hybrid low-power GaAs MES-

FET demultiplexing optical controller that is suitable for use in

controlling a phased array antenna. The two submodules of the

controller were fabricated using identical technologies, mak-

ing monolithic integration possible. The comroller operates at

input clock speeds greater than 300 MHz, and it requires less

than 200/_W of optical power as the input signal and less than

370 mW of electrical power.

[tl
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Control of a GaAs Monolithic Ka-Band Phase Shifter

Using a High-Speed Optical Interconnect
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M. A. RICHARD. R. R. ROMANOFSKY, _,tE_.mER,lEEK.
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ANDW. WALTERS

A h_*tract --The use of a high-speed optical interconnect in the control of

a Ka-band GaAs monolithic phase shifter is described. A 16 b serial

control signal was used to modulate the output of a laser transmitter, and
the transmitted optical signal was detected and demultiplexed into 16
parallel electrical outputs using a high-speed h_brid GaAs optoelectronic

integrated circuit (OEIC). Four of the parallel output lines were interfaced
to the 4 b phase shifter, and hlgh-speed, optically controlled s_'itching of
the phase shifter was observed at clock frequencies to 30 MHz using an
interferometric technique.

I. INTRODUCTION

Ga.As monolithic microwave integrated circuits (MMIC's),

which could be used as array output modules, represent a major

step toward improved, lightweight directly radiating phased array

antennas for space communications applications [1]. The inter-

connection of these MMIC modules into a beam forming net-

work (BFN), however, still represents a rather formidable topo-
logical problem that requires innovative soludons. In an effort to

overcome these problems a variety of optics-based BFN's have

been proposed [2]-[4].

The Ga.As MMIC's in a phased array antenna are relatively

complex. They include a variable phase shifter and a variable

power amplifier which permit the creation of the aperture phase

and amplitude distribution that is appropriate to the desired

radiated beam configuration. Some proposed architectures also

include a local oscillator and a mixer at each antenna element [5],

[6]. In fiber-optic-interconnected systems, optical fibers would be

used to carry the control signals to the variable phase shifters and

amplifiers as well as the signal to be transmitted and the local

oscillator phase locking signal. Our research is addressed toward

the meeting of needs for distribution of digital control signals

within a phased array antenna. Because of the inherent wide

bandwidth and low loss of optical fibers, all control signals for

the variable phase shifter and amplifier on a MMIC module, or

for several modules, could be multiplexed onto one optical chan-

nel, as shown schematically in Fig. 1, if appropriate optical

re.ceiver/demultiplexers were available. Even though the required

data input rate to an individual phase shifter or amplifier control

line may be modest, the overall multiplexed data rate from the

controller will be high, and a wide bandwidth channel will be

required. Some proof-of-concept demonstrations of the use of

optical interconnects in the context of a phased array, using

discrete components, have been reported [7]. In this paper we

present the results of the application of a high-speed Ga.As

MESFET integrated circuit Optical receiver/demultiplexer to the
optics-based control of a monolithic Ka-band phase shifter.

©IEEE. Reprinted,withpermission,fromIEEE Transactionson Microwave

Theory _d Techniques; Vol. 38, No. 5, 686-688; May 1990.

II. THX OPTOELECTRONIC INTEGRATED CIRCUIT

The optoelectronic integrated circuit (OEIC) that was used in

the control of a MS,{IC phase shifter has been described in a

previous publication [8]. It consists of two integrated submodules

that were packaged together in a 34 lead fiat pack, with a fiber

pigtail for optical input, as shown in Fig. 2. The input chip is the

receiver section, consisting of an interdigitated p-i-n photodetec-

tor and a three-stage amplifier, and the output chip includes a

demultiplexer and output drivers [14]. The inputs to the OEIC

are a 16 b serial optical data stream and an electrical bit clock

and synchronization signal. The outputs are 16 parallel "VI'L level

data streams and the input clock divided by 16. As reported in

our previous paper, the demuhiplexer-limited maximum clock

frequency of the controller is 305 MHz. The minimum frequency

is determined by the capacitive coupling between the amplifier

stages, so the minimum data rate is dependent upon the pattern

of the data being sent.

, III. OPTICAL CONTROL OF A Ka-BAND PHASE SHIFTER

To demonstrate the potential use of the OEIC in a phased

array context, the demuhiplexed outputs of the optical controller

or Tc_tr_mo,_: wn rFArrt)onr:_t c,,_ .nx_s_ ut_-s

RrH

-[

Fig. 1. Schematic diagram of an optically intcrconnccted phased array.

_ oul_o

Fir_m

_mnTo

Fig. 2. The packaged optc, electronic integrated circuit
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Fig. 3. Block diagram of the microwave interferometer_

were interfaced to the inputs of a 30 GHz 4 b monolithic phase

shifter that was produced by Honeywell under a separate con-

tract with NASA, and that has been described in previous

publications [9]. The 4 b required by the phase shifter control

three switched lines, each of which requires a bit and its comple-

ment, and one loaded line. Since the phase shifter and the optical

controller were developed under separate programs and therefore

were not designed with the interfacing of the two in mind, a

voltage level shifting interface circuit was required. The interface

circuit consisted of inverting gates to generate the complements

and CMOS analog multiplexers to shift the optical controller's

TTL outputs to the phase shifter's required 0 V and - 6 V inputs,

and was the speed-limiting element for this demonstration.

An interferometric technique was devised to allow real-time

measurement of fast changes in the effect of the phase shifter on

the phase of a Ka-band signal. As shown schematically in Fig. 3,

the phase shifter was inserted in one leg of an interferometer. A

30 GHz microwave signal of - 8 dBm was applied to the input of

• - -t .... , .... , .... , .... , .... i .... i .... , .... i ....

::::::::::::::::::::::::::::::::::::::::::::::::::::::

F-C F--L

.___1 L J t U

Fig. 4. Controller and interferometer outputs when |hree phase shifter bils

are controlled at a high-speed clock frequency of 30 Mttz. The top trace is

the clock divided by 16. the cenler three traces arc the OEIC output data.

and the lower trace is the inlerferometer output. The ordinate scale is 200

mV/div for the lop four traces and I mV/div [or the lower trace The

abcissa .,..tale for all traces is 500 ns/div.

a 10 dB power splitter. The higher power output from the splitter

was fed through the phase shifter input into the output port of a

3 dB power splitter that was used as a power combiner, while the

lower power output was input directly into the second port of the

power combiner. To compensate for the 9 dB insertion loss of the

phase shifter, a 30 GI-Iz low-noise amplifier [10] was connected to

the output of the test setup. A crystal detector attached to the

output of the combiner indicated the level of output power. To

set the initial condition of the system, the propagation time

through the phase shifting leg of the interferometer was adjusted,

by changing the bit settings on the phase shifter, until the

detector indicated maximum power output, corresponding to

constructive interference between the two recombined signals.

Beginning with this configuration, switching the 180 ° bit of the

phase shifter caused the power output to fall to zero, indicating

complete destructive interference, while switching the 45" and

90 ° bits caused intermediate levels of destructive interference.

Three demultip]exed outputs from the OEIC were used, along

with their complements, to control the 180 °, 90 °, and a5 ° switched

lines of the phase shifter. Since the data input to the controller

are through the laser, fiber, and detector, while the clock and

synch (FWB0) are input directly to the demultiplexer as electrical

signals, problems with timing can cause uncertainties in the

output waveforms. To eliminate this problem, a delayable trig-

gered pulse generator was used to adjust the delay of the two

electrical s{gnals and synchronize them with the optical input.

For this experiment the average input optical power was 250 p.W

and the high-speed (input) clock was kept at 30 MHz in order to

stay within the limitations of the level-shifting circuitry. Different

input data patterns were used to control each phase shifter input

bit so that combinations of delay lines could be inserted into the

path and their effects observed. An example of the success in

combining the OEIC with the phase shifter to control the phase

of a 30 GHz signal is given in Fig. 4, where one set of input data

patterns, along with the resulting interferometer outputs and the

output clock, is shown. It should be noted that there are constant

delays between the clock and data and between the data and the

interferometer response. The former are the result of different

propagation times for data and clock in the OEIC, while the

latter are the result of delays in the CMOS level-shifting circuit,

as are the irregularities in the interferometer signal.

IV. CONCLUSIONS

In this paper we have described the first experiment in which a

Ka-band monolithic phase shifter is controlled through a high-

speed fiber-optic interconnect. The interface between the serially

encoded optical control signal and the electrically controlled

phase shifter uses a new optoelectronic integrated circuit that

converts the serial optical input into 16 parallel optical outputs.

Switching of the 4 b phase shifter at instrumentation-limited

input clock frequencies to 130 MHz was observed in real time

using a novel interferometric technique. The optical control of a

phase shifter in this manner represents a significant step toward

the development of an optically controlled phased array antenna.
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COAX-TO-CHANNELISED COPLANAR
WAVEGUIDE IN-PHASE N-WAY, RADIAL

POWER DIVIDER

Indexing terms: Waveguides, Transmission lines

A novel nonplanar, wideband power divider which makes
use of a coax-to-CCPW transition is demonstrated. The tran-
sition utilises a coaxial transformer whose outer conductor is

slotted along the length for RF power division and also for
exciting the CCPWs in equal amplitude and phase at the
radial junction. The measured (g-16GHz) excess insertion
loss at the output ports is 0-5dB for a four-way divider. The
amplitude and phase balance are within 0.5dB and 5°,
respectively. The power divider should find applications in
the feed network of phased arrays.

Introduction: Channelised coplanar waveguides (CCPW) _ are

a new variant of the conventional coplanar waveguide
(CPW). z The CCPW has all the advantages of conventional
CPW and also has lower radiation loss. In the conventional

CPW, the loss of power by radiation to free space occurs from
the printed circuit and the substrate. By embedding the sub-
strate in a channel, the radiation loss from the substrate is

suppressed. A practical CPW circuit such as a power divider
also has several bend and step type discontinuities which can

excite higher order CPW modes and surface wave modes.
These modes can propagate if the cross-sectional geometry is

favour_ible and may reduce the isolation between adjacent
circuits besides giving rise to insertion loss spikes. The metal

channel of the CCPW also acts as an effective barrier against
interference through the substrate.

We demonstrate a novel power divider which uses a non-
planar coax-to-CCPW transition. The new design has advan-
tages over the conventional planar, in-line Wilkinson type?

power divider. It eliminates the need for right angle bends
which require dielectric overlays for phase velocity correc-

tionf It eliminates the unreliable and nonreproducible bond-
wires which are used to tie the two ground planes to the same

potential. It is also capable of simultaneously exciting multiple
odd or even number CCPWs in equal amplitude and phase.

Radial junction: A coax-to-CCPW in-phase, four-way radial

power divider is shown in Fig. 1. The junction is formed by

the intersection of four CCPW lines. Power is coupled to this
junction from a coaxial cable whose outer conductor is slotted

along the z direction to form four coupled transmission lines.
The centre pin of the coaxial line meets the intersecting

CCPW centre conductors and the four coupled outer conduc-

tors meet the CCPW ground planes. The electric current at
the open end of the coax is divided into the four CCPW lines

illustrated in Fig. 2. This arrangement has the advantage of
holding the ground planes at the same potential and exciting

the four CCPW lines in equal amplitude and phase without
the need for bond wires. Each of the four CCPW lines, Fig. 3,

has an impedance of 135fl at the junction. The net impedance
seen by the coaxial line is approximately 34 fL A quarter wave

coaxial dielectric transformer (e, = 4) was used at the junction
to match the 50f_ coaxial line to the 34f_ CCPW junction

impedance. The characteristic impedance of the quarter wave

coaxial dielectric transformer section as determined from Ref-

erence 5 is approximately 40_. The characteristic impedance
(Z o = V2/P) of the CCPW line at the output ports was set to

70f/to provide a good match to the 501") coaxial connector. 4

port I

Fig. ! Coax to CCPW in-phase, four-way, radial power divider
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Each of the three pairs of slits in the ground plane of the

CCPW (Fig. 3) acts as a tuning stub to improve the CCPW to
coaxial connector impedance match over the measured fie-

quency range.

cooxiol line with

'_ 'I / r slotted outer

C C PW_--'-T L l' • conductor
t I /

j 11 ,, /

..... ___ .......... 1- -_-2-_'-_ inner conductor

,, _, _--L CCPW
l; "q-
ii tl

12

_ inlet port 1

_ dielectric

c_°4t°l r[_t'_ tronsformer
/ . =

port 2 t::Z:>,,-...." I::1 .-_'. P_.

output

output port /-,

port 5
b

Fig. 2 Radial power divider characteristics

a Electric field distribution at end of slotted coaxial line

b Equivalent circuit of junction

output
port 3

output L__LI I

port2

cW_W

 lii 'l--

t

E _

S=O OZ.5 in)

W:O 010 in_'_.
Z 0=70_1 1 "1

j[J I l__L__ou_ t
- _ '1 qJu

/1/ "'", [ s=oolo in
/// "-_ w=oo3sin

-Ill= is= O0 S,n
"311= ._4w: o oloio.

output-_JU_ :-'_ /z°=7°nsection A-A port 5

_g. 3 Coax to CCPW in-phase, four-way, radial power divider details

losses. Also superimposed on Fig. 4 is the return loss of the
input port which is greater than 10dB. The amplitude and

phase balance of this circuit are within 0-5dB and 5°, respec-
tively. These values are a function of the mechanical structure
itself since all the ports are identical. The isolation between

the ports is approximately 10dB.

Conclusion: The design, implementation and characterisation

of a N-way, in-phase, radial power divider which employs a
novel coax-to-CCPW transition has been demonstrated. This

is the first successful implementation of a copolanar wave-
guide power divider. The low loss and wide bandwidth char-
acteristics of the divider would facilitate the implementation of

soI [ 3
L_--- ...... I o

3 0 ......... 3

20 --- [ .......... -6

m I0 - --- _-- _ .... :__-9
"O

o _ ! ........... :-- 42
i

-- .311

-20 _ _ :_'__ -- -Ig
-30 ............ _ ........... _. -2i

I
!

m _ 0 ........ i ..... l .... 2_

-s0_ J............. 27
8 12 16

frequency. GHz

Fig. 4 Measured coupled power and return loss

a CCPW feed network in a phased array antenna system. The

divider is observed to possess excellent amplitude and phase
balance.

R. N. SIMONS 1st February 1990
G. E. PONCHAK

NASA Lewis Research Center, 21000 Brookpurk Road
Cleveland, OH 44135, USA
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Experimental results: The measured amplitude of the power

coupled to one of the output ports over an octave bandwidth
(8-16GHz) is shown in Fig. 4 and is typical of the junction•

The -6"5 dB measured amplitude at the output ports is in

good agreement with the -6.0dB expected for a 1 : 4 ideal
lossless junction. The additional loss of 0.SdB includes the
CCPW to coaxial transformer and two coaxial connector
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I

ABSTRACT

A new rectangular wavegulde to coplanar wave-
guide transition Is described. The transition uses

a ridge In one of the broad wails of the wavegulde
and a nonradlatlng slot in the opposite wall to

split and rotate the electromagnetic fields of the
rectangular wavegulde TEIO mode Into the CPW
fields.

INTRODUCTION

o Coplanar waveguide (CPW) Is an attractive

transmlsslon llne for microwave Integrated circuits
since the ground planes are on the same side of
the substrate as the conducting strip (I). Thls
permits the Integration of both serles as we!! as
shunt circuit elements without the need for back

slde processing and vla holes. A second important
advantage of CPW whlch has recently emerged Is In
the design of microwave probes for on-wafer charac-
terization of field effect transistors and for

fast, Inexpensive evaluation of microwave Inte-
grated circuits (2).

In order to fully utilize these advantages,
transltions between CPW and other microwave trans-
mission media are required. A coaxial connector

to CPW transition In which the center pln and the
ground connection of the coaxial connector make

contact wlth the CPW center strip and ground
planes respectlvely has been demonstrated at
IB GHz (3). By reducing the diameter of the

coaxial connector, the upper frequency of these
transitions has been extended to 50 GHz. Further

reduction of the coaxial connector dimensions to

Increase the frequency of operation may be limited
by the fraglllty of the connectors. Also, mil11-

meter wave sources use rectangular wavegulde at
the output ports. Therefore, there Is a need to

develop rectangular wavegulde to CPW transitions
for applications at V-Band (50 to 75 GHz) and
W-Band (75 to IIO GHz).

A wavegutde to CPW transltlon has been re-
ported by Bellantonl, et al. (4). The transitlon
uses a flnllne taper to concentrate the electric

"NASA Resident Research Associate at Lewis

Research Center (work funded by NASA Grant
NAG3-BI6).

fields and a wire bond to spllt the electric cur-
rents between the two ground planes. The dlffl-
cu1ty wlth the design Is positlonlng the wire bond

such that the two slots are excited In equal magni-
tude and phase, A further dlfflculty with _nline
transitions is the occurrence of rescnances created
by the transitlon (4,5). This paper presents the
deslgn and characteristics of a new rectangular
wavegulde to CPW transltion which uses a ridge In
one of the broad walls of the wavegulde and a non-
radiating slot in the opposlte wall. This arrange-
ment transforms the rectangular waveguide TEIO mode
Into the CPW mode wlth equal magnitude and phase
excitatlon of the slots. The transition Is capable
of providing full wavegulde bandwidth.

TRANSITION DESIGN

Figure I Is a schematic of the transition.
The printed circuit board shown In Fig. l(a) forms
the bottom wall of the rectangular waveguide_ On
this printed clrcult board, a nonradlatlng slot Is

etched which gradually tapers to a width equal to
S + 2W, where S and W are the width of the CPW

center strip and slot, respectively. The cosine
tapered ridge shown In Fig. l(b) protrudes from
the top wall of the wavegulde and extends down to
the printed circuit board metaIIzatlon at the end

of the taper. The ridge width Is matched to the
width of the center strip conductor, S, of the CPW.
The electric field distribution at cross sectional

planes along the transition Is Illustrated in
Fig. 2. One can easily vlsuallze that the ridge

and the nonradlating slot gradually split the elec-
tromagnetic fields of the TEIO wavegulde mode and
rotate them through 90° to match the fields of the
CPW.

TEST RESULTS FOR K BAND TRANSITION

A transltlon has been designed for K band.
The printed circuit portion of the transitlon has
been fabricated on a 0.125 In. thick 5880 RT/Durold

substrate with single sided copper cladding. The

ridged wavegulde portion of the transition is cop-
per. The coslne taper Is 1.5 In. long or approxl-

mately 1.5 Xg at the center frequency. The S and

W of the CPW are 0.032 and 0.008 In. respectively
yleldlng a 75 Q transmlsslon llne. For testlng,
the two transitions were connected back to back

through a O.B In. length of CPW transmission line.
The characteristics for thls transition are shown

In Fig. 3. The return loss Is greater than II dB
z
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across the band. The average Insertion loss for
the back-to-back transitlons is 1.75 dB wlth

0.25 dB ripple.

CONCLUSIONS

A new rectangular wavegulde to CPW transltlon
has been developed wlth Full waveguide bandwidth.
Thls transitlon should permit the use of CPH based
clrcults In the mll]Imeter wave Frequency range and
the development of mlcrowave probes above 50 GHz
For Fast and Inexpensive testing o? the mllIlmeter
wave clrcuIts.
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SUMMARY

Three different types of p-i-n diode, reflective CPN switches are pre-
sented. The first two switches are the series and the shunt mounted diode
switches. Each has achieved greater than 15 dB of isolation over a broad band-
wldth. The third switch is a narrow band, high isolatlon swltched_fllter which
has achieved 19 dB of Isolation. Equivalent circuits and measured performance
for each switch Is presented.

INTRODUCTION

Coplanar wavegulde, CPW, on a dielectric substrate consists of a center

strip conductor wlth seml-lnfinite ground planes on either side (ref. l).
Channelized coplanar wavegulde, CCPW, consists of CPW transmission llne placed

In a metal enclosure (ref. 2). Because the ground planes and the center con-

ductor are on the same side of the substrate, shunt as well as series mounting

of circuit components can be done without the need for wraparounds or vla-

holes. The improvements in circuit yield and the reduction in inductance for

ground paths over mlcrostrlp based circuits should permit microwave Integrated
circuits, MIC's, to be fabricated at higher frequencies and less expensively.

However, the extent of applications of CPW circuits is limited due to the

unavailability of circuit elements and models which can be Incorporated Into

CAD programs.

Microwave switches are a basic clrcuit element for phase shifters and

radiometers. A CPW switchable attenuating medium propagation, SAMP, switch

has been demonstrated by Flemlng et al. <ref. 3). This devlce is useful for
GaAs MMIC circuits but it is not easily incorporated into MIC's on passive sub-

strates such as alumina or duroid. P-i-n diodes are good microwave switches

since the impedance of the diode can be changed from a very high value to

nearly zero in a short time (refs. 4 and 5).

This paper presents for the first time CPW p-l-n diode, reflective
switches. Three basic switches are presented. The flrst is a shunt mounted

diode switch. This switch is similar to fin line shunt mounted dlode switches

(ref. 4). The second switch is a series mounted diode across a gap In the cen-

ter strip conductor. The last switch is a novel design which converts a CPW

interdlgital coupler with bandpass filter characteristics Into a spurline,

bandstop filter.

*NASA Resident Research Associate at Lewis Research Center.
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The three switches have been fabricated on CCPW transmlsslon lines. All

of the circuits have been fabricated on RT/Duroid 5880 substrates with Metelics

Corporation beam lead dlodes, MBP-IO30-BI]. Figure I is the equivalent circuit

7 REVER FORWARD

BIAS K/" BIAS p

_I__j

TYPICAL VALUES

SUPPLIED BY

METELICS

Rs 0.2fl

Rf, 6.00

Lp 0.1 nU

CI=Cj_ Cp 0.03pF

FIGURE I. - P-I-N DIODE EOUIVALENT CIRCUIT AND TYPICAL CIRCUIT

ELEMENT VALUES,

of the dlode with the circuit element values supplied by Metellcs. Although no

tuning to resonate off the diode parasltlcs was done, the CPW slots were made

equal to the length of the packaged diode to mlnlmlze the package Inductance,
Lp. Testlng of the switches has been done on an HP 8510 automatic network ana-

lyzer wlth blas tees to supply the dc bias to the dlodes. The test Fixture is

comprised of a 2 in. length of CCPW with a 0.045 in. center strip and O.OlO In.

slot. Connection to 3.5 mm coax cables is made through a pair of coaxial con-

nectors. Tunlng notches in the ground plane have been used to improve the
coax-to-CCPW characterlst|cs over selected frequency bands. The test fixture

has a total Insertion loss of 0.5 dB and a return loss greater than 15 dB for

the frequencies reported in this paper.

P-I-N DIODE SHUNT SWITCH

In a shunt mounted configuration, a pair of diodes are placed in parallel
across the slots of the CCPW transmlsslon llne (fig. 2). When the diodes are

i_xg/,,H
\ \

44[ , ,

FIGURE 2. - SCIIEMATICAND EQUIVALENT CIRCUIT OF CPW P-I-N

DIODE SIIUNTSWITCH.

a , " 50



forward biased, each slot is loaded by the Forward bias Impedanceof the diode;
at lO GHz, the impedanceacross the slot is approximated by Rf + J_Lp = 8.7 0
<< Zo. The shunt impedanceFor CPH,wlth two parallel slots, Is therefore
4.35 O. Thls low impedanceloading the slot reflects the propagating wave.
Hhenthe diode is reverse blased, each slot is loaded by an impedanceapproxi-
mated by I/(j_Ct) = 530 _ >> Zo. This is an equivalent shunt Impedanceof
265 Q for CPW. This load results In a small attenuation. Uslng expressions by

Watson (ref. 6) modified for two parallel shunt elements, an isolation of 16 dB

and an Insertlon loss of 0.04 dB is predicted.

5:pi Iog MAG

FIEF 0.0 dE)

10.0 dE)/

C

(a) MEASURED INSERTION LOSS AND ISOLATION.

Sll log HAG
REF 0.0 dB

10.0 dBl

O "14_i_- "_L]iti't-_ .:i-i..................

C _ .......... t -! ............. I ....... ]-- ..... 1-_ ...... T ...... I "-'-'!!

L- .................................b......_..... r.... -_...... _---_--_
i i : I i
! t ! I i / ' I i

I_-i ........ _....... T.,.... . ....... T.... !.... 1----T ..... i-----I
! i i , l , I

I-----I........_SWITCU-OFF.........I..... ':-......-!------+...... i.--_
,'I (2s_) ! I / i / ! I

. ' i I i i ' I, .'I-swITCH-ONI_ t ! , I
_----,_- (o.o_A>-i...... I......... i ',

__ '____.; ____ .......... . ._t___ ____,..

[ ........ 1...... F .............. £ ............. F ....... l ...... i_
' i f i'L_.I I...... ..... [__.,_ i___L__l 1......... _;

START B. 0000@@00@ GHz

STOP 11.000000000 OHz

(b) MEASURED RETURN LOSS,

FIGURE 3. - CPW P-I-N DIODE SHUNT SWITCH WITH TWO PAIRS OF

DIODES.
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An Insertion loss less than 1 dB and an isolation of 15 dB has been meas-

ured over the frequency band of 8 to 11GHz. The return loss was less than
10 dB across the band. By incorporating more than one pair of diodes across
the slots with a Xg/4 separation, higher isolation can be achieved. Typi-
cally, two pairs of diodes have resulted in an isolation of 30 dB over the 8 to
11GHz frequency band with llttle increase in insertion loss, this is shown in
figure 3(a). Figure 3(b) shows the return loss which is less than I0 dB across
the band.

P-I-N DIODE SERIES SWITCH

In the series mounted diode co nfiguratlon, a diode Is mounted across an
0.008 in. gap in the center strip conductor of the CCPN line (flg. 4). The

Cf

FIGURE 4. - SCHEMATICAND EQUIVLENT CIRCUIT OF CPW P-I-N DIODE

SERIES SWITCH,

center strip has been tapered to the width of the beam lead diode to provide a

better match to the width of the diode package. The gap appears as an equiva-

lent capacitive _ network (ref. 7). Nhen the diode is forward biased, the

coupling capacltance Is shorted by the low diode impedance and the wave is

transmitted. Reverse biasing the diode results in an impedance across the gap

whlch can be approximated by l/[j_(Ct + Cc)] >> Zo at lO GHz. Therefore, the

propagating signal is reflected as if from an open circuit. A measured inser-
tion loss of l dB and an isolation of 15 dB has been obtained from 0.045 to

8 GHz (fig. 5(a)). The return loss over this band is less than lO dB

(fig. 5(b)). The gap Impedance is not large enough at higher frequencies to

provide good isolation. The gap can be lengthened to decrease Cc but the
increase in inductance from the longer diode leads will ultimately limit the

gap separation. Resonating out these reactances is required for higher Fre-

quency operation (ref. 6).
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(a) MEASURED INSERTION LOSS AND ISOLATION.
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START 0. 045000000 GHz

STOP B. 000000000 GHz

(b) MEASURED RETURN LOSS.

FIGURE 5. - CPW P-I-N DIODE SERIES SWITCH.

P-I-N DIODE SPDT SNITCH

To reallze a SPDT switch, a CCPN Tee-junction with gaps in the center

strip conductor at the junction was formed (fig. 6). Diodes were mounted

across the gaps in parallel. As shown in figure 7, the measured insertion loss

is l dB and the isolation is greater than 15 dB over the octave bandwidth of
2.25 to 5.5 GHz. The return loss was less than I0 dB.
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FIGURE 6. - SCtlEMATIC AND EQUIVALENT CIRCUIT

SERIES MOUNTEDP-I-N DIODE CPWSPOT

SWITCII.
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FIGURE 7. - MEASURED INSERTION LOSS AND ISOLATION OF SERIES

MOUNTED PIN DIODE CPW SPDT SWITCII.
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P-I-N DIODE SWITCHED-SERIES-STUB SWITCH

A diode Is mounted across the open end of a Xgl4 stub which is In series

wlth the center strip conductor of the CCPW as shown in figure 8. When the

diode Is unbiased, the stub is terminated in an effectlve open circuit and

therefore appears as a series short circuit. Hence, the wave propagates with

negllglble attenuation. This is the on-state of the switch. When the diode

Is forward biased, the stub Is terminated in an effective short circult which

i i
F

I)IODE UNBIASED DIODE FORWARD BIASED

FIGURE 8. - SClEMATIC AND EOUIVALENT
m

CIRCUIT OF CPW P-I-N DIODE SWITCIIED-

SERIES-STUB SWITCII.

r
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therefore appears as a series open circuit. The wave is therefore reflected;
this Is the off-state of the switch. The diode re'actances result in an effec-

tive lengthening of the stub and can easily be compensated for. A measured
insertion loss of l.O dB and an Isolation of 19 dB has been obtained at 9 GHz

(fig. 9Ca)). Figure 9(b) shows the return loss.

$21 log MAG

REF 0.@ dB

5.0 dB/

=IN OCOOE TWITCH

SWITCH-ON

(0.0 MA)-_- FINSERTION LOSS--

\ / I I

-- tl J
-_._ _ ISOLATION-

- __ _

1
ca) MEASURED INSERTION LOSS AND ISOLATION.

$11 log MAG

REF 0.0 AB

5.0 dB/

_-_P_FwT._-- " .......... t

i t l!

START e . 000000000 GHz

STOP 10.000000000 GHz

(b) MEASURED RETURN LOSS.

FIGURE 9. - CPW P-I-N DIODE SWITCHED-SERIES-STUB SWITCH.

CONCLUSIONS

P-I-N diode reflective switches are easily realizable on CCPW transmission
llne and therefore CPW transmlsslon llne. Each of the three type of switches

presented are practical for specific applications. The performance of the
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switches could be improved through typlcal tuning of the diode reactances once

the necessary CPW circuit models become avallable.
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SUMMARY

This paper presents a new variant of coplanar waveguide (CPW) which has
been termed channelized coplanar waveguide (CCPW). Measured propagation char-
acteristics for CCPW such as c(eff) and unloaded Q as a function of geomet-
rical parameters and frequency are presented. The measured and modeled c(eff)
are also compared. Equivalent circuit model element values are presented for
a CCPW open circuit and a CCPW right angle bend. A CCPW matched T-junction,
matched 1:3 junction, and a novel coa×-to-CCPW in-phase, N-way, radial power
divider are also demonstrated.

INTRODUCTION

Coplanar waveguide, CPW, on a dielectric substrate consists of a center
strip conductor with semi-infinite ground planes on either side (ref. 1). A
variant of CPW is grounded coplanar waveguide, GCPW, which has an additional
ground plane on the opposite side of the substrate to facilitate heat removal
and packaging (ref. 2). These transmission lines have several advantages which
make them ideally suited for microwave integrated circuits. The disadvantage
of CPW and GCPW is that the structure can support spurious modes besides the
CPW mode since the transverse dimensions may be several wavelengths.

This paper presents a new variant of CPW. The new structure has side
walls which, together with the ground plane, constitute a channel and hence is

*NASA Resident Research Associate at Lewis Research Center (work funded

by NASA Grant NAG3-816)
_Student Co-op at NASA Lewis Research Center.
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appropriately termed as channelized coplanar waveguide, CCPW. A shielding
structure may also be used to further confine the electromagnetic fields.
This structure is shown in figure 1. The enclosure of the CPW transmission
line eliminates radiation loss and spurious surface modes created at disconti-
nuities. Also, because the basic transmission line structure is CPW, CCPW

maintains the inherent advantages over microstrip for easy shunt as well as
series mounting of active and passive components.

/ , M..

Fioum 1. - Schemilic oidha_nolizlJd_ wlvoouido(CCPWL
• , . , L ,

.-. _ SHIELD

,_.-- DIELECTRIC
.. ," SU6STRATE

, .,--- Ck,L,I_NEL
js

To maintain a single CPW mode of propagation, CCPW must be designed to
suppress the dielectric filled rectangular waveguide mode, the microstrip
mode, and the rectangular coax mode. The channel width, 2B, is chosen such
that the rectangular waveguide mode is cutoff. The microstrip and rectangular
coax modes are suppressed by the proper selection of the slot width, W, the
center strip width, S, and the substrate thickness, D. The ratios W/D and
S/D must be sufficiently small to suppress the microstrip mode. The ratio
(S + 2W)/2B must be small to suppress the rectangular coax mode.

This paper presents lumped element circuit models for several CCPW discon-
tinuities, together with their element values as a function of frequency. The
discontinuities characterized are an open circuit and a right angle bend. The
measured frequency dependence of the effective dielectric constant, ¢(eff),
and the unloaded quality factor, Q, are also presented for CCPW lines fabri-
cated on c(r] = 2.2±0.02 RT/Ouroid 5880, e(r) = 6.0±0.15 RT/Ouroid 6006, and
c(r) = 10.2±0.25 3M Epsilam-lO substrates. This is followed by the design and
characterization of a CCPW matched T-junction and a matched 1:3 junction.
Lastly, the performance of a novel Coax-to-CCPW in-phase, N-way, radial power
divider circuit is presented.

METHODOF MEASUREMENTS

A resonator technique similar to that described by Richings (ref. 3) and
Stephenson and Easter (ref. 4) was used. The k/4 end coupled stubs could not
be etched off as in the case of microstrip since this would alter the CCPW
open end parameters. Hence, a four resonator set had to be fabricated for
each frequency to determine the end effects.
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This will contribute some errors to the results because the resonator

lengths and gaps will not be identical for the two k/2 and k resonators.
In addition, S and W varied slightly for each resonator set since the reson-
ators were not processed in parallel. The circuit dimensions were measured to

±0.0002 in. The coupling gaps were varied to maintain a coupling coefficient,
B, less than 1. For most of the resonator sets, _ < 0.3. This is a sufficient
condition to minimize the loading of the resonator for transmission lines with

Q _ 100 as are reported in this paper. The Q was determined through a tech-
nique given in reference 5.

EFFECTIVE DIELECTRIC CONSTANT

The ¢(eff) was measured over the frequency range of 3 to 18 GHz for sev-
eral unshielded CCPW lines and the results are shown in figure 2. The CCPW
lines have been modeled using reference 6 and the c(eff) is plotted for each
CCPW line. ¢(eff) of GCPW calculated from the closed form expression of Ghione
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Figure 2. - Measured effective dielectric constant for unshielded
CCPW as a function of frequency.
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and Naldi (ref. 7) is also plotted for comparison. For the low dielectric sub-
strate, either reference 6 or 7 could be used to predict c(eff). For the
higher dielectric substrates, both methods predicted lower ¢(eff) than what
was measured.

Effect of Substrate Thickness

¢(eff) was measured as a function of frequency for unshielded CCPW lines
fabricated on substrates with D in the range of 0.062 to 0.250 in. The CCPW
parameters S, W, 28, and c(r) were held fixed at 0.045 in., 0.010 in., 0.200
in., and 2.2, respectively. No variation in c(eff) was observed for the
thicker substrates, W/D < 1/12.5. c(eff) of the thinner substrate, W/D _ 1/6,
was 0.7 percent higher than the other measured cases. This agrees with the
calculated c(eff) (ref. 6) and results in reference 2. The increase in
_(eff) is due to a microstrip mode.
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To verify this, an RF probe was used to sample the electric fields under
the center of the strip at the plane of the bottom conductor, the probe place-
ment is shown in figure 3. Since odd mode CPW propagation has zero electric
fields at this point, any fields measured by the probe must be due to a micro-
strip mode. The sampled field was measured for the thickest substrate and
this value was used as a calibrated zero. No microstrip mode was measured as
D was decreased until WlD = 1/6, when an increase in the sampled field ampli-
tude of =3 dB was measured.

.4-- GROUND

.,- _ PLANES
CENTER STRIP ---. _ . l

!

DUROID
SUBSTRATE ---" "" _ , ;

s

"--_SMA CONNECTOR '_,,

(2052-5674-00) "_-- ELECTRIC FIELD LINES DUE
USED AS MINIATURE
COAXIAL PROBE TO MtCROSTRIP MOOE

Figure 3. - Probe placement to sample the electrk: fields due to the mlcrostrlp mode.

Effect of Cover Height

e(eff) was measured for shielded CCPW lines with cover heights of H = D,
2D, and 4D. Resonators were tested with c(r), D, S, and W equal to 2.2,
0.125 in., 0.045 in., and 0.010 in., respectively. Resonators were also fabri-
cated on D = 0.050 in., ¢(r) = 6 and 10.2 substrates. In all the cases, the
change in ¢(eff) from the unshielded case was negligible.

LOSS MEASUREMENTS

Effect of S and Shielding

Figure 4 shows the measured Q for resonators of length k as a function
of S for a fixed frequency. The Q of the unshielded resonators decreases
with increasing S while the Q of the shielded resonators increases with in-
creasing S. Therefore, radiation loss increases as S increases.
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Effect of Frequency and Shielding

Figure 5 shows the measured Q over the frequency range of 3 to 18 GHz
for X resonators both with and without shielding. The reduction in Q

with increasing frequency for the unshielded case is due to the increase in
radiation loss. With shielding, the Q is observed to increase with frequency
or the attenuation per unit wavelength decreases. A change in the cover height
from H = 2D to H = D showed no measurable difference in Q.

,-- SHIELDED

,,,," (H = 20)35O

0 300

q 2oo
g

1 I 1 I I T ILrDI
2 4 6 8 10 12 14 16 18

FREQUENCY, GHz

Figure 5. - Measured unloaded quality factor, Q, for CCPW as a
function of frequency, with and without a shielding enclosure.

Er =2.2

S - 0.045 In.
W -0.01 In.
D = 0.125 In.
2B = 0.2 In.

Effect of D and c(r)

The effect of varying D in the range of 0.062 to 0.250 in. on Q was
measured. No measurable variation in Q over the frequency range of 8 to
18 GHz was observed. CCPW resonators on the higher ¢(r) substrates had lower

Q's. This is expected since the higher dielectric suhstrates concentrate more
of the fields in the lossy substrate.

CHANNELIZED CPW OPEN CIRCUIT

When a CPW line is terminated in an open circuit, there is an excess

fringing of the electromagnetic fields which gives rise to a capacitance, Cf
(ref. 8). This capacitance is equivalent to a short length of a transmission
line, Lo, terminated in a perfect open circuit as illustrated in figure 6.
The open end line extension for the unshielded CCPW de-embedded from the reso-
nator data is shown as a function of frequency in figure 7. Although strict
dimensional standards were used to select resonators, a large spread in Lo

was present. The exact cause of this spread, particularly at the lower fre-
quencies, is unexplained. There was no variation in Lo for resonators with a
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(a) Schematic of a CCPW open circuit.
(b) Equivalent end fringing capacitance, C I ,
(c) Equivalent CCPW end-effect length, L O.

Figure 6, - CCPW open circuit.

cover height of H > 2D since its presence has negligible effect on the fring-
ing fields. Also,-Lo was found to be independent of the distance between the
open circuit and the end of the substrate, gl.

I
18

CHANNELIZED CPW RIGHT ANGLE BEND

A CCPW right angle bend and its equivalent circuit are shown in figure 8.
The capacitance, C, is created by the accumulation of excess charge at the
corners in the two slots and the resulting excess electric fields to the

ground plane. The current flow interruption creates the excess inductance
which can be equated to a length of transmission line, L. Radiation from the

corner is represented by the shunt conductance, Gr.

To experimentally determine the capacitance, C, a voltage antinode has to
be placed at the discontinuity. This is realized by placing a right angle
bend at the center of an open circuit terminated resonator of length X. To

2! S_ _'_=J_'_ H __r yo i

(a) Schematic. (b) Lumped equivalent clroJIt rnodel.

Figure 8. - CCPW right angle bend.
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determine the inductance, a voltage node has to be placed at the discontinuity.
This is realized by placing a right angle bend in the center of a k/2 resona-
tor. The C and L are determined from the measured resonant frequencies
using the following two equations (ref. 4):

nv - (1 n + Lo + Lg) (1)
Ln 2f n _(c(eff))

1 I_f2_(eff) L21C/Yo - _f2 tan v
(2)

where

fn E resonant frequency of the nk/2 resonator

Lg E gap equivalent extension

Ln E Extension due to the parasitic reactance, either resulting from a voltage
antinode for an n - 2 resonator or a voltage node for an n - 1 resonator

Lo E open circuit equivalent extension

1n E physical length of the nk/2 resonator

n E order of resonance

v E 3xlO 8 m/sec

The radiation conductance, Gr, was calculated by deriving a lumped ele-
ment equivalent circuit model for the shielded and unshielded resonators incor-
porating a right angle bend (ref. 5). The difference in the resonator circuit
conductance is then attributed to an equivalent radiation conductance. The
model is valid near the resonant frequency. Table I presents the normalized
capacitance C/Yo, L, and the normalized radiation conductance Gr/Yo as a

function of the frequency. The radiation conductance is very small at low fre-
quencies, however, it increases rapidly with frequency.

TABLE I. - CCPW RIGHT ANGLE

BEND DISCONTINUITY

[S = 0.045 in., W = 0.010 in., c(r) = 2.2,
2B = 0.200 in.]

Frequency,
GHz

2.97
4.92
9.74

13.49
17.84

L,

mil

22.622
26.241
30.972
27.867
31.794

C/Yo,
pF'fl

4.219
4.353
3.192
2.950
3.848

Gr/¥o

0.0003635
.0014154
.010823
.011765
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The path length differences between the two slots at the CCPW right angle
bend degrade the RF characteristics. Therefore, compensating techniques such

as miters (ref. 9) and dielectric overlays (ref. 8) were investigated. Fig-
ure 9 illustrates a CCPW right angle bend and three possible compensating tech-
niques and shows the measured insertion and return loss for each of the bends.

The use of bond wires (fig. 9(b)), to hold the ground planes to the same poten-
tial at the element reference planes reduced the resonances in the insertion

loss characteristics. To further reduce the path length difference, miters as
large as 70 percent were tried. The miter and bond wires eliminated most of
the resonances (fig. 9(c)). Finally, a dielectric overlay was placed on the
inner slot (fig. 9(d)). The overlay slows the signal travelling along the
inner slot so the signal emerging from each of the slots after the right angle
bend is in phase. As shown in figure 9(d), the insertion loss and the return
loss were less than 1.0 dB and greater than 10 dB, respectively, over a 2 to

18 CHz band. This agrees with the characteristics of a straight thru circuit.

CHANNELIZED CPW MATCHED T-JUNCTION

A pen-plot of a CCPW matched T-junction is shown in figure 10. At the
T-junction, the characteristic impedance of the two side arms. Z1, are in par-
allel and the net impedance the input arm sees is Z1/2. Therefore, for impe-
dance matching, the characteristic impedance, ZO, of the feed arm was set equal
to Z1/2. To accomplish this, the output arms were tapered to an impedance of
=135 _ and the input arm was tapered to =67 _. At the coax-to-CCPW transi-
tions, the CCPW impedance was =70 _ to provide a good match to the 50 _ coaxial
line (ref. 8). When a shielding cover of height H = D was used, an insertion
loss and return loss of 0.5 dB and 10 dB, respectively, were measured up to
12.5 CHz. A pair of bond wires were added to hold the ground planes at the
junction at the same potential (refs. 10 and 11). This increased the bandwidth
to 16.5 GHz. The measured insertion loss and return loss of the T-junction
with bona wires are presented in figure 1i. When the bond wires were used, the
measured insertion loss and return loss was independent of the use of a cover.

S =0.010 in._, S =0.045in.'|,

W = 0.035 in. j_: W = 0.010 in. [ ,Zo- t35 fl : r- BOND WIRE Z0- 70 fl ,

.2

I I II I
I I II I o =O.12Sin.

I I [I I fs =0.045in.
I -I'--If--t-- ,(W =O.010in.

INP_"_)RT #1 I'Zo " 70'=--'_,'7 -,,_

OUTPUT PORT
#3

Figure 10. - Pen-plot of a CCPW matched T-junction.
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Figure 11. - Measured amplitude of the power coupled to one of the output
ports and the return lOSSof the Input port for a CCPW matched T-junction.

CHANNELIZED CPW MATCHED 1:3 JUNCTION

k pen-plot of a CCPW matched 1:3 junction is shown in figure 12. The out-

put arms have been tapered to =135 flat the junction. The input arm was ta-

pered to 45 fl for impedance matching. When a shielding enclosure of height
H = O was used, a return loss greater than 10 dB and low insertion loss was

measured through 12.5 GHz. However, a maximum phase imbalance between ports
2 and 3 of =70 ° exists at 12.5 GHz.
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Figure 12. - Pen-plot of CCPW matched 1-to-3 junction.
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The use of three bond wires as shown in figure 12 increased the bandwidth
to 16.0 GHz. In addition, the bond wires reduced the phase imbalance between

ports 2 and 3 by 20 ° at 12.5 GHz. The measured insertion loss and return loss
of the three-way junction with bond wires are presented in figure 13. The
average measured amplitude of -5 dB at the output ports agrees well with the
expected -4.8 dB. There was negligible amplitude and phase imbalance between
ports 2 and 4. A maximum of 1 dB of amplitude imbalance was measured between
ports 2 and 3. The phase imbalance between ports 2 and 3 increased linearly
from =0 ° at 2 GHz to 70 ° at 16 GHz. The use of a shielding enclosure with the
bond wires did not result in any further improvement in the characteristics.

C:

S21 log MAG $11 log MAG

REF 0.0 dB REF 0.0 dB
5.0 dB/ 10.0 dB/

3CPW POWER DIVIDER 1-TO-3 W/BOND WIRES

............. _=__ .... _ --

=
=

START 2.000000000 GHz
STOP 16.000000000 GHz

Figure 13. - Measured amplitude of the power coupled to one of the output
ports and the return loss of the coaxial input port for a CCPW matched
I-to-3 junction.

COAX-to-CHANNELIZED CPW IN-PHASE N-WAY RADIAL POWER DIVIDER

A coax-to-CCPW in-phase, four-way radial power divider is shown in fig-
ure 14. The junction is formed by the intersection of four CCPW lines. Power
is coupled to this junction from a coaxial cable whose outer conductor is slot-
ted along the z direction to form four coupled transmission lines. The cen-
ter pin of the coaxial line meets the intersecting CCPW center conductors while
the four coupled outer conductors meet the CCPW ground planes. Therefore, the
electric current at the open end of the coax is divided into the four CCPW
lines as illustrated in figure 15. This arrangement has the advantage of hold-

ing the ground planes at the same potential and exciting the four CCPW lines
in equal amplitude and phase without the need for bond wires. Each of the four
CCPW lines, figure 16, has an impedance of 135 _ at the junction. Therefore,
the net impedance seen by the coaxial line is =34 Q. A quarter wave coaxial
dielectric transformer (c(r) = 4) was used at the junction to match the 50 fl
coaxial line to the 34 fl CCPW junction impedance. Each of the three pairs of
slits in the ground plane of the CCPW acts as a stub and helps improve the
CCPW to coaxial connector impedance match over the measured frequency range.
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Figure 14. - Coax-to-CCPW in-phase, four-way, radial power divider.
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The measured amplitude of the power coupled to one of the output ports
over an octave bandwidth is shown in figure 17 and is typical of the junc-

tion. The -6.5 dB measured amplitude at the output ports is in good agreement
with the -6.0 dB expected for a 1:4 junction. The additional loss includes
the CCPW to coaxial transformer and connector losses. Also superimposed on
figure 18 is the return loss of the input port. Figure 18 is a measurement of
the amplitude and phase balance for the four output ports; the amplitude and
phase balance are within 0.5 dB and 5 °, respectively. These values are a func-
tion of the mechanical structure itself since all of the ports are identical.
The isolation between the ports is =10 dB.
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Figure 17. - Measured amplitude of the power coupled to one of the output
ports and the return loss of the coaxial Input poet for a four-way radial
power divider.
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Figure 18. - Measured amplitude and phase I_ance for a coax-to-CCPW
four-way power divider.
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A coax-to-CCPW two-way radial power divider with the same basic structure
as that described above was fabricated. The outer conductor of the coaxial
line was slotted to form two coupled transmission lines. A dielectric trans-
former was not used with this structure. The measured amplitude at the output

ports and the return loss at the coax input port are presented in figure 19.
The amplitude imbalance for this circuit is less than 0.5 dB and the phase im-
balance is less than 5 ° . Again, these values are dependent on the mechanical

realization of the power divider.

1-.o.

S 11 log MAG S 2

REF 0.0 dB REF 0.0dB
10.0 dB/ 3.0 dB/
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I i

log MAG
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jf

START 8.000000000 GHz
STOP 16.000000000 GHz

Figure 19. - Measured ampTitude of the power coupled to one or the output
ports and the return toss of the coaxial input port for a two-way radial
power divider.

CONCLUSIONS

A new variant of CPW which has been termed CCPW has been demonstrated.

The propagation characteristics of this structure show it to be useful for
wide bandwidth, low loss microwave circuits where the favorable size advantage

of CCPW over rectangular waveguide may be needed. Equivalent circuit model
element values are presented for a CCPW open circuit and a CCPW right angle
bend. A matched CCPW T-junction, a matched 1:3 junction, and a novel coax-
to-CCPW in-phase, N-way, radial power divider are also demonstrated. These
exhibit low loss and wide bandwidth and hence should facilitate the implementa-

tion of CCPW in microwave signal distribution networks such as in a phased

array antenna system.
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SUMMARY

A K-band four element linear phased array has been designed and tested.

Coplanar wavegulde (CPW) is used for the microwave distribution system. A CPW

to twin strip transition is used to interface wlth the printed dipole antennas.

MMIC phased shifters are used for phase control.

INTRODUCTION

Coplanar waveguide (CPW) is a transmission llne which consists of a cen-

ter strip and a seml-infinite ground plane on either side of it (ref. l). CPW

|s useful for integrating MMIC's together to form a microwave distribution net-

work since the ground planes are readily accessible on the top side of the

substrate. Grounded CPW (GCPW) is a variant of CPW which incorporates an
additional ground plane on the back side of the substrate (ref. 2). This addl-

tional ground plane can serve as a heat sink and provide mechanical strength.

In addition, this ground plane serves as a shield between stacked antennas
boards to improve isolation.

Several CPW fed antennas have been reported in the literature. A GCPW
fed coplanar stripline antenna constructed by widenlng the center strip of the
GCPW to form a rectangular patch has been reported (ref. 3). This antenna pro-
duces a llnearly-polarlzed pattern normal to the plane of the substrate.
Coplanar waveguide fed slot antennas which are the complement to prlnted dipole
antennas have also been reported (ref. 4). This antenna also radiates In a
direction normal to the plane of the substrate. Although end-flre antennas
are required for many large phased arrays, no CPW fed end-fire antennas have
been reported yet in the literature.

*Summer Student Intern at Lewis Research Center.
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In this paper we demonstrate a K-Band four element, printed dipole 11near
array whlch uses GCPN for the feed network and the Integratlon of the MMIC
phase shifters. Thls array radlates in the end fire direction and is sultable
for large two-dimensional arrays.

CIRCUIT DESCRIPTION

The microwave distribution network and antennas Is shown In flgure l.
The microwave dlstribution network Is fed by a single coaxla] transmission
llne. The microwave signal is then split equally onto four GCPW transmission
llnes by three GCPW T-junctlons. Nire bonds were used to tie the ground
planes of the GCPW at the bends and T-junctlons. The Insertlon loss for the
one-to-four power divider is shown in flgure 2. The MMIC phase shlfters are
DC |solated from the rest of the network by a pair of GCPW couplers. The coup-
lers have been optimized to have a passband at the antenna operating frequency.
The GCPW was tapered to provide a better match to the ]Ine width of the micro-
strip llnes on the MMIC. The Insertlon loss for the two couplers wlth a GaAs
50 mlcrostrlp through connection In place of the phase shlfters was 2.0 dB.
The transltlon from the unbalanced GCPW to the balanced coplanar strip trans-
mission llne was made through a coplanar balun (ref. 5). The clrcult was fab-
ricated on 0.0625 in. thick CuFlon material.

The phase shlfters shown in figure 3(a) were developed by Hughes Alrcraft
Corporatlon under contract to NASA (ref. 6). The phase shlfters are reflec-
tion type and utilize a Lange coupler and two reverse biased varactor dlodes
to provide continuous 180 ° phase shift. The phase shlfters were characterized
individually before Integration with the antenna network. By applying blas
voltages from 0 to 4 V, 170 ° of phase shift was obtained as shown In flg-
ure 3(b) with an average Insertlon loss of 6.15 dB. Amplitude control can be
added by the addition of MMIC amplifiers, variable attenuators, or switches.

ARRAY PERFORMANCE CHARACTERISTICS

The measured radlatlon pattern for a single GCPW fed printed dipole
antenna is shown In figure 4(a). As expected, the pattern Is broad due to the
low gain of the antenna. The measured radiation pattern for the four element
linear array is shown in figure 4(b). The pattern was measured with identical
GaAs 50 Q mlcrostrlp through lines in place of the phase shlfters. The E-plane
and H-plane patterns have 3-dB beam widths of 15° and 40 ° , respectlvely. The
E-plane pattern has a shift In the main lobe which is probably due to path
length differences in the feed network. The radlatlon pattern of the array
with the MMIC phase shlfters Is in the process of being made.

CONCLUSIONS

A K-Band four element linear array of printed dipole antennas which demon-
strates the advantages of CPW for MMIC integration and microwave signal dlstrl-
butlon has been fabricated and tested. The radiation characteristics for the
antenna is excellent.
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(a) PHASE SHIFTER CONFIGURATION.
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ABSTRACT

We report on the values of the microwave conductivity in the normal (#N) and
superconducting (a*=al-Ja2) states of two laser ablated YBa2Cu307_8 thin films at

35 GHz, in the temperature range from 20 to 300 K. The films (0.7 and 0.4 _m)
were deposited on LaAlO 3 by laser ablation. The conductivity was obtained from

the microwave power transmitted through the films and assuming a two-fluid model.

Values of aN~2.3 X 105 S/m at room temperature for both films, and of #i~6.3 X
105 and 4.6 X 105 S/m at temperatures around 80 K were obtained for the 0.7 and

0.4 _m films respectively. For _2 values of 4.9 X 106 and 5.4 X 106 S/m were

obtained for the 0.7 and 0.4 _m films at 80 K. The expected conductor losses and

Q-factor of a superconducting ring resonator were calculated using these

conductivity values. The theoretical values were then compared with the
experimental results obtained for a resonator fabricated from one of these films.

The discovery of high transition temperature (Tc) superconductors has raised

the possibility of a new class of microwave and millimeter wave devices operating

at temperatures considerably higher than liquid helium temperatures. Therefore,

materials properties such as microwave conductivity (o), critical current density

(Jc), microwave surface resistance (Rs), transport anisotropies, thermal

expansion, and others have to be well characterized and understood. To date,

measurements of Rs at microwave and millimeter wave frequencies and of Jc of
YBa2Cu307_6 superconducting oxides have been very abundant. 1-3 Nevertheless,

reports on the microwave conductivity of these new oxides have been rare. 4,5 The

need for more data on the microwave conductivity of these oxides arises from the

fact that knowledge of this parameter provides a way to calculate other relevant

properties such as the normal skin depth (6n) and the magnetic penetration depth

in the superconducting state (Xs). From the practical application point of view,

it provides valuable aid for the desiQn of microwave devices and circuits based
on superconducting microstrip lines. 6,7

In this paper we report on the microwave conductivity of laser ablated
YBa2Cu307_6 superconducting thin films at 35 GHz in the temperature range from 20
to 300 K. The values of the conductivities were obtained from the microwave power
transmitted through the film, assuming a two-fluid model. The expected conductor
losses and Q-factor of a superconducting ring resonator were calculated using
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these conductivity values. The theoretical values were then compared with the

experimental results obtained for a resonator fabricated from one of these films.

The pulsed laser ablation technique is similar to that reported by other
researchers. B,9 The deposition was performed at a substrate temperature of 7500

C at an ambient oxygen pressure of 170 mtorr. The laser wavelength was 248 nm,

the pulse length and rate were 20 to 30 ns and 4 pps*respectlvely. During thls

process the distance between the target and the sample was kept at .7.5 cm andthe laser fluence on the target was maintained at 2.0 J/cm z per pulse The laser

beam was continually scanned 1 cm across the target using an external lens on

a translator. When the deposition was finished, the oxygen pressure was raised

to 1 atm and the temperature Was lowered to 450 o C at a rate of 20 C/min. The

temperature was held at 4500 C for two hrs before it was lowered to 250 ° C at the

same rate already mentioned. Finally, the heater power was turned off and the

sample was allowed to cool to 40° C or less before it was removed from the

chamber. This deposition process is explained in more detail in reference 10.

Two YBazCu307._ superconducting thin films, deposited by laser ablation on

LaAl03, have been considered in this study. The films' thicknesses were 0.7 and

0.4 #m respectively. LaAl03 is a convenient substrate because of its perovskite

crystal structure and its lattice constant of a=3.792 A which match very we]l
with the lattice constant of the YBa2Cu307.6 superconducting Oxide. Also, its low

dielectric constant (~22) makes it suitable for microwave device applications.

The films were analyzed by X-ray diffraction, dc resistance versus temperature

measurements and scanning electron microscopy (SEM). Transitions temperatures

(Tc, R=0) of 89.7 and 86.0 K were measured for the 0.7 and 0.4 _m thin films

respectively. The dc resistance versus temperature curves are shown in fig.l.

The X-ray diffraction pattern revealed that both films are single phased with

a strong c-axis orientation. Both films exhibit a very smooth surface as observed

from scanning electron micrographs. A grain size of ~¼ _m was observed for both
films.
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FIGUREI. dc resistanceversus temperatureof 0.7 # (+) and 0.4 ;wm(A) laser ablatedYBa2Cu307._

thin films on LaAl0).
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The power transmission measurementswere performed using an HP-8510network
analyzer connected to a helium gas closed cycle refrigerator by Ka-band (26._
to 40.0 GHz) waveguides. All the measurementswere taken under vacuum (<]0 "_
torr) in a custom designed vacuumchamber. Inside the vacuumchamberthe sample
was clamped between two waveguide flanges mounted on top of the cold finger of
the refrigerator. The waveguides were madeof stainless steel to minimize heat
conduction from the external waveguide arrangement and their inner surfaces were
gold-plated to reduce microwave energy losses. Vacuumwas maintained at the
waveguide feedthroughs by means of '0' rings and mica sealing windows. The
temperature of the sample was monitored using silicon diode sensors mounted on
the waveguide flanges supporting the sample. All the measurementswere taken
during sample cooling.

The measured temperature dependence of the transmitted power through the
sample for both films under consideration is shownin fig.2 . Note that for the
0.7 _m film, both the onset temperature for the transition from the normal to
the superconducting state (~91 K) and the transition temperature T¢ ( 89.7 K),
are clearly observed in this measurement. For the thinner film a sharp drop in
transmitted power is observed below the onset temperature, with an attenuation
of approximately 20 dB at temperatures around 80 K. The most relevant feature
of the power versus temperature curve for this film is the sudden increase in
transmitted power at temperatures below 80 K. This feature is an indication of
the formation of a leakage source (micro-crack or pinhole) which broadens as the
temperature decreases allowing more power to leak through the film. At
temperatures below 50 K the amount of power leaking through the film reaches a
constant value suggesting no significant variation of the ]eakage sources as a
function of temperature in this temperature region.
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FIGURE 2. Transmitted power versus temperature of 0.7 _m (+) and a 0.4 /_m (A) laser ablated

YBazC%0__ 6 thin films on LaAlO3 at 35 GHz.

84



The normal state microwave conductivity, _N, was obtained from the power
transmitted through the sample in the normal state, PN, according to the
expression5

aN=(-RPN+ [(RPN)2-4GPN(HPN-8n2)]½)/2GPNdZc (1)

where
G=(n2+i_)+(n2- ] _cos(2kE)
R=2{3nL+I)+2(nL- I) cos(2kE)
H=n4+6n2+1- (n2-I) 2cos(2k_.)

(1.a)
(1.b)
(I.c)

with Zc the characteristic impedance of the waveguide, d the film thickness, E
and n the substrate thickness and the index of refraction respectively, and k

the wave number. At temperatures below the beginning of the transition, the
microwave conductivity takes the form a =al-ja2, where aI is the conductivity due

to the remaining normal electrons and a2 is the conductivity due to the

superconducting electron pairs. We have calculated _i by using a1=aN(T/Tc) 4, as

defined under the two-fluid model approximation. Values of a2 were obtained using
the relation 5

a2/ac = -pl(2ecdZc) + {[(p/2)2-7]l(acdZc) 2 -aallo2dZc -(ollac) 2 +...

... (Pc/Ps)[1+_/acdZc + 7/(acdZc)2} ½ (2)

with Ps the power transmitted through the film for T<Tc, _¢ and Pc are the

conductivity and transmitted power respectively at T=T c, a=R/G, ?=H/G and #=[-
2n(n2-1)sin(2kE)]/G.

Figure 3 shows the temperature dependence of ar (Or:(ZN for T>TG and Or=C1 for

T<Tc) for the samples under study. The conductivities (~2.3 X 10_ S/m) at room

temperature are in close agreement for the two films considered. These values

also compare favorably with reported values for the dc conductivity in this type
11

of film. Hence, using the value of #N we found a typical resistivity, p, of

about 435 /_ll-cmat room temperature and of 133 and 160 /_(_-cmat temperatures

around 100 K, for the 0.7 and 0.4 #m films respectively. These resistivity values

are on average a factor of 1.5 greater than the values for p (p~290 #f_-cm at 300

K and p~95 /_(_-cmat 100 K) obtained from surface resistance (Rs) measurements

in strongly c-axis oriented YBa2Cu307_6 thin films on SrTiO 3 as reported by Klein,
et al. 12 The normal conductivity of both films exhibit a metallic behavior with

decreasing temperature, reaching values of ~7.7 X 105 S/m for the thicker film
~ 5and of 6.3 X 10 S/m for the thinner one, at the onset temperature. Below To,

the values of aI were obtained using the value of the conductivity at the onset

temperature in the expression aI=aN(T/Tc) 4. Values for aI of ~6.3 X 105 and 4.6

X 102 S/m were obtained at 85 K for the 0.7 /_m and 0.4 #m films respectively. At

temperatures around 50 K and below the values for a! for the 0.7 /_m film has

decreased by one order of magnitude Because the 0.4 #m film exhibited leakage
of microwave power below 80 K, no data are shown below this temperature.

Figure 4 shows the imaglnary part of a for both f11ms. For the 0.7 #m film,

values for a2 of ~4.9 X 106 and 7.0 X 106 S/m were obtained at temperatures

around 80 and 50 K respectively. These values are greater than those obtained

for YBa2Cu307.6 laser ablated films deposited on MgO and Zr02 .a Due to the leakage
sources formed in the 0.4 #m film, we were unable to obtain Values of o2 at
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temperatures below 80 K. A value of 3.5 X_ 106 S/m was obtained just below the

onset temperature (~92 K) and of'5.4 X I0° S/m at 85 K. Note that the increase

of e2 with decreasing temperature corresponds to an increase in electron pairs
which implies a reduction of the normal carrier density.
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The values of al and o2 have been used to estimate values for the magnetic

penetration depth X and the surface resistance Rs .13 Values of Xo=0.67 _m and
Rs~9mn at 77 K were obtained. These values are in close agreement with those
obtained by other researchers. 12

The conductivity values have been used to calculate the Q-factor of a ring

resonator, which has a superconducting strip and a normal conducting ground

plane. This resonator is shown in figure 5 and consists of a microstrip ring

with a circumference that is three wavelengths in length at the design frequency

of 35 GHz. Straight lengths of superconducting strip provide input to the ring
with coupling achieved by small capacitive gaps. The substrate Is 10 milli-inch

thick lanthanum aluminate; and the characteristic impedance of the line Is 45
ohms.

SUPERCONDUCTING
STRIP LINE "-,

k

\\ ,,,-- RING = 3X
\ .-

ts - 734lzm

It - 0.Il_m

tl " 1.0_'n

GROUND ," __ -I-- // I_ f- ,, '
PLANE --.'" __._-, . ' -

* /
Au

( Titanium L:vcr )

FIGURE 5. 35 GHz ring resonator microstrip transmission line circuit.

The "Q" of the ring is determined by two major loss mechanisms, I) dielectric

loss in the substrate and 2) resistive losses in the conductors. Radiation loss

is assumed to be negligible in this case since the resonator, when being measured
experimentally, is shielded by a section of waveguide below cutoff which acts

to suppress radiation by the circuit. Dielectric losses can be calculated using:

c_d : 3.15 (q*e/Eeff) (tan6/>,g) Nepers/m (3)

where _d14 is the attenuation constant due to dielectric loss, 'q' is a

geometrical 'filling factor', _ and _eff are the static and effective dielectric

constants, tan6 is the dielectric loss tangent and Xg is the transmission line
wavelength. In these calculations we have used a value of 5.8 x 10-4 for tan615

but it should be noted that authoritative values for the loss tangent have not
been established.
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The conductor losses were calculated by the Phenomenological Loss Equivalence
Method (PEM), an analytical solution for loss in microstrip lines that accounts
for thin conductors. The attenuation due to the loss in the conductors is given
by :

ac = Zri/(2*Zc) Nepers/m (4)

where Zrl is the real part of the internal impedance of the strip and ground
plane and Zc is the characteristic impedanceof the line. The internal impedance
(Zi) is obtained through the PEMwhere:

Zix " Zsx * Gx * coth(Zsx * ¢x * Gx * A) (5)

GX is a geometrical factor, A the cross sectional area of the strip, Zsx is the

surface impedance and aX the conductivity of the conductor material of the strip

or ground plane (x denotes different values for strip and ground plane). The

a values are obtained from the transmission data and the surface impedance is

calculated from them. The "Q" of the ring is calculated as:

I = 2(ec + ad) (6)

p

where p is the propagation constant of the line.

Using values of the conductivity obtained form the .7pm fiImand the tan6 as

noted above, the "Q" values were calculated and compared to results obtained from

a resonator made from a film fabricated under similar conditions (figure 6).
Also shown are the measured "Q" values for a resonator with a normal metal

(gold) strip and ground plane. While the superconducting strip performs better

than the normal metal, the measured "Q" values do not follow those predicted by

the calculations using the transmission conductivity values.
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In summary,we have obtained the microwave conductivity at 35 GHz of laser
ablated YBa2Cu307_6 thin films in the temperature range from 20 to 300 K. The
conductivity values at room temperature are in close agreement with dc values
reported for the sametype of material. Comparing the values for aI and az for
both films with those previously reported for laser ablated YBa2Cu30I.6 thin f_Ims
on MgOand ZrO2 suggest that LaAlO3 is a superior substrate for microwave
applications. From these conductivity values, values for the zero-temperature
magnetic penetration depth Xo and the surface resistance Rs, fundamental in the
design of microwave devices and circuits, have been obtained. Wehave used the
conductivity values to obtain conductor losses and Q-factors of a microwave
transmission line. However, predicted and experimentally observed values are not
in good agreement. Further work is needed indeveloping an accurate correlation
between measuredconductivity values and microstrip performance.
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ABSTRACT

Millimeter wave transmission measurements through YBa2Cu307_ _ thin

films on MgO, Zr02 and LaAIO 3 substrates, are reported. The films (0.2

to 1.0 _m) were deposited by sequential evaporation and laser ablation

techniques. Transition temperatures Tc, ranging from 89.7 K for the

laser ablated film on LaAIO 3 to approximately 72 K for the sequentially

evaporated film on MgO, were obtained. The values of the real and imag-

inary parts of the complex conductivity, o I and _2, are obtained from

the power transmitted through the film, 'assuming a two fluid model. The

magnetic penetration depth is evaluated from the values of a 2. These

results will be discussed together with the frequency dependence of the

normalized power £ransmission, P/Pc, below and above T c.

INTRODUCTION

Millimeter wave measurements of the new high Tc superconductors

are of fundamental importance due to the potential applicability of

these oxides in the fabrication of devices operational in these fre-

quency ranges. I Through these measurements, information on the nature

of superconductivity in these new superconductors can be obtained from

the temperature dependence of parameters such as the surface resist-

ance, 2-_ and the complex conductivity. 7-9 Another important question

is the applicability of millimeter wave measurements for the characteri-

zation of superconducting thin films. While dc resistance versus

temperature measurements give no further information once the zero

resistance state is achieved, millimeter wave transmission and absorp-

tion measurements provide a sensitive, contactless technique, which yield

important information about the microstructure of superconducting films I0
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and their behavior at temperaturesbelow the critical temperature (Tc).
Millimeter and microwaveabsorption studies in low and high Tc super-
conductors have beenperformedusing resonant cavities. I0-16 Usually,
those studies applying millimeter or microwavetransmission analysis,
have reported results at just one particular frequency.8,9

In this work wehave measuredthe powertransmitted through
YBa2Cu307_6 thin films at frequencies within the frequency range from
26.5 to 40.0 GHzand at temperaturesfrom 20 to 300 K. Fromthese mea-
surementsand assuminga two fluid model, wehave obtained values of the
normal and complexconductivities aboveand below Tc respectively.
Thezero temperaturemagneticpenetration depth has beenobtained using
the value of the imaginary part of the complexconductivity, _2"

ANALYSIS

Wehave applied the two fluid modeldue to its simpl_city and
becausein the past it has given goodresults for the microwaveproper-
ties of metallic type II superconductors in cases for _<< Egap.17
Since the energy gap for YBa2Cu307_6 superconductorscorrespondsto fre-
quencies in the terahertz range, weexpect the model to be applicable
in the frequency range studied. In this phenomenologicalmodel, the
complexconductivity is defined as

= _i - i_2 (I)

with

_i = ac t4 and _2 = ac(l - t4)/_ (2)

Here, o c is the normal conductivity at T = Tc, _ = 2_f is the angular

frequency, t is the reduced temperature T/Tc, and _ is the mean car-

rier scattering time. Thus, to determine either a I or a 2 we need to

know the transition temperature Tc and the value of a c. Furthermore,

the value of • must be known beforehand if a 2 is to be obtained from

Eq. (2).

In this study, the value of T c was determined from the standard

four-point probe versustemperature measurements. To determine the nor-

mal and complex conductivities, we used the method applied by Glover and

Tinkham. 18 In this method, the transmission of a normally incident

plane wave through a film of thickness d((< wavelength or skin depth)

deposited on a substrate of thickness E and index of refraction n, is

measured. Following the notation of Glover and Tinkham 18 the power

transmission is given by

8n 2
T : (3)

A + B cos2kE + C sin2kE

where

4
A = n + 6n 2 + i + 2(3n 2 + l)g + (n 2 + l)(b 2 + g2)

B = 2(n 2 - l)g - (n 2 - 1) 2 + (n 2 - l)(b 2 + g2)

C = 2(n 2 - l)nb

k = n_/c
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and

y = g - ib = YZc = (G - iB)Z = (a I - io2)dZc c

is the dimensionless complex admittance per square of the film in units

admittance, Z_ I, of the wave guideof the characteristic

(Z c = Zo/_/l - (fc/f) 2, ZO = 377 Q, mks; Zo = 4_/c , cgs; fc = cutoff

frequency of the TE mode wave guide and f is the operational

frequency).

In the normal state, Eq. (3) becomes

8n 2

o d2Z Q + ONdZcR + P

(4)

where

aN = normal conductivity

Q = (n 2 + i) + (n 2 - l)cos2kg

R = 2(3n 2 + i) + 2(n 2 - l)cos2k_

P = n + 6n 2 + 1 - (n 2 1) 2 cos2k_.

The normal state conductivity of the film can be expressed conveniently

in terms of the power transmission as

aN = 2QTNdZ (5)
c

where only the expression with the + sign has physical relevance. It is

convenient to use the ratio Ts/T N in the analysis of the superconduct-

ing state, where T S refers to the transmission in the superconducting

state given by Eq. (3). Thus,

Ts 2oN d2Z Q + ONdZcR + P

A + B cos2k_ + C sin2k£
(6)

Solving (6) for the imaginary part, a2, of the conductivity, and using

the value of oN at T = T c we have

I E ]o21o c - [_/2 I I= c dZ + (_/2)2 - S°l
omdZ _OC/C C (OcdZc)2 Y
c c

OcdZ (OcdZc ¢

I12
(7)

where o and T
c c

T = T , and
c

are the conductivity and the transmissivity at
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i
= = _ "[6n2 + 2 + 2_n2" - l)cos2k_]

i
= _ [-2n(n 2 - l)sin2k£]

i
y = _ "In4 + 6n 2 + i - __n2 - l)cos2k_]

2 (n 2D = n + i + - l)cos2k£

Thus, from the relation for _i in Eq. (2), and Eq. (7), the real and

imaginary parts of the complex conductivity can be determined.

The magnetic penetration depth, X, can be obtained from the

London expression

(8)

which can be written in terms of the superfluid density NS, as

(9)

where m is the effective mass of the charge carriers. From the two

fluid model

N S
- i - t4 (10)

N

where N = N n + N s is the total number of carriers per unit volume, we

have

[_o__e2]I/2 -I/2 t4)-I/2

),= m (1 - t4) = _ (1 - (ll)
0

From this expression the zero-temperature penetration depth, %o, can be

obtained. Because Eq. (9) applies to homogeneous superconductors, the

values of _o obtained in this method are larger than those that would

be obtained for homogeneous films.

Our measurements were made on thin films (0.2 to 1.0 wm thickness)

of YBa2Cu3OT-6 on LaAIO 3, MgO and ZrO 2 substrates. The substrates were

generally between 0.025 and 0.i00 cm thick. The deposition techniques

used for the preparation of the films used in this study are described

in Refs. 19 and 20. For the laser ablated films, X-ray diffraction data

showed that the films were c-axis oriented on LaAIO 3 and partially

c-axis oriented for those on MgO and ZrO 2. They had Tc's ranging from

89.7 K for the film on LaAIO 3 to 79 and 78 K for those deposited on MgO

and ZrO 2 respectively. The film deposited by sequential evaporation on

Mg0 had a T c of approximately 72 K.

The power transmission measurements were made using a Hewlett-

Packard model HP-8510 automatic network analyzer connected to a modified

closed cycle refrigerator by Ka-band (26.5 to 40.0 GHz) waveguides.

Inside the vacuum chamber of the cryosystem, the sample was clamped
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between two waveguide flanges which were in direct contact with the cold

head of the refrigerator. The power transmitted through the sample was

obtained by measuring the scattering parameters as described in Ref. 21.

The temperature gradient of the waveguide flanges between the top and

bottom of the sample, was estimated to be 2.5 K or less at 90 K. The

system was properly calibrated with short, open, load and through cali-

bration standards before each measurement cycle was started.

RESULTS

Figures 1 and 2 show the temperature dependence of the normalized

power transmitted through YBa2Cu307_ _ thin films deposited by laser

ablation on LaAIO 3 and MgO respectively. The data are normalized with

respect to the transmitted power at the critical temperature T c. The

measurements of the power transmitted through the films were started at

room temperature and then carried out during sample cooling. In Fig. I,

it can be observed that the rapid decrease in transmitted power occurs

at T c. This is typical of films with a high degree of homogeneity,

where all the regions of the film undergo the superconducting transition

simultaneously. This is not the case for the film considered in Fig. 2,

for which the transmitted power starts to decrease rapidly at tempera-

tures just below an onset temperature (-90 K) approximately ii K above

its transition temperature of 79 K. This behavior may be associated

with the presence of inhomogeneities, resulting in a distribution of

transition temperatures. For temperatures below T c both films are

characterized by a smooth decrease of the power transmitted through
them.

The behavior shown in Figs. 1 and 2 for the power transmitted

through the film-substrate combination, as a function of decreasing tem-

perature, was also observed for the laser ablated film on ZrO 2 and for
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the sequentially evaporated film on MgO. For the latter film the trans-

mission data suggest a lower film quality when compared to the film

deposited on Mg0 by laser ablation. The films on ZrO 2 and sequentially

evaporated on MgO also show a wide transition region. This temperature

behavior was verified to be frequency independent for the frequencies

employed in this study, and our analysis suggest that it is related to

the degree of homogeneity and quality of the films.

Figures 3 to I0 and Table I, show the results for the conductivity

above and below Tc, and at different frequencies, for the various films

considered in this study. Figures 3 and 4 show the real and imaginary

parts of the conductivity, o r and o 2 respectively, corresponding to

the YBa2Cu307_ 6 film deposited on LaAIO 3 by laser ablation. The value

for the normal conductivity at room temperature, 2.0xlO 5 S/m, compares

reasonably well with reported values of the dc conductivity in this

type of film. 22,23 The cusp in o r at the transition temperature can

be observed clearly in Fig. 3 and again indicates the high level of

homogeneity and quality of this film. The imaginary part of the conduc-

tivity increases as a function of decreasing temperature, as can be seen

in Fig. 4. Values of 5.17xi06 S/m and 6.80xi06 S/m are obtained at 70

and 40 K respectively. Using Eq. (8) we find X = 0.81 pm at 70 K and

= 0.70 wm at 40 K. From the value of _ at 40 K we found

_o = 0.69 _m.

Figures 5 to I0 show the real and imaginary parts of the complex

conductivity for the laser ablated films on MgO and ZrO 2, and for the

sequentially evaporated film on MgO. Note that the normal to the super-

conducting transition region has been clearly identified in Figs. 5, 7

and 9. In the absence of a physical model which can account for the
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TABLE I. - MILLIMETER WAVE CONDUCTIVITIES (ol,o 2) AND ZERO TEMPER-

ATURE PENETRATION DEPTH (Xo) AT 35.0 GHz FOR YBa2Cu307_ 6 THIN

FILMS DEPOSITED ON DIFFERENT SUBSTRATES BY LASER ABLATION

(LA) AND SEQUENTIAL EVAPORATION (SE)

Parameter Substrates

MgO LaAIO 3 ZrO 2

SE LA LA LA

a 1 (70K)

_2 (70K)

o I (40K)

o 2 (40K)

Xo

3.0x104 S/m

1.9xlO 4 S/m

3.1xlO 3 S/m

7.1x104 S/m

6.8 pm

3.9xi05 S/m

l.lxlO 6 S/m

4.1x104 S/m

4.0x106 S/m

0.91 _m

3.3xi05 S/m

6.4xi06 S/m

3.5xi04 S/m

7.7xi06 S/m

0.67 pm

1.7x105 S/m

l.lxl06 S/m

1.9x104 S/m

3.6xi06 S/m

0.96 pm

distribution of normal and superconducting material in the transition

region, we can not accurately determine the normal conductivity down to

the transition temperature T o . Therefore, we have considered the crit-

ical conductivity to be the conductivity at or just above the onset tem-

perature. Since the two fluid model approximation is based upon the

assumption that the normal to the superconducting state transition is a

sharp one, as for the film on LaAIO 3, the values of o I obtained using

°c =Oonset in Eq. (2) will be less than those expected for a sharp

transition. The magnitude of this difference will depend upon the width

AT of the transition region and the overall film quality. To estimate

the size of the discrepancy between using oc at Tonse t and o c at

Tc, one can extrapolate o r above Tonse t to T c. When this is done,

the Oc obtained is 12 percent larger for the laser ablated film on

MgO, 3.3 percent for the laser ablated film on ZrO 2 and 1.7 percent

larger for the sequentially evaporated film on MgO. In the better films

the discrepancy between Conse t and the extrapolated value of a r at

Tc, is larger due to the larger slope of o r for temperatures above the

onset temperature as can be seen in Figs. 5, 7, and 9. This discrepancy

becomes smaller as Tonse t nears T c, as for the film on LaAIO 3.

Figures 6, 8 and I0 show the imaginary part of the complex conduc-

tivity for the laser ablated fi]ms on MgO and Zr02, and for the sequen-

tially evaporated film on MgO. Using Eq. (8) we obtain values for X

of i.i, 0.95, and 9.1 _m, at 40 K, for the laser ablated films on MgO

and ZrO 2 and for the sequentially evaporated film on MgO respectively.

Additional values for the conductivities and for ko at 35.0 GHz are

given in Table I. The value for k o obtained for the laser ablated

film on LaAI03, compares favorably with that reported by Kobrin,

et al. 24 (_o ~ 0.48 _m, at 60.0 GHz) for ion-beam sputtered YBa2Cu307_ &

films on LaAIO 3.
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CONCLUSIONS

Millimeter wave power transmission studies have been performed on

YBa2Cu3OT_ _ thin films at frequencies within the frequency range from

26.5 to 40.0 GHz and at temperatures from 20 to 300 K. The normal, _N,

and complex, a I - i_ 2, conductivities have been determined for laser

ablated films on LaAIO 3, MgO and ZrO 2. The conductivities of films on

MgO grown by laser ablation and sequential evaporation have been com-

pared. From the results obtained in this study, it is apparent that at

least for films deposited on MgO, films deposited by laser ablation

appear to have a higher quality than those deposited by the sequential

evaporation technique. We have also shown that millimeter wave trans-

mission and conductivity measurements can be used as a test of thin

film quality. It was observed that for a film with a narrow transition

region, the two fluid model should be more applicable than for those

films with a wide transition region. Finally, values for the zero-

temperature magnetic penetration depth have been determined from the

obtained values of _2 •
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SUMMARY

A knowledge of the dlelectrlc properties of mlcrowave substrates at low

temperatures is useful in the design of superconducting microwave clrcults.

In thls paper, we report the results of a study of the complex permlttlvlty of

sapphire (A1203), magneslum oxide (MgO), silicon oxide ($I02), lanthanum aIuml-

nate (LaAl03), and zlrconlum oxide (Zr02), in the 20 to 300 K temperature range,

at frequencies from 26.5 to 40.0 GHz. The values of the real and imaginary

parts of the complex permittlvlty were obtalned from the scattering parameters,
which were measured using a HP-8510 automatic network analyzer. For these

measurements, the samples were mounted on the cold head of a helium gas closed

cycle refrlgerator, in a specially deslgned vacuum chamber. An arrangement of

wave guides, with mica windows, was used to connect the cooling system to the

network analyzer. A decrease In the value of the real part of the complex per-

mlttlvlty of these substrates, with decreasing temperature, was observed. For

MgO and A1203, the decrease from room temperature to 20 K was of 7 and
15 percent, respectively. For LaAlO 3, it decreased by 14 percent, for ZrO 2

by 15 percent, and for SIO 2 by 2 percent, In the above mentioned temperature

range.

INTRODUCTION

The successful application of thln f11ms, made with the new h_gh temper-

ature superconductor oxides, in the development of microwave c1rcults, rest

considerably on the dielectric propertles of the different substrates used for

film deposltion. For microwave applIcatlons, It Is desirable to have sub-
strates with low dielectric constant and loss tangent, (ref. l) If good

performance from microwave components Is expected.

Until now, Y-Ba-Cu-O fllms deposited on SrTlO 3, have shown the highest

quality when compared wlth films deposlted on other substrates. Nevertheless,
due to Its extremely temperature dependent dlelectrIc constant, with a value

for 300 at room temperature, around lO00 at 77 K, and over 18000 at helium tem-

peratures, and its considerably high loss tangent, (ref. 2) its microwave appll-

cablllty Is rather llmlted. Although other materlaIs as MgO, LaAlO 3, and ZrO2

are now being used as substrates, |nformatlon about the|r dlelectrIc propertles

at temperatures below room temperature, and for some of them even at room tem-

perature, is rather scarce.
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In this paper, we report on the measurements of the microwave complex per-

mlttivlty of MgO, AI203, LaAlO 3, ZrO2, and SiO 2, In the 20 to 300 K temperature

range and as a function of frequency. The measurements were taken following a
method previously reported by other authors (refa. 3 to 5). Thls method allows

the determination of both parts of the complex permittlvity In a rather simple

way, and is very convenient for cases in which a fast determination of the
dielectric constant of a material is needed. Nevertheless, the method has a

hlgh uncertainty in the measurement of the Imaginary part of the complex per-

mittlvlty for materials with very low loss tangent.

ANALYSIS

In order to determine the value of the real and imaginary parts of the
complex permlttlvlty for the various substrates under consideration, we have
followed the method proposed by Nlcolson and Ross, (ref. 3) as modified by
Wier, (ref. 4) and following the implementation suggestions of reference 5.
an ideal case, consider a piece of material Installed In a rectangular wave
guide with characteristic impedance Zo, as shown in figure 1.

After solving the corresponding boundary conditions at x = 0 and
the scatterlng parameters, S]l(_) and S21(_), can be related with the
reflectlon, F, and transmission, T, coefficients, as follows,

In

(I - T2)F (I - E2)T

S11 = S21 =
l - F2T2 ' I - F2T 2

X _, d,

The reflectlon coefficient, when the length of the materlal is infinite,

is given by

Z - Z0

F=Z+Zo =

(I)

Also, the transmlsslon coefficient, when the length of the material is
finite, is given by,

T - exp(-j_ UE d) = exp[(-j_/c) PrCr d]

(2)

(3)

Thus, the reflectlon and transmission coefflclents can be derived by meas-

uring Sll(m) and $21(_), and in turn they can be used to obtain the value of

the permlttlvity.

The experimental conflguratlon used for the measurements of the reflec-

tlon, Sll(_), and transmlsslon, S21(_), scattering parameters for the samples
under consideration, Is shown in figure 2. The measurements were made using an

HP-8510 automatic network analyzer, properly connected by an arrangement of

Ka-band (26.5 to 40.0 GHz) wave guides, to a coollng system. The cooling sys-

tem consist of a CTI-Cryogenlcs closed cycle helium refrigerator, associated

with a Lake Shore Cryotronlcs temperature controller, model DRC 91C, wh|ch

allows measurements to be taken at the required low temperatures.
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The measurements were performed under vacuum (<10-3 torr), in an aluminum

vacuum chamber specifically designed to fit on the top of the external shield

of the refrigerator and to glve access to the set up of wave guides connecting

the network analyzer with the refrigerator. In order to preserve the vacuum

inside the chamber, two mica windows were placed at Its ends. The materlal for
the windows was selected due to its very low loss and transparency in thls

frequency range.

In order to measure the scattering parameters, the sample was held in a

sample holder wh|ch was suspended between two wave guide flanges, as shown In

figure 3. The wave guide flanges were In direct contact wlth a copper plate,
wh|ch in turn was attached to the cold head of the refrigerator. The two sup-

porting wave guides inside the vacuum chamber, were speclally designed to be
used at low temperatures. They are made of stainless steel, a relatively poor

thermal conductor. A gold plating of their Internal surfaces was performed, In
order to reduced the microwave losses. Finally, In an attempt to reduce the

errors induced In the measurements, possibly due to linear thermal contractions

of the wave guides as the temperature decreases, the system was calibrated at

all the temperatures at which measurements were taken. These callbratlons were

stored, so that they could be recalled to be used in later measurements.

RESULTS

The thickness of the substrates used In thls study, varies from 0.285 mm

for MgO, to 1.641 mm for SiO 2. The thicknesses for the Al20 _, LaAlO 3, and

ZrO2 samples are 0.496 mm, 0.432 mm, and 0.494 mm respectlvely. Figures 4 to
7 and table I show the measurement results for the real part of the complex

permltt|v|ty of the samples, at room temperature and at 20 K. The value for

the dielectric constant of MgO at room temperature agrees well with values quoted

by other researchers (refs. 6, 7, 9). For Al203 and SiO 2, the values of the
dielectric constant obtalned at room temperature, are also in good agreement

with the values quoted by Zahopoulos (ref. 8) and Yon Hlppel (ref. 7) respec-

tively. Although for ZrO 2 there appear to be no data for comparlson In thls

frequency range, the value for its dielectric constant at room temperature Is
consistent with the one reported by Gorshunov, et al., (ref. 9) at frequencies

within IOII to lO12 Hz. In the case of LaAlO 3, the value obtained for its

dlelectric constant at room temperature Is not conslstent with the value of

15.3 reported by Slmon, et al. (ref. l). Due to this discrepancy, measurements

were performed In four dlfferent LaAlO 3 samples, each one made from different
batches, in order to determine If the dlsagreement was due to Intrinsic pro-

pertles of the sample. The value of the dielectric constant obtalned from

these measurements was practically the same for all the samples and was con-
slstent with our previously determined value. Nevertheless, since not much
information for the value of the dielectric constant of this substrate Is

available yet, addltlona] experimental veriflcatlon will be appropriate.

Table I shows the real and imaginary parts of the complex permlttlvlty,

at four dlfferent temperatures and at 32.9 GHz. A decrease in the value of the
real part of the complex permittlvity Is clearly observed in al] the substrates

under consideration For MgO and Al203, a decrease of 6 and 14 percent down
to 70 K, and of 7 and 15 percent down to 20 K respectively, is observed. For

LaAlO 3 and ZrO 2, the value of the real part of the complex perm|tt|vlty Is
lowered by lO and 13 percent respectively, at temperatures around 70 K, and
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goes down 14 percent for LaAIO 3 and 15 percent for ZrO 2, at 20 K. For SiO 2,
the dlelectrlc constant is lowered by I percent at 70 K and by 2 percent for
temperatures around 20 K.

From comparison of the data of table I with that of the references men-

tloned, it can be seen that there Is relatively good agreement for the real

part of the complex permittivity but wider variatlon for the imaglnary part.

For example, a com_arlson of the value for the loss tangent for MgO at room
temperature, 8xlO -L, obtained from the data in table I, with the value quoted

by Von Hippel, 3xlO-4, reveals a difference of two Orders of magnitude. Due

to thls fact, it Is very difficult to observe a particular temperature and fre-

quency dependence for this parameter. This is an Intrlnslc limitation of the

technique, when applied in the calculatlon of the Imag_nary part of the complex

permlttivlty for materlals of low loss tangent, as mentioned in the
introduction.

The frequency of 32.9 GHz was selected for construction of table I as

being typical of the largest varlations with temperature. Finally, for these
measurements, the statistical error in the real part of the complex permit-

t|vlty is ±0.02, while the varlatlon in the imaginary part is larger.

CONCLUSIONS

The real and imaginary parts of the complex permltt|vlty for MgO, AI203,

LaAIO 3, ZrO2 and SiO 2 have been measured. A decrease in the value of the real
part of the complex permittlvlty, wlth decreasing temperature, was observed in
all the substrates. Nevertheless, no considerable change was observed as a

function of frequency. The results obtalned In thls study show that, at ]east
from the stand point of the dlelectric constant, the substrates considered

appear to be better suited than SrTiO 3, for use with the new high temperature

superconductors In microwave applications.
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TABLE I. - COMPLEXPERMITTIVITY OF MICRONAVESUBSTRATESAT 32.9 GHz

[e' r : real part of complex permittlvity, e"r : Imaglnary part of

complex permittivity.]

Substrate MgO AI203 LaAIO3 ZrO2 SiO2

Temperature, c'r E"r ¢'r ¢"r E'r C"r E'r E"r ¢'r ("r
K

300 9.88 0.556 9.51 0.675 21.9 1.70 25.4 1.72 3.82 0.516
150 9.45 .726 8.52 .925 21.6 1.48 23.6 1.75 3.80 .159
70 9.26 .351 8.19 .695 19.7 2.98 22.0 2.50 3.78 .688
20 9.19 .420 8.11 .613 18.8 3.71 21.6 2.23 3.75 .298
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SUMMARY

We report on the measurements of the millimeter wave surface resistance

(Rs) at 58.6 GHz of bulk samples of RBa2Cu307_ 6 (R = Y,Eu,Dy,Sm,Er) and of
YBa2Cu307_ 6 superconducting fllms, In the temperature range from 20 to 300 K.

The bulk samples were prepared by cold pressing the powders of RBa2Cu307_ 6
Into l In. diameter disks which were slntered at 925 °C In one atmosphere of

oxygen. The thln films were deposited on SrTiO 3 and LaGaO 3 substrates by
pulsed laser ablation. Each sample was measured by replacing the end wall of

a gold-plated TEoI 3 circular mode copper cavity wlth the sample and determln-

ing the cavity quality factor Q. From the difference In the Q-factor of the

cavity, wlth and without the sample, the Rs of the sample was determined.

INTRODUCTION

Investigation of the properties of the hlgh transition temperature (Tc)

superconductors at millimeter wave frequencies Is Important not only to evalu-
ate their potential for practical microwave applications but also In an attempt

to determine the extent to which the standard mlcroscoplc theories are able to

describe the phenomena of superconductivity In these new materials. From the
application point of vlew, the main Interest is to determine how well these

materials will perform when Implemented to transmission lines and microwave

devices in comparison with the most commonly used normal metals (Cu and Au)

and lower Tc superconductors currently in use. A parameter which directly

provides thls information is the surface resistance (Rs). To date, a consider-

able amount of work has been done on measurements of the Rs both In bulk and
thln film high TC superconductors at different temperatures and frequencies
(refs. 1 to 6). Nevertheless, to the best of our knowledge, no measurements

of Rs have been reported at frequencies around 60 GHz. In thls paper, we

report on the measurements of the surface resistance of R-Ba-Cu-O (R = Y,Eu,Dy,

Sm,Er) bulk superconductors and YBa2Cu307_6 superconducting thin films at
58.6 GHz and at temperatures from 20 to 300 K.
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EXPERIMENTAL

The bulk samples were made from cold pressed (20,000 psi) slntered powders

made from starting powders of BaO 2 (99.89 percent pure), CuO (99.99 percent

pure) and R203 (R = Y,Eu,Dy,Sm,Er), (99.99 percent pure). The powders were

ground together by hand, fired at 925 °C In flowing oxygen (02 , 99.995 percent

pure) for 6 hr, and were cooled to 450 °C at the rate of 2 °C/mln. The mate-

rial was then held at 450 °C for 6 hr before being cooled to room temperature

at 2 °C/mln. Afterwards, the powders were reground and refired using the same
procedure. After the second firing x-ray diffraction showed that the powders

were in the superconducting phase. Then the powders were ground and pressed
into disks of l in. diameter and I/4-in. thickness and fired at 925 °C.

The pulsed laser ablation technique used for the deposition of the film Is
slmilar to that used by other researchers (refs. 7 and 8). The deposltlon was
performed at a substrate temperature of 750 °C at an ambient oxygen pressure
of 170 mtorr. The laser wavelength was 248 nm, the pulse length was 20 to
30 ns, and the pulse rate was 4 pps. During depositlon, the distance between
the target and the sample was kept at 7.5 cm and the laser fluence on the tar-
get was maintained at 2.0 J/cmz per pulse. During thls process, the laser

beam was scanned up and down l cm over the target uslng an external lens on a

translator. At the end of the deposltion process, the oxygen pressure was

raised to l atm, and the temperature was lowered to 450 °C at a rate of
2 °C/min. The temperature was held at 450 °C for 2 hr before it was lowered

to 250 °C at a rate of 2 °C/mln. The heater power was turned off and the sam-

ple was allowed to cool down to 40 °C orless before it was removed from the

chamber. A more detailed description of the deposition technique is given in
reference 9.

Surface resistance measurements of both types of samples were made at

58.6 GHz applying the same experimental technique. Using an HP-8510 network

analyzer and Ginzton's impedance method (refs. lO and ll) the Q-factor of the
cavity was determined from the reflection coefficient. In each case the end

wall of the cylindrical cavity (TEoI 3 mode) was replaced by the superconduct-

Ing sample, and Rs was calculated from the difference in Q values of the

bare cavity and the cavity with the sample In place. All the measurements
were taken at temperatures from 20 to 300 K, and under a vacuum of less than
]0 mtorr.

RESULTS

The dc resistance versus temperature measurements were performed using a

standard four probe method. For the bulk samples the transition temperatures

(Tc, Rdc - O) were distributed between 91.8 K (Eu-Ba-Cu-O) to 79.0 K
(Y-Ba-Cu-O and Sm-Ba-Cu-O), as can be seen from dc resistance versus tempera-

ture curves shown in figures l(a) and (b). All the samples had densities from

50 to 60 percent of the ideal, and from SEM mlcrographs grain sizes of approxi-

mately 5 _m were observed, Figure 2 exhibits the measured Q-factor for the

cavity as a function of temperature for cases In which its end wall had been
replaced by each of the bulk samples under study. It is observed that the Y,

Eu, and Dy based samples show a clear increase of the Q-factor at tempera-

tures below TC, while a rather discrete change Is noticed for the Sm-based
sample. No change In the rate of increase of Q wlth decreasing temperature,

at temperatures below Tc, Is observed for the Er-Ba-Cu-O sample.
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Therefore, these observations appear to suggest that although the cold press-

Ing method yields bulk samples with reasonably good Tc values, is does not
guarantee obtaining samples with low Rs values. Clear evidence of thls Is
observed in particular in the Er-based sample, and to less extent in the

Eu-based sample. The behavior of the Q-factors for the different samples con-
sidered is In fair agreement with the concept that the losses in these ceramics

appear to be dominated by the weak coupling between grains (ref. 12), espe-

cially for gralns close to the surface where most of the losses take place.

Figure=3 shows the experimental values of the s_rface resistance for the

Y-, Dy- and Eu based bulk samples. Also plotted is the experimental surface

resistance for the gold-plated copper cavity for comparison. It Is observed

that the Rs for the YBa2Cu307_6 sample is smaller than that for the other

bulk samples, at temperatures below TC. The Rs values for the samples at

temperatures below TC are beyond a factor of 2............... the values in

the normal state. Nevertheless, none of the samples showed an Rs better

than that of the gold-plated cavity even at temperatures below TC. The fact
that the surface resistance obtained for these samples is not comparable with

that of gold at any temperature Is evidence of the poor quality of the surface

of samples prepared by the preparatlon process considered in thls study.

Figure 4 shows the dc resistance versus temperature curves corresponding

to YBa2Cu207_ 6 superconducting films deposited on SrTiO 3 and LaGaO 3 substrates
by laser ablation. Zero dc resistance was attained at 90.0 and 88.9 K for the

films on SrTIO 3 and LaGaO 3, respectively. The x-ray diffraction pattern
revealed that both films are predominantly c-axis oriented, while SEM micro-

graphs showed that both films are polycrysta]llne, as can be seen from fig-

ure 5. Figure 6 shows the measured Q-factor for the cavity as a function of

temperature for cases in which its end wall had been replaced by the

YBa2Cu307_ 6 films. A clear increase in the Q-factor is observed for both

films at temperatures below TC, with the rate of increase of the Q-factor

with decreaslng temperature belng higher for the film on SrTiO 3 than for the

one on LaGaO 3 down to 50 K. At temperatures below 50 K we are llmited by the
resolution of our measurements. Therefore, contrary to what was observed In

the bulk material, the value of Tc appears to be directly related with lower
microwave losses.

The measured Rs(T) curves for the two films under study are shown in fig-
ure 6, in addition to the curve corresponding to the gold-plated copper cavity.
The Rs of the films is comparable in the normal state, whlle the Rs for
the film on SrTiO 3 was lower than that for the film on LaGaO3 at temperatures
Just below Tc. Using the normal skin depth formula Rs : (_op/2) ]y2 a typl-
ca] reslstlvlty p at 300 K of approximately 118 and 158 _fl-cm is obtained
for the film SrTiO 3 and LaGaO3, respectively. In the superconductlng state
the fllms on SrTiO 3 and LaGaO3 exhibit a drop of Rs to effective values of
103 and 144 m.Qat 77 K, and 82 and 116 mfl at 70 K, respectively. The surface
resistance at 77 K for the film on SrTiO 3 is less than that of the gold-plated
cavity, while for the film on LaGaO3 Rs is the same as for the gold-plated
cavity. Nevertheless, the value of Rs at 77 K for both films is higher than
the theoretical Rs value expected for copper at the same temperature and
frequency.

Slnce we are operatlng at a fixed frequency, we cannot study the frequency
dependence of Rs directly from our measurements. Nevertheless, a comparison
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of the Rs values wlth those reported by other researchers In similar types

of films and at different frequencies, may be helpful to formulate a frequency

dependence trend for Rs. Thus, using the results obtained by Kleln, et al.

(ref. 13) for c-axis textured layers samples of YBa2Cu307_6, and fitting their

data to a quadratic frequency dependence for Rs, gives an Rs value of I02 m_
at 58.6 GHz and 77 K. This value agrees very well with our experlmenta]ly

obtained value of I03 m_ at the same temperature. A similar approach was used

for the film on LaGaO 3. Using the values for Rs at 22, 86, and 148 GHz and

at 70 K reported by Cooke, et al. (ref. 14) for a YBa2Cu307_ 6 superconductlng

film deposited by magnetron sputtering on LaGa03, we were able to find by
Interpolation an Rs value of 106 m_ at 58.6 GHz. This value is within exper-
Imental uncertainty of our measured value of If6 m_. These results Indicate

that our value fit well with the nearly quadratic dependence for Rs (RsomJn,
n : 2.06±0.14) reported by Cooke, et al. (ref. 14). Our results, as well as

those obtained by the above mentloned researchers, Indicates that the quadrat-

Ic dependence observed for Rs is consistent with the experimental behavior

observed in low TC superconductors and also with the predictions of the BCS
theory.

CONCLUSIONS

There appears to be no direct correlatlon between the surface resistance

Rs and the transition temperature Tc in the RBa2Cu307_ 6 bulk superconduct-
Ing samples obtained by the cold pressing preparatlon method. Therefore, the

dominating factors which control the microwave losses can only be guessed at.
Some of the possible factors which could control the losses are: the weak cou-

p11ng at grain boundaries, the purity of the sample and the possible segrega-
tion of composition at the surface. Two main factors can contribute to the

presence of weak coupling. The first is the Intrinsic mismatch of the lattice

and the segregation of impurities to the grain boundaries, while the second

could be reactlons with the amblent envlronment (i.e., water vapor and C02).
Thls envlronmental reactlons primarily occur at the surface and would not

appreciably affect the bulk properties In a short tlme period. If the losses
are due to either the reactlon of the surface with the environment or due to

porosity, then a different pressing process to make denser pellets should glve
samples with lower mlcrowave losses.

For the YBa2Cu307_ 6 superconducting films on SrTiO 3 and LaGaO 3 we found
from a correlatlon of the Rs values obtained for both films with those

obtained for similar films measured by other researchers at different frequen-

cies, that these values are consistent with the frequency dependence for Rs
observed in classical superconductors, and also wlth the predictions of the
BCS theory.

In summary, we have measured the Rs of bulk RBa2Cu307_ 6 <R = Y,Dy,Eu,

Sm,Er) superconducting samples and found that none of them performed as well

as gold. Also, for the 1.2 _m thin films of YBa2Cu307_ 6 on SrTiO 3 and LaGaO 3
we obtained values of Rs slgniflcantly lower than gold at temperatures be]ow

70 K, but we are limited by the resolution of our measurement In accurately
determining Rs values below 50 K.
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GROWTH AND PATTERNING OF LASER ABLATED SUPERCONDUCTING YBa2Cu3Ov,

FILMS ON LaAIO 3 SUBSTRATES
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C.M. Chorey _
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ABSTRACT

A high quality superconducting film on a substrate with a low

dielectric constant is desired for passive microwave circuit appli-

cations. In addition, it is essential that the patterning process

does not effect the superconducting properties of the thin films to

achieve the highest circuit operating temperatures. We have grown

YBa2Cu30 _ superconducting films on lanthanum aluminate substrates

using a laser ablation technique with resulting maximum transition

temperature (Tc) of 90 K. The films were grown on LaAIO_ which was at

775 °C and in 170 mtorr of oxygen and slowly cooled to room tempera-

ture in i atm of oxygen. These films were then processed using

photolithography and a negative photoresist with an etch solution of

bromine and ethanol. Results are presented on the effect of the

processing on T¢ of the film.

I. INTRODUCTION

Laser-ablated, high-temperature superconducting (HTS) YBa2Cu307

films have been made on many substrates including SrTiO3, MgO,

LaGa03, and Zr02. I-7 These substrates were used because they either

had very small interaction with the HTS films during growth or

annealing or because the substrates with HTS films had potential

electronic applications. In this paper, we report on the growth and

patterning of thin YBa_Cu307 films on LaAIO 3 for microwave applica-

tions. LaAIO 3 was chosen as a substrate because of its relatively low

dielectric constant of 22 s and because of it moderate loss tangent of
8x10 -5 at i0 GHz 9.

Lines varying in width from I0 to 20 _m were patterned using

photolithography and wet etching techniques. To determine if the

etching or lithography process had influenced the transition temper-

ature of the films. A ring resonator circuit operating at 35 GHz was
also fabricated, since the resonator allows the determination of

loss and dispersive properties of microstrip transmission line. From

the measurement of the quality factor "Q" of a resonator circuit one

can determine the microwave losses of the HTS films as compared with

those of gold on the same substrates.

"Work done under NASA contract #NAS3-25266; Regis Leonard, monitor.
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II. Film Growth

The laser ablation technique used to grow the films on sub-

strates of LaAIO 3 is similar to the techniques reported in the

literature. L-7 The details of the geometry of the laser ablation is

shown in Fig. i. The substrates (15 by 15 by 0.25 mm) with orienta-

tion (001) were mounted onto a stainless steel plate with a dia-

meter of 63 mm. The plate was heated from the backside using a

resistive heater made from

LASER

VACUUMCHAMBER
t

LASER BEAM

Po2 = 170 MI[LITORR

........ '_I/'TAflGET

_ _'" PLASMA

t
HEATED SAMPLE

Figure 1. - Schematic of the laser ablation experiment.

Kanthal A-I wire (made by

Kanthal, Inc.). The temper-

ature was measured with a

type K thermocouple which

was welded to the plate.

The thermocouple was 2 mm

away from the sample. The

sample chamber was evacuated

to 3xl0 -7 tort, or lower, us-

ing a liquid nitrogen cold

trapped diffusion pump be-

fore the sample was warmed

up to 500 °C. A continuous

flow of oxygen (120 sccm) was then introduced into the chamber, and

the sample heated to 775 °C. During deposition the chamber pressure

was 170 mtorr; the laser wavelength was 248 nm; the energy density

was 1.5 (J/cm2)/pulse; the pulse rate was 4 pps; and the distance

between the target and the sample was 8 cm. The laser beam was

rastered up and down i cm over the target using an external lens on

a translator. The angle between the laser beam and the normal to the

target was 45 ° The target used was a sintered 25-mm-diameter pellet

of YBa2Cu3Ov_ x. After deposition the oxygen pressure was raised to i

atm, and the temperature was lowered to 450 °C at a rate of

2 °C/min. The temperature was held at 450 ° C for 2 hr before it was

lowered to 250 °C at a rate of 2 °C/min. The heater power was then

turned off, and the sample was allowed to cool to 40 °C or less

before it was removed the chamber.

The thickness of the HTS films on LaAIO 3 was estimated by measur-

ing the thickness of a film grown on quartz plate that was shadow

masked. The quartz plate had been placed i mm below the bottom of

the LaAIO 3 on the substrate holder such that the sweep of the plasma

plumb was along the line connecting the centers of the quartz and

the LaAIO 3 .

The best film had a T c of 89.8 K immediately after deposition as

determined by a standard four point resistance measurement. Its

resistance versus temperature behavior is shown in Fig.2. From the

intercept of the extrapolated resistance at 0 K and from the resis-

tance above To, one can see that the film is c-axis aligned. This is

confirmed by only having the (001) peaks in the x-ray diffraction

data (Fig. 3). The surface morphology of the HTS on LaAIO 3 is shown

in Fig. 4. The surface is very smooth with some small structure. We

do not observe large numbers of HTS particulates due to the laser

ablation process.
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PATTERNING

Films on LaAI03 and SrTiO 3 were patterned using photolithography

and wet etching. The negative photoresist (752), its developer

Table I Effect of Photolithography Process

on T O of YBa2Cu30 × Films

Exposure to negative photoreslst None
Soft baking of photoresistat90 °C

for 1 hr) None
Exposure to photoresistdeveloper

and rinse None
Exposure to different stripping solvents

after patterning:
Boiling ascetone (58 °C) for 1_ mln None
Boiling ethanol (78 °C) for 1_ min None
Boiling toluene (111 °C) for 1_ mln None
Losalin IV (76_ °C) for 8 min None

a0nly boiling ethanol lnd Losalin IV sucessfully
removed exposed phoresist.

(802), and the assoc-

iated rinse (n-butyl

acetate) used were ob-

tained from KTI. The

photoresist strippers

used were Losalin IV

(from E.C. Merke),

acetone, toluene, and

ethanol. Each step of

the process was

checked to see if it

had an effect on the

T= of the HTS films.

The results of the

different processing

steps on T c are shown

in table I. The full

process of patterning

the HTS films was to

spin on the negative

photoresist to a thickness of 2 _m, followed by a soft bake at 90 °

C for i hr, and then to expose the photoresist. After developing the

photoresist, the film was etched for 500 s in I percent molar of

bromine in ethanol. After etching, the films were rinsed in ethanol

and the photoresist was removed with the Losalin IV photoresist

stripper which was at 70 °C. We did not observed any drop in the T O

'°I0.9

08,_--

0.7_

_ sw I

=_ 0.5 _-- ,'=°=

_ O.q

0.3 3

0.2 ,_--

0"1 t .°@
0 a;
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1 t E
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TEMPERATURE, K

Figure 5. - Normalized resistance of a laser ablated
YBa2Cu30 x film on SrTiO3. The film [3 is before pro-
cessing while the film • is after exposure to negative
photoresist.

__I
300

of the HTS films.

The films used to

determine the effect of

the various fabrication

steps had transition

temperatures between 77

and 85 K. Fig. 5 shows

the effect of exposing

the film directly to the

photoresist stripper

Losalin IV at 70 ° C. No

change in T c occurred,

but the slope of the re-

sistance versus tem-

perature curve did

change. Fig. 6 shows the

T c of the film on LaAIO 3

before patterning and

after it was patterned

into a ring resonator,

that had operated at 33

GHz, and after it had
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Figure 6. - Comparison of normalized resistance of a laser

ablated YBa2Cu3Ox film on LaAtO3 before processing []
and after being fabricated into a 35-GHz ring resonator +,

silver contacts evapo-

rated onto it and an-

nealed at 500 ° C for

1 hr. There is no appar-

ent difference in the T c

or the resistance versus

temperature behavior be-

tween the film before

and after processing.

To test the laser

ablation technique's

ability to produce uni-

form film thickness and

the variation of T c

across the film, Hall

bars with silver con-

tacts were fabricated

(Fig. 7). The width of

the bar is i0 _m. The
film thickness is not :_

very uniform over the 5-

by lO-mm area. The time

needed to etch the film

until the substrate was exposed varied by a factor of 2 from one

edge to the other edge of the substrate. However, the T c did not vary

from region to region (table II).

Figure 7. - Finished Hall bar of YBa2Cu30 x film on SrTiO 3 substrate.

Table II Variation of on SrTiO 3

as Measured With Patterned Hall Bars

Before patterning 7@.8 K

1@- #m lines after patterning 71.@, 71.5, 72.5 K

2@_ _m lines after patterning 76.3, 75.5, 76.6 K

128



Conclusions

Laser-ablated, high-temperature superconducting films on LaAIO 3

and SrTi0_ have been grown. The best films had a Tc of 90 K and have

their c-axis aligned to the substrate. There is no variation of T=

across the films, but there is a variation of film thickness. These

films have been patterned with negative photoresist and a bromine/

ethanol etch. There is no detectable degradation of T= by any step of

the fabrication process even though the films were heated to 122 ° C

in toulene.

This fabrication process should be able to be used to make most

of the passive and one layer structures without any degradation of

the transition temperature.

REFERNCES

i. J.D. Warner, J.E. Meola, and K.A. Jenkins, NASA TM-I02350, 1989.

2. D. Dijkkamp, T. Venkatesan, X.D. Wu, S.A. Shaheen, N. Jisrawi,

Y.H. Min-Lee, and W.L. Mclean, M. Croft, Appl. Phys. Lett. 51, 619

(1987).

3. X.D. Wu, D. Dijkkamp, S.B. Ogale, A. Inam, E.W. Chase, P.F.

Miceli, C.C. Chang, J.M. Tarascon, and T. Venkatesan, Appl.

Phys. Lett. 51, 861 (1987).

4. J. Narayan, N. Biunno, R. Singh, 0.W. Holland, and O. Auciello,

Appl. Phys. Lett. 51, 1845 (1987).

5. L. Lynds, B.R. Weinberger, G.G. Peterson, and H.A. Kransinski,

Appl. Phys. Lett. 52, 320 (1988).

6. T. Venkatesan, C.C. Chang, D. Dijkkamp, S.B. 0gale, E.W. Chase,

L.A. Farrow, D.M. Hwang, P.F. Miceli, S.A. Shwarz, J.M. Tarascon,

X. D. Wu, and A. Inam, J. Appl. Phys. 63, 4591 (1988).

7. A.M. Desantolo, M.L. Mandich, S. Sunshine, B.A. Davidson, R.M.

Fleming, P. Marsh, and T.Y. Kometani, Appl. Phys. Lett. 52, 1995

(1988)

8. F.A. Miranda, W.L. Gordon, V.O. Heinen, B.T. Ebihara, and K.B.

Bhasin, NASA TM-I02123, 1989.

9. R.W. Simon, C.E. Platt, A.E. Lee, G.S. Lee, and K. Daly, Appl.

Phys. Lett., 53, 2677 (1988).

129



COMPLEX PERMITTIVITY OF
LANTHANUM ALUMINATE IN THE
20 TO 300 K TEMPERATURE RANGE

FROM 26.5 TO 40.0 GHZ

F. A. Miranda and W. L. Gordon
Case Weslern Reserve Umversity
Clevelar_. Ohio 44106

K. B. Bha$in, B. T. Ebiha_, and V. O. Heinen
Lewes Research Center
Cleveland. Ohmo4413S

C. M. Chorey
SverClruD Technology, Inc.
NASA Lewis Research Center Group
Cievelancl. Ohio 44i 35

KEY TERMS

Complex permittivi(v, guperconduclors, lanthanum aluminate gubgtrates,
microwaoe me_urenlenL_

ABSTRACT

Dielectric eonsmms of microwave gubtrates are required in the dexign of

superconducting microwave _rcuitl at odriou¢ temperature& In this

paper, w,e report the results of o gt_.y of the complex permittivin.' of the

ne'wly detwloped lanthanum aluminate (L_IOj) xubstrate, in the 20 to

300 K temperature range at frequencies from 26.J to 40.0 GHz. 7"he
value of the complex pernfitfiuJ O" was obtained by measuring the sample

scattering parameters using o microwave waueguide technique. II ix

obsen,ed that. while the dielectric constant did not change appreciably

with frequenO', its t,alue decreased by approximately 14 percent from
room temperature to 20 K.

iNTRODUCTION

The discovery [1] of high transition temperature (T_) oxide

superconductors has opened up a wealth of attractive possibil-

ities, among which, their application in the preparation of thin

films to be used in the development of microwave circuits.

Therefore, a good knowledge of the dielectric properties of

microwave substrate$ used for fill deposition is of paramount

importance. Substrates with low dielectric constam and loss

tangent [2] are indispensable in order to develop highly reli-

able microwave components.

At the moment, Y-Ba-Cu-O superconducting thin films

deposited in SrTiO 3 substrates have shown the best quality

when compared with tills deposited in other substrates. Un-

fortunately, its microwave appticability is very limited because

of the strong temperature dependence of its dielecmc constant

--with a value of 300 at room temperature, of 1000 at 77 K.,

and over 18.000 below 4 K--and its relatively high loss

tangent [3].

"I-he recently developed LaA]O_ substrate is actually being

used in the fabrication of high T¢ superconducting thin films.

Neverthe]e_, the value of its dielectric constant at room

temperature and at low temperatures is still not well estab-

lished. In this paper, we report on the measurements of the

microwave complex permhtivhy of LaA]O 3 in the 20 to 300 K

temperature range and as a function of frequency.

ANALYSIS

The method for the dcrivation of the complex permittivity

from the sample scattering parameters was first proposed by

Nicolson and Ross [4] and modified later for rectangular

waveguidc applications by Wier [5]. Essentially, for a piece of

SOURCE

ZO

Xmt

Figure 1

Y///A
X,,¢_

Waveguide with filled malemd

DETECTOR

Zo

material properly introduced in a rectangular waveguide with

characteristic impedance Z u (as ¢ho_na in Figure 1), the solu-

tion of the bo_d_ cond_tlom at x - 0 and x - d allows

the scattedag parameters Slt(_ ) and S:._(_0) to be related with

the reflection (F) and trammis.don (T) coeffidents in the

followingway:

(z - r:)r (1 - r:)r
Sn - 1 - r:r: ' S:.2- 1 - r:r: (1)

where

z- 7-o [ (u,/(,) - I

r - z +-'--Z" V (,,/,,) (:)

and

[(°)]r- d) - e,¢ -J7 (3)

In Equations (2) and (3), Z is the impedance of the sample, d

is its thickness, and /z, and (,, its relative permeability and

perm.ittivity, respectively. Therefore, one can obtain r and T

from Sn(_ ) and S:.1(_ ), and, in turn, they can be used to

determine the permittixit),.

The measurements of the reflection, Sl_(_), and transmis-

sion, _l(_), scattering parameters were performed using an

HP-8510 automatic network analyzer,convenientlyconnected

through an arrangement of Ka-band (26.5 to 40.0 GH.z)

waveguides to a cryogenic system, which allows measurements

to be taken at the desired low temperatures. The cryogenic

system consists of a closed-cycle helium refrigerator combined

with a temperature controller, and an aluminum vacuum

chamber, spedally designed to fit on top of the external shield

of the refrigerator and to give access to the arrangement of

waveguides. A vacuum of less than 1.0 x 10 -2 tort was

maintained throughout the whole measurement procedure.

During the actual measurements, the LaA]O) substratewas

suspended perpendicular to the microwave source between

two waveguide flanges in such a way that both the transmitted

and reflected power can be detected.

Finally, the dielectric comtam of LaA]Oj was ak_o mea-

sured at room temperature using the wetl-establi_ed parallel-

plate capadtor technique, and the value obtained was com-

pared with the one acquired using the scattering parameters

method. The capacitor was made with a 10-nul lanthanum

aluminate substrate as the tilting dielectric, and its plates were

made by evaporating gold such that a 1-cm disk was formed

on its front surface, with its back surface being completely
coated.
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Figure 2 Real pan of complex pcrmittivity of LaAIO,_ substrates at

room temperature

[2]. In vi_' of this di_repancy, we performed measurement:
on magnefium oxide (MgO), sapphire (Al:O._). and silicon
oxide (SiO_.), which are substratcs with wcll-knot'n values for
the dielectric c6r,.,_tantat room temperature. The results of our
measurements were consistent with tho_ reported by other
researchers [6-g]. Furthermore, we obtained the value of the

dielectric constant ( of La.AIO) using a parallel-plate capaci-
tor and the following relations:

measured capacitance C_,,,_
c = = (4)

ideal vacuum capacitance C,_=1,.,_,,,,,,

Olden1 ',.'-'ac_um m

(0 X area disk %,-.r z
- -- (5)

plate separation d

(6)C_¢,,,_ - m_ed value - edge capacitance

TABLE 1 Complex Permittivity of LaAIO 3 at 28.6 GHz

Imagina.r3"Pan
Real Pan o[ Comp]ex of Complex

Temperature. Permi_fivirs". PermittMty.
K c; c;'

300 22.0 1.10

150 20.g 1.10

70 19.7 1.07

20 1 lL9 0.20

RESULTS

Figure 2 and Table I shot' the results for the room tempera-
ture measurements of the dielect:'ic constant for three LaAIO 3
substrates. The substrates are 0.254, 0.432, and 0.503 mm
thick and Were made from different batches of LaA.103. The
value of the dielectric constant is consistent for the three

samples, and it has a typical value of approximately 22 ± I.
Hence, neither the difference in thickness nor the fact that the

samples come from different batches appears to be an impor-
tam factor in the determination of the value of the dielectric
constant for this substrate. It is also noticed that the fre-

quency, dependence for this parameter in the band under
consideration is a weak one. We believe that the discontinu-

ities and small variations observed in Figures 2 and 3 are due
to systematic errors in the callbration and not to intrinsic

properties of the samples.
Although the values of the dielectric constant obtained for

the three samples under consideration are in good agreement,
they differ considerably from the one reported by Simon eL at.

LuO
e-w

28

24

Figure 3

20 K

2O

16

26.5 30.5 3,: .5 38.5

FREQUENCY. GH,z

Rc',I part of i.,omplex p,crntixlivhy Of LaAIO_ substraze at

and

edge capacitance

perimeter --0.229 + 0.i05(()+ 0.214 log(-_)

(7)

The value obtained using this approach was ( = 20 ± 1 at
1 _ Although this value is a tittle lower than the one

derived using the scattering parameters technique, the two
values still are in a better _reement than with the results of

[2]. Further, because of the relativeIy low frequent, at w_ch
this value was measured, it provides an additional indication
of the small variation of the dielectric constant of LaA103 as a
function of frequen%'.

Table 1 shot's the real and imag.haa_, pans of the complex
permittivity at four different temperatures, and at 28.6 GHz,
for the sample represented a_th the small dashed line in

Figure 2. Figure 3 shows the real part of the complex permit-
tivity for this same sample at 20 K. A decrease of 14_ in the
value of the dielectric constant at temperatures around 20 K is
observed. Although this change can be considered as a rela-
tively large one, it is almost meaningless when compared with
the temperature dependence of the dielectric constant of
SrTiO 3. Now, from the data in Table 1, it is seen that the
value of the imaginary pan of the complex permittMty tends

to decrease with decreasing temperature. Nevertheless, a com-
pa.,'ison of our results at room temperature for MgO, AI:O,,
and SiO: substrates was not in good agreement with previ-
ously reported values [6-g]. Because for these substrates the
values for the dielectric constant and the loss tangent at room
temperature are well established, our confidence in the values
for the imaginary pan of the permittivity, not only at room
temperature but also at low temperature, is rather limited.
Therefore, for cases in which an accurate knowledge of tl'ds
parameter is indispensable and mainly when dealing with
low-loss substrates, other techniques must be applied.

CONCLUSIONS

The complex permitfivity of the newly developed LaA10_
substrate has been measured. A decrease in the value of the

real pan of the complex permixtivity with decreasing lempera-
ture was observed. No considerable change was noticed in this
parameter, neither as a function of frequency nor due to
difference in thicknesses and balch of origin. The values
obxained for the imaginar3' part of the complex perminivily,
both at room tempcrature and at low temperature, appear not
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to bc vc_' accurate, mainly duc to limitations of the applied

technique **'hen used with vcr)' Ion'-loss substratcs. The results

obtained in this study suggest that. at least from the stand-

point of the dielectric constant, the LaA]O._ substrate is better

suited than SrTiO). for use with the new high-temperature

superconductors in mierowas,e applications.
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ABSTRACT

Microstrip ring resonators operating at 35

GHz have been fabricated from laser ablated

YBCO thin films deposited on lanthanum

aluminate substrates. They were measured

over a range of temperatures and their

performance compared to identical resonators

made of evaporated gold. Below 60 ° Kelvin

the superconducting strip performed better

than the gold, reaching an unloaded 'Q' ~1.5

times that of gold at 25 ° K. A shift in the

resonant frequency follows the form

predicted by the London equations. The

Phenomenological Loss Equivalence Method is

applied to the ring resonator and the

theoretically calculated Q values are

compared to the experimental results.

INTRODUCTION

Recent observations of low surface

resistance at microwave and millimeter wave

frequencies in thin superconducting films

[i] suggest their use for low loss/high Q

microstrip circuits, of interest is the

surface resistance exhibited by these films

across a wide frequency range. To date,

measurements of surface resistance in the Ka

band and above have been by the cavity

technique. This technique fails to model

microstrip losses completely because it

neglects substrate losses and fails to

adequately probe the film-substrate

interface. Microstrip resonators patterned

from thin films on microwave substrates

allow direct measurement of microstrip

losses. Several groups have made such

measurements at lower microwave

frequencies.[2,3,4] In this paper we report

on the direct measurement of losses by Ka

band microstrip resonators made from laser

ablated YBCO films on lanthanum aluminate.

Also, we calculate the Q values of the

structure using the Phenomenological Loss

Equivalence Method and invoking

superposition of the internal impedances of

the strip and ground plane of the microstrip

line. The calculated Q value of the ring

resonator with a superconducting strip and

a normal conducting ground plane is compared

with the experimental results.

GROWTH AND PATTERNING

The superconducting films were deposited

by laser ablation of a sintered YBCO pellet

onto a heated (700°C) lanthanum aluminate

substrate in a 100 mtorr oxygen atmosphere

and then slowly cooled to room temperature

in I atmosphere of oxygen. J5] Films with

very smooth surfaces and Tc's of 89.8 have

been produced; X-ray analysis has shown that

they are c-axis aligned. The microstrip

resonators were patterned by standard

photolithography using negative photoresist

and a 'wet' chemical etchant. This etchant

was either a 3% solution of bromine in

ethanol or dilute phosphoric acid in water.

A metal ground plane was deposited by first

evaporating 100 _ of Ti for adhesion

followed by 1 micron of gold. In addition

to the resonator, each chip also had a test

bar for direct Tc testing of the patterned

film. Identical resonators were fabricated

entirely from gold (both strip and ground

plane) using evaporation and lift-off to

define the strip.

The resonators were measured using a

Hewlett-Packard 8510 Network Analyzer,

operating in WR-28 waveguide. The

microstrip circuit was mounted in a tapered

ridge waveguide to microstrip test fixture

which was mounted at the second stage of a

two stage, closed cycle helium refrigerator.

Circuit temperatures reached approximately

20°K and were monitored by a silicon diode

sensor mounted in the test fixture. The

entire cold finger and test fixture were

enclosed in a custom designed vacuum can.

Microwave coupling to the test fixture was

through 6 inch sections of WR-28 waveguide

made of thin wall stainless steel to

minimize heat conduction. Vacuum was

maintained at the waveguide feedthroughs by

means of '0' rings and mica sealing windows.

CH2848-0/90/0000-0269501.00 © 1990 IEEE. Re_inted with permission.
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THEORETICAL CALCULATION OF Q

The theoretical Q values were calculated

using the Phenomenological Loss Equivalence

Method (PEM).[6] This method is applicable

to cases where the strip conductor thickness

is on the order of a skin depth (for a

normal metal) or a penetration depth (for a

superconductor). The Incremental Inductance

Rule, which is often used to calculate

microstrip losses, can only be applied in

the case of shallow field penetration, which

is not satisfied in this study. Also, PEM

has the advantage of simple calculation

compared with other numerical techniques
such as the Finite Element Method. The

technique proceeds on the basis of

separately calculating the internal

impedances of the strip and the ground plane

through use of an equivalent isolated strip,

and then adding these impedances to the

external impedance of the microstrip

structure. First, the ground plane is

assumed to be a perfect conductor so that

there is no magnetic field penetration into

it as shown in figure I. A geometric factor

(GI) for the strip line is then obtained

from the magnetic field penetration into it.

This G1 factor is used to obtain an

equivalent strip; from which the internal

impedance of the microstrip line under the

assumption of perfect ground plane can be

obtained as

Zil = Ol-Z,l.coth(Z,l._l-A-G1)

where Z,I, ffl and A are the surface

impedance, the conductivity of the material

and the cross sectional area of the strip,

respectively. Next we consider the strip as

a perfect conductor as shown in figure i.

Then a geometric factor (G2) is obtained for

the field penetration into the ground plane.

With the value G2, we obtain the internal

impedance of the ground plane based on the

assumption of a perfect strip,

Zi2 = G2.Za2.coth(Z.2._2.A.G2)

where Z,2 and if2 are surface impedance and

conductivity of the ground, respectively.

The internal impedance of the microstrip

line is obtained by adding Z,z and Zi2. We

add this internal impedance to the external

inductance and calculate the propagation

constant of the microstrip line by using a

transmission line model. It should be

emphasized that (I) and (2) are applicable

to any field penetration depth.

The conductor losses of the structure in

fig. 2 were calculated by applying the

method explained above. Then, the Q values

of each resonator were calculated by

additional consideration of substrate loss;

radiation loss was assumed negligible. For

the calculation, the value of 5.8x10-4 was

used for the loss tangent. Since the

current is more concentrated on the strip,

the implementation of a superconductor in

the strip has more influence on the loss.

Field per_wation _[ I Pedect Conductor

l .....7!'! l',.......... .................i .......
Pcrfec!conduclor

I

Ri I Lil Ri2 Li 2

Ril Lit

Figure 1. Field penetration in the strip

and ground plane; for PEM calculation.
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Figure 2. 35GHz Ring Resonator Structure.

The extent of the effect of implementing a

superconductor in the microstrip line can

be different for different geometries.
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RESULTS AND DISCUSSION

In figure 3 are shown plots of Sll for a

superconducting resonator at several

temperatures. This plot is of the reflected

power from the resonator in the test fixture

and is thus a measure of the loaded 'Q'.

Two features are apparent; i) the coupling

changes with temperature (in this case,

starting at near critical coupling Just

below Tc and going to overcoupled at lower

temperatures), and 2) the resonant frequency

shifts with temperature. The change in the

resonant frequency vs temperature is plotted

in figure 4 along with the resonant

frequencies of a gold resonator. The

variation observed in the gold resonator

follows the form expected from thermal

contraction in the substrate. But since

accurate data on lanthanum aluminate is not

readily available, precise comparisons are

not possible. The variation seen in the

superconducting resonator is a consequence

of the dependence of the internal impedance

of the strip on the changing

normal/superconducting electron densities.

The internal inductance of a superconducting

strip over a ground plane is given by:[7]

LInt = /Zo'X ocoth (t/k)

Assuming the Gorter-Casimir temperature

dependence of k:

X(T) = _o
[ l-(T/Tc-_Tq_

the form of the resonant frequency variation

based on the changing line inductance

matches the experimental observations.

However, attempts at numerical fitting to

extract Xo, result in Xo in excess of 1

micron, indicating that the film quality may

not be at its highest.

The best circuit to date has been from a

6500 _ film with a post-processing Tc of

79°K. The unloaded Q of this circuit is

plotted against temperature in figure 5

along with the unloaded Q of an identical

gold resonator. The Q of the

superconducting circuit rises sharply below

Tc, exceeding the Q of the gold circuit at

~60°K and reaching a value of 1.5 times that

of the gold resonator at 25°K. Comparing

the experimental results with the calculated

values in the same figure, we see that for

the gold resonator, the PEM calculation

matches the experimental fairly well. The

measured superconducting 'Q', however, is

much lower than the calculated values.

Several reasons can be given for this.

First, the values for the complex

conductivity of the superconductor used in

the PEM calculation were obtained by

microwave re f lectance/transmis s ion

measurements on separate laser ablated

films. [8] It is likely that the quality of

those films was higher than the resonator

film, in part because these films were
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Figure 3. SII of the superconducting

resonator in its test fixture, at three

temperatures.
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Resonant frequency vs

temperature for superconducting and normal

strips.

unpatterned. In addition, substrate losses

in the PEM were calculated on the basis of

tan6=5.SXl0E-4 but accurate values for

lanthanum aluminate are not available so the

actual value may be higher or lower. It

seems likely that improvements in the

measured Q are possible with increased film

quality.
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CONCLUSIONS

Ring resonator circuits were fabricated

from laser ablated YBCO superconducting

films on lanthanum aluminate to determine

transmission line losses at millimeter wave

frequencies. At 25°K the unloaded Q of the

superconducting resonator was 1.5 times the

Q of identical resonators made of gold. A

shift in the resonant frequency with

temperature follows the form predicted by

the London equation. Using the PEM we

calculated the Q values of the ring

resonator with a thin YBCO strip and a gold

ground plane. The theoretical results were

compared with experimental results of the

ring resonator of that structure. The

calculated results predict higher values of

Q than those actually observed, but improved

film quality should increase measured Q

values.
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Figure 5. Measured and calculated values

of unloaded Q for superconducting and normal

resonators.

?m

Q

m

REFERENCES

I. N. Klein, G. Muller, H. Piel, B. Roas,

L. Schultz, U. Klein and M. Peiniger,

"Millimeter Wave Surface Resistance of

Epitaxially Grown YBCO Thin Films," Appl.

Phys. Lett. Vol. 54, pp 757-759.

2. A. A. Valenzuela and P. Russer, "High Q

Coplanar Transmisslon Line Resonators of

YBCO on Mg0," Appl. Phys. Lett., Voi. 55,

pp. 1029-1031, 1989.

3. B. R. McAroy, G. R. Wagner, J. D. Adam,

J. Talvacchio and M. Driscoll,

'_supercondicting Stripiine Resonator

Performance," IEEE Trans. Magn., Mag. Vol.

25, pp. 1104-1106 (1989).

4. J. H. Takemoto, F. K. Oshita, H. R.

Fetterman, P. Kobrin, and E. Sovoro,

"Microstrip Ring Resonator Technique for

Measuring Microwave Attenuation in High-_c

Superconducting Thin Films," IEEE Trans.

Microwave Theory and Tech., Vol. MTT-37, pp.

1650-1652, 1989.

5. J. D. Warner, K. B. Bhasin, N. C.

VaralJay, D. Y. Bohman and C. M. Chorey,

"Growth and Patterning of Laser Ablated

Superconducting YBCO Films on LaAI03

Substrates," NASA TM-I02336.

6. H. Y. Lee, and T. Itoh, "Phenomenological

Loss Equivalence Method for Planar Quasi-TEM

Transmission Line with a Thin Normal

Conductor or Superconductor," IEEE Trans.

Microwave Theory and Tech., Vol. MTT-37, no.

12, pp. 1904-1909, 1989.

7. James Swihart, "Field Solution for a

Thin-Film Superconducting Strip Transmission

Line," Journal Appl. Phys., Vol 32, no. 3,

pp. 461-469, 1961.

8. F. A. Miranda, W. L. Gordon, K. B.

Bhasin, V. O. Heinen, and J. Valco,

"Millimeter Wave Transmission Studies of

YBCO Thin Films in the 26.5 to 40 GHz

Frequency Range," Proc. Third Annual Conf.

on Superconductivity and Applications, to be

published by Plenum Press 1990, and NASA TM-

102345.

ORIGINAL PAGE IS
OF POOR O(JALrr'y

136



Ka-BAND PROPAGATION
CHARACTERISTICS OF MICROSTRIP
LINES ON GaAs SUBSTRATES AT
CRYOGENIC TEMPERATURES

R. R. Romanofsky, J. C. Martinez, B. J. Vlergutz, and
K. B. Bhasln
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

KEY TERMS

MicrostHp line, GaAs substrate, rchttive permittivi_, resonators, low

temperature microwttt'e measurements, Q-factor

ABSTRACT

Effective permittivity and loss characteristics of gold microstHp lines on
GaAs substrates _ere obtabzed by characterizing GaAs linear resonators

at co'ogenic temperatures (300 to 20 K) from 30-40 GH:. A slight
decrease in effective permittivity and a significant reduction in loss were

observed with lower temperat,res.

INTRODUCTION

Microstrip is a geometrically simple transmission line that

has found widespread use in GaAs monolithic microwave

integrated circuits (MMIC). Because of the two-wire config-

uration, it has no lower cutoff frequency. However, upper

frequency limitations are imposed due to surface waves and

transverse resonance modes that can propagate under certain

conditions [1]. The dominant mode of propagation is quasi-

TEM (transverse electromagnetic).

Detailed information on propagation characteristics of

transmission lines on GaAs at cryogenic temperatures is

unavailable. Accurate theoretical analysis is hindered by the

inhomogeneous geometry of microstrip, which causes a field

discontinuity at the air-dielectric interface. This information

is required for the accurate modeling and matching network

design of cryogenically cooled GaAs MMICs. Also, such

information will prove useful in developing hybrid supercon-

ducting/GaAs MMIC circuits. This promising technology

will exploit the inherent benefits of superconducting electron-

ics, such as low loss and low noise performance, and simulta-

neously enhance the active device characteristics due to the

cryogenic operating temperature.

DESIGN AND FABRICATION

50-ohm linear open circuit hA�2 mierostrip resonators were

fabricated on 2-in. semiinsulating GaAs wafers along the

(100) crystallographic plane in the [_0] direction. The end

(fringing) effect was eliminated by using two lines: a short

line of length I_ with a fundamental resonance at f_ and a

long line of length l z = 21t with a harmonic resonance of

f2 = f]- The resonators were coupled to a feed line via a

critical symmetric gap. The gap dimensions ranged from
0.0015-0.00175 in. for the 0.010-in.-thick wafers.

A pattern electroplating technique was established to

fabricate the GaAs. microstrip resonators. Initially, 200 ,_ of

titanium and 1000 A of gold were sequentially deposited onto

the wafers by evaporation. A layer of positive photoresist was

ORIGINAL PAGE IS
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then spin coated onto the wafer and subsequently exposed to

UV light through a negative (dark-field) chrome/glass mask.

At this point, the desired pattern had been transferred to the

substrate. The wafer was then developed, which established

windows corresponding to the circuit pattern. The electro-

plating process entailed submersing the wafer in an aqueous

gold-potassium-cyanide solution. A platinum-titanium an-

ode was connected to a constant current source and the

wafer (cathode) was grounded. A current density of 3 mA/in. 2

was maintained to ensure a high quality film. Finally, the thin

underlying gold and titanium layers were removed by chemi-

cal etch. The wafers were then lapped and polished to 0.010

in. in order to obtain the correct characteristic impedance

and surface finish. A titanium-gold ground plane was evapo-

rated onto the wafer reverse. A fully fabricated resonator

pair is shown in Figure 1.

Figure 1 A fully fabricated resonator pair, short line of length It

with a fundamental resonance at ft and a long line of length

1, = 2l_, with a harmonic resonance of ]'2 = ft. The gap is approxi-

mately 0.75 rail

EXPERIMENTAL RESULTS

Swept frequency measurements were performed using an

automatic network analyzer system [2] connected to a closed

cycle helium refrigerator. A cosine tapered ridge guide test

fixture was placed inside the refrigerated chamber and the

resonator chip was mounted beneath the ridge using pressure

contact (Figure 2). The technique is based on the measure-

ment of reflection coefficients (Sll) for each microstrip res-

onator pair. From these data, total loss and effective permit-

tivity can be determined. Raw data yield the loaded quality

factor QL. Calculation of the unloaded quality factor Q0

required derivation of the gap coupling coefficient and mod-

eling of the resonator as a transformer coupled RLC tank

circuit. Based on the analogous input impedance and ac-

counting for coupling loss, the correct Q0 was evaluated.

Because the devices were enclosed in the waveguide below

cutoff, radiation was considered negligible. A complete de-

scription of the techniques employed is provided in refer-

ence 3.



A numberof microstripresonatorpairsweresuccessfully
characterized.Figure3depictsthemeasuredresponseof a
resonatortestedat300and20K,respectively.Twophenom-
enawereobserveduponcoolingto cryogenictemperatures.
First, there was a consistentshift in the resonant
frequencyof approximately-2%. Thesecondinvolveda
dramaticchangein theloadedqualityfactor,aconsequence
of thetemperaturedependenceof lossanda reductionin
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Figure 2 Schematic of cosine tapered ridge guide fixture arrange-
ment
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Figure 3 Measure response of a resonator tested at 300 and 20 K
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Figure 4 Temperature dependence of effective permittivity of 10-
rail-thick GaAs substrate at approximately 31.5 GHz

coupling coefficient. Figure 4 illustrates the temperature de-

pendence of effective permittivity at approximately 31.5 GHz,

revealing a trend to diminish slightly upon cooling. Table 1

provides loss data as a function of temperature, demonstrat-

ing a 0.15-dB/cm-irfiprbvement as the material is cooled

from 300 to 20 K. It is important to convey that the data for

the unshielded resonators contain a large radiation compo-

nent and should not be interpreted as the loss that would

occur along a uniform microstrip line.

TABLE 1

Frequency, Temperature, Q0, Qo, Loss,

GHz K Shield Open dB/cm

30.2620 300 205 -- 0.45
30.5635 300 197 -- 0.47

31.6975 300 211 -- 0.43
39.0720 300 .- -- 24 4.37

39.1060 300 -- 18 5.83

31.0252 77 271 -- 0.34

31.9675 77 254 -- 0.36
30.8575 20 297 -- 0.31

CONCLUSION

Q values from 30-40 GHz were obtained fl_r GaAs mi-

crostrip resonators at c_ogenic tcmpcraturc.s, h was t_und

that the Q values increased by a factor of approximately 1.25

at 77 K and a factor of 1.5 at 20 K when compared to room

temperature data. Also, there is a small but definite decrease

in dielectric constant as temperature decreases.

Eventually, as high temperature superconducting technol-

ogy evolves and merges with GaAs MMIC. such information

will be necessary for effective device design. At present, the

in situ film processing temperatures exceed the tolerance of

GaAs circuitry,, due to materials problems ranging from semi-

conductor diffusion to metal migration.
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TRANSPORT MEASUREMENTS ON GRANULAR Y-BA-CU-O FILMS
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The critical current in granular YBaCuO films has been measured at temperatures very near the
crltlcaI temperature, Tc. The critical current is proportional to (I-T/Tc)_ for T<.g Tc. The
current-voltage (I-V) characteristics of the films have also been measured as a function of
temperature and indicate that the observed deviatlon from the (I-T/Tc)_ dependence for T > .gTc
iS a natural consequence of the constant field criterion (e.g..25 PV/mm) used to define the
crltlcai current.

I. Introduction

Reports 1 2 have shown that the measured

critical current, Ic, near Tc is proportlonal

to (I-TITc)2 for T < .gTc and exhibits a

weaker temperature dependence for temperatures

nearer to Tc. Our Ic data exhibits

quailtatlvely the same behavior and we wit1

show, with the aid of the (I-V)

characterlstlcs, that the variation in the

power law near Tc is a result of the

measurement criterion. Next we discuss

several different crlteria for defining the

onset of dissipation as It applies to Ic

measurements. Finally we show that _) the

temperature dependence of the Ic can be

obtained by fitting the I-V data taken at

dlfferent temperatures to the simple

expression V-A(I-Ic )m, _i) the temperature

dependence of Ic obtained using this procedure

Is In good agreement wlth that of the measured

data.

2. Experlmental

The superconductlng films were prepared by

sequential evaporation of Cu,Y, and BaF 2 onto

(100) SrTiO3. The fllms were deposited onto

.5 cmx1.0 cm substrates and had a nomlnal

thickness of I i_m prlor to annealing. Details

of the fllm preparatlon and annealing have

been published elsewhere. 3

Scannlng-electron-mlcrographs of the film

surface showed irregularly shaped grains .5 IJm

in size having no epitaxy with the substrate.

A d.c. four probe method was used for all

transport measurements. Electrical contact to

the films was made by In-soldering to

prevlousiy deposited ]_m Ag electrodes

extending across the short dimension of the

films. The critical temperature for the film

described below was 62.3K, determined with a

measuring current density of .2Alcm2.

3, Results and Discussion

In Fig. 1 the upper four sets of I c data

were obtained using different voltage

criteria. The solid lines are guides to the

eye. The lowest llne in Fig. l was obtained

from a least-squares fit of the I-V data and

will be discussed later in thls section.

Notice that the upper four curves have a slope

of 2 at low temperatures, and show a departure

from the straight llne behavlor at different

temperatures depending upon the voltage

criterion. The departure from (I-T/Tc)2 as T

÷ Tc can be understood with the aid of the I-V

data in Flg. 2. Here we show a sequence of

I-V data obtained at slx different

*Also Department of Physlcs, Kent State University, Kent, Ohio, 44242 USA

0921-4534/89/$03.50 © Elsevier Science Publishers B.V.

(North-Holland)
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flt of the I-V data to V=A(I-Ic) m.

temperatures. The upper and lower dashed

lines represent the 2.5 _Vlmm and .25pVlm

criteria respectively, and a vertical llne

drawn from the intersection of these lines

with the data yields the Ic. At 20K the two

criteria result in the same Ic while at 58K

they yield numbers differing by a factor of

two. The important parameter For evaluatlng

the accuracy of a constant voltage criterion

Is apparently the logarithmic derivative

dlog V/ dLog I. The smaller the logarithmic

derivative at the chosen voltage criterion the

more one overestimates Ic. Since dLogV/dLogl

Is rapidly dlmlnlshlng as T÷T c It Is

Inevitable that one overestimates Ic which

results in the apparent weakening of the

temperature dependence near Tc. In principle

one would have to define Ic at the fame value

of the l_arithmic derivative

(i.e. lower voltages) in order to maintain the

same level of accuracy. Since this method Is

not practical one could use the less stringent

resistive criterion whereby a supercurrent Is

present if Vc/Ic<R(Tc), where V c Is the

voltage criterion, and R(Tc) is the smallest

detectable resistance In the Tc measurement.

In Flg. 1 the top and bottom dashed lines

Fig. i

E

4g

m
,,,,a

O

10'

I0'

10'

lO-I

10"

I0 -=

/

!0-' 10 ° 10' 10=

Current (reX)

Fig. 2 Voltage agalnst current obtained at a
sequence of temperatures. From right
to left: 20, 40. 51, 58. 82, and 64K.

represent the lowest quotable values of Ic for

the 2.5 _Vlmm and .2S_Vlmm crlterta

respectlvely.

We belleve there Is yet another way to

obtain the temperature dependence of-Ic. It

has previously been shown that the I-V data

can be described by V=A(I-Ic)m where Ic and m

are temperature dependent 4. By performing a

least-squares flt of our data to thls relation

we obtain Ic and m as a function of

temperature. The Ic data obtained In this way

are the points on the lowest llne In Fig. I.

The exponent is 2.2, in good agreement with

the measured data satIFying the resistive

criterion, and Ic vanishes at 63.8K. In

conclusion, we found that Ic is proportional

to (I-TITc)2 for T-Tc.
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ELECTRICAL TRANSPORT MEASUREMENTS ON POLYCRYSTALLINE

SUPERCONDUCTING Y-Ba-Cu-O FILMS
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NASA - Lewis Research Center

Cleveland, Ohio

ABSTRACT

The current-voltage, I-V, characteristics of polycrystalline Y-Ba-Cu-O

films have been measured as a function of temperature. The I-V characteristics

are interpreted using a model based upon an array of weak links with a statist-

ical distribution of critical currents. In addition, we find evidence that

the supercurrents flow in nearly independent filaments near T c. Various cri-

teria are discussed with respect to the definition of the transport critical

current, I c. in these films. A temperature dependence for I c has also been

deduced from the l-V data by appealing to an empirical scaling law. We propose

that this temperature dependence, I c = (I-T/Tc)2"2, is representative of the

weaker links within the critical current distribution.

INTRODUCTION

The T c measurement is the most con_nonly used method for the character-

ization of superconducting materials. However, I c is a more effective par-

ameter in determining technological usefulness. In particular it is desirable

to measure the temperature dependence of I c in order to illuminate the mechanism

limiting I c, such as depairing in a single crystal sample, or perhaps tunnelling

through grain boundaries in a polycrystalline sample. In the presence of a

magnetic field, single crystal high temperature superconducting (HTS) samples

have been shown to exhibit flux creep I, while, in polycrystalline samples a

variety of effects ranging from weak link limited I c behavior at low magnetic

fields to flux flow limited I c behavior in high magnetic fields 2 have been

©1989 Plenum Publishing Corporation. Reprin_ wi_permission, _omConference on Superconducfivi_and Applications,

3rd, 1989.
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observed. Implicit in any of these Ic m_asureme**ts is some crit=_ion for the

definition of Ic. The selection of a criterion for Ic has been particularly

difficult in the HTS materials because, in many instances, the resistive tran-

sition is not sharp. Several attempts to standardize the criteria for Ic in

the presence of a magnetic field have been proposed 3'4. However, for thin

films in zero magnetic field, a constant field criterion ranging from 0.i _Vlmm

to i _Vlmm is widely used. While this criterion may be satisfactory for epi-

taxial thin films, where the critical supercurrent density, Jc, is of the order

of 106 Alcm 2 at 77 K and the transition is sharp, the meaning of an Ic obtained

in this way for polycrystalline films is not clear, owing to the broadness of

the resistive transition in these films. The lack of a consensus on the tem-

perature dependence of Ic, and in particular, the exponent in the expression

(I-T/Tc)n (1.5 ! n _ 2.0), could be symptomatic of the arbitrariness of an Ic

obtained from a constant voltage criterion 5'6'7'_ While the various exponents

reported for the temperature dependence of Ic may relate in some way to the

microstructure in the films, we believe that one must first understand the

mechanism responsible for the transition in order for the measured Ic to have

meaning.

To our knowledge, only one attempt has been made to understand the re-

sistive transition in HTS polycrystalline films. This was the work of England

et al. 9, where they suggested that the films underwent a phase locking tran-

sition similar to that found in compacted polycrystalline Ta samples I°. Within

this model, the phase, 8 i, of the wave function of each of the grains is uncor-

related from grain to grain when T > Tc (To being defined at R = 0). At T c, the

phase difference, 8 i - 8j, between the neighboring grains becomes fixed because

the thermal fluctuations (ksT c) are exceeded by the Josephson coupling energy

(hic/2e). Here ic is the intergrain critical current. The strongest evidence

for this mechanism in polycrystalline HTS films came from the I-V data at T c.

where it was shown that V(T c) = 12 . The quadratic dependence of V on I is a

prediction of the phase locking model I°.

Recently the resistive transition of sintered Y-Ba-Cu-O wires in a magnetic

field has been modeled by Evetts et al. 11 using extensions to the conventional

model given for superconducting multifilamentary composites 12. The extended

model, hereafter referred to as the Weak Link Filament Array (WLFA) model,

treats the sample as an array of weak links with a normal distribution of Ic's.

Essential features of our I-V data are discussed in terms of this model. The

implications of this model with respect to defining Ic are then discussed.

Finally, by appealing to an empirical scaling law for the I-V data, we can
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deduce a temperature dependence for an I c which is representative of the weakest

links in the I c distribution.

EXPERIMENTAL

Sam__ Preparation

The films were prepared by sequential evaporation of Cu, Y, and BaF 2 onto

(i00) SrTiO 3. The films had a superstructure period of three, for a total of

twelve layers, and a nominal thickness of 1 _m prior to annealing. Details of

the deposition parameters and annealing have been published elsewhere 13. Scann-

ing electron micrographs of the films showed rectangular shaped grains with

dimensions of 0.3 _m X 1.0 _m having no epitaxy with the substrate. X-ray

diffraction analysis of the films indicated a polycrystalline nature with some

a-axis texturing, as well as the presence of BaCuO 2 and Y20_ phases. Electrical

contact to the films was made by depositing a 1 _m layer of Ag through a shadow

mask, resulting in four equally spaced 0.i cm wide strips traversing the short

dimension (_ 0.3 cm) of the sample. The contacts were subsequently annealed

in dry O 2 at 500 ° C for approximately two hours resulting in contact resistances

of i0 _ or less. Wires were then attached to the Ag strips via In-soldering.

Electrical Transport Measurement

Transport measurements in low magnetic fields (0 - 70 Oe) were made in a

4He closed cycle refrigerator with an externally mounted Cu wire Hemholtz coil

around the sample chamber. The samples were attached to an OFHC copper holder

and housed in an OFHC copper radiation shield. Cooling of the assembly was done

by convection through 1 arm (STP) of 4He gas to the refrigerator cold head

(_ 16 K). The sample temperature was determined by a Si diode which is epox-

ted into the sample holder, and has a rated accuracy of i 0.25 K over the tem-

perature interval of the measurements.

All the transport measurements discussed below were made using the con-

ventional four-probe method. The T c measurement of the films was made with a

typical measuring current density of 0.2 A/cm _ and a voltage sensitivity of

approximately i0 nV. This voltage sensitivity was obtained using a nano-

voltmeter in conjunction with signal averaging.
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TRANSPORT DATA AND DISCUSSION

Nine samples were measured, but we will present detailed results on one

typical film. A common feature of the films is that they have a zero resistance

temperature, T c, in the range 60 K - 70 K. The films exhibit a metallic nature

above the onset temperature of 90K but the resistance is not linear in tem-

perature, presumably because of the various grain orientations and presence of

other phases.

I-V data, obtained at six different temperatures, is displayed in Fig. i.

The T¢ of this film was 62.3 K. The upper and lower horizontal dashed lines

in Fig. i represent I c voltage criteria of 2.5 _V/mm and 0.25 _V/mm, respect-

ively. A vertical line drawn from the intersection of one these lines with the

I-V data yields a value for I c. At 20 K the two criteria yield essentially the

same I c while at 58 K they yield numbers differing by a factor of two. Obvious-

ly, an important parameter in defining I c is the logarithmic derivative

dLog(V)IdLog(I) commonly referred to as the n value of the resistive transition.

The smaller the n value at the chosen voltage criterion the more sensitive I c

is to the voltage criterion. Because the n value is temperature dependent and

approaches one at T c, it is inevitable that this type of criterion will give

I c a weaker temperature dependence the nearer one gets to T c. This effect is
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demonstrated in the I c vs. I-T/T c characteristic shown in Fig. 2. The upperfour
a

sets of I c data in Fig. 2 were obtained using different voltage criteria. The

solid lines are guides to the eye. The lowest line in Fig. 2 was obtained

from a data fitting procedure and will be described later. Notice that the

upper four data sets are straight lines at the low temperature end of the graph

with a slope of z 2. The data show a departure from linear behavior at diff-

erent temperatures depending upon the voltage criterion. One final note with

regard to the constant voltage criterion concerns the lowest meaningful Ic

measurement. To be self consistent with the Tc measurement the Ic data must

be greater than or equal to Vc/R c, where R c is the smallest detectable resistance

in the T c measurement and Vc is the voltage criterion used in the I¢ measurement.

The upper and lower horizontal dashed lines in Fig. 2 represent the lowest self

consistent values of Ic for the Ic voltage criteria of 2.5 #V/mm and 0.25 #V/mm,

respectively. Failure to make the T¢ and Ic measurements consistent with one

another may result in assignment of Ic values to very resistive samples 14.

Regardless of the Ic criterion, one must first understand the nature of the

resistive transition before one can attach any physical significance, such as

tunneling, to Ic measurements on polycrystalline HTS films.
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It has long been recognized that the b[oad resistive transitiuns into the

flux flow state in type-II superconductors can be explained in terms of the

variation in the local I c along the sample length, where the flux-flow voltage

is determined by that fraction of material whose I c is lower than the applied

current 15'16 The I-V characteristic is then determined by

I i

o i.,

(i)

where f(ic), p, and A are the critical current distribution function, the flux-

flow resistivity, and the cross-sectional area, respectively. The lower limit,

i=., on the second integral in Eq. 1 is the smallest ic in the distribution.

In type-II multifilamentary composites the transition into the flux-flow

state is broad as a result of a distribution of localized constrictions along

the individual filaments. For such structures the empirical relation V = I n

seems to characterize the resistive transition quite well. Recently a theo-

retical understanding of this relation was obtained by Plummet and Evetts _2 by

assuming the constrictions were normally distributed. The calculations werc

made using Eq. 1 and were based on either independent filaments or nearest

neighbor coupling. There are three important results which apply for either

limit: the scaling law V = I n is a natural consequence of a normal distribution

of inhomogeneities; the n value is proportional to (<Ic>/_) s/3 where <Ic> and

are the mean critical current and the width of the distribution, respectively;

and the measured Ic, obtained by a constant voltage criterion, will increasingly

underestimate <Ic> as the n value decreases.

Recently, Evetts n has been successful in qualitatively explaining the

resistive transition of sintered Y-Ba-Cu-O wires in a magnetic field using the

WLFA model. The WLFA model is an extension of the independent filament model

to include long range coupling and the tunnelling nature of the weak links.

In the WLFA model, the conductor geometry is essentially a multiply connected

weak link network. However, in low density samples near the percolation

threshold, there are many junctions in series between parallel interconnections

and one has, effectively, an array of independent filaments, in complete analogy

to the multifilamentary composite system. If a normal distribution of junction

Ic's is assumed, n bears the same significance to <Ic> and a that it does in

the multifilamentary composite system.
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In the multiply connected limit of the WLFA mudel it i:. ,l_-.-I _ that there

is a length scale, A, in the direction perpendicular to the direction of applied

current, which is used to describe the degree to which junctions within A switch

to the normal state at the same current. For low values of magnetic field,

temperature, and current the network is isotropic and A extends across the

entire sample. If M represents the number of connected junctions within A, then

it is argued that the n value is increased by a factor qM, as compared to the

single filament result, and the effective width of the normal distribution

becomes 6[v_. In the WLFA model A falls with increasing current since larger

applied currents require larger transverse balancing currents which in turn

increase the probability that the transverse junctions will be broken. The re-

duction in A manifests itself as a current dependent reduction of the n value,

a result which is qualitatively different from multifilamentary composite sys-

tems where n is independent of the current. At this point we caution the reader

that when the junctions are multiply connected Eq. i no longer applies, and

one must resort to numerical techniques Ix in order to obtain an I-V relation.

Referring once again to Fig. i, we believe that the I-V data qualitatively

exhibits the main features of the WLFA model. These features are: the larger

the n value, the larger the current required to drive the film normal, and at

! I , | i
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Fig. 3 Logarithmic derivative of the I-V data

for a sequence of temperatures near Tc. From

top to bottom: 54 K, 56 K, 58 K, 60 K, 61 K,

62 K, and 63 K.
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a given temperature, the n value falls monotonically with increasing current.

In addition, the I-V data shows evidence near T c that the zihns are nearly in

the independent filament limit, i.e. that the films are made up of independent

chains of weak links. If one looks closely at the low voltage portion Of the

I-V characteristic for the two left most curves, a tail in the data is eviden£.

The data designated by the open circles was obtained at T c and the left most

data about 1 K higher. To make the tail more prevalent we plot the n value

against Log(I) in Fig. 3 for seven different temperatures spaced i K apart, with

£he lowest temperature being at the top of the graph. It is evident that the

tail appears very abruptly within approximately 1 K of the T c Value determined

in the resistivity measurement. In the experiments of Evetts et al. 11, where

the magnetic field was varied and the temperature held constant, the same fea-

ture was observed to appear suddenly at a field of 2 mT for sintered

Y-Ba-Cu-O wires immersed in LN 2. An obvious explanation for the tail is that

the measured voltage contains an ohmic component and a nonlinear component.

The ohmic component could be a result of tunnel junctions, which have been

driven normal, in series with the nonlinear component from the remaining portion

of the weak link connected filaments. The fact that an ohmic component of the

voltage exists near T c implies that the weak links are not multiply connected.

If the junction array was multiply connected there would always be a super-

conducting path across the sample and the ohmic contribution from the normal

0 ! i i ,

24

18
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6

0

v

20 30 40 50 60

Temperature (K)

Fig. 4 Resistive transition n value against

temperature obtained using different criteria.

From top to bottom: 0.4 _V, 4 _V, and 40 _V.
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junctions would not be visible.

An implication of the WLFA model on the measurement of the intergranular

critical current is that the measured I c is nearly equal to <Ic> at any given

voltage criterion provided that the n value at the voltage criterion is large.

However, when n becomes small one tends to underestimate <Ic> at any given

voltage criterion. The latter point indicates that the I-V curves are being

controlled by the weakest links, a result also deduced from magnetic field

measurements 2. In WLFA model, or more specifically, if the I-V characteristic

results from switching of the weakest links which have a statistical distri-

bution, we expect the temperature dependence of Ic, as determined using a con-

stant field criterion, to be a convolution of the junction and statistical

distribution temperature dependencies, casting doubt on interpretations of the

temperature dependence based solely on the tunnelling model.

Continuing under the assumption that n is determined by <Ic> and _, we

plot in Fig. 4 the n value vs. temperature at three different voltage criteria

spanning two orders of magnitude. The solid lines are guides to the eye. For

large n values the dependence of n with temperature is of a nonlinear nature,

while the small n values show a more or less linear temperature dependence.

When n is large the I c distribution is sharp and we expect that many weak links

will be broken simultaneously resulting in a rapid reduction of n with increas-

ing temperature. Small n values indicate a broad Ic distribution therefore few

weak links switch co-operatively and n has a weaker temperature dependence.

Although the WLFA model provides no analytical expression for the l-V

characteristic, and the temperature dependence of Ic obtained using a constant

voltage criterion is open to question in light of a statistical interpretation

of the I-V data, we have been very successful in obtaining the temperature

dependance of I c by appealing to the empirical relation V = A(I-I¢)', first

applied to such films by England, et al. 9. In this relation Ic and m are tem-

perature dependent, and m was found to vary continuously from approximately

m = 3 at low temperature to m(T c) = 2.2 ± 0.i, and finally to m = i at 90 K.

This empirical relation has been applied with similar success on both T1 and

Bi films v'8 to describe the I-V data. We also find that the I-V characteristic

of our films is reasonably described by this relation. In Fig. 5 we show the

results of a least-squares fit of the data from Fig. i to the equation

V = A(l-lc)'. The solid lines represent the least-squares fit at each temper-

ature. In Fig. 6 we show the temperature dependence of the exponent, m, de-

termined from the least-squares fit for the entire range of temperatures in

which the I-V data were obtained. After performing least-squares fits on five
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such films we find that the value of m in the low temperature limit,

m(20 K) = 3.13 ± 0.05 is determined with far more confidence than

m(Tc) = 1.90 ± 0.28. It would seem that this is a natural consequence of the

fact that (dm/dT)20 K << (dm/dT)Tc. The Ic data of Fig. 5 are plotted in Fig. i

2 and are denoted with a + symbol. This fitted data shows a simple power law

behavior, with an exponent of 2.22, for all temperatures. The power law tem-

perature dependence is seen at low temperatures in the upper four I¢ data sets

where the constant voltage criterion is expected to provide a more accurate

value for Ic. The temperature dependence of Ic, deduced from the least-squares

fitting procedure, on three separate films is shown in Fig. 7. The slope of

the lines is 2.20 i 0.05. The fit in Fig. 7 illustrates two points. The first

point is that the temperature dependence is the same even for films whose Jc's

differ by more than an order of magnitude, and second, that the power law fits

the data from near Tc down to the lowest temperature measured (20 K). If one

accepts that the I-V characteristic is controlled by a distribution of weak

links, as described by the WLFA model, then the Ic obtained from fitting the

I-V data to V = (l-lc)m is characteristic of the weakest links in the distri-

bution. It is not clear whether the (1-T/Tc)2 dependence of Ic, deduced from

V = (l-lc) m, is indicative of S-N-S tunnelling I_. In other words, the tem-

perature dependence of the Ic distribution may be admixed with the weak link
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temperature dependence. In fact, what is puzzling about the (I-T/Tc)2 depen-

dence of Ic is the wide range of temperatures over which it fits the data, an

observation which has been made in TI- and Bi- based HTS films as well 7'8. In

any type of tunnelling model, whether it is S-N-S, S-l-N-S, or S-l-S, one ex-

pects to see a saturation at low temperatures because the energy gap and the

decay length both become independent of temperature for T ! 0.5T c. Our mea-

surements are made down to T = 0.2T c and still show no evidence of saturation

in the Ic data. One other possibility is that there is a distribution of Tc's

in the material, but again, it is not clear what type of a temperature depen-

dence in Ic one is expected to observe from such an effect.
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CONCLUSIONS
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Fig. 7 Jc vs. (I-T/T c) for three films. In

each case Jc was obtained from a least-squares

fit of the I-V data to V = A(I-Ic)'. The best

fit straight lines through the data have a

slope of 2.2.

We have shown that the I-V characteristics of the polycrystalline HTS films

are qualitatively explained within the Weak Link Filament Array model (WLFA).

In addition, our films show evidence of being in the filamentary limit of the

WLFA model near Tc. The I-V data is well described by the empirical relation

V _ (l-le)" for the temperature range 20 K _ T _ 90 K. From this empirical

I-V relation we find that Ic = (l-TITc)2-2 , and that this temperature dependence

is characteristic of the weaker links in the Ic distribution.
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The conductivity aN in the normal state and the real and imaginary, parts of the conductivity in the superconducting state
o_ = a t --in: of two Bi-Sr-Ca-Cu-O thin films ( ~ 5000 ._) are reported. The films were deposited on LaAIO3 and MgO substrate
by co-evaporation and have a transition temperature Tcof 80 K. The microwave conductivities were obtained from power trans-
mission data, using a two-fluid model. Values for _rr_of 4.1 × 104and 6.3× 10"S/m at room temperature were obtained for the
films on LaAIO_ and MgO at 28.8 GHz, respectively. Below T¢, values of at=5.8× 104and a:= 1.4x 105S/m for the film on
LaAIO_ and at = 7.3 × 104and a,.= 7.7X 104S/m for the film on MgO were obtained at 28.8 GHz. For the film on LaAIO3,a:
decreased with increasing frequency, while for the one deposited on ,'vlgO,the behavior was completely opposite. The temperature
dependence of the conductivity, both above and below T,, was the same for both films. From a:, values for the magnetic penetra-
tion depth _.or 5.6 and 7.6 lamat 75 K were determined for the films on LaAIO3and MgO, respectively.

1. Introduction

The discovery of high temperature superconduc-

tors [ 1,2 ] has prompted efforts to develop their mi-

crowave applications. The low microwave and mil-

limeter wave losses of these new superconducting

oxides make them very attractive for the develop-

ment of voltage dividers, resonators, phase shifters,

and other high frequency analog devices. Microwave

studies are of major importance in the view of the
limitations of other traditional probes, such as spe-
cific heat and ultrasonic attenuation. These are

strongly influenced by the phonon system which is

heavily populated near the transition temperatures

of these new superconductors [ 3 ]. In millimeter and
microwave characterization, the parameter most

often measured has been the surface resistance [3-

6]. Less frequently, results have been reported for

the complex conductivity [7-9]. A considerable
amount of work in this area has been carried out in

m 0921-4534/90/$03.50 © ElsevierScience Publishers B.V.
( Noah-Holland )

the Y-Ba-Cu-O superconducting oxide [3-6,9 ], and

now similar measurements are underway in the re-

cently discovered Bi-Sr-Ca-Cu-O [ 10] and TI-Ba-

Ca-Cu-O [1 1 ] superconductors. Although milli-
meter wave studies of Y-Ba-Cu-O thin films have

been performed in the frequency range from 26.5 to

40.0 GHz [ 12], to the best ofour knowledge no sim-

ilar studies has been performed for Bi-Sr-Ca-Cu-O

at these frequencies.
In this communication we are reporting our re-

sulting of the characterization of Bi-Sr-Ca-CuLO

thin films at frequencies from 26.5 to 40.0 Ghz. in

terms of the power transmitted through the films, as-

suming a two-fluid model. Values for the normal and

complex conductivities, above and below Tc respec-
tively, have been obtained along with values for the

magnetic penetration depth as a function of tem-

perature and frequency.
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2. Analysis

Since a complete understanding of the nature of
superconductivity in the high-T( superconductors is
still rather limited, we have assumed that their su-

perconducting state can be described in terms of a
two-fluid model. The attributes of simplicity and

success in yielding reasonably good estimates of the
microwave properties of metallic superconductors for

the case h(u<< E,_ o [ 13] and also for Y-Ba-Cu-O at

microwave frequencies [ 14,15 ] make this model an

appropriate one for describing some of the phenom-
enological aspects of the behavior of the Bi-Sr-Ca-

Cu-O superconductors. In this model the complex

conductivity is o-*= a_ - ia:, with

at=fret', o'2 = o'¢( l - t4)/_r. (1)

Here, a¢ is the normal conductivity at T=To _o= 2rtf

is the angular frequency, t is the reduced tempera-
ture TITs, and r is the mean carrier scattering time.

Thus, to determine either a_ or a2 we need to know

the transition temperature T¢ and the value of tr¢.

Furthermore, the value of r must be known before-

hand if a,_ is to be obtained from eq. (1).

In order to determine the normal and complex

eonductivities of the films under study, we have used

the method applied by Gtover and Tinkham [ 16 ].

In this method, the transmission of a normally in-

cident plane wave through a film of thickness d

( <<wavelength or skin depth) deposited on a sub-
strate of thickness I and index of refraction n is mea-

sured. Mathematically, the transmitted power can be

expressed as

8n 2

P= A +Bcos 2kl+ Csin 2kl' (2)

where

A=n4+6n"+ 1 +2(3n-'+ l)g

+ (n2+ 1) (b"+g'-) ,

B=2(n 2- l)g- (n-'- I)-'+ (n:- l)(bZ+g ') ,

C=2(n 2- l)nb,

k=noJ/c ,

and

y=g- ib= YZ_ = (G-iB)Zc = (a) -itr:)d Z_

is the dimensionless complex admittance per square
Of the film in units of the characteristic admittance

Z_- t of the waveguide (where Z¢ = Zo/

x/l-(.fdf)-', zo=377 f), mks; Zo=4zt/c, cgs;

f_ = cutoff frequency of the TE mode waveguide, and

fis the operational frequency).

In the normal state, eq. (2) becomes

8n-'
PN = tr_d'-Z_Q+trNdZ¢R + J' (3)

where

aN = normal conductivity,

Q= (n"+ 1) + (n 2- 1)cos 2kl,

R=2(3n:+ I)+2(n 2- l)cos 2kl,

J=n_+6n2+ 1 - (n'-- 1 )cos 2kl.

The normal state conductivity of the film can be ex-

pressed conveniently in terms of the power trans-
mission as

- RPN +-x/ ( RPN ) 2--4QPN (JP._ -- 8n 2)

aN = 2QPNdZ¢ '

(4)

where only the expressior_ with the +sign has phys-

ical relevance. It is convenient to use the ratio Psi

PN in the analysis of the superconducting state, where

Ps refers to the transmission in the superconducting

state given by eq. (2). Thus,

Ps (aNdZ¢)2Q+aNdZc R+J
(5)

PN - A + B cos 2k1+ C sin 2kl "

Solving eq. (5) for the imaginary part a,_of the con-

ductivity and using the value of aN at T= T¢ we have
2

°:o [(,)-,;
_r_dZo

o : l}+ l + _ + (acdzo): ' (6)

where a¢ and Pc are the conductivity and the trans-
missivity at T= To, and

a= (t/D) [6n-'+2 +2(n 2- 1)cos 2kl] ,
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,6'= (l/D) [- 2n(n-'- I )sin 2kl] ,

"t= (l/D) [n_+6n-'+ I - (n'-+ 1 )5 cos 2kl] ,

D=n'-+ I + (n-'- l)cos 2kl.

Thus, from the relation for at in eq. ( I ), and eq. (6),

the real and imaginary parts of the conductivity can
be determined.

The magnetic penetration depth 2 can be obtained

from London's equation

_.= ( I I_o cog_,),/2, (7)

where #o is the permeability of free space. The mag-

netic penetration depth can then be written in terms

of the superfluid density _ as

2= (m*/#o._;e'-) , (8)

where m* is the effective mass and e is the charge of

the charge carriers. From the two-fluid model

-4 _l_t 4 ' (9)

where, v'=. _ ÷. I,;"is the total number of carriers per

unit volume, we have

( rn* "_' /2
;'.= _ (1-t4)-I:z=20(l-t4) -I/z\Uo-_ e d

From this expression the zero-temperature penetra-

tion depth 20 can be obtained. Note that since eq.

(8) applies to homogeneous superconductors, the

values of 2o obtained in this way are larger than those

that would be obtained for homogeneous films.

Our measurements were made on Bi,_SrzCaLCuzOx
superconducting films of approximately 5000 ,_,

thickness deposited on MgO and LaA103 substrates.
The lVlgO and LaA103 substrates were 0.113 and

0.025 cm thick, respectively. The films were depos-

ited by co-evaporation in an oxygen atmosphere of

5:< 10 -5 Torr. Then the film were post annealed at

725 _C in a wet oxygen atmosphere for 30 to 60 min.

followed by an anneal at 850°C for a period of 5 to

25 rain. A more detailed explanation of the depo-

sition technique is given in ref. [ 17 ]. The Tc for both

films was approximately 80 K.
The power transmission measurements were made

using a Hewlett-Packard model HP-8510 automatic

network analyzer connected to a modified helium gas

closed cycle reffigeratorby Ka-band (26.5 to 40.0

GHz) waveguides. Inside the vacuum chamber of

the refrigerator, the sample was clamped between two

waveguide flanges which were in direct contact with

the cold head of the refrigerator. The power trans-

mitted through the sample was obtained by meas-

uring the trasmission scattering parameter. The tem-

perature gradient between the top and the bottom of

the sample was estimated to be less than 1 K at 90

K. The system was properly calibrated with short,

open, loads, and through calibration with short, open.

loads, and through calibration standards before the

beginning of each measurement cycle.

3. Results and discussion

The Bi,Sr.,Ca_Cu:O., films deposited on LaAIO3

and IvlgO substrates were inspected with a scanning

electron microscope (SEM) and analyzed by X-ray
diffraction. The surface morphology of the film de-

posited on MgO is smoother than for the one de-

posited on kaAIO3, as can be seen from fig. 1. The

voids seen in the SEM picture for the film deposited

on the MgO were probably caused by hydrol?zing

the CaF_, and SrF2 during the first step of the an-

healing. The hydrolyzation produces HF gas. which
(10) probably caused the voids. The same effect had been

observed in sequentially evaporated YBa,_Cu:Or_a

superconducting films [ 18]. The films on both sub-
strates are c-axis oriented. This can be observed from

both the SEM pictures in fig. 1 and the X-ray dif-

fraction data in fig. 2. One must conclude from the

ratio of the (OOlm) and (OOnp) peaks in the X-ray

diffraction pattern that the BiaSrtCa_Cu_,O, film on

MgO is better c-axis aligned than the one on LaAIO3.

Figures 3 and 4 show the transmitted power versus
temperature plots, at three different frequencies, for

the films considered in this study. The beginning of

the superconducting transition is observed clearly in

both films and for the three frequencies shown in the

figures. Note that the starting point of this transition

for both films remains approximately at the same

temperature for the frequencies represented, sug-

gesting that, at least for the frequencies and temper-
ature intervals considered here, the frequency de-

pendence of the starting point lbr the normal to the

superconducting state transition is rather small, it is
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Fig.I.Scanning electronrnicrographfor Bi2Sr.,CalCu:Ox thin films(5000 _ )on I..aAIO3(a) and MgO (b) substrates.The bar indicates

10_m.

also observed that the temperature at which the nor-

mal to the superconducting state transition begins

( ~90 K) does not coincide with the transition tem-

perature corresponding to zero DC resistance ( ~ 80

K). This behavior is in agreement with the rather

broad resistive transition (ATe~ 10 K) typical of this

superconducting system, and it appears to indicate

that within this region the sample is in a mixed state

where all the superconducting clusters are not inter-
connected, as previous]y suggested by other re-

searchers [ 19]. An interesting feature of the power

transmission through the films is its frequency de-

pendence. From fig. 3 it is observed that the power

transmitted through the film on LaAlOa increases

with increasing frequency, while the opposite behav-

ior is observed for the film on MgO. Within the fie-
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films are the Bi,.SrzCa_Cu:O, (2212) phase with the c-axis per-
pendicular to the LaAIO_ and MgO substrates.

quency range measured there is no frequency de-

pendence in the power transmitted through bare

LaAIO3 and MgO substrates. This suggests that the

observed frequency dependence is a film-substrate

combination effect. No concrete explanation for this

behavior is available yet, and funher investigations

are underway.

Figures 5 and 6 show the real and imaginary con-

ductivities, gr and g2, respectively, for both films at

28.8 GHz. The values for the normal conductivities

at room temperature for the films on MgO and

LaAIO3 are 6.3)< 104 and 4. l X l04 S/m, respee-

-to
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Fig. 3. Transmitted power vs. temperature for a co-evaporated
Bi,.Sr.,CaiCu:O, thin film (5000 .-_) on LaAIO3.
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Fig. 4. Transmitted power vs. temperature for a co-evaporated
Bi:Sr:CatCu:O, thin film (5000 ._.) on MgO.

tively. Both values are lower than estimated values

for the normal direct current conductivity at room

temperature ( - 2.0 x [0 _ S/m) reported for ve_' high

quality Bi:Sr.,Ca_Cu20, superconducting films de-

posited on MgO by sequential electron beam evap-

oration [20]. No data within the normal to super-

conducting state transition region, clearly identified

in fig. 5. were considered in our analysis. Although

studies of" this region had been done assuming dif-

ferent models, such as the presence of randomly di-

luted Josephson junctions [19], there is no simple

physical model to account for the distribution or

normal and superconducting carriers in this region,

a fact that makes the determination of. the hormal
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conductivity down to Tc very cumbersome. There-

fore, using the same approach applied in a previous

work [ 12 ], we have considered the critical conduc-

tivity to he the conductivity at or just above the on-
set temperature. Since the two-fluid model assumes

that all the regions of the sample become supercon-

ducting at once, the values of a_ obtained using
r]c=ao,,_, in eq. (l) will be smaller than those ob-

tained from at=a=, r,. How much these values differ

will depend upon the width AT of the transition re-

gion and the overall quality of the superconducting

properties of the film. For comparison purposes, an

extrapolation of a, above To,,ct to T_ was done. This

resulted in a ac extrapolated 6.0 and 7.2 percent

greater than aonse, for the film on MgO and LaAIO3,

respectively. It is important to realize that this dis-

crepancy will become Smaller for films in which To,.

,_, is very close to T_. Using eq. (1), values of
tT_=7.3× 104 and o',=5.9× l0 s S/m were obtained

for the film on MgO at 75 and 40 K, respectively.

For the film on LaA10_ we obtained a_=5.8× l0"

and a_=4.7x 105 S/m at 75 and 40 K, respectively.

Figure 6 shows the imaginary pan of the complex

conductivity at 28.8 GHz for the two films under

consideration. Observe that the values of a: corre-

sponding to the film onLaAJO3 are greater than those

of the film on MgO. This feature, together with the

obse_'ation from fig. 5 that a_ for the film on MgO

is greater than that for the film on LaAIO3, appears

to indicate that at this frequency the film on LaAIO3
has better superconducting properties than the one

on MgO. This raises an interesting observation that

despite the film on LaAIO3 being less c-axis oriented

than the film on MgO, as concluded from the X-ray

diffraction pattern, it still shows a higher degree of

superconductivity. Therefore, the deposition of highly

c-axis oriented Bi2Sr2Ca_Cu:O_ on LaAI03 promises

to yield films with excellent superconducting

properties.

The imaginary part of the conductivity increases

with decreasing temperature, a behavior expected

from the two fluid model approximation. Values of

1.4× l05 and 3.3× 105 S/m are obtained for the film

on LaA103 at 75 and 40 K, respectively. For the film

on MgO we obtained values of 7.7 × 104 and 1.2 × I05

S/m for the same temperatures mentioned above.

Using eq. (7) we found the magnetic penetration

depth ). for the film on LaAIO3 to be 5.6 and 3.7 tam

at 75 and 40 K, respectively. From the value of 2 at

40 K we found 20= 3.6 tam. For the film deposited

on MgO we found 2=7.6 tam at 75 K and 2=6.1 _tm

at 40 K, and a value of 2 o equal to 5.9 tam. The val-

ues of 2 obtained for both films are considerably

larger than the film's thickness, which implies a strong

interaction between the microwave field parallel to

the film surface and the substrate. The zero-temper-

ature penetration depths are also large in compari-
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sonwiththevaluesobtainedatthesamefrequencies
andtemperatureforlaserablatedYBa2Cu_OT_6su-
perconductingthinfilmsonLaAIO3andMgO[ 12].

Figures 7 to 10 show the real and imaginary con-

ductivities versus temperature at 31.5 and 34.9 GHz.

It can be seen that as the frequency increases so does

the imaginary part of the conductivity of the film on

MgO, while the imaginary part of the conductivity

for the film on LaAIO3 decreases with increasing fre-

quency. No significant change as a function of Ire-
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quency is observed for G,. Values for,;, of 3.7 and 3.9

gm were obtained for the film on LaA103 at 40 K
and at 31.5 and 34.9 GHz, respectively. For the film

deposited on MgO, ,l was equal to 5.4 and 4.7 gm for
the same temperature and frequencies.

4. Conclusions

Microwave conductivities of superconducting Bi-
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Sr-Ca-Cu-Othinfilmsatfrequencieswithin26.5to
40.0GHzandattemperaturesfrom25to300K were
determined.Theconductivities,aN and o'*=at--

ia:, corresponding to the normal and the supercon-

ducting state, respectively, were obtained in terms of

the transmitted power and a two-fluid model. The

results obtained suggest that, at least from the stand-

point of the complex conductivity and for the fre-

quency range considered, the film deposited on
LaAIO3 shows better superconducting properties than

the one deposited on MgO. Values for the magnetic
penetration depth, determined using the obtained

values of az, were more than five times the film

thicknesses, indicating a strong field substrate inter-

action in this frequency range. This aspect may be of

importance in the proper selection of film-substrate

combination for microwave devices operating in this
frequency range.
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ABSTRACT

There is great interest in the application of thin film

high temperature superconductors in high frequency electronic

circuits. A ring resonator provides a good test vehicle for

assessing the microwave losses in the superconductor and for

comparing films made by different techniques. Ring resonators

made of YBa2Cu307-x have been investigated on LaAI03 substrates.

The superconducting thin films were deposited by sequential

electron beam evaporation of Cu, Y, and BaF2 with a post

anneal. Patterning of the superconducting film was done using

negative photolithography. A ring resonator was also

fabricated from a thin gold film as a control. Both resonators

had a gold ground plane on the backside of the substrate. The

ring resonators' reflection coefficients were measured as a

function of frequency from 33 to 37 GHz at temperatures ranging
from 20 K to 68 K. The resonator exhibited two resonances

which were at 34.5 and 35.7 GHz at 68 K. The resonant

frequencies increased with decreasing temperature. The

magnitude of the reflection coefficients is used in the

calculation of the unloaded Q-values. The performance of the

evaporated and gold resonator are compared with the performance

of a laser ablated YBa2Cu307-x resonator. The causes of the

double resonance are discussed.

INTRODUCTION

The advent of high temperature superconductors has drawn

attention towards the possibilities of using thin films

superconductors in microwave circuits. Several measurement

techniques have been employed for characterization of the films

including high Q cavities [I], stripline resonators [2] and
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ring resonators [3]. The surface resistance of the the

YBa2Cu307-x superconductor has been investigated on bulk

samples, thin films and single crystals [4-6]. In this paper

we employ a ring resonator to study the microwave properties of

YBa2Cu307-8 fabricated by multi-layer sequential evaporation

with post-anneal.

DEPOSITION AND ANNEAL PROCEDURES

Electron beam evaporation was used for deposition of Cu,

Y, and BaF2 on LaAIO3. The materials were deposited in that

order which was repeated four times for a total of twelve

layers. The thicknesses of the individual layers were 507

angstroms for Cu, 473 angstroms for Y, and 1704 angstroms for

BaF2. The details of the deposition process have been

previously reported [7,8].

The multilayer stack was subjected to a post anneal to

assist in the formation of the proper phase of YBa2Cu307-x. The

samples were inserted into a preheated furnace using a slow

push. They were annealed at 900 oC for 45 minutes in oxygen

bubbled through room temperature water. The temperature was

then ramped down to 450 °C where it was held for six hours.

Finally, the temperature was ramped down to room temperature.

The ambient was dry oxygen during all stages except the high

temperature anneal. This procedure resulted in a one micron

thick superconducting thin film with an onset temperature of 93

K and a critical temperature of 85 K.

PATTERNING PROCEDURE

The ring resonator was patterned using negative

photolithography. KTI 752 photoresist was spun on at a rate of

4,000 rpm for 60 seconds which resulted the photoresist being

1.7 _m thick. The sample was soft baked at 95 °C for 25

minutes and exposed through a dark field mask for five seconds

with an illumination power density of 34.8 mW/cm 2. The

photoresist was developed for 2 minutes and 45 seconds in 802

developer and rinsed in ethanol. A one percent molar bromine
solution in ethanol was used for etching the thin film followed

by a 30 second rinse. Finally, the photoresist was removed in

SN-10 stripper.

Once the superconductor was patterned, a ground plane was

deposited on the back of the substrate using electron beam

evaporation. For adhesion, a 1400 angstrom titanium layer was

deposited before the one micron gold ground plane.

RESONATOR ANALYSIS

The following dimensions correspond to the resonator shown

in Figure i. H is the substrate thickness.

H - 254 microns

S - 36 microns

W - 143.3 microns

R - (rl + r2)/2 - 990 microns
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Figure I: Ring resonator.

The resonator was designed for 50 ohm transmission lines

with a resonant frequency of 30 GHz for the first harmonic. At

the time of the design, the dielectric constant for LaAIO3 was

reported to be 15. Since then a more recent value reported for
the dielectric constant is 21.9. This has resulted in a

characteristic impedance for this geometry 42.9 ohms. The

first harmonic was decreased below K-band. For this reason, we

measured at the second harmonic which had a resonant frequency
of 35.1 GHz at 25 K.

Microwave Testin_

Once fabricated the ring resonator was experimentally

tested using an HP 8510B network analyzer. The microwave test

setup was configured using waveguides. Thus, a waveguide to

microstrip transition was implemented using a cosine tapered
ridge transition [9].

0

u -i0

o

-15

_ -20

33 34 35 36 37

Frequency (GHz)

Figure 2: Magnitude of the reflection coefficient

for ring resonator's fabricated from gold and

YBa2Cu307- x at 30 K.
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The reflection coefficient for the resonators was measured as a

function of frequency at temperatures ranging from 20 K to 300

K using a CTI closed cycle cryogenic refrigerator. The

superconducting resonator was measured from 20 K to its

critical temperature. The resonant frequency superconducting
resonator was 35.1 GHz at 25 K. Figure 2 shows the magnitude

of the reflection coefficient for both the gold and the

superconducting resonator at approximately 30 K.

The superconducting resonator exhibited two resonant

valleys. Valley 1 matched the resonant frequency of the gold

resonator while valley 2 occurred at 36.1 GHz. As will be

discussed below, the occurrence of the second valley can be

caused by one section of the ring resonator having a larger

impedance than the rest of the ring.

Double Resonanc_ Modeli/l_

A transmission line model was implemented in Touchstone

[I0] to allow study of the double resonance. The resonator was

simulated using transmission lines to match the physical layout

and capacitors to model the gap. The capacitance values used

were calculated from empirical equations derived in reference

[ii]. The impedance was increased in a region corresponding to

three percent of the ring's circumference located closer to the
transmission end. The location of this section for our model

was 114 ° from the input. The impedance of this region was

increased from a single line with 42.9 ohms to two parallel
lines of 150 ohms each. This simulates a blister centered in

the ring's transmission line. Figure 3 presents the results

from this model.

0

-4
OA
-M

Ill
0 I1)

_ -i0

O'_

o

----o--- Touchstone Model

-20 , I , I , I i I ,

34.5 35.0 35.5 36.0 36.5 37.0

Frequency (GHz)

Figure 3: Modeled ring resonator with blister
centered in the transmission line. Impedance of the

lines around the blister were 150 ohms. Blister was

located 1/3 the way around the ring.

The resonant frequencies of the model match directly with

the resonant frequencies of the superconducting ring resonator.

The width of valley 1 is quite similar, but the width of valley

2 is smaller for the modeled resonator. The reflection

coefficient is much lower off resonance for the superconducting

resonator. The the depth of the valley's peaks could be
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altered by varying the position of the blister around the ring.

The position used for the calculation shown in Figure 3 agrees

with the location of a blistered region observed in the film of

the resonator. The separation of the two valleys could be

increased by increasing the impedance of the transmission lines

around the blister. The response of the model remained the

same for different number of transmission lines used within the

high impedance region as long as the parallel combination of

the characteristic impedances remained constant.

Resonant Frequency Shifts

The group velocity for a microstrip configuration with
superconducting transmission lines varies as a function of

temperature for temperatures less than the superconductor's

critical temperature. This corresponds directly to a change in

wavelength. Thus, the resonant frequency also varies as a

function of temperature. The group velocity for a

superconducting transmission line with a superconducting ground

plane is given by [12]

)]-112v -- _/eeff(f)c 1 + (kl/h) coth (tl/kl) + (k2/h)coth (t2/k 2

where 11 and tl are the transmission line's penetration depth

and thickness, respectively, and k2 and t2 are the ground

plane's penetration depth and thickness, respectively. If the

ground plane is a normal metal, the group velocity is reduced
to

V

c

_/eeff(f)

, o-I/2

Note that the first equation is general enough to accommodate

microstrip circuitry with superconductors of different

penetration depths for the transmission line and ground plane.

Figure 4 shows the calculated resonant frequency for a 0.7

micron thick film as a function of the temperature normalized

to the critical temperature. This graph shows three plots.

Two plots show the comparison of the resonant frequency with

two different penetration depths for a sample with a gold

ground plane and a superconducting resonator. The penetration

depths were chosen to be on each side of the values

experimentally determined by [13]. The third plot represented

by the open squares shows the resonant frequency as a function

of temperature for a sample with both the ground plane and the

resonator being superconducting. Replacing both the

transmission lines and the ground plane with a superconductor

will decrease the losses in the circuit if the superconductor

losses are lower than the gold losses. The resonant frequency

for a sample with both a superconducting transmission line and

a ground plane will exhibit a larger shift in the resonant

frequency as the temperature nears the critical temperature for

the superconducting film.
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Figure 4: Resonant frequency versus normalized

temperature for a 0.7 micron thick film. Different

penetration depths are shown as well as an example of

both ground plane and transmission lines being

superconductors.

The shift in the resonant frequency for the sequentially

evaporated superconducting ring resonator exhibited the same

shape as the theoretical predictions. The measured resonant

frequency as a function of temperature is given in Figure 5.

36.5

.. @ O • •

N 36.0

_9 @oe

u 35.5
C

_ W m W M

_ 35.0 m m mmam

34.5 | ! I

0 20 40 60 80

Temperature (K)

[] Valley 1

• Valley 2

Figure 5: Resonant frequency versus temperature for

the superconducting ring resonator. Both valleys are

represented.

An attempt was performed to try to match the theoretical

equations with the experimental data. The equations resulted

in a penetration depth that was much larger than the thickness

of the film. This is not reasonable since the film would no

longer be superconducting for a large penetration depth. A

possible explanation for the large penetration depth is due to

the film being granular. This may allow more penetration at

between grains.
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Unloaded O Calculation

The unloaded Q of the resonator can be extracted from the

reflection coefficient. The model used for the derivation of

the equation is a parallel RLC circuit with an ideal

transformer in parallel and a series input resistance [14].

This model is for an unterminated resonator. It was used since

the resonator was not loaded on the transmission side during
our testing.

The derivation of the

published in reference [14].

given by

QL =

equations presented here are

The loaded Q of a resonator is

fr

fl - f2

where fl and f2 are the half power points on each side of the

resonant frequency ft. The values for the half power levels

are calculated by

1 k' -
= +

piI2 [ k; + [a+ 11j

where _ is the coupling loss and k' is the effective coupling

coefficient. The coupling loss is calculated far off resonance

where the reflection coefficient (Fi) is nearly constant.

1 - F i

1 +F i

The effective coupling coefficient is the sum of the coupling

coefficient and the coupling loss. The coupling coefficient

can be easily calculated using the reflection coefficient (Fr)

at the resonant frequency. The coupling coefficient can be
calculated by

1 - F r I + F r
k = or k =

1 + F r 1 - F r

for the undercoupled and overcoupled cases, respectively.

The unloaded Q can be calculated from the loaded Q by

0o ,)o
The unloaded Q as a function of temperature is shown in

Figure 6. The unloaded Q for both valleys of the sequentially

evaporated resonator are shown.
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Figure 6: Unloaded Q versus temperature for the gold

ring and the superconducting ring. Both valleys are

shown for the superconducting ring.

The gold resonator had a larger unloaded Q than our

sequentially evaporated film. At lower temperatures the

difference between the unloaded Q values narrowed since the

superconducting resonator's unloaded Q increased faster then

the gold resonator's when compared to valley I.

Surface Resistance

The surface resistance of the ring resonator can be

extracted from the unloaded Q. The surface resistance is given

by [15]

RSS = RSAU B(C + D) _ QoAU

where RSA U is the surface resistance of gold, and QoAU and Qos

are the unloaded Q values of the gold resonator and the

superconducting resonator at the same temperature,

respectively. The constants B, C, and D are related to the

physical dimensions and are given in reference [15].

The surface resistance as a function of temperature for

both the gold and the sequentially evaporated films are shown

in Figure 7. For comparison a ring resonator was fabricated

from a film deposited by laser ablation [16]. The surface

resistance calculated for this film is also shown in Figure 7.

The graph shows that the sequentially evaporated film had

the highest surface resistance at all temperatures. The gold

film's surface resistance was about two-thirds the value of the

sequentially evaporated film at 25 K. The laser ablated film

had a surface resistance of approximately half that of gold at

temperatures less than 50 K. As the temperature neared the

critical temperature, the surface resistance of the laser

ablated film started to increase rapidly to a value larger than

that for gold at 70 K.
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Figure 7: Surface resistance versus temperature for

a gold resonator and two superconducting resonators.

The superconducting resonators were deposited using

different techniques. One was deposited by laser

ablation and one by sequential evaporation.

CONCLUSION

A sequentially evaporated YBa2Cu307_ x superconducting thin

film was patterned into a ring resonator using negative
photolithography. The ring resonators' reflection coefficients

were measured using an HP 8510B network analyzer as a function

of frequency from 33 to 37 GHz at temperatures ranging from 20
K to 68 K. The resonator exhibited two resonances which were

at 34.5 and 35.7 GHz at 68 K. The resonant frequencies

increased with decreasing temperature. The double resonance

could be explained using a model that allowed for a small

section of the ring resonator to have a larger impedance than

the rest of the ring resonator. The location of the high
impedance section in the model correlated well with the

iocation of a blistered region of the film in the resonator.

once the reflection coefficient data was taken, the unloaded Q

was extracted. The superconducting resonator was compared to a

gold resonator. The gold resonator had a higher unloaded Q

value at all temperatures. This translated into the gold

having a lower surface resistance than the sequentially

evaporated superconducting film. The surface resistance of the

gold was about two-thirds the surface resistance of the

sequentially evaporated superconducting film at 25 K. When

compared to the laser ablated film, the laser ablated film's

surface resistance was about one half that of gold for

temperatures less than 50 K.
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ABSTRncT

In this paper we report on the response of thin films of YBa2Cu O _ with• 3 7- .

either a very grainy or a smooth epitaxial morphology to visible radlation. SrTiO_

substrates were employed for both types of films. The grainy films were formed by

sequential multi-layer electron beam evaporation while the epitaxial films were

formed by laser ablation. Both films were patterned into "H" shaped detectors via a

negative photolithographic process employing a Br/ethanol etchant. The bridge

region of the "H" was 50_m_ wide. The patterned films formed by laser ablation and

sequential evaporation had critical temperatures of 74 K and 72 K respectivel_ _. The

bridge was current biased and illuminated with chopped He-Ne laser radiation and the

voltage developed in response to the illumination was measured. A signal was

detected only above the critical temperature and the peak of the response coincided

with the resistive transition for both types of films although the correspondence

was less exact for the grainy film. The details of the responses and their analysis

are presented.

i. INTRODUCTION

The discovery of high temperature superconductors has prompted a large amount

of research into potential applications. These include their use in detectors for

electromagnetic radiation over a wide range of frequencies, including optical

frequencies I-4 Much of the reported work attributes the observed photoresponse to

bolometric effects in which the film is heated by the incident radiation. Some

authors have attributed some of their observations, particularly for grainy films

with wide transitions, to non-bolometric phenomena but these interpretations have

not been universally accepted.

We report here our observations on the photoresponse of two different

YBa Cu O films to visible radiation. One film was epitaxial and had a smooth
2 "7-6

morphology while the other film had a mixed orientation to the substrate and was

quite grainy. Both of these films had comparable critical temperatures and

transition widths after patterning into test structures.

2. EXPERIMENTAL PROCEDURES

The sequentially evaporated films were deposited by electron beam evaporation.

Details on the formation of these films have been reported prevlouslyS,_but the

main parts of the process will be reviewed here. The films were formed from Cu, Y

and BaF 2 deposited in that order. Five layers of each were deposited for a total of
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fifteen layers. SrTiO_ substrates were used. Following deposition the films were

annealed in a hot wall tube furnace to form the superconductor. The samples were

slowly pushed into the preheated furnace over a flve minute period. They were

annealed at 900°C for 15 mln. The temperature was lowered to 450°C at -2°C/mln and

held there for 6 hr. Finally the temperature was lowered to room temperature at

approximately 2°C/min. The ambient was oxygen bubbled through room temperature

water during the high temperature anneal and dry oxygen at all other times. The

thickness of the sequentially evaporated film for these experiments was 0.5 _m.

Films produced by this procedure typically have a critical temperature of 85 K, a
granular morphology with a "basket weave" texture and mixed orientation.

L

The epitaxial film was formed by laser ablation from a YBa2Cu3Ov_ 6 target 7.
During deposition the substrate was heated to 630°C and the chauhber pressure was

170 retort oxygen. The wavelength of the laser was 248 nm, the energy density was
1.5 J/cm2/pulse and the pulse rate was 4 per second. The laser beam was incident on

the target at 15 ° from the normal. After deposition the oxygen pressure was raised

to 1 arm and the temperature was lowered to 450 °C at -2"C/min, it was held there

for 2 hr and then slowly lowered to 250°C. The f_[m had a thickness of approxi-
mately 0.2 _m and a smooth morphology.

For the photoresponse measurements the films were patterned into an "H" shaped

detector. The photolithographic procedure employed KTI 752 negative photoresist.

The films were etched in 1:100 bromine:ethanol (molar). The bridge region of the
"H" was 50 _nn wide.

Electrical contacts were made to each of the four legs of the "H." The

metalization for the contacts consisted of 0.7 _m of Ag and 0.3 pm of Au. The Au

top layer was used to facilitate wire bonding. The contacts were patterned through

a chlorobenzene assisted lift-off procedure employing positive photoresist.

Following deposition, the contacts were annealed at 500°C in oxygen s .

Figure i. Scanning electron micrograph of a detector fabricated from a

sequentially evaporated superconducting film.
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Figure 1 shows a scanning electron micrograph of a detector made from the

sequentially evaporated film. The darkest region is the superconductor. The four

contacts are also visible on the legs of the "S". Also evident in this mlcrograph

are many small blisters in the film. These blisters occasionally form on the

sequentially evaporated films during the annealing procedure. They do not occur on

all samples formed with nominally the same procedures but unfortunately did form on

this sample. Electrical measurements showed continuity and measurements on this

sample were carried out in spite of these defects. Figure 2 is a higher magnifica-

tion micrograph of the bridge region of the same detector. The granular basket

weave morphology is apparent. Notice that the basket weave structure is not

apparent on the blister, where the film has come out of contact with the substrate.

Figure 2. Higher magnification scanning electron micrograph of the bridge

region of the sequentially evaporated detector.

The bridge region of a detector formed from the epltaxial laser ablated film is

shown in Figure 3. The film is very smooth, although there-are some small particles

on the surface. (The large particles are dirt or dust.)

For measurement of the resistance-temperature characteristics and photoresponse

of the samples, the substrates were mounted onto the sample holder of a closed cycle

He cryostat. Gold wire bonds provided the electrical connections between the four

contacts on the detectors and pins on the sample holder. Two of the contacts, one

on each side of the bridge were used for current biasing while the other two were

connected to either a voltmeter, for resistance measurements, or a lock-in ampli-

fier, for photoresponse measurements.

For the photoresponse measurements the sample was illuminated with chopped He-

Ne laser radiation. The light was focused onto the bridge region of the detectors

through a window in the housing of the cryostat. To position the beam on the bridge

for initial measurements, the temperature was adjusted to approximately the midpoint

of the resistive transition. The detector was then illuminated and the position and

focus of the beam was adjusted to maximize the detected signal. Additional comments

on this will be made later in the paper. The diameter of the focused beam was small
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Figure 3. Sc_ifig elect_ ndcr0graph mad6f{0m-_laser ablated supercon-

ducting film.

enough to avoid illumination of the contacts so that spurious signals due to

thermocouple effects were prevented. Such signals were observed on occasion for

mispositioned beams_: but not during agtual_asu_e_nts _ :_

After positioning the beam, the photoresponse was measured as the temperature

of the sample was varied. The measurements reported in this paper were made with

the illumination chopped at 400 Hz and the sample biased at 100 wA. A few measure-

ments of the photoresponse as a function of chopping frequency up to 4 KHz were made

with the temperature fixed. The signal was found to decrease by approximately 40%

as the frequency increased over this range. Measurements were also made at several

lower bias currents. The response was found to scale with current and those results

will not be further reported here.

3. RESULTS

The resistance (R) in ohms, dR/dT in ohms/K and measured signal in pV for the

detector made from the epitaxial film are shown as a function of temperature from 70

to 90 K In Figure 4. The curve for dR/dT has been multiplied by a factor of five so

that it could be plotted on the same scale as the others. The temperature of the

sample was held at 79.4 K during optimization of the beam position. During the

measurement it was varied down to approximately 12 K. The only observed response

was in the range plotted in the figure. (Neglecting the small and nearly constant

response at higher temperatures. ) The peak of the photoresponse coincides well with

the peak in dR/dT and the two curves agree well. The slight displacement of the two

peaks is within the uncertainty in thermometry as the resistance-temperature

characteristic and the photoresponse were not measured simultaneously. The agree-

ment indicates a bolometric photoresponse.

Figure 5 is a graph of the resistance, dR/dT and the initial measurement of the
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Figure 4. Resistance (squares), 5 x dR/dT (triangles) and photoresponse

(circles) of the laser ablated superconducting film. 400 Hz

chopping frequency, He-Ne laser illumination, i00 pA bias.

photoresponse signal for a detector made from the sequentially evaporated film. The

curve for dR/dT has been multiplied by a factor of 10. The temperature of this

sample was held at 78.5 K during optimization of the beam position. As with the

epitaxial sample, the temperature was varied down to approximately 12 K and no

photoresponse other than that shown in this figure was observed. The agreement

between the photoresponse and dR/dT is poor. The maximum of the signal is displaced

from the maximum of dR/dT by approximately 3 K to a higher temperature. Notice

however that there is a shoulder on the peak of the signal at approximately the

temperature of the peak in dR/dT and that there appears to be a shoulder on the peak

of dR/dT at the peak in the signal.

In speculating on the possibility of experimental problems that might explain

this result, a rough calculation showed that thermal expansion of parts in the

cryostat could shift the sample on the order of 10 pm relative to the focused laser

beam. The sample was remeasured and, to correct for motion due to expansion, the

beam was repositioned every one to two degrees of temperature change.

The remeasured response is plotted in Figure 6. The resistance-temperature

characteristic was also remeasured using finer temperature increments. Note that

while R and dR/dT are plotted on the same scale in this figure as in Figure 5, the

signal is divided by a factor of 2. The measured signal voltage was nearly a factor
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Figure 5. Resistance (squares), i0 x dK/dT (triangles) and initial

measurement of the photoresponse (circles) of the sequentially

evaporated superconducting film. 400 Hz chopping frequency, He-

Ne laser illumination, i00 _Abias.

of three larger when the position of the beam was optimized as the measurement

progressed. The agreement between the peak positions was still approximately the

same. In addition a shoulder still appeared to exist on the signal peak at about

the temperature of the peak in dR/dT and on the dR/dT curve at about the peak in the

signal.

4. DISCUSSION

The observed photoresponse of the granular sequentially evaporated film can be

explained with two assumptions: i) _at the film is spatially nonuniform with

different critical temperatures in different regions, and 2) That the laser beam

was not uniformly illuminating the entire bridge area. With these assumptions, as

the signal is optimized at a given temperature, the laser beam can be positioned at

a location on the film that has a locally high dR/dT, even if it doesn't make a

dominant contribution to the total resistance of the film. This can be particularly

true if the size of the laser spot is comparable in size to the non-uniformities.

Several simple one dimensional simulations were made to explore this possibili-

ty. Three of these will be presented here. In the first two a one dimensional

detector was assumed to consist of a series combination of two regions, one with a
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Figure 6. Resistance (squares), i0

photoresponse/2 (circles)

superconducting film. 400

illumination, 100 pAbias.

x dK/dT (triangles) and remeasured

of the sequentially evaporated

Hz chopping frequency, He-Ne laser

transition centered about 83 K and another with a transition centered about 79 K.

The higher temperature transition was assumed to be broader. The illumination was

assumed to result in a temperature increase that had a Gaussian distribution along

the detector. The resistance, dR/dT and the signal for two beam positions are

plotted in Figures 7 and 8. In Figure 7 the position of the beam was optimized at

77 K resulting in a strong response due to the low T region of the detector while

for Figure 8 it was optimized at 87 K resulting in a s_rong response due to the high

T¢ portion of the detector.

A slightly more sophisticated simulation was also made. The one dimensional

detector was assumed to consist of a narrow region of high T with broader regions
of lower T on either side. The simulation was then run with the beam position re-

optimized a% i K intervals. The result in Figure 9 shows many of the features

observed in the measurement on the sequentially evaporated film. The peak in the

photoresponse is at a higher temperature than the peak in dR/dT and each peak has a

shoulder that corresponds with the other, although the shoulders are much stronger

here. The cusp in the signal between the peaks results from the sharp boundary

between the regions. The parameters of the model could be adjusted to give a better

reproduction of the measured data but this simulation demonstrates that a bolometric

response in a nonuniform film can explain the observed signal.
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Figure 7. Simulated resistance, 5 x dR/dT and signal of a nonuniform

detector. Beam position optimized at 77 K.
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Figure 8. Simulated resistance, 5 x dK/dT and signal of a nonuniform

detec£or. Beam position optimized at 87 K.
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Figure 9. Simulated resistance, 5 x dR/dT and 5 x signal of a nonuniform

detector. Beam position re-optimized at 1 K intervals.

5. CONCLUSIONS

The photoresponses of a laser ablated epitaxial film and a granular sequen-

tially evaporated film of YBa2Cu30" s have been measured. For both films the only

observed signal occurred for tempera£ures near the transition temperature. For the

epltaxial film there was good correspondence between the measured signal and the

temperature derivative of the resistance indicating that the photoresponse was

bolometric in nature. The photoresponse of the granular films did not coincide as

well with dR/dT, however simulations based on the assumption that the film is
nonuniform lead to the conclusion that nonuniformities, coupled with a bolometric

effect, are sufficient to explain the observations.
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Epitaxial YBa2Cu307 films have been grown on several microwave substrates.

Surface resistance and penetration depth mea_ur_ents_have been performed to
determine the quality of these films, tn this paper, the properties of these
films on key microwave substrates are described. The fabrication and charac-
terization of a microwave ring resonator circuit to determine tr_Smission line

losses is presented. Lower losses than those observed in gold resonator cir-

cuits were observed at temperatures lower than critical transition temperature.

Based on these results, potential applications of microwave superconduc-
ting circuits such as filters, resonators, oscillators, phase shifters, and
antenna elements in space communication systems are identified.

INTRODUCTION

The discovery of superconductivity in ceramic oxides such as Y-Ba-Cu-0,
Bi-Sr-Ca-Cu-0 and T1-Ca-Ba-Cu-O with transition temperatures T_ around 100 K
has inspired many researchers around the world to manipulate and to alter these
ceramic oxides to form beneficial products for various applications. One
important application where high Tc superconductors have begun to show prom-
ise is in the area of microwave communication and radar systems. The use of
high Tc superconductors in a microwave system requires development of thin
films on microwave substrates which then can be patterned into desired micro-

wave circuits such as filters, phase shifters, ring resonators, and delay
lines. The superconducting thin films for microwave circuits need to be depos-
ited on low dielectric constant and low loss substrates, have smooth morphol-

ogy, high critical temperature T c, high critical current density Jc and low
surface resistance Rs. Furthermore, films on the substrates must be evaluated

as microstrip or ring resonator circuit to determine the quality factor "Q",
and various losses prior to developing microwave circuit applications.

In this paper, we describe the characteristics of high quality Y-Ba-Cu-O
thin films on microwave substrates and evaluation of their microwave proper-
ties. We discuss the fabrication, characterization, and performance of ring
resonator circuits. In conclusion, we present some examples of applications
of superconducting microwave circuits.
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FABRICATION OF THIN FILMS ON MICROWAVE SUBSTRATES

To obtain high quality YBa2Cu307 films on suitable substrates the sub-
strate lattice constants must be matched to those of the films and there must
not be a detrimental chemical reaction between the substrates and the film. In

addition, the film composition must be as close to the correct composition as

possible. To date, to obtain the highest quality films several physical and
chemical deposition techniques have been used. Many of these require post-
annealing at high temperatures. This high temperature anneal causes chemical
interactions at the film-substrate interface, making the substrate/film inter-
face unsuitable for microwave applications (ref. 1). See table I for the
properties of sequential evaporated films on microwave substrates. To circum-

vent this problem, an in situ annealing procedure which allows lower growth
temperatures have been used to grow epitaxial films using a laser ablation
technique (ref. 2).

The details of the geometry of the laser ablation are shown in fig-
ure l(a). The substrates were mounted onto a stainless steel plate with a
diameter of 63 mm. The plate was heated from the backside using a resistive
heater. The sample chamber was evacuated to 3x10 -7 torr, or lower, using a

liquid nitrogen cold trapped diffusion pump before the sample was warmed up to
700 °C. During deposition the chamber pressure was 170 mtorr; the laser wave-
length was 248 nm; the energy density was 1.5 (J/cm2)/pulse; the pulse rate was

two pulses per second; and the distance between the target and the sample was
8 cm. The laser beam was rastered up and down 1 cm over the target using an
external lens on a translator. After deposition the oxygen pressure was
raised to 1 arm, and the temperature was lowered to 450 °C at a rate of
2 °C/min. The temperature was held at 450 °C and held for 2 hr, then cooled
to room temperature.

The best film had a Tc of 89.8 K immediately after deposition as deter-
mined by a standard four point resistance measurement. Its resistance versus
temperature behavior is shown in figure l(b). From x-ray diffraction data the

film was determined to be c-axis aligned. Critical current density Ic versus
temperature is shown in figure 1(c). As can be seen, the value of Jc was
greater than 106 _/cm 2 at 77 K. The surface morphology of the HTS on LaAIO 3 is
shown in figure l(d). The surface is very smooth with some small structure of
about 0.25 _ in size. This size of structure has been confirmed by Scanning
Tunneling Microscopy. We do not observe large numbers of HTS particulates due
to the laser ablation process. In table I, we list the performance of
YBa2Cu307 thin films on various microwave substrates along with properties of
these substrates.

SURFACE RESISTANCE

Surface resistance characterization of superconducting film offers val-
uable information on the film quality for microwave circuit applications.
Currently, surface resistance values are obtained by cavity (refs. 3 and 4)
and stripline measurements (ref. 5). Correlation between material properties

(i.e., dc conductivity above Tc, penetration depth, and Tc) and surface
resistance are still not well understood for new high Tc superconducting
films. Theoretically, surface resistance of metal conductor is given by
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( 2 " 1/2
= \_--_) is the skin depth.

CN is the normal conductivity, _o is the magnetic permeability, and _ is
the angular frequency. For superconducting films, conductivity is a complex
quantity c = Cl + Jc2. For c2 >> al one can obtain the surface resistance
of superconducting film

0.5Cl_p
R =

s 3/2
a 2

where a 2 is related to the penetration depth k by

(1)

From equations (1) and (2)

(2)

1
a 2 " (3)

_p) 2

(4)

Clearly, from this expression to obtain surface resistance for superconducting

film lower than for a normal metal, the lowest values of a 1 and X are
desired. Miranda et al. (ref. 6) have measured microwave transmission in a
waveguide for superconducting films as shown in figure 2. From the transmis-
sion data, using the two fluid models, g 1 and k-haTe been obtained. A sum_
mary of results for Y-Ba-Cu-O films on various substrates is shown in table II.
The penetration depth value was small for laser ablated film on lanthanum alum-

inate substrates. Using these values in equation (4), a surface resistance for
films on LaAIO 3 is calculated. In figure 3, which is adopted from reference 7,
we show how the quadratic variation f2 of the surface resistance varies with
frequency for laser ablated Y-Ba-Cu-O films on microwave substrates. The sur-

face resistance is several orders of magnitude lower than that of copper.
Clearly surface resistance, penetration depth, and microwave conductivity meas-
urements provide valuable information on the quality of these films for micro-
wave circuits.

BASIC MICROWAVE CIRCUIT - RING RESONATOR

Measurements of surface resistance by the cavity technique fail to model
microstrip losses completely because it neglects substrate losses and fails to

adequately probe the film-substrate interface. Microstrip resonators patterned
from thin films on microwave substrates allow direct measurement of microstrip
losses. We have fabricated microstrip ring resonators operating at 35 GHz

188



from laser ablated YBCO thin films deposited on lanthanum aluminate substrate

(ref. 11). Also, several groups have studied resonator circuits at lower fre-
quencies (refs. 5 and 8 to 10). The resonator circuits we fabricated were pat-
terned by standard photolithography using negative photoresist and a 'wet'
chemical etchant. This etchant was either a 3-percent solution of bromine in

ethanol or dilute phosphoric acid in water. A metal ground plane was deposi-
ted by first evaporating 100 A of Ti for adhesion followed by I _ of gold. In
addition to the resonator, each chip also had a test bar for directly determin-

ing Tc of the patterned film. Identical resonators were fabricated entirely
from gold (both strip and ground plane) using evaporation and lift-off to
define the strip.

The resonators were measured using a Hewlett-Packard 8510 Automatic Net-

work Analyzer, operating in _-28 waveguide. The microstrip circuit mounted
in a tapered ridge waveguide to microstrip test fixture is shown in figure 4.
The design of a cosine tapered ridge used inside the waveguide to couple the
incoming signal to microwave circuit is shown in figure 5. The plot of the
reflected power from the resonator (which is a measure of the loaded 'Q') is
shown in figure 6 for several frequencies. Two features are apparent; (1) the
coupling changes with temperature (the coupling coefficient increases with
decreasing temperature) and (2) the resonant frequency shifts with temperature.
The change in the resonant frequency versus temperature for a superconducting
resonator is plotted in figure 7. This change is a consequence of the depen-
dence of the internal impedance of the strip on the changing normal supercon-
ducting electron densities. The internal inductance of a superconducting strip

over a ground plane is given by (ref. 8):

Lint = po X coth(t)

Assuming the Gorter-Casimir temperature dependence of X:

X(T) =
X

o

the form of the resonant frequency variation based on the changing line induc-
tance matches the experimental observations (fig. 7).

The best resonators measured to date have shown unloaded 'Q's ranging
from 2500 to 1000 at 20 and 77 K, respectively. This corresponds to a surface
resistance value of, at most, 15 mfl at 77 K at 35 GHz, a value two to three

times better than copper at the same temperature and frequency.

POTENTIAL APPLICATIONS

High Tc superconducting thin films have shown lower surface resistance
than copper. Low conductor losses for high Tc superconducting ring resonator
circuit have been demonstrated. These characteristics are desirable in passive
microwave circuits used in communication and radar systems since they reduce

loss and size, increase_bandwidth, and provide low noise. Complete system
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analysis of the impact of the advantages of high Tc superconducting microwave
circuits is yet not available. From a block diagram of satellite transponder
(fig. 8), we have considered the following examples of potential applications
of HTS microwave circuits in satellite communications applications. One can
easily project the application of superconducting passive circuits as low loss,
high 'Q' filters (ref. 11), high 'Q' resonators, delay lines, power splitter
combiners, and resonator stabilized oscillators. Based on results obtained to

date on the performance of superconducting microstrip resonator circuits with
high 'Q' values.

In addition to these applications, extremely low loss phase shifters using
superconducting switches are also feasible. In figure 9, we show a phase
shifter which utilizes superconducting-normal-superconducting switches in place
of FET/diode switches. The switches are fabricated from high temperature thin
films of YBCO. The switches operate in the bolometric mode with the film held

near its transition temperature. Radiation from a light source raises the
temperature and consequently causes the film to become resistive. If the
switches in the reference path are illuminated, they will become resistive.

The switches on the opposite side of the device are superconducting. Since
each switch is positioned one quarter of a wavelength from the junction, the
signal will be reflected from the delay path in phase. A similar phenomenon
occurs at the output port. To achieve the desired phase shift, the opposite
set of switches is illuminated. Figure 9 shows the predicted behavior for a

180 ° phase shifter, with exceptional narrow insertion loss envelope and excel-
lent return loss.

In figure 10, we show an example of hybrid semiconductor/superconductor
device. It is possible that by combining the excellent low noise properties

of GaAs devices with the low loss and low noise properties of superconducting
transmission lines one can achieve ultra low noise receivers for satellite com-

munications applications. If thesepromising concepts of high Tc supercon±
ducting devices are actually brought to fruition, then one can conceive their
use in low loss, low noise superconducting phased array antenna in space com-
munications systems as shown in figure 11. FITS transmission lines can provide
low loss feed network which is a major problem in antenna networks.

SUMMARY OF RESULTS

We have demonstrated that rare-Earth oxide thin superconducting films can
be deposited on various microwave substrates with critical temperature T c
above 77 K, critical current densities Jc abovelO 6 Mcm 2, and low surface
resistance. Films can be easily etched into microwave transmission line cir-

cuits. The basic microwave circuit ring resonator fabricated on a VBa2Cu307
superconducting film on LaAlO 3 substrate showed higher 'Q' than gold circuits
at 77 K. Such circuits can provide propagation characteristics of microwave
signals at the film-substrate interface. Several key HTS circuits such as
filters, oscillators, phase shifters, and phased array antennas' feeds are
feasible in the near future. For technology to improve further, reproducible,
large area films have to be grown on low dielectric constant, low loss micro-

wave substrates. Tradeoffs between superconducting microwave circuits with
cryogenic systems and normal metal microwaVerCircuitswill have to be quanti-
tatively established to determine their suitability for advanced communication
and sensor systems.
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TABLE I - KEY PROPERTIES OF MICROWAVE SUBSTRATE MATERIALS

Materl al

Magnesium oxide (MgO)
Lanthanum alumlnate

(LaAlO 3)
Lanthanum gallate

(LaGaO 3)

Sapphire (kl203)

Yttria stabilized

zirconia (ZrO)
Silicon (Si)
Gallium arsenide

(GaAs)

Sequen-
tial

evapo-
ration,

K

Tc achieved

laser
abla-

tion,
K

70
82

71

7O

N

88
90

88

60

89

m

Diel ec-
tric

con-
stant

g.6s
22

27

9.4
11.6
27

12
13

Loss
tangent

4x10 -4
5.8x10 -4

2x10-3

lx10-6

6x10 -4

lOxlO-4
6xlO -4

Lattice

size,
k

4.178 (100)
3.792 (110)

3.892 (110)

5.111 (011)

3.8795 (100)

5.43 (100)
5.653 (I00)

TABLE II. - MICROWAVE CONDUCTIVITIES (an, o" = o I - Ia2) AND ZERO

TEMPERATURE PENETRATION DEPTH (AO) at 33.3 GHz FOR LASER

ABLATED YBa2Cu307_ _ SUPERCONDUCTING THIN FILMS

Parameter YBCO on LaAlO 3 YBCO on MgO _YBCO on ZrO 2

828 k 1769 _ 1200

on (300 K)
o 1 (77 K)
o2 (77 K)
x 0

5oook 35ook

3.0xi05 S/m 2.2xi05 S/m 1.5xi0§ S/mil.4xlO 5 S/m 2.8xi0§ S/m
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Abstract. The contribution of the graded region of implanted p-n junctions is

analysed using an exponential profile Though previously neglected, we have
recently shown that this contribution to the saturation current of HgCclTe diocies is

significant. Assuming a dominant Auger recombination, an analytical solution to
the continuity equation is obtained. An expression for the current generated by the

graded region is presented for both ohmic and reflecting boundary conditions. A
revised condition for a 'wide" region is derived, When the region is 'narrow', the

current differs drastically from that of the zero-gradient case The effects of the

junction depth and the substrate and surface concentrations on the current are

investigated, it is shown that the reverse current does not saturate

1. Introduction

The structure of p n juncfic)ns made by microcircuit

fabrication techniques is graded. When generating such

junctions either by diffusion or by implantation, the

carrier concentration on the diffused implanted region is

not constant. This structure has several implications as to

the performance and mathematical analysis of such

diodes. The non-constant dopant profile gives rise to an

electric field throughout the region, which directs the

minority carriers back into the junction. The carrier

diffusion current is modified and a drift current compo-

nent is added. The excess carrier lifetime ,,aries according

to the local carrier concentration, thus affecting the

junction characteristics.

.Most methods for anal,_smg I t characteristics of

p-n junctions are based on the depiction approximation.

This approximation r,-nders excellent results for an

abrupt .junction. Howe,. er, tile mathematical analysis of

graded junctions cannot rely on the abrupt junction

model. As a first-term expansion, the linearly graded

junction [1, 2] suffers from serious basic drawbacks and

its accuracy is questionable. An exponential carrier pro-

file is a very attractive attcrnati,,e [3-5]. Accurate numer-

ical calculations for both gaussian and erfc doping

gradients can be closely approximated by an exponential

function [4]. The latter has several convenient features:

in many cases it can be sohed analytically, the electric

field generated by such a carrier profile is constant, and

mathematically this profile is consistent with the deple-

tion approximation [3].

t Mailing address: NASA Lewis Research Center. ms 54 5,
Cleveland. OH 44135, USA.

0268-1242f90/030S41 + 04 S0350 @ 1990 lOP Publishing Ltd

The narrnw-gap scmiconduct,_r l-t_:, ,.Cd.Te is tfic

leading materiai for making infrared photodetectors.

Depending ,m the cornpo.<tion ratio ,.. the _arious

utmospb.cric _ indox_ s can be covered. Imaging arra3- :ire

produced almosl exclusively _ith phL_to_ oltaic dc_ices.

These diodes arc mostly implemented b'. ion iml_lanta-

tion. usually rest, lting in an n -la',er on a p-type sub,,tratc

[6, 7]. Recent reports ha_e sho_vn that dilTusion and heat

treatment of an HgCdTe 5ubslriltc can turn the top la_,_'r

into a p-region, lfius producing a p-on-n lunch.ion IS, 9].

The general approach to the analysis of the perfor-

mance of Hg L <Cd,Tc diodes took into consideration

the substrate only. employing it one-side dill'usion model

for abrupt junctions. This approach was based on the

assumption that the graded region does not contribute to

tile current [10. I I]. Rccentl_ we ha_e proven experimen-

tall? that there is a si_lnfticanr current component gener-

ated h? the implanted n" graded region of Hg I _<Cd_Tc

diodes [12]. Depending on temperature, thc ratio bc-

t_scen the current produced b) the graded region and

that generated by: the substrate is 0.5 3. Therefore we

proceed to investigate this contribution.

The analysis of the effects of implantation conditions

and surface treatment on tfie purformance of

Hg__xCd,Te photodiodes is the subject of this paper.

The implantation parameters determine the citrricr gra-

dient and the .junction depth. Surface treatment, as

manifested by boundary conditions, is an essential part of

this analysis. It is ',,,ell kno_n that for abrupt junctions.

reflecting boundary conditions render photodiodes v, ith

superior performance, i.e. higher RoA and lower satura-

tion current [10]. Since the electric field present outside

the depletion region directs the minority carriers away
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from the surface, this property has to be investigated for a

graded region.

2. Current generated by graded region

The current generated by the graded region is derived
from the excess carrier distribution. This distribution can

be obtained from the continuity equation, taking into

account the electric field present outside the depletion

layer, and introducing the concentration dependence of

the various parameters. Since the graded region is char-

acterised by a high concentration of carriers, we assume

the lifetime is dominated by an Auger process. Let us

assume that the graded region is n-type over a p-

substrate (as is usually the case in HgCdTe). The carrier

profile in the graded region is approximated by an

exponential function

N(x) = Noexp( - qx,"xj) (I)

where N Ois the surface concentration, xj is the junction

depth and q = In(No/N,) where N O is the substrate

concentration. This distribution results in a constmat

electric field E = kTrl/qx j throughout the graded region.

The resulting continuity equation can be solved analyti-

cally [13]. If the lifetime is indeed dominated by Auger
recombination, a hyperbolic function is obtained for the

excess carrier distribution. The current contribution or

the graded region has two components: the diffusion

term, obtained by taking the derivative of the excess hole

distribution at the edge of the depletion region, x., and a
drift term due to the constant electric field.

The solution of the continuity equation depends on

the boundary conditions at the surface. For ohmic con-
tacts, i.e. with no excess carriers at x = 0, the saturation

current generated by the graded region is given by

The diffusion length L depends on position through the

lifetime dependence on concentration: L(O) is its value at

the surface, while L(x.) is the value at the edge of the

depletion layer. Here J. is the "classical" saturation

current for a 'wide" region, i.e..'_j > L, of an abrupt
junction with a constant carrier concentration:

a_ = q O_,_(x.)
L(x,)

It is important to note that for the case of a dominant

Auger recombination, J_ is independent of location and

is a material parameter, since the equilibrium minority

carrier concentration at the edge of the depletion region.

/5(x,), is equal to n_/N(x,), and since the Auger lifetime

depends inverseIy on the square of majority concentra-

tion. Usually, owing to the steep slope of the carrier

profile in the graded region, L(x.)>> L(0); thus

Jo,(ohmic) _ J_coth(xj/_lL(O)). This approximation is
valid only if the width of the neutral region, x., is not

much smaller than xj (not close to punch-through).

Under these approximations, the exact value of x,, is

immaterial, even though this width may be smaller than

the diffusion length. For a graded junction we have to

revise the condition for a 'wide" region to xj ,> qL(0):

then Jon (ohmic) approaches J_. However, when the

region is 'narrow', we obtain a drastic reduction in Jo, by

a factor of qw.L(O)/xjL(x.) = qw,NIx_), xj.V o over the

abrupt case with a constant concentration N,j equal to

N(x,); w, is the width of the neutral region for the abrupt

junction. Only when the constant concentration of an

abrupt junction is of the order of the surface concentra-

tion are the currents comparable. When ,V,t = ,V,, the

factor is qw,/xj.

It should be pointed out that although the lina[

formulation of the saturation current for the graded

junction is very similar to that of the abrupt one, this may

be misleading. The local carrier concentration is drasti-

cally different. The electric field tends to repel the minor-
ity carriers back to thejunction: thus the carriers have to

redistribute in order to comply with the same boundary

conditions. The drift component of the current alway,_

opposes the diffusion component.

The dual b0uhdary condition is that of a perfectl',

reflecting surface. Solving the Continuity equation with

the appropriate limits, and obtaining both the diffusion

and the drift terms at the edge of the depletion region, the

contributton of the graded region to the saturation
current is found to be

J.,,(reflecting) = ) , tanh(;J (L(O)-' - L(,.)-_) I. 13,

For a steep enough profile, the current can be approxi-

mated by J,j,(reflectingJ _ J,tanh(x_ qL(O)). If the
graded region is wide according to the revised definition.

the saturation current approaches the same asymptotic

value--that of a wide abrupt junction. For a narrow

region, the ratio between the current of a graded struc-

ture and that of an abrupt junction is the inverse of the
ratio derived for ohmic contact. It should be noted that

the current for the reflecting boundary is always smaller

than J,, while the current for the ohmic contact is always

larger than this _,alue. Thus Jm,(ohmic) is ah_ays larger

than J0,(reflecting), just as in the case of an abrupt

junction.

Next let us analyse the dependence of the saturation

currents on the various device parameters. The effect of

the junction depth .,,j on Jo is similar to that for the case
of a constant-concentration region [10], i,e. the shallower

the junction, the larger is the current for ohmic contact

and the opposite for reflecting contact. Again, though,

the physical processes involved are much more invol,,cd

for the graded junction. While for an abrupt junction the

only effect of bringing the junction closer to the surface is

the increased excess carrier gradient for ohmic contact,

thus increasing their diffusion, in a graded junction thc

shallower junction results also in a larger electric field

which opposes the current in the ease of ohmic contacts.

For reflecting conditions, since no net flow should reach

the boundary, the change in the electric field just de-

scribed must be compensated by an appropriate redistri-
bution of excess carricrs. These rcsults are demonstrated
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in figure [, where we have plotted the saturation current

as a function of the normalised depth. The exponential

profile is compared with two abrupt junctions whose

constant concentrations are N d = N O ( = 5 x 101_) and

Na =N(x,). The problem is that x, and N(x,) change

with changing xj. We took N d = 1017 cm -3, which is a

typical value for the smaller xj; x, was derived from a

recent work by Pimbley [3]. All the calculations were

performed for Hgl__,Cd_Te diodes with composition

x = 0.2], i.e. with 77 K band gap which covers the second

atmospheric window.

Applying this analysis, other important conclusions

can be drawn, such as the effect of the surface concentra-

tion on the current. Increasing the surface concentration

(maintaining N, and xj constant) increases the gradient

and the electric field while reducing the excess carrier

lifetime throughout the graded region. Mathematically,

two factors in the argument of the hyperbolic functions

are affected: L(0) is inversely proportional to N o, while r/

is proportional to its logarithm. Thus increasing the

surface concentration reduces Jo for ohmic boundary

conditions and increases it for reflecting conditions.

These effects are shown in figure 2.

A similar analysis can be applied to investigate the

effects of substrate concentration on the performance of

the graded junction. Increasing N_ while maintaining a

constant N O and xj is achieved by decreasing the profile

gradient, reducing both the electric field and the excess

carrier lifetime. The consequence is a smaller r/; thus the
current decreases for ohmic contacts and increases for
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profile and for abrupt junctions with N,j = 5 x 10'7 = NOand
N,_= 10'7 _ Nix.), for ohmic and reflecting boundary
conditions (Hg__ .Cd_,Te, x = 0.21, N= = 10_): A, graded
ohmic; B, graded reflecting; C, constant ohmic, Nd = No; E,
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Figure 2. Saturation current generated by an n-region ofa
graded junction as a function of surface concentration for
(A) ohmic and (8) reflecting boundary conditions
(Hg, _.Cd.Te. x = 0.21, /'4== 10'8, x_= 0.4..m T= 77K,
V = - 0.1 V; Auger recombination).

reflecting surfaces. As N_ approaches N,. Lix,) ap-

proaches L(0). This effect is enhanced by the widening of

the depletion region. The combined result is that the

saturation current does not reach J ,, as shown in figure

3. For the last two figures we assumed a typical reverse

bias of 0.1 V. The exact bias has little implication on this

analysis.
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Figure 3, Saturation current generated by an n-region of a
graded junction as a function of substrate concentration for
(A) ohmic and (B) reflecting boundary conditions
(Hg__.Cd.Te, x = 0.21, No = 4 x 10_7,x_= 02 jr(m,
T=77K, V= - 0.1V; Auger recombination).
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Another interesting effect is the dependence of the

saturation current on the reverse bias. Even though we

assume that the current is not governed by generation

and recombination nor by tunnelling, the reverse current

may not approach a saturation value. This effect, shown

in figure 4, is a consequence of x. moving towards the

surface with increasing reverse bias.

3. Conclusions

The current generated by a graded region of a p-n

junction differs considerably from that generated by a

region of constant carrier concentration. The exact ex-

pression for the current component depends on the

recombination mechanism, surface treatment, exact car-

der profile and substrate concentration. The illustrations

provided in this paper are specific to Hg__,Cd,Te.

-0 1

g...

,5 -0 2

-03

m
¢g

E
_o -0L
k

-0"3.

-0 ._
I I I

0 005 0 10 015 20

B_as voltage (V)

Figure 4. I-V characteristic for reverse bias showing the

current generated by an n-region of a graded Hg _ .Cd,,Te

diode (x = 021, N_ = 10 _e, No = 5 x 10 IT, xj = 01 tlm,
T = 77 K; ohmic contact) Note that the reverse current
does not saturate.

dominated by the Auger 1 recombination process, with

lifetime inversely proportional to the square of the carrier

concentration. As the graded n-type region may very

likely be degenerated, the recombination may have a

different power law. In this case, as well as in cases

dominated by radiative or Shockley Read-type recom-

bination, the current is expressed as a combination or

modified Bessel functions [13]. Still. the simplicity of our

solution makes it a very attractive tool for investigation

of the basic processes involved and how they are in-

fluenced by selection of the proper parameters. Finally.

the new p-on-n junctions may present a structure for

which the analysis is exact since the p-type material does

not become degenerate till much higher concentrations.

The expressions for the current are obtained merely by

replacing the Auger l process by an Auger 7.
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Heat treatment at 70 °C of low carrier concentration p-type HgCdTe samples (Po = 8 X 10 _4

cm -3) generates an inverted surface layer. A two day anneal process below 95 *C did not affect

the Hall coefficient, whereas an almost complete recovery was obtained by annealing at 120 °C.

While bulk electron mobility, obtained from PEM data, remained high (about 9 × 104 cm-_/V s at

77 K), surface mobility is lower by more than an order of magnitude. Surface recombination

velocity indicates a continuous improvement with increased temperature, and the activation

energy remains equal to the vacancies energy level. The proposed mechanism is that of positive

charges in the sulfide migrating towards the interface and generating an image inversion layer.

I. INTRODUCTION

Surface passivations of semiconductor devices are very cru-.

cial to the device's performance. V Interface properties de-

pend strongly on process parameters. They can result in sur-

face charges, either accumulation or inversion, both

undesirable for diodes. Secondly, they set the boundary con-

ditions, as manifested by the surface recombination veloc-

ity.: Accordingly, the carder distribution in the semiCon-

ductor is set, and the efficiency as photodevices is

determined. The interthce properties can be modified by sub-

jecting the device to an annealing process.

Various passivations have been employed with narrow

bandgap HgCdTe, including anodic oxide, anodic sulfide,

and SiO, and ZnS coatings. Kecently, we investigated inter-

face properties such as surface recombination velocity, mo-

bility, and carrier concentration) '4 This data was obtained

using several opto-galvanomagnetic experiments, including

the photoelectromagnetic effect (PENt) for the determina-

tion of surface recombination velocity and electron mobility.

The properties ofanodic sulfide, anodic oxide, and ZnS coat-

ings were compared. Anodic oxide formed an inverted layer

on p-type samples, which resembles a two-dimensional layer

by virtue of extremely high surthce electron mobility) Both

anodic sulfide and ZnS coatings rendered surthce recombi-

nation with identical activation energies) It was concluded

that surface traps are related to lattice defects, most prob-

ably vacancies. It was also shown that the thickness of the

anodic sulfide determines the quality of this passivation. On

a carefully prepared sample with a very thin sulfide layer it

was possible to obtain a "normal" p-type Hall data even at

low temperatures on a sample with acceptor concentration

as low as 8× 1014 cm -_.

In this paper we report a further investigation of the prop-

erties of the anodic sulfide interface. Following the forma-
tion of an inversion layer, several annealing steps lasting
from two hours to two days, were applied. The annealing

temperature was gradually increased from 70 to 120 _C. Fol-

lowing each step, full optogalvanomagnetic characteriza-

tions were performed.

II. EXPERIMENTAL RESULTS AND DISCUSSION

In order to study the formation and annealing of inversion

layers, p-type Hgl _., Cd_ Te samples with composition ratio

of x-0.22 and with very low carrier concentrations were

passivated by anodic sulfide. The low concentration enables

the detection of even minute surface charges. A sample with

equilibrium concentration ofpo = _,\ i0 _ cm - 3,which pre-

viously maintained flatband conditions for three years, was

heated to 70 °C in vacuum. After two hours of heating, an

inversion laver was formed on its surface. A series of anneal-

ing steps were carried out, gradually increasing the anneal-

ing temperature. The effect of the annealing process on re-

ducing inversion charges was investigated through the

measurement of the Hall coefficient. The experimental re-

sults are summarized in Fig. 1. The original measurement

shows a classical curve of ap-type sample, with a single sign

inversion at about 85 K ("as prepared"). Following the for-

mation of the inverted surface layer, the Hall data renders a

typical n-type curve, in which the Hall coefficient remains

negative throughout the entire scanned temperature range.

Heating for two days at 70 "C did not change the Hall data at

all. Similarly, the effect of a two day anneal at 80 *C on the

carrier concentrations is hardly noticeable. Only after a two

day anneal at 95 'C can an improvement be detected _hrough

a narrow region of positive Hall coefficients, before it re-

verses its sign again. Heating the sample to 120 °C for two

days brought about almost a complete recoveD" of the Hall

coefficient. The data at the range of 20-50 K almost coin-

cides with the original bulk measurements, although at low-

er temperatures a second sign change is still present.

A heat treatment of 70-80 "C generates an electron inver-

sion layer of about 8 × 10 )_ cm--'. It seems that the positive

charges present in the sulfide layer diffuse towards the inter-
face, segregating there, as is frequently the case with detects

accumulating at the interface. Consequently, the concentra-

tion of negative charges at the surface of the semiconductor

increases. Indeed, in samples with a thicker suLdde ]ayer, a

higher surface concentration was measured, a Only at higher

temperatures, 95 *C and above, does an annealing process
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to all negative n-type results following 70 'C anneal. Only abm.'e 95 "C does a

positive section reappear, and by 120 "C substantial recoveq,' is obser', ed. --
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start to take place, reducing the concentration of these

charges.

The second basic parameter investigated is the electron

mobility. Both Hall and PEM experiments were employed.

The bulk electron mobility was extracted from fitting the

measured PEM current and from the high temperature Hall

data. When an extensive inversion layer is present, the Hall

experiment provides information about this layer only.

Therefore, the Hall mobility extracted from these samples is
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F,G. 2. Electron mobility recorded after the shme annealing steps as in Fig,
I. High temperature and low (inversion layer) mobility data is Hall mobil-

ity, High mobility at low temperatures (bulk mobility) is derived from

PEM experiments. 0 as prepared. @ anneal 70 "C, A 2 days. 80 "C, and x 2

days. 120 =C.
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that of the inversion electrons. The mobility data is present-

ed in Fig. 2. The high-temperature data and the lower mobil-

ities at lower temperatures are obtained from Hall experi-

ments.

The electron mobility in the inversion layer is very low.

Surface scatterings reduce the mobility by more than an or-

der of magnitude. This result is in drastic contrast to the

anodic oxide passivation of p-type samples, where we have

measured very high electron mobilities, higher than bulk

electron mobilities. _

The analysis of the PEN/data renders the bulk electron

mobility. It is interesting to note that this holds true even for

the samples with the extensive inversion layers, whose Hall

mobilities are considerably lower than those of the bulk.

These latter, obtained from the PEM experiments, are prac-

tically unchanged by all the heat treatments, and remain

almost identical to the as prepared values. Only the final

anneal, at 120 °C, resulted in a slight deterioration of bulk

electron mobility. At 77 K the bulk mobility is typically

9 × 10 _ cm-'/V s which is comparable to electron mobility in

n-type material of similar concentration and composition.

This is more than twice the mobility in p-type material with

concentration of about 10 _ cm-S.

In the range of 80-150 K. the results obtained combine

both bulk and inversion la_er effects. At extremely low tem-

peratures, i.e., below 30 K. the surface electron mobility de-

creases further, which is typical of scattering b_ defects.

Again, it indicates that the defect concentration at the sur-

face is much higher than the bulk.

The surface recombination velocity was derived (rein the

PEM data. Following our previous analysis (Equation 7.

Ref. 3), the results shown in Fig 3 are presented as ST/p,_

versus I/T, where S is the surface recombination velocity, p)

is the bulk equilibrium hole concentration and Tis the abso-

lute temperature. The present results are compared to those

obtained from samples with anodic sulfide passivation of

higher bulk concentration p-type HgCdTe, with

Po = 5 × I0'_-2 _< 10 _ cm -' (Ref. 3 ). We note that all mea-
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surements render the same activation energy, of 12.5 meV,

which is identical to the energy level of the cation vacancies.

Again, there is a low temperature plateau (unlike samples

with zinc sulfide treatment), which indicates pinning of the

Fermi energy. However, the surface recombination velocity

is substantially lower than that obtained with previous sam-

ples (with higher bulk concentrations). It improves with

annealing, decreasing from about 800 cm/s at 77 K for the as

prepare d sample to around 250 cm/s following heat treat-
ments. The overall lower recombination with reduced bulk

concentration is again indicative of the correlation of the
recombination centers to the vacancies in the substrate.

III. CONCLUSIONS

The effect of heat treatment of HgCdTe samples passivat-

ed by anodic sulfide was investigated. It was observed that

the as prepared samples show very small band bending at the

semiconductor interface. The sulfide, however, is produced

with internal positive charges, which create an electron im-

age layer at the HgCdTe surface. This electron inversion

charge is observed in samples passivated with a thick ( > 100
•_.) sulfide. The surface concentration of these electrons de-

pends on the thickness of the sulfide layer. It is suggested

that the positive charges are evenly distributed in the "as

grown" sulfide. A 70-80 "C anneal produces an inversion

layer even in materials with a thin sulfide passivation. It is

proposed that this layer is the result of migration of positive

charges to the interface and their segregation there, The un-

derlying assumption is that the diffusion coefficient is ve_

high, even at these low temperatures. As a result the density

of negative image charges in the I-IgCdTe surface increases.

The positive sulfide charges start to anneal at temperatures

above 90 *C, thus the inversion layer diminishes. It is shown

that while the Hall and conductivity data obtained from in-

verted p-type materials reveal mainly the properties of the

high conductivity inversion layers, the parameters extracted
from PEM measurements are those of the bulk.
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ABSTRACT

Anodic oxide passivation of p- .type HgC.dTe generates an inversion layer. Extremely
high Hall mobility data for electrons in this layer indicated the presence of a two-
dimensional electron gas. This is verified by use of the Shubnikov-de Haas effect from
1.45-4.15K. Data is extracted utilizing a numerical second derivative of DC
measurement. Three sub-bands are detected. _reiative occupancies are in excellent
agreement with theory and with experimental results obtained on anodic oxide as
accumulation layers of n-type HgCdTe. The effective mass derived is comparable to
expected.

INTRODUCTION

The narrow-gap semiconductor HgCdTe is an important infrared detector material.
Most photodiodes are implemented on p-type HgCdTe. The performance of these
devices is heavily dependent on surface properties. Thus the selection of an appropriate
passivation is crucial.

Anodic oxide forms an accumulation layer on n-type material. The two-
dimensional sub-bands of this passivation have been thoroughly investigated in recent
years. Findings obtained using various magnetoresistence measurements [1-7] are in
good ageement with data obtained from other narrow-gap non-parabolic semiconductor
systems, in particular on HgTe and HgTe/C.dTe superlattices [8-10]. It has been shown
both in theory [11,12], as well as experimentally [1,5,6] that narrow-gap non parabolic
materials possess common features. One characteristic of accumulation and inversion
layers on such materials is a large number of occupied sub-bands, as many as five in
HgCdTe [5,6]. Ando [12] has shown that a large change in the band-gap energy has little
effect on the relative occupancy of the various sub-bands.

In this work we report the use of the Shubnikov-de Haas (SdH) technique to
measure the transport properties of electrons in an inversion layer on p-type
Hgl-xCdxTe. The inversion film was formed by generating an anodic oxide passivation
to a low concentration p-type substrate, N,, -Nd=8. 1014 cm -3, with composition ratio
of x"0.22. The low acceptor concentration enhanced the Hall data of the inverson layer.
An extremely high Hall mobili W, higher than measured for electrons in n-type material
of similar composition, triggered our speculation that a 2-dimensional electron gas is
present [13]. Since previous measurements concentrated on accumulation layers, it
seemed intriguing to examine an inversion film, in particular since the theory of Takada
et al. [11] was developed for the latter structure (see remark in [7]).

When a ma_etic field is applied perpendicular to a surface layer, the translational
motion is quantized into Landau levels. Sweep of the field reveals oscillations periodic
with inverse magnetic field due to modulation of the density of states at the Fermi level
as the Landau levels increase in energy with increasing field. When several sub-bands
are occupied, these SdH measurements generate a waveform which is a superposition of
the oscillations for each sub-band. The two-dimensionality of the structure can be
verified by a vanishing signal as the sample is rotated by 90 °.

Reprinted with permission of Materials Research Society.
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EXPERIMENVI'ALWORK

The measurementof DC magnetoresistenceon HgCdTefrequentlyrevealslittle
information. Seilerand Becket [14] introducedanAC techniquewherethe magnetic
field is modulatedandphasesensitivedetectionis employed.The secondderivativeof
theamplitudepresentscleardataof SdHoscillations[2,5,6,8,10].An alternativemethod
isusingametal-insulator-semiconductor(MIS) structureandmodulatingthegatevoltage
[1,7,15]. Sinceour experimentalsetupdid not providefor modulationof the magnetic
field andHall barsampleswereused,wehadto developappropriatenumericalmethods
in orderto extractthe oscillatorydata.Fourieranalysisshowedno oscillatorypattern
following backgroundsubtraction.Insteadnumericalsecondderivativeof the voltage
with respectto the field combinedwith datasmoothingwasemployed.Thesewere
obtainedby fitting asmallnumberof pointsto aseconddegreepolynomial.Thisprocess
eliminatesthebackgroundandrevealstheSdHoscilations.

Figure 1 showssucha plot of thesecondderivativeversusan inversemagnetic
field measuredat 1.45 K. Several frequenciesof oscillationscan be observed,
correspondingto varioussub-bandpopulationsand their harmonics.In figure 2 we
separatedbetweenthesefrequencies:trace (a), correspondsto 0.31-0.44T, with a
frequencyof 3.75T; trace(b),correspondsto 0.51-0.79T, with afrequencyof 9.7T and
a changeof phase(beat)at 0.66T; trace(c), correspondsto 1.01-1.16T and shows
superpositionof thepreviousfrequencywitha30.4T waveform.

Theeffectof increasingtemperatureis presentedin fi_ox_re3, in whichtrace2c is
repeated,this timeat4.15K. Thereis anobviousdecreaseof theamplitudeof the30.4T
oscillation,while thereductionin the9.7T componentisminimal.
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Fig. t: Numerical second derivative of magnetoresistance measured at 1.45K, showing
SdH oscillations of an anodic oxide inversion layer on p-Hgo.vsCdo.22Te
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ANALYSIS AND DISCUSSION

The change in the resistivity due to the magnetic field can be expressed as [16]

po [BJ[M'mn']'"2exp(-[3MT DmT/B)[2=MFnn]_ _ _ T,.._-.---_ "cos +_ (1)
M sinh ([3MTm'_/B) B

here T = temperature, B = magnetic field, F = oscillation frequency, _ = phase, TD =
ingle temperature, mr = effective mass ratio (m'/mo), and [3= 2_zL'e mo/HB e = 14.7

T/K. The summation on M is over the harmonic frequencies of a given sub-band n. In
order to obtain the occupancy of the various sub-bands, the Fourier transform of the data
was obtained using an FFT. Figure 4 shows a transform of the second derivative taken
at 4.15 K. Similar spectra were obtained for all other measured temperatures. These
results highly resemble the data of Beck and Anderson (Fig. 2, Ref. 7), obtained for an
accumulation layer. In addition to the three main frequencies, corresponding to three
occupied sub-ban&s, one can easily observe the second and third harmonics of the 3.75 T
line (with the third harmonic more intense than the second).

Fhe effective ma_s ot electrons in tt_e various sub-bands can be derived from the
reduction in amplitude w-th increasing temperatures. This dependence can be
summarized as X._sinhx, where X= [3Tm/B. Unfortunately due to the very small
effective mass in HgCdTe and due to the superposition of the various lines, it is hard to
obtain precise data in the limited temperature range employed. Figure 5 shows a fit for
the amplitude of a peak at 1.05 T (0.95 l/T) which corresponds to the first sub-band,
with the largest effective mass. The fitted value is m* = 0.033 m0. The convex shape of
the curve indicates that the argument of the hyperbolic function is indeed small, thus
replacing the hyperbolic sine with an exponential function should be done with extreme
caution! [9]. The data is summarized in Table I. The uncertainty in the value of the
effective masses is large. Moreover, since the ratio of x to its hyperbolic sine approaches
rapidIy 1 as x approaches 0, the very small effective masses of the second and third
subbands renders a ratio which is almost temperature independent, causing a further
increase in uncertainty in determination of these values. The accuracy of the derivation
may be improved by either a deconvolution of the various frequency components of the
waveform, or a simulation this pattern.
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The sub-band occupancy is given by N_--.-_-'F n. Summing up the

concentration of the first three sub-bands, and adding 4% for the higher ones [5], we
came up with the rado of the sub-bands occupancy to total surface concentration N T,
presented in Table I.

Table i

n F"(T) Ns(cm -:z) Ns/N T m7

1 30.4 1.47- 1012 0.693 0.033_+0.008

2 9.7 4.69- 10:: 0.221 0.018_+0.007

3 3.75 1.81.10 n 0.0855 0.011_+0.005

The concentration ratios are in excellent agreement with the theory in [12], the
results of Beck and Anderson [7] and the various Singleton, Nicholas and Nasir
investigations [1-6]. Taking into consideration the composition ratio (x = 0.22), our
results indeed fit perfectly with a slight difference between those of x = 0.2 and x = 0.3
[2]. The discrepancy between these data and that of Zhao et al. [1] was recently
explained [5].

The effective masses obtained are on the lower edge of the theory [11] and
experimental results [6,7]. However, the large uncertainty in present values necessitates
further investigation before any conclusions can be drawn.

The two-dimensionality of the data was verified by rotating the sample by 90 °.
The numerical analysis renders noise with amplitudes one-order of magnitude smaller
than the SdH oscillations, for all temperatures tested. No peaks are present in the Fourier
transfom_.

A change of phase, such as we observed at about 0.66 T, has been previously
reported for SdH data on various materials, including HgTe films [8]. The last one was
observed only at -1.9 K, and was attributed to strain-effects, rather than to inversion
asymmetry., since it was observed at low electron concentration. In this work it is also
possible that the beat is a result of the superposition of the two frequencies at 9.7 T
(second sub-band) and at 11 T (third harmonic third sub-band).
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CONCLUSIONS

The SdH experimental technique performed on an inversion layer, generated by
anodic oxidation of a p-HgCdTe, proves the existance of a 2DEG and renders data on
three sub-bands. The calculated relative occupancies of these sub-bands agree extremely
well with theory and experimental results obtained from accumulation layers on n-t?q3e
materials. The analysis should be extended to achieve better accuracies of the effective
mass by both measurements at higher temperatures and by mathematical simulation of

the data. This also may render scattering times. Experimental work at higher magnetic
fields may reveal additional structures.

The numerical analysis performance in this work has proven that it is possible to
compensate for limitations in experimental facilities by appropriate mathematical tools.
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PLASMA-DEPOSITED AMORPHOUS HYDROGENATED CARBON FILMS
AND THEIR TRIBOLOGICAL PROPERTIES

K. Miyoshi, J.J. Pouch and S.A. Alterovitz
National Aeronautics and Space Administration

Lewis Research Center, Cleveland, OH 44135, USA

ABSTRACT

Recent work on the properties of "'diamondlike'" carbon films and their dependence on preparation conditions
are reviewed. The results of the study indicate that plasma deposition enables one to deposit a varlet,, of amorphous

hydrogenated carbon (a-C:H) films exhibiting more diamondlike behavior to more graphitic beh_.vior. The plasma-

deposited a-C:H can be effectively used as hard, wear-resistant, and protective lubricating films on ceramic materials
such as Si3N4 under a variety of environmental conditions such as moist air, dry nitrogen, and ``acuum.

INTRODUCTION

Carbon films exhibiting unique properties can be formed on different substrates by ion-beam deposition, i_m-beam
sputtering, and plasma deposition of gaseous hydrocarbons [1 to 8]. The properties are sensitive to the deposition

conditions. These resulting films can exhibit high electrical resistivity, semitransparency, mechanical hardness, and
chemical inertness. The carbon films show promise as wear-resistant, hard solid lubricating coatings fi)r mechanical
systems such as bearings and optical components. In addition, carbon films are useful as gate dielectrics and passi'_ating

tayers in semiconductor device processing, insulators for metal-insulator-metal fabrication, and masks ti, r nanc_metcr

lithography [9 to 11].
This chapter is principally concerned with the chemical, physical, and tribological characteristics of amorphous

hydrogenated carbon (a-C:H) films grown on different substrates (Si3N+, GaAs. InP, Si, and fused silica) by means

of plasma chemical vapor deposition at 30 kHz. The influence of growth conditions on the chemical and physical
properties of these films was studied by Auger electron spectroscopy (AES), secondary ion mass spectroscop.,, ISIMS).
x-ray photoelectron spectroscopy (XPS), ellipsometry, and N t5 nuclear reaction techniques. The nucle:,r reaction

techniques provide the hydrogen concentration information. These analysis techniques and procedures are de,,cribed

in references 12 to 18. Tribological studies have also been conducted with the a-C:H films to better understand those
chemical and physical properties of the films that will affect their tribological behavior when in contact with a ceramic
material. The friction, wear, and lubricating behavior of the a-C:H films were examined with flat specimens ice,reposed

of an a-C:H film and Si3N 4 substrate) in contact with Si__N+riders in two processes. The first was done in dr','

nitrogen gas in moist air to determine the environmental effects on friction and resistance to wear of the a-C:H films.
The second was done in an ultrahigh vacuum system to determine the effect of temperature on adhesion and friction
of a-C:H films.

Reprinted with permission of Tram Tech Publications.
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AMORPHOUSHYDROGENATED CARBON (a-C:H) FILMS

" Plasma Deposition

Amorphous hydrogenated carbon films were formed on the different substrates from the 30 kHz ac glow discharge
by using a planar plasma reactor [12 to 18]. All substrate materials were first cleaned in acetone and ethanol baths
and then rinsed in deionized water. Thesubstrates ,*ere placed on the ground anode of the parallel plate reactor

in the chamber: the upper electrode was capacitively coupled to the 30 kHz power source. The background pressure
was typically 2.7 Pa (20 mtorr). The gas sources were CH_ and C_HL0 (methane and butane, 99.97 percent pure r.

The deposition gas (CH., or C,Ht0) was used to flush the system three times prior to each run. The chamber pressure
was controlled by the input gas flow' rate and pumping speed. The power density and flow rate settings covered
the ranges 0.4 to 5 kW m-: (25 to 300 W) and 3 to 9× 10 .5 m 3 min -_ (30 to 90 SCCM). respectively. The initial

substrate temperature was 25 °C, and it increased a few degrees during each deposition.

The film growth rate varied monotonically with deposition power. Figure 1 illustrates the typical dependence _f

growth rate on deposition power. The specimens are a-C:H films grown on InP substrates using a CHz .qov, rate
of 70 SCCM. This growth rate increases from 5 to 27 nm min-_ as the power increases from 25 to 300 W

Film Characteristics

The AES and XPS measurements indicated that the a-C:H films contained only carbon: no other element was

observed to the detection limits (0. I at. %) of the instrument [12 and 131. Figure 2 shows a t',pical .--kENprofile
of a-C:H films on the InP and GaAs. Oxygen was not present in the films, but there was a small percentage of

ox':gen at the carbon-InP interface. This suggests that the CHa (methane) plasma removes all of the native oxides
from the GaAs surfaces and most of it from the lnP surfaces.

Relative counts of hydrocarbon ions sputtered from a-C:H films deposited on the lnP substrate ,.,,ere determined
by means of SIMS depth-profiting studies performed with 3 keV Ar- ions [12]. In figure 3(a) the distribution of

ion counts is plotted as a function of mass-to-charge ratio for various deposition conditions using a CzH_0 plasma.
The predominant ion is CH-: it is interesting that a higher CH * level is obtained from films produced at the higher

power densities. Additional ions are presented in figure 3(a)" CH_:', CH_, C,H-. C,H_: and CzH-
The ion distributions extracted from a-C:H films prepared by a CHa (methane) discharge are shown in figure

3(b_. Evidently, CH" has a higher probability of being sputtered from each fihn. At 50 SCCM t32.7 Pa). more

CH" is generated from the a-C:H deposit made at 2.45 kW m-2. In addition, some of the films obtained from the

CaHm discharge (fig. 3(a)) have higher amounts of incorporated C:H 3 relative to the CH4-derived films (fig. 3(b)].
Figure 3 indicates that the lowest populations are associated with CH_'. The ion distributions thus reflect some of

the bonding arrangements that result from the interaction of the plasma radicals with the growing film [19 to 21].
A SIMS depth profile (3 keV Ar + ions) of carbon deposited onto GaAs using CgH m is presented in figure 4.

The CH_ (x = 0,1,2,3) distributions are uniform in the bulk of the film, and they drop to lower levels in the vicinity
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of the carbon-GaAs interface. Moreover, figure 4 shows oxygen to be present throughout the film. This determination

cannot be made with the less-sensitive AES technique. It is apparent that Ga- and As _ are readily detected as the

carbon film is sputtered away.

The argon ion etching rate of the a-C:H films is shown as a function of deposition power in figure 5: a!. An inverse

relationship between argon ion etching rate and deposition power is observed. The etching rate drops from 80 to,

50 nm min-m when the deposition power is increased from 25 to 300 W. This suggests that films grown at higher

powers are denser than those grown at lower powers. Figure 5(b) shows the nuclear reaction analyses data. The

hydrogen concentration in the carbon film decreases slightly with increasing power. The hydrogen concentrations

are in the 7.2 to 7.7x 10 '-2 cm -3 range, which gives an approximate value of 0.8 for .r in the formula CH,.

.3-

O

_3 CH

0

[]

( oi 3
o ,_, --

I0 20

-I
I

°t l

[0 C C2H2 lC H_A ! CH2

2 10 1_ C_H_

30 10 20

/_SS-TO-CHARGE RATIO

(a) C_Hio plasma.

(b) CH_ plasma.

FLOW POWER

RATE, DENSITY,

SCCM kW m-2

<> 30 0.62

A 30 2._5

[] 50 .82

0 SO 2.45

c2i

t'- C2112

I

30

Figure 3.--Relative ion count as function of mass-to-charge ratio for carbon deposited onto InP using C_HEu and CH_ plasmas.
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TABLE [.--COMPOSITION AND PROPERTIES OF

HOT-PRESSED SILICON NITRIDE

Nominal composition, ,,vt "_ ............... 92 Si3N4-4.M_O-J.Y203 [

Structural phase ................................................... J-Phase i
i

Density. g cm -3 ....................................................... 3.27 i
i

Vickers hardness, GPa ............................................... t6 I i
1

Three-point bending slrenglh, MPa ................................. 980 1

Fracture toughness, MN m -! 2 ...................................... 9.4,

yJ,_un_'s

I

modulus, 10a kg mm-= .................................... 2.91

Poisson's ratio ......................................................... 0.27 [
I

ComprcsF.i',,_: _,lrcn_lh k_' mm " _Xt)'

:_Thermal expansion coerficienL I0--'_ "C - i ....................... 3._,
J
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Figure 6.--Vickers hardness as function of deposition power for a-C:H film deposited on Si3N ¢ (hardness measuring load, 0,25 N; hardness

of Si3N._ substrate, 17.1 GPa).
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Figure 7.--Optical bandgap as function of deposition power for carbon film grown on n-[nP.

The microhardness data measured for the carbon films on Si3N_ substrate (table I) at various deposition powers
are presented in figure 6. The microhardness increases as the power increases. Thus it appears that a decrease in

hydrogen concentration is accompanied by an increase in film density and/or c-c bondings, and in hardness.

The optical energy gap is shown as a function of the deposition power in figure 7. A decrease in the optical energy
gap is clearly observed with increasing power.

At this stage, we will compare our results with conjecture forwarded by S. Kaplan et al. [22]. They claim that

since double-bond hydrogenation is an exothermic process, "graphitic" behavior is favored over tetrahedral bonding
in higher energy growth environments. They show evidence of this assumption by comparing a-C:H films made
by five different experimental configurations. As a-C:H properties are dependent quite strongly on the many variables

encountered in different preparation conditions, it seems that a better test of this assumption is in order. In addition,
their results show a rather striking feature: a-C:H films exhibiting more "diamondlike" behavior (i.e., larger bandgap
and more tetrahedral bonding) show a steep decrease in their hardness as compared with the more "graphitic" films.

Our results confirm this model, including the hardness measurements. The higher the plasma deposition power,
the more sp 2 versus sp _ bonds are made, giving a more "graphitic" film, with smaller bandgap (fig. 7) and higher

density and hardness (figs. 5 and 6, respectively).

TRIBOLOGICAL PROPERTIES

In the preceding section there have been indications that a-C:H films have diamondlike behavior in lower energy

growth environments as compared with the more graphitic behavior in higher energy growth environments. Therefore,
the objective of this section is to compare the tribological properties of a-C: H films made by different deposition powers.
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Sliding friction and wear experiments were conducted with a-C:H films deposited on Si3N._ flats in contact with

hemispherical Si3N4 riders (1.6 mm in radius). The a-C:H films on the Si3Na flat substrates were approximately

0.06 _.m. The Si3N 4 used for fiat substrates and hemispherical riders was hot pressed, and its composition and some

of its properties are presented in table I. Two types of sliding friction experiments were conducted with the a-C:H

films [23 to 25]. The first type was conducted in nitrogen and laboratory air atmospheres with a load of 1 N (Hertzian

contact pressure, 910 MPa) and at a sliding velocity of 8 mm min- _ at room temperature. The specimen rider was

made to traverse on the surface ofa-C:H film. The motion was reciprocal. The a-C:H films were subjected to multipass

sliding by the SigN4 riders. The second type was conducted in ultrahigh vacuum (10 -_ to 10-9 torr) with loads

up to 1.7 N (Hertzian contact pressure, 1.5 GPa) and at a sliding velocity of 3 mm min -I at temperatures up to

700 *C. In this case, the a-C:H films were subjected to single-pass sliding by the Si3N 4 riders.

Environmental Effects on Friction and Wear

Environment significantly changes the friction and wear behavior of solid materials. Friction and wear of a-C:H

films are consistent with this generality and depend on water vapor [1 and 26 to 28].

Figure 8 presents typical plots of the coefficient of friction for plasma-deposited a-C:H films at low (50 W) and

high (250 W) deposition power as a function of the number Of h_peated passes in dry nitrogen and humid air

environments. The values of coefficient of friction given are typical, but the trends with number of passes are quite

reproducible. With the 50-W plasma-deposited a-C:H films, the coefficient of friction was generally found to increase,
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as shown in figure 8(a). This increase, however, was small in a dry nitrogen environment even after it had been
in contact with the rider for about 10 000 passes. On the other hand, in humid laboratory air a significant increase
in the coefficient of friction occurred at about 500 passes and increased sharply to 1000 passes. The sliding action

caused breakthrough of the film and removed it from the sliding contact area at about 1000 passes. Note that among

the a-C:H films deposited at various deposition powers (50 to 300 W), the film deposited at 50 W has the lowest
initial coefficient of friction (0.08 to 0.09) in the dry nitrogen environment. The value of the coefficient of friction

was similar to that of a hemispherical diamond pin (radius, 0.2 mm) in sliding contact with a Si3N 4 flat. The friction
of the diamond was low (0.05 to 0.1) in dry nitrogen. It is well known that diamond has a low coefficient of friction

in contact with various types of materials [29].

With the 250-W plasma-deposited a-C:H films (fig. 8('o)), although the coefficient of friction increased with increasing

number of passes for about 10 passes in the dry nitrogen environment, it generally decreased in the range 10 to

10 000 passes.
At 600 to 700 passes, the coefficients of friction became very erratic and variable, as presented in figure 8(b).

Optical microscopic examination indicated that some wear debris particles formed in the front region of the rider
and on the wear track of the a-C:H film. Thus the wear particles so produced were caught up in the sliding mechanism

and affected the coefficient of friction.

At 1000 passes and above, the coefficient of friction became low, but still variable (0.01 to 0.1). At this range
the coefficients of friction for the 250-W plasma-deposited film were lower than those for the film deposited at 50 W.

In a humid air environment, the coefficients of friction for the 250-W plasma-deposited a-C:H film were higher

as compared with those in dry nitrogen by a factor of 1.5 to 3 up to 10 000 passes. The film, however, did not
wear off from the substrate even in the humid air environment.

Thus, water vapor greatly increases friction and reduces the wear life of plasma-deposited a-C:H film at low

deposition powers. In general, a-C:H films deposited with lower deposition powers were more susceptible to water
vapor, when compared with the films deposited with higher deposition power. Particularly, the deposition power

greatly affects the wear life of the films in a humid air environment. The greater the deposition power Ithe more

graphitic the film), the greater the wear life in humid air. ,

Annealing Effects on Friction and Wear

Thermal annealing significantly affects the properties of a-C:H films. For example, an abrupt decrease of the optical

bandgap has been observed for the thermal annealing process [14].
Figure 9 presents the optical bandgap of the a-C:H films deposited on the quartz substrates by using 150-W,

70-SCCM-flow-rate CH._ plasma as a function of annealing time at 400 and 600 *C. The thermal processing of the

films was accomplished in nitrogen gas with tungsten halogen light. The main part of the reduction in the optical bandgap
is obtained at short annealing time. This fact can also be deduced by the result obtained by laser annealing [30],
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Figure 9.--Optical energy gap E,, as function of annealing time for a-C:H films on quartz annealed at two temperatures.
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when processing time is much shorter than that reported here. The mechanism involved should be a two-step process.

There is known to be a two-stage pyrolysis of organic material into graphite [31] for temperatures in this range.

namely carbonization and polymerization. The carbonization stage includes loss of volatile matter, which we identify

with hydrogen loss in this case [1]. This stage occurs in the temperature range 400 to 600 °C in a-C:H. The

polymerization stage includes the formation of graphitic crystallites or sheets. If we assume that the polymerization

is a diffusion-dependent process with a relatively long time constant (on the order of 10 _ sec), then we can deduce

that the two processes of carbonization and polymerization occur simultaneously in our a-C:H films. The abrupt

decrease of the bandgap versus time at very short processing time is due to the hydrogen loss. while the subsequent

decrease in optical bandgap is due to an increase in cluster size [31].

Further, absorption in the UV-visible range was measured with a-C:H films on quartz substrates [14]. The

absorbance-versus-wavelength plot at 600 *C shows a decrease in peak height and a shift in the peak position. The

shift indicates changes in the carbon bonding. The decrease in peak height is attributed mostly to loss of material
in this case.

Thermal annealing also changes the friction and wear characteristics of a-C:H films. Figure 10 presents the friction

data for annealed a-C:H films in sliding contact with Si3N4 riders in dry nitrogen and humid air environments. The
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annealing of the a-C:H films deposited on the Si3N_ substrates was accomplished at 700 "C in ultrahigh
vacuum (10 -_ to 10-° torr).

Both in d_ nitrogen and in humid air, the initial coefficients of friction for the annealed film deposited at 150 W

(fig. 10(all were reduced by about a factor of 2 as compared with those for as-deposited film. The annealed film
did not wear off from the substrate in dry nitrogen even after it had been in contact with the rider tbr about 10 000

passes, while in humid nitrogen it wore off at 300 passes and had shorter wear life.

With the a-C:H deposited at 300 W (fig. [0(b)), the results show an interesting feature: the annealed film exhibited
more graphitic behavior; that is, at up to 100 passes the initial coefficients of friction in humid air were lower than
those obtained in dry nitrogen. This is contrary, to the results obtained from the as-deposited a-C:H films (e.g.. fig, 10)

and the annealed film at 150 W power (fig. 10(a)). Further, in the humid air environment the coefficients of friction

were reduced by about a factor of 2 as compared with the as-deposited film. The generally accepted theory !that
graphite lubricates because of adsorbed water or gaseous films) seems capable of explaining these results [32 and

33]: namely, the a-C:H film deposited at 300 W is believed to be more graphitic than the films deposited at lower
power. Moreover, the annealing of the film gives a more graphitic film. Effective lubrication is possible with the

very. graphitic film provided both by the high-power plasma deposition and by the annealing process when an adsorbed
water vapor film is present. Thus, the annealed a-C:H film deposited at 300 W has very graphitic friction behavior.

Temperature Effects on Adhesion and Friction in Vacuum

An increase in the surface temperature of a-C:H films tends to cause chemical changes, as discussed in the preceding
subsection. These chemical changes can alter their friction and wear behavior. For simplicity of discussion, the effect

of temperature on tribological properties of concern is investigated in a nonoxidizing environment (i.e., in an ultrahigh

vacuum). The in situ friction experiments were conducted in a vacuum with the as-received plasma-deposited a-C:H
films in contact with the ion-sputter-cleaned, hemispherical monolithic SiaN., rider specimens.

Typical plots of the coefficient of friction tbr a-C:H films plasma-deposited at 150 and 300 W as a function of
surface temperature are presented in figures l l(a) and (b). respectively. Comparative data for an uncoated Si.:Na

fiat in contact with a hemispherical Si3N 4 rider are presented in figure 12.
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With the 150- and 300-W plasma-deposited a-C:H films (fig. I1), the coefficient of friction remained low at

temperatures to 500 °C and rapidly increased with increasing temperatures at 600 °C and above, remaining high
in the range of 600 to 700 "C. The mechanism involved in the rapid increase in friction at 600 to 700 °C should

be related to the two-step process, namely carbonization and polymerization of a-C:H films, as discussed in the
preceding subsection.

When compared with the coefficient of friction for Si3N 4 in contact with Si3N, _ itself (fig. 12), the coefficient of
friction for a-C:H films in contact with a Si3N 4 rider (fig. 1 I) was generally much lower at temperatures to 500 °C.

It is also interesting to note that the coefficient of friction for the film deposited at I50 W had a ve_' low coefficient
of friction (about 0.08 at 500 °C) even in an ultrahigh vacuum environment (fig. 1 l(a)), and that the film effectively

lubricated Si3N _surfaces. Note that in vacuum the friction behavior of a-C:H film deposited at 50 W was similar
to that shown in figure l l(a).

CONCLUDING REMARKS

There are two parts in this chapter, one mainly describing the growth and physical characterization of a-C:H films
and the other dealing with the tribological properties. The films can be characterized by several parameters, as described
in the first part. The main properties are defined by bonding ratios (sp'-/sp 3) and by hydrogen concentration, which
will give the graphitic or diamondlike behavior. The more graphitic behavior is associated with lower bandgap and
low mechanical etch rate.

In the second part of the work, the a-C:H films were shown to be capable of tribologicaI applications. Plasma-

deposited a-C:H can be effectively used as hard, wear-resistant, and protective lubricating films on ceramic material
under a variety of environmental conditions such as moist air, dry nitrogen, and vacuum. More specifically, we
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found a very, good correlation of the tribological behavior with the physical properties, as described in the first part

of the work. For a-C:H films deposited at low power, which are more diamondlike, we found frictitm behavior

similar to that of bulk diamond. The present experiments show that among the a-C:H films deposited at various

deposition powers (50 to 300 W), the film deposited at 50 W had the lowest initial coefficient of friction in dry

nitrogen. The value of the coefficient of friction (0.08 to 0.09) was similar to that of hemispherical diamond (radius.

0.2 mm) in sliding contact with a Si3N._ fiat. Conversely, for the a-C:H films deposited at higher power, a graphitic

tribological behavior was found. Effective lubrication is possible with the graphitic films like bulk graphite when

adsorbed water vapor is present.

Lastly, a simple physical characterization of the films can partially predict the tribological properties.
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Variable angle of incidence spectroscopic ellipsometry (VASE) has been implemented as a means of demnnining layer
thickness, alloy composition, and growth quality of GaAs/AIGaAs samples composed of relatively thick layers as well
as superlattices. The structures studied in this work contained GaAs/A1GaAs multilayers with a superlattic¢ "barrier"

and were grown for later formation of modulation-doped field effect transistors (MODFETs). Sample modeling was per-
formed by treating the superlattice as a bulk AIGaAs layer of unknown composition. Extremely good data fits were
realized when five layer thicknesses and two alloy ratios were allowed to vary in a regression analysis. Room temperature
excitonic effects as_cociated with the ¢-hh(l), e-lh(1) and e-hh(2) transitions were observed in the VASE data.

KEY_NORDS: ellipsometry, spectroscopic, variable angle, layer thicknesses, GaAs, AIGaAs mu_layer tran-
sistors

§1. Introduction

Rapid progress has occurred in the development of

modulation-doped and multiple quantum well

heterostructure devices. These types of structures have

found applications in opto-electronics, digital electronics

and microwave analog communications. 1_

These advances have created a requirement for

monitoring the accuracy and quality of III-V semiconduc-

tor growth processes_ Traditional methods for these

purposes include Cfbss sectionai TEM (XTEM) and pho-

toluminescence) '3_XTEM is slow, expensive, and destruc-

tive, and photoluminescence (PL) does not yield

thickness information for the thicker layers. Generally

PL, as well as photomodulation measurements, must be

performed at cryogenic temperatures to be maximally

useful. This limits the usefulness of these techniques in a

manufacturing environment. VASE has been shown to

provide an accurate, rooth temperature, atmospheric

pressure, and nondestructive method of characterizing

samples containing heterojunction and superlattice

layers? '5'_ Thus it is logical to extend application of

VASE to the more complex structure represented in the

present paper. Important additional considerations such

as interfacial roughness, 7_wafer homogeneity, and oxide

growth can be determined by the VASE process, g.9_In the

present work we determine five layer thicknesses and two

(equivalent) alloy ratios, representing one of the more

complicated structures yet analyzed by ellipsometry.

With these many unknowns the full spectral and variable

angle capabilities of the VASE technique are required.

Because we are "pushing the technique to the limit," we

have included a careful study of the mean square error

and correlation, in the present work.

"AFWAL/ELRA, Electronics Technology Laboratory, Wright-Pat-
terson AFB, OH 45433-6543

**NASA Lewis Research Center, Cleveland, Ohio 44135
"*'Universal Energy Systems, 4401 Dayton-Xenia Road, Dayton, Ohio

45432

Optical switches and modulators require.very large

nonlinearities induced optically or electro-optically.

These nonlinearities are inherent in excitonic resonances

in bulk semiconductors at low temperatures. The obser-

vance of excitonic effects in superlattices at room temper-

ature greatly enhances the suitability of their use with

other opto-electronic devices, j°) VASE provides impor-

tant information for these devices, specifically the index

of refraction and extinction coefficient at excitonic transi-

tion energies in superlattices. 6_

VASE resolves the structural and dielectric properties

of multilayered samples by measuring the ratio of the

reflection coefficients for light polarized parallel (R0),

and perpendicular (R_) to the plane of incidence, m The

ellipsometric parameters can be expressed as

p=tan 7"exp (iA)=R_/R, (1)

Experimentally, 7' and A are measured and results are

compared in a regression analysis to 7" and A' which are

calculated using the Fresnel reflection coefficients and

effective medium theories. The results of this analysis are

values for layer thicknesses, alloy compositions and op-

tical constants as a function of wavelength. In the pre-

sent paper we use VASE to obtain layer thicknesses and

alloy fractions for MODFET structures containing

superlattices.

In §2 the experimental set-up is discussed. Section 3

details the VASE modeling procedure. Results are

presented in §4 and conclusions in §5.

§2. Experiment

The design of the ellipsometric measuring system used

for the present experiment is based upon a design by

Aspnes and Studna. _2_The basic ellipsometer is a Gaert-

ner model L119 with the additional capability of setting

the angle of incidence, _, over a wide range of values

from 20 ° to almost 90 ° with an accuracy of +0.01 °. The

analyzer rotates at an angular speed of 3600 rpm, and a

75 W Xenon short arc lamp is used as a light source. The

Reprinted with permission of Japanese Journal of Applied Physics.
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25/24 Periods

Superlattice structure for samples #2352, #2207.

output of the arc lamp is passed through a Kratos GM252
monochromator providing a 2500-8500 A spectral range
with a typical linewidth of 20 A. The narrow light beam
from the monochromator output passes through a

polarizer to the sample where it is reflected through a
rotating analyzer. A photomultiplier tube (PMT)
measures the intensity of the light beam at the output of
the analyzer. The PMT output is digitized and collected
by a computerized data acquisition system, from which

and A are calculated using a Fourier analysis.
The sensitivity of ellipsometric measurements is a

strong function of @with maximum sensitivity occurring
at the wavelength-dependent, principal (pseudo-
Brewster) angle, n'n) The principal angle can be estimated
prior to measurement by modeling the assumed structure
for the sample and generating three-dimensional plots of
_or A vs. wavelength and $. VASE allows measurement
at several angles close to the principal angle, as opposed
to spectroscopic ellipsometry (SE), in which measure-

-_rnents are made at a fixed, single value of ¢, For the two

samples used in this study, measurements were made at
$=75.5 ° and 76.5 ° (for sample #2207), and at $=76 °

(for sample #2352) which are very near the principal
angles over most of the spectral range. The data for these
experiments were taken in the 3500 to 8000 A spectral
range in increments of 25 A.

The nominal structure of the two measured samples is
shown in Fig. 1. The layers were grown by molecular
beam epitaxy in a Varian II machine on an undoped liq-
uid encapsulated Czochralski CLEC) GaAs substrate, t3)
The substrata was rotated at 7 rpm during deposition
with the deposition rates and the A1 to Ga ratio
calibrated using RHEED intensity oscillations. _ The
superlattice buffer provides a high quality barrier at the
quantum well/superlattice interface. The superlattice
GaAs wells are nominally 20 A thick for sample #2207
and 30 A thick for sample//2352. The 75 A AIGaAs sec-

tion is an undoped spacer layer which separates mobile
carriers within the 150A GaAs well from ionized im-

purities in the 325 A doped AIGaAs layer. A single
atomic plane of Si provides "delta" doping for the quan-
tum well, and the 400 A GaAs layer at the top is used as a

surface cap.

§3. Modeling

"i_hemodel used to analyze the VASE data is shown in
Fig, 2(a). The optical constants of bulk materials are nor-

Fig. 2.

25 A Oxide

! 400 _, GaAs

400 A AIo_GQarAs

150/_ GoAs

5500 /_, AIo,G3o.rAs

GoAs SubstrcteI

(a)

{ 25.88 /& Oxide

! 437 ._ GaAs

405 A Aloz_.aaoaAs
141 /_. GoAs

I 5115 .h Ala_o._eAs

I GoAs Substrote

Co)

a) VASE modal, and b) fir.almodel for sample _2352.

really used for the modeling procedure. However, in
superlattices the quantum energy subbands, along with
the added complexity of wave function overlap, nullifies

the use of bulk material propertiesJ n Because the optical
constants of real superlattices are not independently
known, the superlatti_ was modeled as a single AL
Ga,-_As layer of unknown thickness and composition. A
native oxide layer was also incorporated into the model
on top of the GaAs cap. OpticaI constants of Al_Ga_-xAs
and GaAs were kindly provided by Dr. David Aspnes of
Bellcore, Inc., USA.

The thicknesses and compositions of the superlattice
"equivalent layer" as well as the other layers were solved
for in a regression analysis. A Fortran program produces
calculated _ and A values using the model, then
minimizes the mean-square (MSE) between the measured
and calculated eUipsometric error parameters by using
the Marquardt minimization algorithm, t6"t_)The MSE is

expressed as

MSE=I/m _a {(_d-- _'_+( A_-AI=_)2}t/: (2)
i

where the subscripts c and e represent the calculated and
experimental values respectively, and m is the number of
measurements. Occasionally the minimization is done
with respect to _ only, due to the adverse effects on delta
values if there is a change in the sense of polarization
handedness.

_4. Results

In order to obtain the bes_ possible fits to the ex-
perimental data, a number of modeling approaches were
utilized. The results of the modeling sequence for both
samples are shown in Table I. The initial best fit was over
the entire (3500 to 81300A) spec,dal range where the MSE
was minimized for both _ and d. Due to the shorter

wavelength light being absorbed closer to the surface, the
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Table I. Results of VASE and XTEM Analyses (all thicknesses and

wavelengths in A).

Sample: #2352

tl t2 t3 x3 _t4 t5 x5 MSE

Nominal values 25 400 400 0.30 150 5.500 0.30 --
VASE 26 435 413 0.37 142 5.470 0.32 0.069
90% confidence

limits (-+) I 8 16 0.005 10 20 0.001 --
XTEM 460* 420 -- 160 5,-120

* combined thickness of layers tl and t2

Sample: #2207

tl t2 t3 x3 t4 t5 x5 MSE

Nominal values 25 300 400 0.30 150 5,520 0.30 --
VASE 25 286 275 0.35 153 5,115 0.21 0.076

90°,/0confidence
limits (+) 2 10 24 0.01 18 37 0.01 --

analysis range was decreased to 3500-6800 A in order to

focus on the layers above the superlattice. Results frgm

the 3500-6800 A analysis were used as input parameters

for a 7' only data analysis over the full spectral range.

This ensured that the fitting procedure would be more

sensitive to the superlattice parameters. The final model

for sample//2352 with corresponding layer thicknesses,

composition and MSE is shown in Fig. 2(b). These values

are from the 7" only type data fits shown in Table I. The

90% confidence limits for the final model are also ex-

hibited.

An additional analysis of sample//2352 was conducted

using XTEM. The XTEM results (Table I) are in good

agreement with those of VASE and serve to verify the ac-

curacy of the VASE layer thickness measurements. The

XTEM photograhs showed that the material layers were

uniform with abrupt interfaces. A previous study TM of a

less complicated GaAs/AIGaAs system has also

demonstrated the concurrence between XTEM and

VASE layer thickness determinations.

Of particular importance in the VASE data analysis

procedure is ensuring that the MSE (defined by eq. 2) ob-

tained from a set of starting values is the true minimum

MSE and not a satellite minimum (defined as a local

minimum, but not the lowest minimum). Therefore, the

MSE for a variety of starting values were analyzed. The

variation of MSE with respect to changes in each par-

ticular model variable, keeping all other variables fixed,

was obtained for sample //2352. Figure 3 shows

changes in MSE for the alloy composition variations as

each composition is fixed at a series of values centered

near its optimum solved value, and the other composi-

tion is fixed at its best fit value. The MSE is presented

with respect to the 90% confidence limits of Table I

added to or substracted from the VASE "best" solution

values. The 90% confidence limit is a statistical measure

of the uncertainty of a particular measured parameter.

Values for the present experiments are given in Table I. It

is evident from the figure that the starting value for a

single variable analysis could deviate from the solved

value by a factor of approximately 15 times the 90% con-

i
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x3 [AIGoA$_ 1, * i

', r X5 (Superlar Tice I

\ / ' i,• \ f I

J

3000 _C)O0 IOOO 0 iO00 2000 X)O0

PERCENT OF 90% CCNF=II]ENCE LIMIT

Fig. 3. Mean square error vs. percent of 90% confidence limit added

to VASE solution value for the alloy compositions of sample =_52.

fidence limit and the best fit MSE would still be realized

in the regression analysis. The figure also demonstrates

that the 90% confidence limits applied to the VASE solu-

tions lie well within the region for a correct minimum.

Plots of the experimental and calculated VASE data

for sample #2352 are shown in Figs. 4(a) and 4(b), and

for sample #2207 in Figs. 5(a) and 5(b). A good fit of the

calculated data to the general features of the experimen-

tal data was obtained. The data are matched particularly

well considering that there are seven variables with vary-

ing degrees of correlation between them. The good data

fits are evidence that replacing the superlattice with an

"effective" AlxGa, xAs layer is a reasonable approach

for this specific case, where the AIGaAs barriers are thick

when compared to the GaAs quantum well thicknesses.

The broad peaks in the V_ data at 5800, 6500, 7200 and

7900 A for//2352, and 6000, 6800, and 7500 A for =_07

are mainly the result of optical interference effects from

the superlattice region. Spectral features at the shorter

wavelengths are dominated by the top layer of GaAs.

However, the spectral details at all wavelengths are in-

fluenced to some degree by each of the layers; in par-

ticular the surface oxide. This is shown by Figs. 6

through 9 which are discussed below.

Figures 6 through 9 were made by fixing the thickness

and composition values found from the analysis of sam-

ple //2352 and sequentially varying one parameter at a

time for a single _. Figures 6 and 7 exhibit how the

superlattice effects spectra in the 6000 to 8000 A range. It

is apparent from Fig. 6 that increasing the superlartice

thickness causes a corresponding increase in the

amplitude and a shift to higher wavelengths of the _v spec-

tra. However, an increase in the value of superlattice com-

position is seen to cause an increase in amplitude and

decrease in the wavelength shift (Fig. 7). Variation of the

thickness of the upper layer of GaAs has a pronounced

effect in gt between 4400 and 5200 A (Fig. 8), and also

causes leveling between maxima and minima at higher

wavelengths. Changing the oxide thickness uniformly

shifts the amplitude of 7" over the entire wavelength

228



_2

° --._ O
el

--'x -- E xpedmentol

--Calcutoted

0 l I I I __
3500 4500 5500 6500 7500

Wavelength,

(a)

8

6
_8
t'3

8

0

3500

-- Experimental

---Calculated

J

I I I I

4500 5500 6500 7500

Wavelength, _,

Co)

Fig. 4. a) Psi, and b) delta vs. wavelength for sample #2352.

_o
.

ta

u3

O

o

fq

o

o _
n

8_

-..,.--,_-- E xper i merit ol

- Calculated

I I l I

4000 5000 600C 7000 8000

Wavelength,

(a)

--Experimental
--- Calculaled

>_.

,

l l I xl

4000 5000 6000 7000 8000

Wavelength,

Co)

Fig. 5. a) Psi, and b) delta vs. wavelength for sample .:__07.

range (Fig. 9). o
The growth quality of the superlattice was determined

prior to the XTEM analysis by studying interfacial
smoothness between layers. In order to appraise _

roughness, a Bruggeman effective medium approxima-
tion was performed on sample//2352 with a 20 A mixture
of GaAs and Al0.3Gao.TAsin the model between the 150 A

_o
GaAs layer and the superlattice. The solution showed no .¢
appreciable change in values for layer thickness of com- o_
position. This resulted in an increase in the MSE of only
0.3%, demonstrating that physically there is not a mix- ,_

ture (roughness) layer present. Another modeling trial in-
corporated an A1203 layer in between the same layers.
This analysis was done to determine if roughness existed

O

due to the burial of oxygen impurities (which are AI com-
position dependent) in the GaAs portion of the
GaAs/AIGaAs interface, m The oxide layer solved to less

than 2 A with no change in MSE. Thus VASE in addition
to XTEM has shown that the superlattice growth quality

-- SL Thickness : 5464 A

--- SL Thickness : 5564 A

I .1. l I

4000 5000 6000 7000 8000

Wavelength, A

Fig. 6. Generated psi vs. wavelength for sample _2352 v,i_ varying

superlattice thickness.
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is good since incorporation of a GaAs/AIGaAs mixture

or oxide into the regression anMysis worsened the fits.

The narrow excitonic structures seen in Fig. 5(at at

6530 A, 7500 A, and 7700 A, are respectively the second

electron to heavy hole, e-hh(2), first electron to light

hole, e-lh(1), and first electron to heavy hole, e-hh(1),

transitions in the superlattice quantum wells. The exciton

energies are in qualitative agreement with values

predicted by subtracting the exciton binding energy (9.1

meV in single quantum well GaAs) from the e-hh(l) tran-

sition energy of a quantum well with a 30 A well width

and a wide Al0.._Ga0.7 barrier? m This analysis yields: E,-,htu

= 1.582 (7,840 At. This approach is sufficient due to the

barrier width being large in comparison to the well

width. It follows that the e-lh(1) and e-hh(2) transitions

are the next sharp structure when moving toward higher

energies.

The exciton peaks are shown in Fig. 10 for sample

#2207 meaasured at 10 A intervals. The presence of the

excitonic structure in both samples confirms that the

superlattice interfaces are of good quality. The

broadness of the excitonic structure can most likely be at-

tributed to slight energy changes in the quantum levels as-

sociated with layer thickness variations in the GaAs

layers of the superlattice. Also, thermal broadening of

approximately 100 A is a factor at room temperature

measurements. The exciton lines from levels in the 150 A

quantum well are outside of the spectral range shown.

§5. Conclusion

We have found that the superlattices in MODFET/

superlattice structures can be effectively incorporated in

the VASE modeling sequence by representing the

superlattice as a bulk AIGaAs layer of unknown alloy

composition. In the future it would be beneficial to make

independent measurements of the optical constants of

superlattices. This would be an enormous task since each

superlattice design would have unique optical properties.

Modeling the superlattice as muhilayers, each having the

bulk GaAs and A1GaAs optical properties, gives poor

results. Thus the approach we have taken works

x_

g

O.

8
6400

I ..... _t j + I

6653 6930 7190 7_.50 77i0 7970

Wavelength, _.

Fig. 10. Excitonic spectra for sample #2207.
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reasonably well, and is applicable to any superlattice

structure.

Analysis of five layers and two alloy fractions is possi-

ble if data are taken near the wavelength dependent

pseu.do-Brewster angle. Room temperature excitonie

effects as well as growth quality determination are realiz-

ed using the VASE measurement process. Thus the

analysis of these structures through VASE can provide

an accurate and nondestructive assistance in the produc-

tion of semiconductor structures for optoelectronic and

microwave communication devices.
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INTRODUCTION

Diamondlike carbon (DLC) is amorphous, hard, semitransparent, and is
under consideration for use as a coating material for infrared optics [I_
DLC is also designated as a-C:H to indicate its amorphous nature as well _s to
indicate the presence of large (20 to 55 percent) amounts of hydrogen in the
film. .......................

Two important questions arise with respect to use of DLCin infrarec
optics. DLC is amorphous, and will the lack of grain boundaries help to keep
moisture from penetrating the film? Secondly, application as an
antireflecting coating places restrictions on the allowed values of the _ndex
of refraction of the film relative to the particular substrate material Zing
used. Will DLC have the correct index range? These two questions are
addressed in this paper.

MOISTURE PROTECTION STUDIES

It is very difficult to measure penetration of moisture into thin

films. Common surface analysis techniques such as AUGER, and SIMS r_Uirr_

ultrahigh vacuum, and therefore can't be used.

We have shown that variable angle spectroscopic ellipsometry (VASE) can
be used to determine the thickness of ultrasmall amounts of water on, anc in a
thin film. This spectroscopy is not commonly known, so a brief description is
given [2], [3].

Ellipsometry determines the complex reflection coefficient

p z Rp/Rs = tam) exp jA (I)

where R. and Rs are the complex Fresnel reflection coefficients for con_D:nents
of ligh_ parallel (p) and perpendicular (s) to the plane of incidence of :he
incident and reflected light. Our VASE data were taken from 300 to 850 em

with light incident at an angle ¢ to the normal to the sample. The rejected
light polarization state was analyzed with a rotating polarizer. Light
intensity was measured with a photomultiplier tube, and the signal digitized,
and Fourier analyzed to determine the _ and h parameters of equation I.

?Research supported by the U.S. Army Materials Technology Laboratory, Co-tract
No. DAAL04-86-C-O030, by NASA Lewis Grant NAG-3-154, and by Control Data
Corporation.

Mat. Res. Soc. Symp. Proc. Vol. 152. ¢1989 Materials Research Society
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The measured complex ratio _ is related to the optical index of
refraction, n, and extinction coefficient, k, of the material under study. If

complex materials structures are involved then n and k can be determined for
individual layers, and layer thicknesses determined.

Microstruztural analysis is performed assuming the nature of the sample

under study. For the present samples the model shown is Fig. I. The ti are

layer thicknesses, and f2 is the fraction of DLC in a DLC plus H20 Bruggeman
effective medium approximation (EMA) mixture layer. The procedure is to
calculate p using the Fresnel reflection coefficients for a multilayer
para]lel stack (and EMA mixed layers), for a given initial set of values for
thicknesses and fractions. Next, a regression analysis is performed to
minimize the error function (MSE) defined by

,SE l ! (,e_p calc,2 (Ae_p calc )2i J + (2)= - -_iNii

The general set of materials parameters such as dielectric constants, layer
thicknesses, and composition fractions giving the minimum MSE are then
found. In the present experiments thicknesses and moisture fractions are
found.

The films of DLC used for moisture penetration studies were prepared
using a 30kHz parallel-plate plasma deposition system. Pure methane at a

chamber pressure of 20 microns was used. Power levels of lO0, 200, and 300
watts were used, but results for 200 watt are reported here.

Moisture was introduced to the films in two ways; from immersion in 230C
water, and from a steam jet at IO0°C.

Example ellipsometric data are shown in Figure 2. The data at 0 hours

after H20 indicate that water was introduced, then the bulk of it allowed to
run off-a vertical surface. At this time the maximum amount of water

remained, and the a parameter was lowest. Twenty four hours later some water
had evaporated, and a increased. After exposure to a heat lamp much of the
water on the surface was evaporated (but not all!). After exposure to the
laboratory 23°C atmosphere a small amount of moisture from the ambient air
deposited, with an associated decrease in a .

Using regression analysis of ellipsometric data for this sample, and a

two-layerdetermined(_Ra
= 0 in Fig. 1) model in ou_ ellipsometric analysis,nwe
t the water layer was 66-A thick on top of a 344-A thick DLC

film. The three-laxer (tl, t , t in Fig. l) analysis was consistent with
this result: 330 _ of D[C, _9 _'of 50%-50% mixture of DLC and water, and
48 _ of pure water on top.

This type of analysis was performed on a large number of samples, with
the same final result: DLC films were not penetrated by water [4] . The DLC
surfaces had small amounts of roughness, and moisture was found to penetrate
the valleys of this roughness but not further.

ANTIREFLECTION CONDITIONS USING DLC

Substrates on which we deposited DLC included: _exan, silicon, fused
silica, KG-3 glass, BK-7 glass, ZnS, GaAs, Ge, and heavy metal fluoride
glass. It was desired to know if DLC could be deposited to the proper
thicknesses and with the correct indices of refraction for use as an

antireflecting coating on each of these substrates.
Antireflecting coatings provide an important method of and enhancing

transmission through optical window
materials [5].

The reflectivity has a minimum when

nld1:Xo14 (3)

where nI is the index of refraction of the coating, and dI its thickness. The
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refTect_vity minimum is at its lowest value (zero) whe_

2
nI = non2

whe-e no is the index for the ambiert, which is normalTy air, so

nI = (4)

is required, where n2 is the index of the substrate at the wavelength of
interest.

?able I lists infrared transmitting substrates, their indexes of

refraction, the operating wavelengths of interest, and the required DLC
thickness and optical index of refraction. The proper index came from use of
Eq. 4, and the proper thickness from Eq. 3.

What is noticed immediately frontTable I is that the required film index
of refraction ranges from 1.2 to 2.8E for the examples listed.

The index of refraction of DLC can be controlled by choosing the pro_er
de_sition technique and parameters ill. The range tyoically found is for

1.6 ! nI _ 2.3

which makes the optimum matching substrates have indices from

2.5 <_n2 <_5.3

These values are much higher than the indexes for the glasses under

consideration (Table I), but results in a decent match for ZnS, diamond, Ti02,
As_S3 glass, Se glass, and results in good matches for Si, Ge, GaAs, and
InCh. All are common infrared transmitting materials [6].

The effect of index match or mi__smatchonreflectance near the

antireflecting condition is seen in --igs.3 and 4 for the substrates
indicated.

DISZUSSION AND CONCLUSIONS

We were able, with extreme care in surface preparation, to get DLC to
adhere to lexan, silicon, fused silica, KG-3 glass, BK-7 glass, ZnS, GaAs, Ge,
and heavy metal fluoride glass. The most difficult adherence problem was with
ZnS, for which we were unable to deposit the required thicknes for
antireflection (Table I).

Table I Candidate Substrates, and Conditions for Antlreflection
Operating Index at Ope-ating Required DLC:

Substrate Wavelength Wav_length Thickness Index
ZnS 2.2 4 micron 676n, 1.48
Fused 1.46 5E_Jnm 114rm 1.21
Silica
KG3 1.5
Glass
BK7 l.52
Glass

Heavy _tal 1.45
Fluoride
Lexan I.4
Silicon 3.42
GaAs 3.5
Ge 4.0
InSb 3.9

I._6 micron 217nm 1.22

551nm 9Ohm 1.23

4 micron 833nm 1.20

5_nm ll3nn 1.22
IO micron 1351nm 1.8S

4 micron 535nn 1.87
4 micron 50Ohm 2.0
lO micron 126_m 1.97

234

ORIGINAL PAGE IS

OF POOR QUALITY



H20

DLC plus H20

DLC

Si Substrate
i

it s

÷ f2_2 _

i

v

Fig. I Model structure assumed.

o3
Q)
QJ

QJ
rq

i i i O _ ' i i.,_d I - !128 DLC, 200W, 250 C _ ._

127 48 Hrs in R.T. H20 __j/]126 -"

After heat 1_-_,/_ . .'JY

;,p ." :

,..3hrs after_...pf/ . .j_ j

,24 heo,,omp_" J _ 0,r_o<_or_0. !
_:" "" 24 hrs after H20 "]'i

7

heat lamp /_ .";7" d
122 \ /_ -/ i

\ ,_/ .:,t"

121 - _ .... i

120 _" ' " ......
6400 6600 6800 7000 7200 7400 7600 7800 8000

Wavelengi:h, X,

Fig. 2 Change in parameter _ with moisture changes.

ORIGINAL PAGE iS

OF POOR QUALITY
235



0.¢

DLC film on Silicon

| I i

0.3

:-_>
02

I

q)
t'K

01

O0

__ n = 1.5
....... n = 20

-1

i ..... . ]

! ...........I

°-s t

5 10 15

Wcvelength (urn)

Fig. 3 DLC as an AR coating on Si.

DLC film on heavy metal fluoride

I I t I !

2O

0.2-

"F.

0

m

rY

0.1

0.0

n III 4°51

....... n =2.0

°......oo ................................ °-.,
o

°o.°*

'.. ."

"'-** .7

Wcvelength (urn)

Fig. 4 DLC as an AR coatin_ on heavy metal f]uoride glass.

236



In conclusion, we find that DLC is an effective moisture barrier for use

on infrared optics, and with the exception of ZnS we were able to directly

_eposit DLC on the chosen substrates to the desired thicknesses for
an_ireflection. The indexes of refraction were measured from 300 nm to lO

microns, and found to be in the range from 1.6 to 2.0. Other w_rkers have

prepared DLC samples with indices up to 2.3. Thus, we have established a
range of conditions for use of DLC as an antireflecting coating. Zero
reflectance can be achieved on substrates of Si, Ge, GaAs, and InSb. Low

reflectance can be achieved on ZnS, diamond, Ti02, As253 glass, Se glass; bu:
DLC will not be a good antireflecting coating on the comn_)n glasses with index
near 1.5.
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Thin Fllm Characterization Using
Spectroscopic E111psometry

Samuel A. A1terovltz

NASA Lewls Research Center
21000 Brookpark Road
Cleveland, OH 44135

INTROOOCTION

Thln films are widely used In the semiconductor
industry. Dlelectrlc, meta111c and epltaxlally
grown semlconductlng fllms, are the bulldlng blocks
of mc<lern electronics. The versatile, non
destructive optical method of elltpsometry is
particularly suited for characterization of these
thin films. In this paper we wtll discuss the
appllcatlon of the multlple angle and wavelength
(MAN) technique to measure the dielectric function
of the fllm. Thls technique evaluates unablguously
the complex dielectric function ¢(E): of the fllm

without any pre assumtlons. For other techniques,
a priori knowledge of.one or more of the followlng
Is required to find c(E) : film components,
thickness, functional form of the dielectric
function and/or use of the Kramers-Kronlg
relation. In some cases the effective medium
approximation (EMA) was used to determine the

volume fractlon of the film components.
Appllcatlon of the HAW technique to several
semtconducttng films was published previously (!).
In the following different applications and
exampIes will be glven, Including metal and
insulator films.

EXPERIMENTAL

A rotating analyzer elllpsometer wlth variable
angle of Incidence capablllty was used as described
In reference (2). The system Is controlled by a
286 type PC computer whlch also performed the
analysis for each sample. The spectral range of
3500-7300A at 5 angles of Incldence was used.ln
most cases, data was taken In IOOA intervals. The
ellipsometric parameters psi and delta were
obtained using a Fourier transform. The inversion

process Is based on the HAW analysis least squares
technique (3-5). In most cases, the substrate
optlcal properties were known, and a simple
substrate-fllm-amblent model was used. The
Inversion process gave the complex dlelectrlc
constant at every wavelength measured, and the
films thickness.

In many applications, the EMA technlque, wlth its
small number of parameters, was a better choice.
However, the EMA cannot be used for a fllm with

unknown components or for a material wlth no
published c(E) data.

RESULTS

Several type of samples were tested, to cover a
variety of cases, Including metal fllm on metal
substrate, Insulator fllm on metal, semiconductor
on semiconductor and Insulator on semiconductor.

A sputtered aluminum film was analyzed in terms of

Al203 on Al. The optical properties of these and
all subsequent materials were taken from reference
(6). The EMA analysis show that the sputtered A1
Is really only 70% pure AI wlth the remainder being

voids or A1203. The top A1203 layer thickness Is

of ordeE 20X. A thln (<204) Mo film o_ stainless
steel was measured and analyzed using NA_I. Results
for the thickness (ISX) are reilable, but the
dlelectrlc function does not produce the published
Mo results. Two films produced In an attelpt to
deposit a Ga253 layer on GaAs during a chemical
vapor deposltion growth were measured and
analyzed. The thickness of the layers were of
order lOOX. The dielectric function of the unknown
top layer on GaAs was calculated using HAW. The
shape of the function was found to be slmllar to
that of GaAs, but Included a change In amplitude.
We tried EMA, uslng Ga_s and an insulator as
components. The final result shown that 89I. of the
volume is GaAs.

Other examples, Including BN films on
semtconductlng substrates, epltaxlal semlconducting
films of SIC on Si and III-V on III-V w111 be given.
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Ellipsometric Study of Cubic SiC

s_4. Alterovit-, N,S. Shoemaker, and J.4. Powell

NASA Lewis Research Center, Cleveland, OH '-_.135, USA

N91-18304

Variable angle spectroscopic ellipsometry (VASE) has been applied to cubic

SiC. This technique gives absolute values of the refractive index (n) and the

extinczion coefficient (k) of a substrate and/or a th_n Film cf an unknown

material. The samples were grown by chemical vapor de_o_ition (CVD) on p-type

silican. The substcate was aligned either on the (OG_) axis or I ° c5_ (00_).

Several growth temperatures and growth durations were used. The samples were

divided into two groups: (a) thick fi1=s, of order 40 _, grown near optimal

conditions of temperature, F]ow and gas ratios; (b) thin Films, of or_er _OOA,

grown at various temperatures.

The ellipsometric results For samples in group (a) were analyzed usi_ a two-

-Qhase _odel (substrate and ambient). Results Show that for wavelengzns in the

visible, the refractive index'of these DJD samples is ecual to that reported

for single crystal cubic SIC, within the experimental e'cor, whic_ i_ on th_

order of I%. Eowever, the extinction caeff1cient has a relatively la-ye

value, even above the band gap. The a_sorpzio_ is sa_z:e dependent a:d has

broad peak in _ne visible. The results for samples in ;coup (_) were analyzed

using a three-pnase medel (subs:rate, film and ambient). The'die_ec:-_c

functions of t_e film, deducted from the measured n and k, were Further

analyzed using the effective medium approximation. The results show :hat the

f_lms contain 2C-40 vo_._ amqrphcus silicon, i.e. siliczn with only s-orZ-

-range order.
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ABSTRACT

Elllpsometrlc measurements on plasma deposited "diamondlike" amorphous
carbon (a-C:H) films were taken in the visible, (E : 1.75 to 3.5 eV). The

films were deposited on S1 and their properties were varied using high tem-

perature (up to 750 °C) anneals. The real (n) and imaginary (k) parts of
the complex index of refraction N were obtained simultaneously. Follow-

ing the theory of Forouhi and Bloomer (Phys. Rev. B34, 7018 (1986)), a
least squares fit was used to flnd the dispersion relations n(E) and
k(E). Reasonably good fits were obtained, showing that the theory can be
used for a-C:H films. Morever, the value of the energy gap Eg obtained

in thls way was compared to the Eg. value using conventional Tauc plots
and reasonably good agreement was obtained.

INTRODUCTION

The optical energy band gap of amorphous materlals Is usually found
using a Tauc plot [I], i.e., an extrapolation of <_nE) 1/2 versus E. Here

is the optlcal absorption coefflclent, n is the refractive Index and
E is the energy. In many cases, the refractive index is almost constant
or is unavailable, and (_E)I/2 versus E is used (simplified Tauc).

There are several drawbacks to the Tauc theory and procedure. First, the
theory relates to absorption only, and cannot give the refractive index
through the Kramers-Kronig relation [2]. Second, there is ambiguity on
the energy range that the Tauc extrapolation Is correct. Below a certain
value of _, the absorption falls exponentially. This regime is called
the Urbach edge [l]. The onset for thls regime varies and values of order
: lO3 cm-I [I] up to _ - lO4 cm-l [3] have been used. Empirically, many

Tauc plots also start to deviate from a straight line at high _ values
[4,5].

Recently, an extenslon of the theory of optical absorption has been
published for amorphous materlals [2]. Later, the theory was extended to
include more than one crltlca] polnt, and was applied to crystalline semi-
conductors [6]. In the Tauc plot derivation [1], the main assumptions are
a constant matrix element and parabolic denslty of states for both the
valence and the conduction bands. However, If the excited state has a
finite lifetime _, the absorption probability has a damping factor [2]

and Tauc plots are theoretically Incorrect. The extinction coefficient k
(k = _c_/2E where E is the energy) is calculated in [2,6] using the

lifetime concept, obtaining.

2
A(E - Eg)

k(E)
E2 - BE + C

(I)

Here A Is k(®) and is proportional to M21_ where M is the position

matrix element (M : <flxll));B - 2(E C crit - Ev,crit), where Ec crit and
Ev crit are energies in the conductlo_ and valence band respectiGely corre-
sp_ndlng to a critical point, l.e., where k(Er rrif - E v rrif) iS a maxi-
mum. C is related to the lifetime _ through"_/_ = (4_'- _2)I/2 and

Mat. Res. Soc. Symp. Proc. Vol. 152. ©1989 Materials Research Society
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Eg - Ec,bottom - Ev top, i.e., the optical bandgap. Using the Kramers-
Kronlg relation, the refractive index was obtained [2]:

BoE + Co

n(k) - n(_) + E2 _ BE + C
(2)

Here Bo and CO are related to A,B and C through simple algebraic
formulas, and n(®) is a constant.

In this paper we will examine if this new result applies to "diamond-
like" carbon, also denoted a-C:H (amorphous hydrogenated carbon). If

applicable, the result can give the n(E) function from a known absorption
spectrum k(E) and a single refractive Index measurement. Also, the func-
tions n(E) and/or k(E) can be used when their analytical form Is required,

e.g., optimizing antlreflection filters. In addition, this paper will dis-
cuss the meanlng of the experimental constants, A,B, C, and Eg.

Amorphous hydrogenated carbon material Is made almost exclusiveIj in
form of thin films. The natural choice for an experimental technique is

ellipsometry. The multiple angle of incidence, multiple wavelengths (MAN)
technlque [7 to 9] was used. MAW gives n and k of the film simulta-
neously at all wavelengths measured, without the use of either a known
dispersion relation or application of the Kramers-Kronig analysis. This
technique was commonly used to analyze various semiconductor multilayer
structures [lO,ll] when n and k of the constituents were known. Here,

the MAW technique Is used In a spectroscopic way, to measure unknown n(E)
and k(E). The smallest value of k that is accurately determined by
ellipsometry is of order 0.005, corresponding to _ _ 1000 cm-l in the visi-
ble. Thus, the Urbach edge regime is almost eliminated from this work.

Reflection elllpsometry has the added benefit of measuring the thin film
samples on any substrate, In contrast to transmission experiments. As the
optical energy bandgap Eg depends on the substrate material [5], possibly
due to differences in conductivity, thls advantage of ellipsometry can be
crucial for actual applications.

EXPERIMENTAL

Samples were prepared on 3 in. diameter Si substrates using a 30 kHz
plasma deposition unit. The power P used was in the range 50 to 200 W,
with a constant flow rate of 7xlO -5 m3/min. Details of the growth chamber

are glven in [12]. Several samples cut from the 150 W wafer were annealed
in nltrogen for lO sec using a rapid thermal anneal module [5]. The
rotating analyzer ellipsometer set-up [13] is essentlally similar to the
one described in [I0]. At each angle of incidence, data was taken in the
wavelength range 3500 to 7300 A, with I00 A intervals. Five angles of inci-
dence were used, usually in the range 55 ° to 75° . Each measurement con-
sisted of I00 rev, with 72 points per rev, taken at a rate of -50 rev/sec.
Background subtraction was done at each point. Calibration of the absolute
value of the ellipsometric parameters 9 and A was done using [14]. The
double grating monchromator was controlled by a IBM-AT personal computer
that was also used for all data acquistion and analysls. _ and A were
obtalned by Fourier analysis. The MAW inversion process was done by
minimizing experimental 9 and A (or tan 9 and cos 6) versus their cal-
culated values [9]. The model used included only the substrate and a homo-
geneous film. Thls is a reasonable approximation, as the interface oF
a-C:H on Si Includes only the native oxide and -5 A SIC x [15], and our
films were above I000 X thick.

RESULTS

Seven samples were measured. Simplified and regular Tauc plots were
done for all samples. A representative plot (50 W sample) is given in
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Fig. I, showing a slightly concave result versus the theory. AS the anneal-

ing temperature and/or deposition power rises, the experimental Tauc Func-
tion First becomes a straight l_ne and later turns convex. We kept the

e×trapolation range to the linear part of the experimental Function. A sum-

mary Of the energy bandgaps obtained from regular and simplified Tauc plots,

together with sample thicknesses t, are given in Table I. Results of n(E)

and k(E) For the 50 and 150 H, 600 °C samples are given in Figs 2 and 3

respectively. Figure 2 shows a rising n versus E while Fig. 3 show a

decreasing n(E). All other samples have an interim type of behavior. Grld

least square fits to Eq, (I) were done to obtain A,B,C and Eg simulta-

neously. With these 4 parameters Fixed, the value of n(_) was set to get

the best n(E) Fits. The solid lines in Figs. 2 and 3 ',ere calculated using

these parameters. Results For 211 samples are given in Table Ii, while Eg
is also displayed in Table I.

TABLE I a-C:H OPTICAL ENERGY GAPS IN eV

P, W

50

100

150

200

150

150
150

T_ °C

#00

600
750

t, A

I#90

2305

2810

2960

2560

1320
95O

Sqrt(_E)

1.90

2.65

2.36

2.02

2.05

1.08

0.57

Sqrt(_En)

I. 90

2.65

2.36
2.02

2.06

0.89

0.39

Grid

i .64

2.70

2.23

i .65

1.90

i .03
0.39

TABLE II DISPERSION RELATION PARAMETERS FOR a-C:H FILMS

P, W T, E

50

I00
150

200

150 400

150 600

150 750

A B, eV C, (eV)Z Eg, eV n(=)

.06 6.39

.01 6.46

.05 5.90

.II 5.99

.06 5.10

.40 3.66

.85 1.21

12.67
10.51

9.75

11.73
7.20

A.22

1.85

I .64

2.70
2.23

I. 65

1.90

1.03
O. 39

1.63

1.70

1.67

1.69

1.70

1.58
1.71
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Optical energy bandgaps Eg found using the two Tauc procedures are
identical. However, Eg found using the dispersion relation fits are almost

always smaller than the Tauc plots, although the differences are not very
large. It is Impossible to rule which bandgap Is the "correct" one. The
dispersion relation functions do take into account, at least qualitatively,

the existence of absorption at lower energy than the regular Tauc regime,
the Urbach tail. This can be seen by the very small slope of k(E) near
Eg, as shown in Fig. 2. However, _(E) is expected to be purely exponential
in the Urbach edge Ill. Thus, theoretically, the dispersion relations do

not describe this reglme. Table I also shows a decrease In Eg with
increasing deposition power, (except the 50 W sample) and with increasing
annealing temperature, in agreement with prior results [4,5]. The thick-
ness increases with power [16] and decreases with annealing temperature.

The quality of the fits shown in Figs. 2 and 3 is quite good. The
n(E) fits are the real test of the theory and the figures show a reasonable
agreement between experiment and calculation. All other n(E) experimental
curves show an equal or better fit to theory, as they include almost con-
stant n(E) values. In addition, the k(E) fit is definitely better than
the Tauc fits.

The value of the A,8,C parameters, as shown in Table If, are essen-

tially constant as function of deposition power, but they change signifi-
cantly versus annealinq temperature. The value of the lifetime fl/_,
deduced from (4C - B2) T/2, has quite an amount of scatter. However, all

results are around fl/_ _ 2 eV. This is a large value, but it is compara-
ble with other amorphous materials [2]. The values of A are in general
lower than for other materlals [2], denoting a smaller position matrix ele-
ment M in a-C:H. There Is an order of magnitude increase in M wlth
heating to 750 °C. It would be interesting to correlate this increase with
the changes in the composltlon and crystallivlty of a-C:H. The value of
B for the room temperature deposlted samples, is equal to the lowest values
obta|ned for other materials [2], and drops markedly with annealing tempera-

ture. The value of B/2 is characterlstic of the critical point bandgap
[6], denoting a sharp decrease in this bandgap, in parallel with the sharp
Eg drop. However, we dld not see signs of a peak in k(E) at E : B/2, as
expected for a crltlcal point.
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CONCLUSION

Oisoersion relations suggested in [2] are obeyed, although the n<E)

function does not have a perfect fit. Values of the _arameters for the
bandgaps B and Eg ShOw reasonable agreement with Tauc p]ots and with
prior results. The position matrix element Increases with Increasing

annealing temperature.
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I. Introduction

Numerous authors worldwide have prepared diamondlike carbon

(DLC) for various potential applications [i]. The present chapter
reviews work done, by ourselves and others on an important aspect

of the use of DLC as a protective coating in harsh environments.

This article contains new material not previously published, as

well as material re-presented, but with a new perspective. The

motivation for the original studies was the potential applicazion

of DLC on infrared transmitting optics [2_, and as protective

coatings in microelectronics [3].

There are three sub-topics in this chapter. The first is a

description of the preparation of DLC on seven different infrared

transmitting materials, and the possibility of using DLC as an

anti-reflecting coating at commonly used wavelengths [4]. DLC

doesn't bond easily to all materials, and special techniques for
bonding have been found both by ourselves and others.

The second topic deals with how well DLC will protect a

substrate from moisture penetration. This is an important aspect

in numerous uses of DLC, including both infrared optics and

integrated circuits [5].

The third sub-topic also involves an environmental aspect,
namely the effect of particulate impact on film performance and

integrity. For example, an infrared coating may be exposed to a

space environment or to conditions of blowing sand or water [2].

It is important to know how well DLC maintains its integrity.

* Now at Nicholas Copernicus University, -orun, Poland.

**Now at Whickham Ion Beam Systems, Ltd., Newcastle-Upon-Tyne,
Great Britain.
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II. DLC on Infrared Transmitting Materials

Several different infrared substrates were used, including

lexan, silicon, fused silica, KG-3 glass, BK-7 glass, ZnS, ZnSe,

heavy metal fluoride glass, GaAs, and Ge.

Extensive depositions were carried out using four different

systems, including direct ion beam, and three parallel plate

capacitively coupled plasma chamber designs.

A. Ion-Bea_ Deposition

The schematic diagram of the system used to ion beam deposit

DLC films is shown in Figure II-l. It consisted of four sections:

the ion source, the gas inlet system, the vacuum system, and the

target fixture. The ion source was a 2.5 cm Kaufman source made

by Ion-Tech Inc. Figure II-2 shows a schematic circuit diagram of

the source. The ion beam was produced by a plasma discharge and

a typical ion current was 10mA. The ion kinetic energy used in

the deposition could be varied from i00 to 1500 eV. The beam

profiles of the ion source were extensively characterized under

various conditions such as ion energy, and external magnetic and

T,a R/GET FIXTURE
/ COL.LllylATOR

_ CmHnIL/ lION I

BELL JAR
4,50 mm DIAMETER

7'50 mm HIGH R_A JLN T PPED

I DIFFUSION

PUMP

FIGURE I1-1. Schematic drawing showing the
relationship of the ion source

to the target fixture inside the

bell jar.
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electrostatic fields.

peaked.
In general the beam profile was narrow and

The sample inlet system permitted introduction of two pre-

mixed gases into the ion source. The flow rate of each gas was

controlled by an MKS flow controller, and the gases used in this

work were methane (99.99%l_and hydrogen (99.99%). The background

i0 . torr, and the operating pressure waspressure was typically b
on the order of I0- - I0 -_ torr.

The target fixture was mounted about 8 cm from the ion

source. Using the present ion source, the directly deposited
films were found to be nonuniform. In order to obtain a uniform

and large area film, an X-Y sCanner was constructed, as shown in

Figure II-3. The target plate was able to move approximately

17.5 cm in two orthogonal directions in a plane perpendicular to

the beam. This was accomplished using stepping motors controlled

by SLO-SYN indexers (430-PI, Superior Electric Co.). The

248



HORIZONTAL Z

DRIVE MOTOR

SOURCE

COLLIMATOR

TARGET

PLATE

_F'/ V%RTT_AL DRIVE

-M_f BASE PLATE

V

F, gure 11-3 Schematic Ioyouf of the
target scanner.

indexers were interfaced to an IBM XT-compatible computer via an

RS-232 port, which allowed the user to change parameters, i.e.,
feed-rate and travel distance, in the indexers. Extensive tests

were performed to determine the optimum scan rates. The carbon

content of the deposited film was then analyzed for u_iformity
using Rutherford Backscattering across a 5.5 x 5.5 cm area. The

optimum conditions were determined to be 0.04 cm/sec for the
X-direction and 1.6 cm/sec for the Y-direction. This set of scan

rates was used on all subsequent depositions.

B. RF-Plasma Confiquration I

An rf sputtering system was purchased from Cooke Vacuum

Corporation, consisting of a cryopumped stainless steel bell jar
chamber. Inside the chamber were two parallel plate electrodes

which were driven by a 13.56 MHz, 0 to 500 watt rf generator, and

a load matching network.

In Configuration I, one electrode was grcunded, and the

other driven by the rf generator. The driven electrode was much
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smaller in area than the grounded electrode, as sketchei in

Figure II-4. This geometry created an intense plasma above =he

driven electrode which was accompanied by a large self-induced 3C

bias. Also, a rather diffuse plasma existed at the ground plane

with virtually no DC bias. The substrate was placed on the

driven electrode to take advantage of the intense plasma and the

high deposition rate. During depositions at low power, the
self-induced dc bias was moderate and did not appear to alter the

film characteristics. However, significant high energy ion

bombardment of the depositing film occurred. We feel the main

effect of the ion bombardment was to heat the depositing film and

drive out the hydrogen, leaving a low band gap material. This

conclusion was based on the results obtained when a deposit was

made at 500 watts rf power, 140 microns torr total pressure fzr

30 minutes. Another deposit was made under the same ccn!i=icns

except the discharge was run for 2 minutes and turned off for S

minutes until a total time of 30 minutes deposition _as achleve2.

The former deposit exhibited a band gap of approximately 0.2eV.

the band gap of the latter film was greater than 1 eV, comparable

to that observed in films deposited at low powers. In view of

this, the Cooke system was modified such that the areas of the

driven electrode and ground plane were approximately equal

(Configuration II). This eliminated the self-induced bias and

the accompanying heating effect. This modified system al!o:Ted a

more accurate exploration of the effect of various plasma

parameters on the film properties.

_Mafching L__RF Generafor I
Network I I 5OOW, G56 MHzJ

I Water Cooling Supply

m

I Grounded

_J ElecfrodeStainless
Steel I*_[ ,11..$_,_ . _, j] -'=

V///I//I \ J ,-. ..

___ __[] j ____II Dnven Electrode

GaSl:lMethaneS°urce _J L (Water Cooled]

.and Argon [ Cryopump ]

Figure 11-4 Configuraf,on I

schemafic design
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C. RF-Plasma Confiqurations II and III

The reason behind the design for this configuration as

discussed above was to eliminate high energy ion impact and loss

of hydrogen during deposition. This configuration had a 30 cm

diameter stainless cathode on the bottom (Figure II-5), and a 28

cm diameter stainless steel upper electrode with an appropriate

ground shield.

  :hi.gl IRFG  -oto,-/
Ne,wo F--Isoow. .56

Sfeinless
Sfeel

Bell Oar

Rubber" J

Ring Gaurd

Gos Source
I:1 NlefJ_ne
ona ,_,rqon

. _om )

- . J
Wefer Cooled

Grounded
Plefe

Supply i

Figure II-5 Configuration Ii
schematic design

The center of the lower grounded electrode was connected to

the gas inlet pipe by means of a small plastic tube. A small
metal screen was placed over the center of the hole in the lower

plate to prevent the gas discharge from igniting in the gas

outlet opening. This electrode was also water cooled by a 28 cm

diameter stainless steel plate with copper cooling coils soldered
to it.

The Configuration II design reduced the self-induced DC

bias, by forcing the area of the driven electrode to be

approximately equal to the area of the ground plate. This

reduced the high energy ion bombardment of the depositing film

and the subsequent heating effects. This design provided a

uniform gas flow over the lower electrode for a wide range of

input gas flow rates and pumping speeds, creating a large area of
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uniform deposition for samples placed on this electrode. A rubber

ring guard was placed around the outside of the lower electrode

to prevent the discharge from igniting around the edges. The
frequency was 13.56 MHz.

In Configuration III (used at NASA Lewis) the chamber was

similar to II but the plates were of equal area (20 cm diameter),

and 2 cm separation. The plasma was pure methane at a pressure of
20 microns. The frequency was 30 kHz.

D. Optimization of Experimental Parameters

The physical properties of the DLC films on various

substrates were found to be dependent upon the deposition

parameters. Optimum deposition parameters, for each technique,
were established and are described below.

i. Ion-Beam Deposition

An attempt was made to optimize the hydrogen content of DLC
films by varying the hydrogen-to-methane ratio inside the ion

source. A series of experiments were performed using silicon

substrates. The hydrogen concentration was varied from 0% to

98%. The deposition conditions were as follows: beam voltage -

i000 V; accelerator voltage - i00 V. The discharge voltage

increased from 58 V to 98 V with increasing hydrogen content in

order to maintain the source discharge. The filament current was

typically 6 A; neutralizer current typically 6 A with 3 _IA
emission, and the gas flow increased from 1.5 to i0 SCCM with

increasing hydrogen content.

The deposited film composition was determined by Rutherford

backscattering (RBS) analysis for carbon content and proton

recoil detection (PRD) for the hydrogen content. The results are

shown in Table II-l. Hydrogen content in the deposited DLC film

has been found to be dependent on the hydrogen-to-methane ratio

inside the ion source. In particular, increased hydrogen
concentration in the ion source has been found to result in an

increased hydrogen content in the deposited film. Using pure

methane in the process of the present study, the final hydrogen

concentration in the DLC film is approximately 30%. With 20%

hydrogen in the ion source, the hydrogen concentration in the DLC

film is approximately 35% while with hydrogen concentration in

the ion source of between 50% and 80%, the final hydrogen

concentration in the DLC film is approximately 40% to 41%.
Accordingly, variation of the hydrogen concentration in the ion

source can be utilized to vary the hydrogen concentration of the

deposited DLC film. In general, lower hydrogen concentrations in

the DLC film render the coating denser and harder than films

having higher hydrogen concentrations. Accordingly, in most

applications, the use of pure methane is preferred.
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The effect of ion-impact energy on the film quality

(uniformity, pinhole, adhesion, and optical properties), on the

deposition rate, and on the damage to the substrate was

investigated. Two impact ion-energies of 500 and i000 eV were

used to deposit diamondlike carbon on silicon substrates. A pure

CHa gas was used in these experiments. TheSgas flow rate was 3
SCUM and the chamber pressure was 9.0 x i0- torr. Both films

appeared to be uniform and golden in color. The film growth

rate, hydrogen content and carbon content were analyzed. The
results are shown in Table II-2. Within the uncertainties of the

RBS, PRD and Dektak film thickness analyses, the deposition rate

and the hydrogen concentration in the film were found to be the
same. The cross-sectional transmission electron micrograph of

the DLC film at i000 eV showed no damage on the surface of the

silicon substrate. At high energy ion impact, the ion current
seemed more intense and the films stuck well to the substrate.

The increase of methane molecules resulted in ion-molecule

reactions inside the ion source; higher molecular weights of

hydrocarbon ions were produced. The present experin_nts were

carried out at three _ifferent pressures: 2.6 x i0 torr, 9 x
I0- torr and 6 x i0- torr brought about by controlling the CH
flow rate 7.32, 3.00 and 1.32 SCCM. An ion-impact energy of 1060

eV and silicon substrates were used. Uniform golden4color films

wer_ observed for deposition pressures of 2.6 x i0- torr and 9 x

i0- torr. However, darker films were obtained using a pres-
sure of 6 x i0- torr. The carbon and hydrogen content of

the films were analyzed, and results are shown in Table II-3.

It can be seen that at the lowest pressure, the hydrogen

content in the film was slightly increased. Therefore, if harder

films have less hydrogen, it is better to use higher methane

pressures.

The effect of substrate material (silicon, fused silica,

lexan, KG-3, BK-7 glass, ZnS, ZnSe and HMF) on DLC film growth

rate and film quality was investigated using the same experi-

mental conditions: pure CH 4 at fl_w rates of 3.0 SCCM, 1 KeV ion
energy, source pressure of 9 x I0- torr, deposition times from
65 to 450 minutes. All films on the above listed substrates were

found to be uniform. The film thicknesses were measured using a

Dektak instrument. Table II-4 gives the average2growth rate of
DLC on various substrates over an area of 4.9 cm . These were

direct ion beam depositions, with the present 2.5 cm diameter ion

source.

The effect of cleaning the substrate surface prior to ion

deposition of the DLC films was studied extensively. Bonding of
the DLC film on various substrates was found to be strongly

dependent upon the surface cleaning procedures. The initial

cleaning procedures included: (i) washing with i,i,i

Trichloroethane, (2) washing with acetone, (3) washing with

methanol and finally (4) blow drying by dry nitrogen. All samples

were cleaned by these four procedures, except the !exan substrate
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Table II-l. Effect of Hydrogen in the Source Gas on the Carbon,

Hydrogen Contents of Direct Ion Beam Deposited Diamondlike Carbon
Films ...........

Sample No. % Hydrogen
in the Source

% Hydrogen in

the Film (±5%)

% Carbon in

the Film (±5%)

DLC " C 0 30 70

DLC 140 2 40 60

DLC 141 5 36 64

DLC 142 i0 38 62

DLC 143 20 35 65 :

DLC 144 50 40 60

DLC 145 80 41 59

DLC 146 90 NO FILM NO FILM

DLC 147 90 NO FILM NO FILM _:

DLC 149 95 39 61

DLC 148 98 NO FILM NO FILM

TABLE II-2. Effect of Ion Impact Energy on the Direct Ion Beam

Deposited Diamondlike Carbon Films.

;ample No.

Ion Impact

Energy (eV)

% Hydrogen in

the Film (±5%)

% Carbon in

the Film (±5%)

Film Growth

Rate

A/min±5 A/min

871-365

871-366

i000

5OO

33.0

37.5

67.0

63.5

23

25
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TABLE II-3. Effect of Methane Pressure on the Direct Ion Beam

Deposited Diamondlike Carbon Films.

Sample No.

CH4 Source

Pressure (tort)

Flow Rate

(SCCM)

% Hydrogen in

the Film (±5%)

% Carbon in

the Film (±5%)

871-367 6x10 -5 1.32 38.4 61.6

871-365 9xlO -5 3.0 33 67

871-368 2.6xi0 -4 7.32 33.4 66.7

TABLE II-4.

Substrates.

Diamondlike Carbon Film Growth Rate on Various

Substrate

Direct ion beam

Deposition Rate (_/sec)

Lexan

BK-7

KG-3

Silicon

Fused Silica, Glass

ZnS, ZnSe

HMF

11.5

8.3

8.3

6.3

5.7

6.8

6.8
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which used only procedures (3) and (4). It was found that DLC
films adhered to BK-7, KG-3, ZnS, silicon and lexan Substrates

quite well, and passed the initial "Scotch" tape tests. However,

the DLC film on fused silica and heavy metal fluoride glass

failed the "Scotch" tape tests. Thus an attempt was made to

investigate the surface cleaning procedures for HMF glass and
fused silica. The substrates of HMF and fused silica were

cleaned by procedures (i), (2), (3), and (4), and cleaned again

by i000 eV Ar _ ion beam for 20 minutes prior to DLC deposition.

The DLC films on both substrates again failed the "Scotch" tape

test. Another cleaning procedur_was tried to clean the surface

by washing with methanol and drying using a heat gun or dry

nitrogen. The DLC films on both substrates were found to stick

well to these substrates. The new cleaning procedure was thus

adapted for cleaning of HMF and fused silica substrates.

In the present ion-beam deposition technique, the

temperature of the substrate was constantly monitsred by a
temperature tape and was found to be less than 60 C. Since optical

materials can be temperature sensitive, no attempt was made to
heat the substrate.

2. RF Plasma Discharqe: Confiquration I

Plasma DLC deposition was extremely successful on glass

slides (Thickness _ 1 micron) and Si-wafers. Occasionally there

were problems with pinholes when high power was used. At high

power (espec_ally 250 and 500 watts), the film quality became

significantly degraded, in terms of the uniformity of the film

thickness and the ability to adhere to glass. The thickest films

spalled off the edges of the glass slides if the power was too

high. As measured from UV-VIS absorption measurements on samples

deposited on glass slides, the optical energy gap was about 0.2

eV for the 500-watt sample. Substrate heating was suspected to

occur at high rf powers. To test for this postulate, sample K3

was prepared on glass, at 500-watt power, 140 microns pressure,
and deposited for i0 minutes (i minute times i0 with 5 minutes

cooling interrupt periods in between); the resulting sample had

an optical gap of I.i eV, the same value that occurred when low

powers were used. This supported the hypothesis that heating

caused the drop in optical gap. All subsequent depositions were

made with the plasma on for only a few minutes, then the plasma

off for 3 to 5 minutes to permit cooling.

All glass samples were cleaned by washing with the following

sequence: i) l,l,l,-Trichloroethane, 2) acetone, 3) methanol, 4)

deionized water, and 5) dry nitrogen blow. All Lexan samples were

cleaned by washing with methanol, followed by deionized water,

and finally by a dry nitrogen blow.

We noticed that pinholes in films were caused by segregated

granular carbon deposits. The pinholes were exposed after the

film was blown with dry nitrogen. These granular carbon deposits

were probably formed before reaching the substrate, and were

likely caused by the excessive amount of carbon atoms in the gas
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phase (in the plasma). Thus, it was logical to reduce the carbon

atom density within the plasma. That could be achieved in two

ways: I) By reducing the pressure, and 2) by reducing the

power.

We chose the second alternative. Thus, all samples were

made at 25 watts power and 140 microns pressure. The results

were highly successful.

3. Plasma Discharqe: Confiquration II

A i:i mixture of methane and argon and a 13.6 MHz RF power

source, capable of delivering up to 500 watts, were used for the

generation of the plasma. The plate areas were made almost equal

in order to deliver the power with a minimum DC bias voltage

between the plates. The maximum DC vias voltage observed was 550

volts. The lower plate was grounded and the upper plate was

driven by an RF power supply. A cryopump was used on the
chamber.

When the system shown in Figure II-5 was first designed and

operated, the rubber guard ring was not present, and the plasma

was very unsteady and sometimes passed beyond the lower ground

plate to the bottom of the chamber. Also, sometimes it became

difficult to start the plasma; even after using the tesla coil

and adjusting the matching network of the RF power supply we

could not start the plasma, (at the 80 microns base pressure and
the flow rate of 12.5 sccm for both methane and argon). Figure

II-6 shows more details of the Figure II-5 design which permitted

easier ignition of the plasma due to a better gas flow geometry.

We made 16 small holes in the plate and closed the gap between

the lower ground plate and the chamber using a vacuum compatible

rubber strip as shown in Figure II-6. The gas thus entered the

plasma region through the center and flowed radially outward. We

planned to use the external DC INPUT to start the plasma (instead

of the tesla coil), but found that after modifying the system,

the gas plasma was generated rather easily by increasing the gas

pressure to i00 microns. Sometimes, use of a tesla coil in

combination with some adjustment of the matching network of the

RF power supply was helpful in starting the gas discharge. The

plasma was found to be confined within the volume above the lower

ground plate.

Except for Si, Lexan, HMF glass, and ZnS, all the substrates

were first ultrasonically cleaned using l,l,l-Trichloroethane;

then washed with acetone, methanol, and deionized water succes,

sively and finally dried by blowing dry nitrogen. Lexan was

ultrasonically cleaned using methanol, washed with deionized

water and finally dried using dry nitrogen. HMF surface was
found to be deteriorated by the use of any of the organic

solvents mentioned previously. Thus, we visually looked for the

cleanest surface of HMF, and dried it in flowing dry nitrogen.

The Si surfaces were clean as received; therefore we used only
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dry nitrogen to clean them. For ZnS, we followed the same

procedure, in order to maximize adhesion.

The best deposition conditions were found to be: i) flow

rate for methane and argon: 13 sccm each, 2) base pressure: i00
microns, 3) power: 200 watts, and 4) DC bias between the two

plates: 300 volts.

From the depositions using Configuration I, we found that

DLC films on ZnS substrates tended to spall very easily if the

film was thicker than a few hundred angstrom units. Because

of that, we deposited for 2 minutes (only) on the ZnS substrates,
resulting in an estimated film thickness of about 300 _. We

should note that DLC will adhere to ZnS and ZnSe if a thin

(300 _) Ge film is deposited between the semiconductor and the

DLC layer [6].

4. 30 kHz Plasma Deposition System: Confiquration IIT

Figures II-7 and II-8 show the strong dependence of

deposition rate on substrate temperature, and on power [7]. The
configuration for these depositions was similar to Plasma

Deposition Configuration II, described above. The plasma was of

pure methane gas at a pressure of 20 microns. 100UC substrate

temperature and a power level of 200 watts was typical for
producing good films.
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E. Antireflection Conditions Usinq DLC

As mentioned above, substrates of infrared interest on which

we deposited DLC included: lexan, silicon, fused silica, KG-3

glass, BK-7 glass, ZnS, GaAs, Ge, and heavy metal fluoride gZass.

It was desired to know if DLC could be deposited to the proper
thicknesses and with the correct indices of refraction for use as

an antireflecting coating on each of these substrates.

Antireflecting coatings provide an important method of

enhancing transmission through optical window materials [8].

The reflectivity has a minimum when

nld I = Xo/4 II-I

where n. is the index of refraction of the coating, and d I i-s
thickne&s. The reflectivity minimum is at its lowest val_e

(zero) when
2

n I = non 2 11-2
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where n
O is the index for the ambient, which is normally air, so

nI =

is required, where n_ is the index of the substrate at the
wavelength of interest.

Table II-I lists infrared transmitting substrates, their

indexes of refraction, the operating wavelengths of interest, and

the required DLC thickness and optical index of refraction. The

proper index came from use of Eq. II-3, and the proper thickness
from Eq. II-l.

What is noticed immediately from Table II-I is that the

required film index of refraction ranges from 1.2 to 2.85 for the
examples listed.
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The index of refraction of DLC can be controlled by choosing
the proper deposition technique and parameters [i]. The range
typically found is for

1.6 <__nI < 2.4 II-4

which makes the optimum matching substrates have indices from

2.5 <_.n2 <_5.8 II-5

These values are much higher than the indexes for the glasses
under consideration (Table II-I), but result in a decent match
for ZnS, diamond, TiO_, As_S_-glass, Se-glass, and results in
good matches for Si, Ge, G_A_, and InSb. All are common infrared
transmitting materials [9].

In conclusion, we find that with the exception of ZnS we
were able to directly deposit DLC on the chosen substrates to the
desired thicknesses for antireflection. The indexes of
refraction were measured from 300 nm to i0 microns, and found to
be in the range from 1.6 to 2.0. Other workers have prepared DLC
samples with indices up to 2.4. Thus, we have established a
range of conditions for use of DLC as an antireflecting coating.
Zere reflectance can be achieved on substrates of Si, Ge, GaAs,
and InSb. Low reflectance can be achieved on ZnS, diamond, TiO 2,
AsgS_-glass , Se-glass; but DLC will not provide total
an_igeflecting conditions when deposited on the common glasses
with index near 1.5.

III. Moisture Protection with DLC

A. Introduction

DLC is amorphous and thus has no grain boundaries through

which water might otherwise diffuse. One of the most common uses
of thin films is for coatings for moisture protection. Thus DLC
seemed to be an ideal candidate material for use as a hermetic

seal [5]. Applications, for example, might be to passivate

integrated circuits, or to keep water from sensitive infrared

transmitting optical windows or lenses.

It is very difficult to measure penetration of liquids into

thin films. Common surface analysis techniques such as AUGER,

ESCA, and SIMS require ultra high vacuum, and therefore cannot be
used.

B. Diagnostics Technique

We have shown that variable angle spectroscopic ellipsometry

(VASE) can be used to determine the thickness of ultrasmall

amounts of water on, and in a thin film [5]. This spectroscopy is
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not commonly known, so a brief description will be given [i0]. The
interested reader can find more details in references listed.

Ellipsometry determines the ratio of complex reflection
coefficient

%

p - Rp/R s = tan_ exp jA Ill-1

where Rp and Rs are the complex Fresnel reflection coefficients

for components of light parallel (P) and perpendicular _) to the
plane of incidence of the incident and reflected light. In our

VASE technique, data are taken from 300 to 800 nm with light

incident at an angle _ to the normal to the sample. The

reflected light polarization state is analyzed with a rotating

polarizer. Light intensity is measured with a photomultiplier

tube, and the signal is digitized and Fourier analyzed to

determine the _ and _ parameters of equation III-l.

The measured complex ratio p is related to the optical index

of refraction, n, and extinction coefficient, k, of the material

under study. If complex materials structures are involved, then

n and k can be determined for individual layers, and layer
thicknesses determined.

Microstructural analysis is performed assuming the nature of

the sample under study. For the present samples the model is

shown in Fig. III-l. The t. are layer thicknesses, and f, is the

fraction of DLC in a DLC plds Hg0 Bruggeman effective medium
approximation (EMA) mixture layer. The procedure is to calculate

using the Fresnel reflection coefficients for a mu!tilayer

parallel stack (and EMA mixed layers), for a given initial set of

values for thicknesses and fractions. Next, a regression

analysis is performed to minimize the mean square error function

(MSE) defined by

1 N exp a 2 exp ca]c )2
-- Z (_ cilc A 111-2

MSE = N i=I i - ¢ " ) + (A i - i

where "exp" means experimentally measured, and "calc" means

calculated. The psi and delta are functions of wavelength I and

angle of incidence _. A large range of both A and # are chosen
so that an "overdetermination" of measurements with respect to

the number of unknown parameters is made, and correlation

problems avoided. In our analysis programs we can use Eq.

(III-2) as formulated, or we can use psi alone or delta alone, or

the minimization can be done with respect to tan _ and cos A. The

final outcome is a set of values for thicknesses, EMA fractions,

and optical constants for any of the layers. The optical

constants can take on several forms: i) index of refraction n

and extinction coefficient k, 2) real, E1 and imaginary, E2,

parts of the optical dielectric function, or 3) the amplitude,

position, and width of Lorentz oscillators.
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H20

DLC plus H20

DLC

SubstrQte

t

I%-f2

It,

FIG. 111-1 Structural model

assumed for analysis of
moisture.

ti are thicknesses

and f2 is the fraction

of 1-120 in layer 2.

Since we used the Lorentz oscillator model extensively it

will be described further. _en the wavelength-dependent n, k

(or El, E2) values are solved for, the number of unknown

parameters equals the number of wavelengths times two, plus the

number of layers, plus the number of unknown fractions in an EMA.

Thus if i0 wavelengths are used and there are two unknown

thicknesses there will be (2 X i0) + 2 = 22 unknowns. In the

Lorentz oscillator model there are fewer unknowns, since the

following equation represents the spectral dependence of optical
constants:

11
1 1

E = 1 + _ Ai (_ +_W i - _ - Pi + jW. )' 111-3i=l i i

where E is the complex dielectric function, and the sum is over

the total number of oscillators M. For the presently reported

work, the maximum number of oscillators used was one. (In

section IV the results of a two oscillators analysis are

presented). In Eq. (3), Ai, Pi' and W_ are the amplitude,
position, and width of the ith oscilla_or, respectively, and _ is

the photon wavelength. In the oscillator analysis A_, P_, and W
thicknesses and EMA fractions are solved for in the _egr_ssion i

analysis. Thus a typical one oscillator DLC analysis has five

unknowns: three oscillator parameters and two layer thicknesses;

or seven unknowns: three oscillator parameters, three layer

thicknesses, and an EMA fraction (see the structural model shown

in Fig. III.l).

C. Samples

The films of DLC used for moisture penetration studies were

prepared using the 30kHz parallel-plate plasma deposition system

(Configuration III) described above [7]. Pure methane and a

chamber pressure of 20 microns was used. Power levels of i00,

200, and 300 watts were used, but results for 200 watts are
reported here. Substrate temperatures ranged from 23 C to 250°C.
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Moisture w_s introduced to the films in two way_; from
immersion in 23 C water, and from a steam jet at 100-C.

D. Results

i. As-deposited films

Fig. III-2 shows the dependence of average (over the 300 to

800 nm range) index of refraction, n on substrate temperature for

films made with a plasma power level of 300 watts. In general the

index rises from about 1.7 at low temperature to above 1.9 at

high temperature. A measurement of hydrogen content in the film

by proton recoil analysis showed that lower hydrogen was present in

films with a higher index of refraction [ii]. Measurements of the

optical absorption coefficient showed that the bandgap increased

with increasing hydrogen concentration. Similar trends have been

seen by other workers as well [i].

21

1.6
25 50

..A"

I ! I I I J

75 I00 i25 150 175 200225 2.50

Substrate Temperafure, "C

FIG. III-2 Optical index of refraction vssubstrate

temperature for a power level of 300 Watts.

The environmental stability of DLC films was studied

on a large number of samples deposited at various power and

temperature values onto polished silicon single-crystal wafers

and subjected to immersions in trichlorethane, acetone, ethyl

alcohol, sulfuric acid, nitric acid, hydrochloric acid, and

hydrofluoric acid. After each immersion samples were subjected

to rubber eraser abrasion tests and "scotch tape" pull tests.

These tests served as a comparative measurement. They had

no effect on samples deposited with i00 W. For 200 W and 300 W

depositions there was partial removal for samples deposited at
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room temperature, but there _as no effect for substrate
temperatures of 74 up to 250 C. Thus DLC samples prepared under
all but a few conditions survived very stressing environmental
tests.

2. Moisture Introduced

A large number of samples were prepared and investigated for

water penetration. The final result was that DLC films were not

pentrated by water. The DLC surface had a small amount of

roughness, and moisture was found to penetrate the valleys of

this roughness, but no further.

Example ellipsometric data are shown in Figure III-3. The

data at 0 hours after H_O indicate that water was introduced,
then the bulk of it all_wed to run off a vertical surface. At

this time the maximum amount of water remained, and the A parameter

was lowest. __enty four hours later some water had evaporated,

and A increased. After exposure to a heat lamp much of the water

on the surface wa_ evaporated (but not all!). After exposure to
the laboratory 23 C atmosphere a small amount of moisture from

the ambient air deposited, with an associated decrease in A.

128

126

124

4
122

12(
640 660 680

200W, 250"C ., _../" ..-.2

48 Hrs in 23°C Water _.._/" ..-.5/

.,,>,f ..-;7
After heat/_/_" ..-_

lamp _ .-.9/

3hrs affer cA../?. -._

I_ea f I°rn_/H_Y'__o/_ "Ohrs a f'[er H_2°
//_ o°"

24_ offer -._" --// _24hrs offer H20

,/

_:S °"

700 720 740 760 780 800

Wavelength, nm

FIG. 111-3 Ellipsometric delta parameter vs wavelength at various times after

removing the sample from 23°C water. Sample was deposited at

200W, and 250°C, and soaked in room temperature water for 48h.

After removing from water, it was kept in a room atmosphere.

Using the "oscillator" regression analysis for this sample,

and a two-layer (t_ = 0 in Fig. III-l) model in our ellipsometric
analysis, we deter_hined that the water layer was 66-_ thick on top
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of a 344-_ thick DLC film. The three-layer (nonzero tl, t2, t3,
in Fig. III-2) analysis was consistent with this result: 330

of DLC, 29 _ of 50%-50% mixture of DLC and water, and 48 _ of pure

water on top.

An interesting result was that the heat lamp removed only
12 _ of water and that 54 X of water still remained! We propose that

this thin water layer was being held to the surface by an

unusually high surface tension associated with DLC surface

micropores.

A detailed analysis of VASE data for all samples, assuming
the model of III.2, was carried out. Tables III.l-4 summarize
some of the results.

A summary of the results of DLC moisture studies are that:

a) Moisture resided mainly on the surface of DLC independent of

water temperature, b) In cases where there was an apparent
penetration (_50 _) it is likely that water was merely filling

the void regions of a "rough" surface. The substrates were highly_
polished oriented single-crystal (semiconductor grade) wafers. 50X

of roughness layer was reasonable for these materials, c) A

heat lamp removed water, but not all of it. This suggests that

surface micropores provide a strong surface tension for these

very thin water layers, d) The amount of water on the surface

after wetting (but without further treatment) did not depend on

the parameters of DLC deposition such as power or substrate

temperature, nor did it depend on the DLC film thickness in any

systematic manner. Thus, DLC protects effectively against

moisture penetration [5].

IV. Ion-Beam Modified, Ion-Beam Deposited DLC

A. Introduction .....

In this section we present results of variable angle

spectroscopic e!lipsometric (VASE) studies of ion beam deposited

DLC films [ii]. These films have been modified by directing 1

MeV gold ions, as well as 6.4 MeV fluorine ions through the DLC

and into the underlying silicon substrates. The percentage of

hydrogen in the film was measured vs. fluence using proton recoil

analysis, optical analysis was performed assuming the Lorentz

oscillator model, using two oscillators with spectral position,

width, and amplitude all variable. This model fit the VASE data

extremely well. With ion Rodification the oscillators shifted to

lower photon energy, consistent with reduction in hydrogen

concentration and possible increased graphitization.

Ion beam modification of DLC films has not been extensively

investigated. The purpose of the present work was to study the

effects of high energy ion beam irradiation when the ion beam

passed throuqh the DLC films. Two ions (gold and fluorine) and a
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Table III-l.
23 C water.

200 Watt, 250°C deposited DLC (3 layer analysis).

DLC Mixture (50-50) Water layer
thickness layer thickness thickness

Table III-2.
analysis).

200 Watt, 250°C deposited DLC, 23°C water (3 layer

Condition DLC Mixture (50-50) Water layer

Thickness layer thickness thickness

No water 326 _ ......

2 h in water 326 _ 24 _ 37

4 h in water 328 _ 28 _ 51

Table III-3. 200 W, 250°C deposited DLC sample in 100°C water (3

layer analysis).

Condition DLC

thickness

Mixture (50-50)

layer thickness

Water layer
thickness

No water 338 _ ......

2 h in water 337 _ 46 _ 36

4 h in water 339 _ 54 _ 56
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DLC FOR IR AND MICROELECTRONICS APPLICATIONS

TABLE III-4. Best fit ellipsometric solutions for indicated

samples (steam jet was used to introduce water).

75°C 100°C 150°C 200°C 250°C

t I = 915

oscillator

parameters

11.8;7.7;3.8

MSE = I0

200-W DLC samples without H20

t I = 810

oscillator

parameters

13.2;7.9;3.8

MSE = 11.5

t I = 840

oscillator

parameters

14.4;7.9;3.8

MSE = 7

t I = 448

oscillator

parameters

14.8;7.9;3.8

MSE = 2.5

t I = 252

oscillator

parameters

12.5;7.4;4.05

MSE = O. 18

200-W DLC samples with H20, oscillator parameters

(as given above) fixed

tl = 943

f2 = 97%

MSE = 5.1

t3 = 4.s '_9.tl _ 936

MSE = 2.8

t2 = 31 _

f2 = 99%
tl = 906

MSE = 2.6

tl = 847

f2 = 100%

MSE = 8.4

t3 = 3 _

tl = 847

MSE = 8.3

t2 = 12

f2 = 58%
tl = 841
MSE = 8.2

t3 = 74

tl = 904

MSE = 13

t3 = 139 _tl 473

MSE = 15.1

t3 = 123

tl = 271
MSE = 0.21
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range of fluences were used. Diagnostics techniques included

Rutherford Backscattering, proton recoil, hydrogen analysis, and

variable angle of incidence spectroscopic ellipsometry (VASE).

B. Experimental

Samples were prepared in the ion-beam system described in

section I above. Methane gas in the 2.5 cm diameter Kaufman type

neutralized ion beam gun system (IonTech C2_poration ) was used,

and the chamber had a base pressure of -i0 Torr. Du_ing
deposition the chamber pressure rose to the range i0-- to 10 -5

Torr, and the gas flow rate was 20 sccm. In these experiments
all substrates were silicon.

Rutherford Backscattering (RBS) and proton-recoil experi-

ments were performed at Universal Energy Systems using a tandem

(1.6 MeV) accelerator (Tandetron Corp.) which was used to provide

1 MeV gold ions, or 6.4 MeV fluorine ions f_ the2ion beam
modifications. Fluences ranged from 3 X i0-- cm- to 1 X 1016
cm

In the present VASE optical diagnostics, spectral data were

taken at several angles of incidence, and the data analyzed with

respect to a two oscillator model with all six parameters

variable. In addition, the thickness of the DLC film was a

variable.

2
RBS was used to determine the number of carbon atoms per cm

in each DLC film. Film thicknesses on these same samples were

then determined by ellipsometry. From these combined measure-

ments the film density was determined. The limits of error in

RBS measurements were approximately ±I0 percent, and in

ellipsometry were ±5 percent for DLC films. The combined error

of ±15 percent covers the range of values measured on all eight 3
samples. Thus we conclude that the density was 1.5 ± 0.2 gms/cm

independent of thickness for this set of samples. The density

could easily depend on deposition technique and parameter

setting, however.

C. Fluorine (6.4 MeV) Irradiated SamDles

Table IV-I summarizes results of ellipsometric analysis of

"fluorine-beam" processed DLC on silicon. The shorthand notation

has the following meanings: A, P, and W are the one oscillator

amplitude, position (in eV), and width (in eV), respectively.

Subscripts I and II refer to first oscillator, and second

oscillator in the two oscillator analyses, respectively. "Th"

signifies thickness, and the MSE defined by Equation (2) in the
last section.

Notice from Table IV-I that irradiation shifted the position

of the oscillators to lower photon energy. Another universal

trend was for the amplitude in the lower energy oscillator to
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increase with fluence.

Figure IV.I shows the effect of fluorine irradiation on the

imaginary part of the dielectric function, E2, analyzed allowing
all six oscillator parameters as well as the film thickness to be

variables in the regression analyses. The £rends are obvious:a

downward shift of the E2 maxlma in energy, and an increase in the

E2 amplitude. At the same time, the higher energy oscillator position

decreases (Table IV-l).

5
Ruor:ine Implant;6d DLC:

Two Osc_tor Analysis
ILl ,',

4

tl_

o
L
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{ \ /--,x lo
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/,-=xtO 6
/ __ / Unimplanted_

/ X{ --

2

0 I I 1
0 4 8 12

FIG. IV-1

Photon Energy. eV

Imaginary part of dielectric function. E2, for Fluorine

Implanted DLC Two Oscillator Analysis.

In Figure IV.2 the real part of the dielectric function E1

is shown. Again there are shifts to lower energies, and an
increase in the amplitude of El.

The extinction coefficient, k, vs. wavelength for the

various fluences are shown in Fig. IV.3. Note the general rise

in magnitude of k with increasing fluence. This general increase

in k with fluence gives rise to a decrease in optical bandgap,

and a decrease in hydrogen content, as determined by proton
recoil. The main effects of fluence of both the fluorine and

gold species on hydrogen content are shown in Figure IV.4. A

nearly linear relationship between energy gap and hydrogen
content was found.
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FIG. IV-2
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D. Gold CIMeV) Irradiated Samples

Results of ellipsometric analysis of samples irradiated with

gold ions are shown in Table IV.2. A two oscillator model was

used, with all six oscillator parameters variable.

Again there are downward shifts in the oscillator positions with

increasing fluence. Other trends were less obvious. By fitting

data over our spectral range of 300 to 800 nm, the oscillator

analysis allowed us to extend our knowledge of the optical
constants over a wider range (with an admitted danger of errors

far from the measured range). The results show that the two

oscillator model is appropriate for both F and Au irradiation. In
both cases the downward shifts are consistent w&th there being a

loss of hydrogen, a decrease in the optical gap, and a tendency

towards graphitization.
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Table IV-l. Comparison results of 2-osc. mcdel analysis fcr

F-implanted (4.6 MeV) DLC ion bean deposited samples ( -fit only;

u = unimplanted, I = implanted). Except for thicknesses, all
units are electron volts, fluence, cm sec.

2-0scillator model - Position of 2nd oscillator variable

0

3

I0

30

i00

ist oscillator 2nd oscillator

MSE

AI PI WI AII PII WII

7.5 5.58 4.0 12.2 17.4 0.44 1221 1.22

10.4 3.4 3.6 8.37 14.5 1.64 1307 0.13

II.i 2.56 2.92 10.22 12.8 6.0 790 0.015

12.8 2.49 2.92 8.6 ii.O 7.8 757 0.I

22.6 0.68 2.28 18.7 4.57 7.8 2624 0.47

Table IV-2. Results of-2-0sc{ilator models for Au (i MeV)

-implanted DLC ion beam deposited samples (u = unimplanted, I

= implanted). Except for thicknesses , all units are electron
volts. = fluence, cm sec.

0

3

i0

3O

i00

Ist oscillator

AI

3.34

1.40

3.60

3.50

3.29

2-oscillator model

2nd Oscillator

Thickness M_E

Position WI AII Position WIZ

4.33 1.45 17.0 16.7 0._5 1832 _ 1.18

3.24 0.78 21.4 16.5 0.29 2096 _ 2.60

3.53 1.38 9.9 11.6 1.70 !173 _ C.34

3.44 1.53 9.7 9.2 2.50 913 _ G.26

3.33 1.18 12.5 19.8 1.21 1314 _ 0.77
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FIG. IV-4 Hydrogen concentration for Au and F implanted DLC.

For gold implants, an optical gap slightly above 1 eV is

seen to decrease to about 1 eV with increasing fluence. The

effect of irradiation on bandgap isn't as great for Au as it is

with F irradiation. However, the loss of hydrogen wi_n gold

fluence was not as qreat as it _as for fluorine.

E. Discussion of Results

We found that irradiation with a lighter ion (F) at 6.4 MeV

through a DLC film (composed of light elements) had a greater

effect on the hydrogen content and optical properties of DLC than
did Au irradiation az 1 MeV.

In general a two oscillator model yielded an excellent fit

to the optical data, and the two oscillators were centered near 5
eV and 17 eV in the unirradiated samples. These positions shift to

lower photon energies with fluence, and proton recoil experiments

show that the hydroqen content decreased from near 30% (in

unirradiated materials) to near 20% (Au), or near 6% (F) with

fluence. The loss cf hydrogen was not linear v:ith f!uence;
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rather there was a _ "saturation" of the irradiation effectsfor f!uences above cm- . We believe that at high fluence

the ion beams introduced defect centers produced by electronic

energy loss which acted to retrap part of the hydrogen. The

magnitude of this effect was reduced with increasing ion mass as

the proportion of nuclear to electronic energy loss was
increased.

It has been argued [13] from optical absorption, Raman,

conductivity, and ESR experiments that irradiation at first had

only the effect of lowering the hydrogen content, and then at

high fluences it increased the graphitic component in their glow

discharge produced carbon films. Similarly, we found a linear

relationship between optical bandgap and hydrogen content.

However, their 50 keV carbon ions were implanted to a depth of

only i00 nm. Rather than the "saturation" effects that we saw,

they observed a continuing dec_ase__n hydrogen to less than a
few percent at a fluence of i0- cm .

The tendency towards lower hydrogen concentration and lower

optical gaps was similar to the trend seen with annealing. (The

presently reported ......... ions were carried out using a cool

substrate and low beam currents, so sample heating was not a

problem). Thus there appears to be an analogy between the

physical effects of irradiation and those of annealing.
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appointment at University of Illinois, Urbana, IL, he joined the staff of

the Physics Department at Tel Aviv University where he achieved the

rank of tenured associated professor. In both places he worked on

properties of superconducting materials, especially critical currents

and critical fields. In 1981, he accepted a position in the Electrical

Engineering Department at University of Nebraska, Lincoln, NE, as

senior engineering research scientist where he worked to develop the
ellipsometric technique. In 1983, he transferred to NASA Lewis

Research Center where he is now a senior research scientist. He played
a key role in developing new materials (e.g., InGaAs) for a new

generation of electronic devices for high-speed, low-noise, high-
efficiency space applications. He also developed ellipsometry for

novel and multilayer structures specializing in insulators,

superconductors, and semiconductor materials. He is now working on

materials for cryogenic electronics applications, including
semiconductors, superconductors, and their combination. Dr. Alterovitz

has authored 92 papers in referredjoumalsand 89 meeting presentations
and has edited 2 books. He is an active National Research Council

postdoctoral adviser.

Christopher M. Chorey received aMaster's degree in Materials Science

in 1987 and a Bachelor's in Electrical Engineering in 1984 from Case

Western Reserve University. Through 1987 and 1988, he performed

additional graduate work in electrical engineering with Case Western

Reserve University, supported by the NASA Lewis Research Center,

and concentrated on fabricating and testing AIGaAs based high-

frequency electro-optic modulators. In 1989, he joined Sverdrup

Technology, Inc., under contract to the NASA Lewis Research Center,

and is currently involved in studies of the microwave properties of
high-temperature superconductors.
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Alan N. Downey received a BEE from Cleveland State University in
1979 and his MSEE flora the University of Toledo in 1983. He joined
NASA Lewis Rescarch Center in 1977 as aco-op student andjoined the

Space Communications Division in 1979. From 1979 to 1985, he was
engaged in microwave measurements and solid-state technology
research, followed by a 3-year hiatus in the Communications Projects
Branch as Experiments Manager for the Applications Technology
Satellites Program. Mr. Downey returned to the Solid StateTechnology
Branch in July 1989, and his current research interests include the
measurement of novel HEMT structures at cryogenic temperatures,
coplanar waveguide circuit design, and MMIC applications.

Edward J. Haugland received a B.S. degree in Physics from the
University of Minnesota and an M.S. and Ph.D. degree in Solid State
Physics from Case Western Reserve University. He joined NASA
Lewis Research Center in 1980 as a member of the Solid State

Technology Branch. Since that time, he has been involved with
experimental research on electrical properties of III-V semiconductor
materials and heterostn_tures and SiC. He was responsible for contracts
for the development of high-power IMPATT diodes and MMIC power
amplifiers. Dr. Haugland is a member of the American Physical
Society.
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Thomas J. Kascak received a BSEE degree f_om CaseWestem Reserve

University in 1959 and joined Union Carbide Corporation where he

worked with performance and reliability aspects of dry cell and alkaline

batteries. Mr. Kascak received an MS degree in Physics in 1965 from

John Carroll University, Cleveland, OH. From 1966 to the present, he

has been employed at the NASA Lewis Research Center. He has been
involved in several work areas from research on thermonic heat to

electric power conversion devices. In 1973, he transferred to the

Launch Vehicles Division where he had contract management
responsibilities dealing with the guidance equipment for the NASA

Atlas/Centaur launch vehicle systems. In 1980, he transferred to the

Space Electronics Division where he has been involved in various

aspects of microwave and millimeter wave solid-state devices and

circuits. He was responsible for formulating and managing several

NASA sponsored contractual efforts involving MMIC development

programs. One of these efforts, a 20-GHz MMIC Transmit Module,

resulted in the R&D Magazine IR-100 Award. For the last few years,

he was responsible for the set-up of the Division's in-house solid-state
facilities. Mr. Kascak has authored papers on thermionic direct energy

conversion devices, 20-GHz and 30-GHz MMIC devices, and MMIC-

based phased array antennas. Mr. Kascak is a member of the American
Vacuum Society (AVS).

Regis F. Leonard received a Ph.D. degree in Physics from Carnegie
Institute of Technology and came to work at NASA Lewis in 1963.

Since that time, he has devoted 10 years to basic research in the physics
of nuclear structures and 6 years to the development of a unique Lewis

facility for the treatment of cancer patients with neutron radiation. For

the last 9 years, he has worked in the development of technology in

support ofNAS A'scommunications programs. This assignment included

work on the ACTS proof-of-concept technology program and, as head

of the RF Systems Section, the development of an in-house

communications system test capability for the ACTS POC hardware.

For the last 4 years, he has served as Chief of the Solid State

Communications Branch, responsible for NASA's MMIC technology

development program, an active in-house solid-state research program,

and a sizeable university grant program in supporting basic research as

applicable to solid-state electronics.

m_
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Rafael A. Mena received a B.S. degree in Electrical Engineering in

1988 from the University of Texas at E1 Paso and an M.S. degree in

Solid State Physics in 1990 from Arizona State University. While at

Arizona State University, he made theoretical calculations on the effect

of a magnetic field on the optical properties of semiconductor alloys.

While persuing his degree, he participated in several co-op programs.
In the summer of 1987, he was with Arizona Public Service where he

conducted an economic study on the installation of underground power

lines. The following summer of 1988 he was accepted into the NASA

Lewis Summer internship program. During that time, he was involved

in a research program to investigate the magnetic field penetration

depth of superconducting materials. He returned to NASA Lewis the
summer of 1989 where he assisted in the software development for the

automation of a secondary ion mass spectrometer. In 1990, he joined

the Solid State Technology Branch at NASA Lewis Research Center as

a full-time employee. His current interests lie in both the theoretical and

experimental investigation of the electrical properties of novel
semiconductor materials. Mr. Mena has authored a paper on the work

conducted at Arizona State University.

Carlos R. Morrison, a native of Jamaica, West Indies, received his B.S.

(l-Ion.) in Physics in 1986 from Hofstra University where he was elected

to membership in the Sigma-H-Sigma National Physics Honor Society,

the Kapa-Mu-Epsilon National Mathematics Honor Society, and the

Society of Physics Students. He received a Master's degree in Physics
in 1989 from the Polytechnic Institute of New York (Brooklyn

Polytechnic). He joined theNASA Lewis Research Center in September
1989 where he worked for a short time in Reliability and Quality

Assurance. He then transferred to the Solid State Technology Branch

in January 1990 where he is currently involved in thin fdm deposition

and ellipsometry.

281
BLACK

ORIGINAE PAGE

AND WHITE PHOTOGRAPH



George E. Ponchak received his BEE from Cleveland State University

in 1983 and his MSEE from Case Western Reserve University in 1987.
He joined the Space Electronics Division of NASA Lewis Research

Center in July 1983. Since joining NASA, he has been responsible for

research of microwave transmission lines and managing the development

of monolithic microwaveintegrated circuits. Mr. Ponchak hascoauthored

18 papers on these topics and has applied for 5 patents related to
coplanar waveguide circuits.

John J. Pouch received hisPh.D, degree in Solid State Physics from Wayne State University, Detroit, MI, in 1981. His
research activities at the NASA Lewis Research Center include surface analysis of thin films for microelectronic

applications, plasma and reactive ion etching, and plasma deposition.

Robert R. Romanofsky received a Bachelor of Science Degree in

Electrical Engineering from the Pennsylvania State University in 1983.

From 1983 to 1989, he was employed in the Space Electronics

(Communications) Divisionof the NASA Lewis Research Center. His

work was directed toward microwave transmission line research, device

characterization and modeling, and microwave applications of high-

temperature superconductivity. He has filed for two patents related to

millimeter-wave technology. In 1989, Mr. Romanofsky received a

Master of Science Degree in Electrical Engineering from the University
of Toledo. He is currently detailed at NASA Headquarters,Washington,

DC, as the acting program manager for superconductivity and RF
communications. He is a member of the Institute of Electrical and

Electronics Engineers (IEEE).

282
ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH



Samuel E. Schacham received a B.S. degree in Mathematics and

Physics with honors in 1971 and an M.S.. degree in Physics in 1973 from

Bar Ilan University, Ramat-Gan, Israel. He performed research work

on nonlinear optical effects in liquid crystals at the Weitzmann Institute

and Bar Iian University. He received a Ph.D. degree in Biomedical

Engineering in 1978 from Northwestern University in Evanston, IL,

working on applications of lasers to microendoscopy. From 1978 to

1981, he was the manager of the optic group at Fibronics Ltd., Haifa,

Israel. He joined the Department of Electrical Engineering at the
Technion, Haifa, Israel. In 1988, he was a visiting scientist at MCNC,

Research Triangle Park, NC, working on optical interconnects as part

of the packaging group. Presently, he is with NASA Lewis Research
Center as a National Research Council Senior Research Associate. His

present research interests are in the physical properties of quantum

structures and narrow bandgap semiconductors. His list of publications

include 40 papers in international scientific journals and referred
conferences.

A j it K. Sil received his B.S. degree from Calcutta University, India. He

emigrated totheUnitedStates and wasemployedby OakwoodDownriver
Medical Center. He received his second B.S. degree in Electronic

Engineering Technology in 1988 from Wayne State University, Detroit,

MI. He joined the NASA Lewis Research Center in July 1989 as a
member of the Solid State Technology Branch where he is working with

microwave integrated circuits and mild-state devices. He is currently

working toward his M.S.E.E. at Cleveland State University, Cleveland,
OH.
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Rainee N. Simons received a B.E. degree in Electronics and

Communications from the Mysore University in 1972, an M. Tech.

degree in Electronics and Communications from the Indian Institute of

Technology, Kharagpur, in 1974, and a Ph.D. degree in Electrical
Engineering from the Indian Institute of Technology, New Delhi, in
1983. He was a Senior Scientist Officer at the Indian Institute of

Technology, New Delhi. From 1985 to 1987, Dr. Simons was a

National Research Council Research Associate and investigated the

direct optical control of GaAs microwave semiconductor devices and

circuits. He joined the Solid State Technology Branch of the Space
Electronics Division at NASA Lewis Research Center. Since 1990, he

has been with Sverdrup Technology, Inc., NASA Lewis Research

Center group. His research interest includes GaAs microwave
semiconductor devices, optical control, and superconductivity.

Dr. Simons is the author of abook entitled "Optical Control of Microwave

Devices" published by Artech House. He received the distinguished
alumni award from his alma mater and is a senior member of IEEE.

+

Stephan Stecura received an M.S. degree in Physical Chemistry in

1957 from Western Reserve University and a Ph.D. degree in Solid

State Reaction Kinetics-Thermodynamics in 1965 from Georgetown

University. From 1958 to 1965, at College Park Metallurgy Center, he

studied the kinetics of crystallographic transformations and the high-

temperature properties of oxides by high-temperature x-ray diffraction

techniques. He designed and built high-temperature x-ray diffraction

equipment and was invited to present the high-temperature x-ray

diffraction arc-image furnace, capable of reaching 3000 °C in air, at the

International Crystallographic Society meeting. Since 1965, he has

been with NASA Lewis Research Center. His work on heat pipes led
him to determine the corrosion mechanism and the true solubilities of

containment metals and alloys in alkali metals. He developed thermal

barrier systems for the protection of alloy components at very high

temperatures, up to 1600 °C on air-cooled components. Currently, he

is studying the properties of superconductng materials and is trying to

identify the substrate materials for superconducting t-dms. Dr. Stecura
is recognized as an authority on the thermal barrier system technology

that he developed. For his work in this field, he has received two IR-

100 awards, one major Space Act award, and three major patents. He

has written more than 30 original publications and is a member of the
American Ceramic Society.
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Susan R. Tanb received a B.S. in Electrical Engineering Technology
in 1988 and a Master of Science in Engineering in 1990 from Temple

University. In 1988 and 1989, she worked for AT&T Bell Laboratories,
Reading, PA, developing PSPICE compatible models for power
MOSFETs. She joined NASA Lewis Research Center's Solid State
Technology Branch in 1990 and is currently involved in design and
characterizationofMMIC's and the investigation of HEMT performance

at cryogenic temperatures. Ms. Taub is a member of the Institute of
Electrical and Electronics Engineers 0EEE).
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Joseph D. Warner received an MS in Physics from Carnegie Melon University in 1977. From 1977 to 1981, he
performed research at C.M.U. on magnetic phase transition at low temperature. From 1982 to date, he has been with
NASA Lewis Research Center where he characterized various insulators on GaAs and was among the first to demonstrate

growth of GaAs by laser-assisted OMCVD at growth temperature below 500 °C. Presently, he has set up a laser ablation
experiment to grow high-temperature superconducting thin f'dms. In 1989, he received a NASA Achievement Award
for his part in establishing a high-temperature superconductor program at Lewis. Mr. Warner has authored papers on
magnetic phase transitions, electrical properties of insulation f-dinson III-V compounds, laser-assisted growth of GaAs
and A1GaAs, and properties and growth of high-temperature superconductors. He is a member of the American Physical
Society (APS), the American Vacuum Society (AVS), and the Materials Research Society (MRS).
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