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Motivated by advances in signM processing technology that support more com-

plex algorithms, researchers have taken a new look at the problem of estimating

the phase and other parameters of a nearly periodic waveform in additive Gaussian

noise, based on observation during a given time interval. In Part I, the general

problem was introduced and the maximum a posteriori probability criterion with

signal space interpretation was used to obtain the structures of optimum and some

suboptimum phase estimators for known constant frequency and unknown phase

with an a priori distribution, ha Part II, optimal algorithms were obtained for some

cases where the phase (and frequency) is a parameterized function of time with the

unknown parameters having a joint a priori distribution. The intrinsic and extrinsic

geometry of hypersurfaces was introduced to provide insight to the estimation prob-

lem for the small-noise and large-noise cases. In Part III, the actual performances of

some of the highly nonlinear estimation algorithms of Parts I and II are evaluated

by numericM simulation using Monte Carlo techniques.

I. Introduction

The work of Part I [1] and Part II [2] is limited to

analytical results which, although they provide the struc-

ture of nonlinear optimum estimators, can give the per-

formance of these estimators only in the case of small

noise--and then not always in the case of some subop-

timum estimators such as phase-locked loops. In what

follows, certain nonlinear estimators are exactly simulated

by numerical methods and their performance is evaluatcd

by Monte Carlo techniques. These include nonsinusoidal

waveforms with unknown phase and known frequency and

sinusoidal waveforms with unknown phase and frequency.

II. Performance of Phase Estimators With

Known Constant Frequency

For a sinusoid of known frequency and unknown phase,

the probability density function given in footnote 2 on
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page 157 of [1] is easily numerically integrated, after mul-

tiplication by error squared, to obtain tile mean-square

(ms) phase error of the well-known optimum estimator of

Eq. (33) of [1]. For a nonsinusoid consisting of a funda-
mental and one or more harmonics, the optimum estimator

is the maximization of Eq. (61) of [1]. Since the probabil-
ity distribution of the error is not available, tile ms error

of this estimator is found by numerical methods using a

Monte Carlo technique. The results for (a) a sinusoid, (b)

a sinusoid plus third square-wave harmonic, and (c) a sinu-
sold plus third, fifth, and seventh square-wave harmonics

are plotted in Fig. 1. As the maximum slope of the pe-
riodic waveform increases with additional harmonics, the

large-noise threshold of the optimum estimator becomes

steeper and moves to higher input signal-to-noise ratios,

as would be expected. Some insight is given by Fig. 2 of

[2] and Sections VI of [1] and VIII of [2].

It. is interesting to compare the performance of a second-

order phase-locked loop (PLL) with that of the previ-
ous optimum estimator for the phase of a sinusoid with

known frequency. The PLL filter, preceding the voltage-
controlled oscillator, is taken to be of the form (rls+r2)/s,

where rl and 7"2 are chosen to give a damping ratio of
1/v_. This is essentially what is used in the carrier track-

ing loops of Deep Space Network (DSN) receivers. 1 The

noise baudwidth of the optimum estimator is 1/2 T, where
T is the duration of the observation interval.

For a valid comparison between the PLL and the opti-
mum estimator, the PLL must be observed at a time in-

terval T after the PLL is turned on, with an initial phase
error uniformly distributed over one cycle (and no initial

frequency error). If the PLL filter is chosen to give a PLL

noise bandwidth equal to that of the optimum estimator,

this turns out to be too small. In this case, the ms phase
error of the PLL is dominated by the transient responses

of the loop to the initial phase errors. This is much larger

than the ms phase error contribution resulting from the
additive noise for any useful signal-to-noise ratio. The

observation interval T is only V_/3r ,_ 0.150 of the un-
damped period of the PLL when its noise bandwidth is

equal to that of the optimum estimator (1/2 T). As tile

loop noise bandwidth is increased (period is decreased)
the ms phase error contribution from the initial transients

1 Actually, the denominator of the DSN PLL filter is of the form s+r,

where r is on the order of 0.001 at the smaller loop baaldwidths.

decreases while the contribution from the additive noise

increases. For each input signal-to-noise ratio there is an

optimum loop noise bandwidth which minimizes the total
ms phase error of the PLL at the end of the observation
interval T.

In Fig. 2 these PLL minimum ms phase error values are

plotted together with the ms phase error of the optimum

estimator. Even at large input signal-to-noise ratios (small
noise) the PLL performance is about 9 dB worse than tlle

optimum estimator. The PLL results are obtained by nu-

merical solution (fourth-order Runge-Kutta) of the base-

band second-order nonlinear differential equation for the
loop phase error.

III. Performance of Optimum Estimator With

Unknown Constant Frequency

In this case the estimation algorithm consists of

choosing the frequency f in Eq. (102) of [2] to maximize

Eq. (113), supported by Eq. (103). The phase is then given

by Eq. (111). For this numerical simulation, the a priori

distribution of phase is uniform over one cycle and the
independent a priori distribution of frequency is taken to

be uniform over the interval (-5.5/T to +5.5/T) centered

around a given frequency. [The index in Eq. (103) runs

from -5 to +5.]

The ms phase error of the optimum estimator is given
in Fig. 3, with the ms phase error for known frequency
as reference. In accordance with the analytical result of

Eq. (96) of [2], the small-noise performance is the same as

that for known frequency, tlowever, the steeper large-noise

threshold occurs at a higher signal-to-noise ratio.

Tile ms frequency error of the optimum estimator is

given in Fig. 4. It is evident that the large-noise lhreshold
is more abrupt than that for phase error. In the case

of unknown phase and frequency, the PLL performance is

much worse than for the case of unknown phase and known
frequency, shown in the previous section.

It should be kept in mind that the results of this section
depend on the a priori distribution, above, choseq for the

unknown frequency.
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Fig. 1. Phase-error performance of three optimum estimation al-

gorithms for the case of known constant frequency. The large-

noise asymptote corresponds to phase error uniformly distributed

over one cycle. The three small-noise asymptotes come from

Eqs, (54), (59), and a similar equation for the first four compo-

nents of a square wave, obtained by using Eq. (56) of [1].
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Fig. 2. Phase-error performance of an optimized phase-locked

loop subject to the same signal-to-noise ratio and observation

Interval as the optimum estimalor.
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Fig. 3. Phase-error performance of the optimum estimator for the

case of unknown constant frequency. The small-noise asymptote

comes from Eq. (96) of [2].
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Fig. 4. Frequency error performance of the optimum estimator

for the case of unknown constant frequency. The small-noise

asymptote comes from Eq. (99) of [2]. The large-noise asymptote

(not plotted) is at 10.04 dB. This corresponds to a frequency error

uniformly distributed from --5.5/T to -I-5.5/T.
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