
NASA Contractor Report 187515

ICASE Report No. 91-13

ICASE

DISTRIBUTED MEMORY COMPILER DESIGN

FOR SPARSE PROBLEMS

Janet Wu

Joel Saltz

Harry Berryman

Seema Hiranandani

Contract No. NAS1-18605

January 1991

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

IW A
N_tion_ll Aeron_ulic._ _nd

Spm,e Adminishalion

l_nngley Re.qeareh Center
Hnmplon, Vir_linin 23665-52.25

(NASA-CR-ld7515) OI STi,tI _UTED
C_MPILER nESIGN FOP, SPAP, SE

Report (ICASF) 41 p

MEMORY

PK_SLEMS Final

CSCL

N?I-IB{YlO

09_
Unclds

G3/oO 0333_6[

https://ntrs.nasa.gov/search.jsp?R=19910009297 2020-03-19T19:41:51+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42819608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

v-

Distributed Memory Compiler Design for Sparse
Problems 4

Janet Wu 1

Joel Saltz 2

Harry Berryman 1 2

Seema Hiranandani S

ABSTRACT

In this paper we describe and demonstrate a compiler and runtime sup-

port mechanism. The methods presented here are capable of solving a wide

range of sparse and unstructured problems in scientific computing. The

compiler takes as input a Fortran 77 program enhanced with specifications

for distributing data, and the compiler outputs a message passing program

that runs on a distributed memory computer. The runtime support for this

compiler is a library of primitives designed to efficiently support irregular

patterns of distributed array accesses and irregular distributed array parti-

tions. We present a variety of Intel iPSC/860 performance results obtained

through the use of this compiler.

Computer Science Department Yale University New Haven CT 06520
2ICASE, NASA Langley Research Center Hampton VA 23665
SComputer ScienceDepartment RiceUniversityHouston Tx 77251

4Researchsupportedby th_ NationalAeronauticsand Space Administrationunder
NASA contractNASI-18605 whilethe authorswere in residenceatICASE, Mail Stop

132C, NASA"Langley Re_carch Center,Hampton, VA 23665,an_..byNSF gr_ntA_C- _
f 8819374,'_.

1 Introduction

During the past few years, a number of researchers have proposed integrat-

ing runtime optimization methods into compilers for distributed memory

multiprocessors. These optimizations are essential in scientific codes that

include sparse matrix solvers, or in programs that solve partial differential

equations using adaptive and unstructured meshes. We first identified a

set of relevant numerical codes that required runtime optimizations. After

identifying this set, we performed extensive experimental research on these

codes. The results of our experiments not only identified the major perfor-
mance bottlenecks in these codes but also helped us develop a rich set of

optimizations useful and essential to generating reasonably efficient code for

this class of problems on distributed memory machines. Once we developed

a collection of run time optimizations, we built a compiler that identifies

irregular computations and performs transformations to enhance the code.

The compiler takes as input a simplified Fortran 77 program enhanced

with specifications for distributing data, it outputs a message passing For-

tran program for the Intel iPSC/860 parallel computer. The compiler con-

sists of two distinct layers. The bottom layer is a library of runtime proce-

dures (Parti - Parallel Automated Runtime Toolkit at ICASE) designed to

efficiently support irregular patterns of distributed array accesses. The top

layer is a compiler that carries out program transformations and embeds

the Parti procedures. The Parti procedures support a variety of operations

that include off processor data fetches, off processor store updates on reduc-

tion operations performed on global data structures and storage of non-local

data. Parti also supports non-uniform distr_uted array partitions in which

each distributed array element can be assigned to an arbitrary processor.

A multicomputer program is generated in which all distributed memory ac-

cesses are carried out using embedded procedures.

It must be emphasized that the goal of this project is not to develop a

production quality compiler, but to demonstrate that run time optimizations

can be automatically and efficiently generated by a compiler. Most of the

complexity of our system is in the Parti procedures. The Parti procedures

have been developed so that that transformations needed to embed the ap-

propriate primitives can be implemented with relative ease in distributed

memory compilers. It may be noted that while this system's top layer is

experimental and is far from being production quality code, the lower layer

is currently being distributed [6].
The details of the transformations performed by the ARF compiler are

describedin section 2. Section 3 describesthe Patti run time primitives

that have been implemented and incorporated in the compiler. In section

4 we describe the AI_F language and the overall compiler strategy that

demonstrates the interaction between the two layers of the AI_F compiler.

We describe the compiler in the context of two code examples. These exam-

ples are written in ARF and translated to iPSC/860 code by our compiler.

In Section 5 we report experimental numbers for the codes compiled by the
AKF compiler. In Section 6 we describe the relationship between our work

and other related research projectsin the area and we conclude in Section 7.

2 Distributed Memory Inspectors and Executors

In distributed memory machines, large data arrays need to be partitioned

between local memories of processors. These partitioned data arrays are

called distributed arrays. We follow the usual practice of assigning long
term storage of distributed array elements to specific memory locations in

the machine. Non-local reads require that a processor fetch a copy of that

element from the memory of the processor in which that array element is

stored. Alternately, a processor may need to store a value in a non-local dis-

tributed array element requiring the processor to write to non-local memory.

An issue that arises at this point]swhere: does a processor store copies of

off-processor data. Due to the irregular nature of the acchss pattern, it is not

efficient to store the elements in temporary arrays or overlap areas proposed

by Gerndt [12]. Both these storage schemes result in large wastage of mem-

ory. We store local copies of off-processor distributed array elements in hash

tables called hashed caches. Hash tables result in less wastage of memory

and quick access of off-processor data. l_un time primitives are implemented

to manage the hashed caches. These primitives initialize the hashed caches,

store and retrieve data from them and flush the hashed caches when appro-

priate. During program execution, a hash table records off-processor fetches

and stores. We are consequently able to recognize when more than one ref-

erence is being made to the same off-processor distributed array element, so

that only one copy of that element need be fetched or stored.

In distributed memory MIMD architectures, there is typically a non-

trivial communications latency or startup cost [8]. As an optimization we

block messages in order to increase the message size and reduce the number

of messages. This optimization can be achieved by precomputing what data

each processor needs to send and receive. The preprocessing needed to per-

Eachprocessor P:

- Preprocesses its own loop iterations

- Records off-prccessor fetches and stores in hashed cache

- Finds send/receive calls required for data exchange

1. P generates list of all off-processor data to be fetched

2. P sends messages to other processors requesting copies of
required data

3. Other processors tell P which data to send

4. Send/Receive pairs generated and stored

Figure 1: Inspector For Parallel Loop on Distributed Memory Multiproces-
sor

form this optimization results in the generation of an inspector loop. Figure

1 describes the form of the inspector loop that is generated assuming the

original loop is parallel and thus blocking messages is legal. The distribution

of parallel loop indices to processors determines where computations are to

be performed. We assume that all distributed arrays referenced have been

defined and initialized and that loop iterations have been partitioned among
processors.

During the inspector phase, we carry out a set of interprocessor com-

munications that allows us to anticipate exactly which send and receive

communication calls each processor must execute prior to executing the

loop. By contrast, individual fetches and stores carried out during the ac-

tuai computation would result in expensive, inefficient and awkward code

[23]. For example, in such a case processor A might obtain the contents

of a distributed array element which is not on A by sending a message to

processor B associated with the array element. Processor B would have to

be programmed to anticipate a request of this type, to satisfy the request

and to return a responding message containing the contents of the specified
array element.

The inspector loop transformation described above assumes computing

the processor on which the non-local data resides is straight forward. For

example,if a onedimensionalarray is distributed in a block manner, simple

functions can be used to compute the processor and local offset of a particu-

lar array element. However, there are many situations in which simple, eas-

ily specified distributed array partitions are inappropriate. In computations

that involve an unstructured mesh, we attempt to partition the problem

so that each processor performs _pproximately the same amount of work to

achieve load balancing and to minimize communication overhead. Typically,

it is not possible to express the resulting array partitions in a simple way. By

allowing an arbitrary assignment of distributed array elements to processors,

we have the additional burden of maintaining a data structure that describes

the partitioning. The size of this data structure must be the same as the

size of the the irregularly distributed array. We call this data structure a

distributed translation table. Distributed translation tables are partitioned

between processors in a simple straightforward manner described in Section
3.4.

In order to access an array element, we need to know where the element

is stored in the memory of the distributed machine. This information is
obtained from the distributed translation table. When a distributed trans-

lation table is used to describe array mappings, inspectors must be modified

so that they access the distributed table. The modifications made to an

inspector are outlined in Figure 2. In this case, the distributed translation

table is used to determine the processor on which an element resides.

Once the preprocessing is completed, every processor knows exactly
which non-locai data elements it needs to send to and receive from the

other processors, we are therefore in a position to carry out the necessary

communication and computation. The loop is transformed into an e_ecutor

loop. Figure 3 outlines the steps involved and they apply to irregular and

regular array mappings. The initial data exchange phase follows the plan

established by the inspector. When a processor obtains copies of non-local

distributed array elements, the copies are written into the processor's hashed

cache. Once the communication phase is over, each processor carries out its

computation. Each processor uses locally stored portions of distributed ar-

rays along with non-local distributed array elements stored in the hashed

cache. When the computational phase is finished, distributed array elements

to be stored off-processor are obtained from the hashed cache and sent to

the appropriate off-processor locations. In the next section we describe the

details of the Patti run time primitives that may be invoked during the

inspector and executor phases.

EachprocessorP:

- Preprocesses its own loop iterations

- Records off-processor fetches and stores in hashed cache

- Consults distributed translation table to

• Find location in distributed memory for each off-processor
fetch or store

- Finds send/receive calls required for data exchange

1. P generates list of all off-processor data to be fetched

2. P sends messages to other processors requesting copies of

required data

3. Other processors tell P which data to send

4. Send/l%eceive pairs generated and stored

Figure 2: Inspector For Parallel Loop Using Irregular Distributed Array

Mapping

• Before loop or code segment

1. Data to be sent off-processor read from distributed arrays

2. Send/recelve calls transport off-processor data

3. Data written into hashed cache
. n

• Computation carried out

- off-processor reads/writes go to hashed cache

• At end of loop or code segment

1. Data to bestored off:proc_sso_is read from hashed cache

2. Send/receive calls transport off-processor data

3. Data written back into distributed arrays for longer term storage

Figure 3: Executor For Parallel Loop on Distributed Memory Multiprocessor

3 Parti primitives

The Parti run time primitives can be divided into three categories; primitives

that may be invoked during the inspector phase, executor phase or both

inspector and executor phase. The scheduler primitive invoked during the

inspector phase, determines the send and receive calls that are needed during

the executor phase. These calls may be to either scatter, gather or perform

reduction operations during the executor phase. The distributed translation

table mentioned earlier is used during the inspector phase. The hashed

cache primitives are used during the inspector and executor phases. The

next section describes the details of the scheduler, distributed translation

table, scatter, gather, reduction and hashed cached primitives.

3.1 The Scheduler Primitive

Processors] 1

/
Global array a _ 1

local array a' offsets

Figure 4: Mapping of a Global Array to Processors

We will use a simple example to illustrate the preprocessing carried out by

the scheduler. Assume we have a distributed array a that is partitioned

among three processors in an irregular fashion as depicted in Figure 4 and

there is a loop computation such that the access pattern of array a is as

shown in Figure 5. Each processor stores its elements of distributed array

a in a local array a'. Thus processor P1 needs to fetch array element a(3)

Processors

Irregular access pattern of array a

Global array a

local array a' offsets

Figure 5: Irregular Access Pattern

or element a'(2) of the local array from processor P2 and processors P2 and

P3 needs to fetch a(4) or element a'(2) 0fthe local array from P1. :l%ec_i

that the task of the scheduler is to anticipate exactly which send and receive

communications must be carried out by each processor. The scheduler first

figures out how many messages each processor will have to send and receive

during the data exchange that takes place in the executor phase. Defined

on each processor pi is an array nmsgs i. Each processor sets its value of

nmsgsi(j) to 1 if it needs data from processor j or to 0 if it does not.

The scheduler then updates nmsgs on each processor with the element-by-

element sum nmsgsi(j) _- _k nmsgsk(J) • This operation utilizes a function

that imposes a fan-in tree to find the sums. At the end of the fan-in, on all

processors, the entries of nmsgs are identical. The value nmsgs(j) is equal

to the number of messages that processor PJ must send duringthe exchange

phase. In our example scenario, we see that at the end of the fan in, the

value of nmsgs on each processor is [2,1,0] (Figure 6). Thus /'1 is able

to determine that it needs to send data to two other (as yet unspecified)
processors, P2 needs to send data to one processor and Ps does not need to

send any data.

At this point, each processor transmits to the appropriate processor, a

list of required array elements. This list contains the local offsets of the

global array elements. In our example,/'1 sends a message to P2 requesting

c

i

8

element 2 of the local array a'; P2 and Ps send a message to P1 requesting

element 2 of the local array a'. Each processor now has the information

required to set up the send and receive messages that are needed to carry

out the scheduled communications (Figure 7).

P(1) needs

data from

P(2)

[0 O]
tree

P(2) needs

data from

P(1)

P(3) needs

data from

P(1)

[io o] [i o o]

Output from

sum tree

distributed to

all processors

o] o] o]

Figure 6: Computing the number of Send Messages

3.2 Data Exchange Primitives

Data ezchangers can be called by each processor to:

gather data from other processors,

scatter data to other processors, or

perform global reduction operations

These exchangers use state information stored by the scheduler. As de-

scribed in the previous section the scheduler determines the send and receive

calls needed to carry out data exchanges. The scheduler is not given any

Send Processors

Messages sent by the processors

Receiving Processors

Data sent by the processors: local array a'

Figure 7: Final Message Pattern

information about memory locations - it involves only processors and local
indices.

When a processor P calls a data exchanger, it passes to the exchanger

routine the starting address of the first local_array element in its memory.

We call this_address Ap. The e_changer r0ut_nes use Ap to read or write
distributed: array elements. The schedule generated by the scheduler can

be reused. A schedule can also be used to carry out identical patterns of

data exchange on several different identically distributed arrays or on several

different identically distributed array sections. The same schedule can be

reused to rePeatedly carry out a particular pattern of data exchange on a
single distributed array, and any of the data exchange primitives can make

use of a given schedule.

3.3 Calling Sequence of Scheduler and Data Exchanger

In this section, we give a specific example of the calling sequence used to

invoke the schedule and data exchange primitives. We consider the following

two Patti procedure calls:

10

call scheduler(id,n,hashed-cache,local-indices,processors)

call gather-exchanger(id,hashed- cache _local-array).

In this example, processor arranges to obtain copies of specified off-processor

data elements, these copies are placed in the hash table hashed-cache.

Each processor passes to scheduler a list of off-processor local array in-

dices. The scheduler will build a schedule that will make it possible for P

to obtain n data elements. P will obtain data element i, 1 < i < n from

processor processors(i), local index local - indices(i). A previously allo-

cated hash table hashed- cache is used to eliminate duplicate off-processor

indices, scheduler returns an integer id which is be used by a subsequent

call to gather-ezchanger.

Each processor the calls gather-ezchanger, gather-ezchanger passes the

address of the memory location local - array in which each processor stores

its portion of a distributed array, gather-ezchanger returns copies of the

requested off-processor array elements, these copies are placed in the hash
table hashed-cache.

3.4 The Translation Table

We are able to allow a user to assign globally numbered distributed array

elements to processors in an irregular pattern, using a distributed translation

table, l_ecall that the scheduler and the data ezchangers deal with indices of

arrays that are local to each processor. The translation primitives, however,

assume that distributed array elements have been assigned global indices.

The procedure build-translation-table constructs the distributed transla-

tion table. Each processor passes build-translation-table a set of globally

numbered indices for which it will be responsible. The distributed transla-

tion table may be striped or blocked across the processors. With a striped

translation table, the translation table entry for global index i is stored on

processor i rood numprocs where numprocs is the number of processors. In

a blocked translation table, translation table entries are partitioned into a

number of equal sized ranges of contiguous integers, these ranges are placed

in consecutively numbered processors.

Dereference accesses the distributed translation table constructed in

build-translation-table. For a given distributed array, dereference is passed a

set of global indices that need to be located in distributed memory. Derefer-

ence returns the processors and memory locations where the specified global
indices are stored.

11

Table1: Translation Table Entries

global I assigned I localindex processor [index
Processor I

1 1

Processor 2

3 2 I 2

4 1 1 2
I

Table _):Results)bta_nedfro,

global] assignedindex processor

Processor 1

3 2

Processor 2

2 2

3 2

4 1

)ereference

local
index

1

9.

1

2

2

We will illustrate the use of these primitives using the same mapping as
in Figure 4 except that the num_berof processorsequals 2. Two processors

call buiId-translatlon-table. Thus P1 claims responsibility for indices 1 and

4, while P2 claims responsibility for indices 2 and 3. We assume that the

translat[0n--t-able is partitioned between 2 processors by blocks. We depict

the translation table data structure in TabTe L Each entry of the translation

table assigns a processor and a local array index to each globally indexed

distributed array element. In our example, translation table information

about global indices 1 and 2 is stored in processor 1, while information

about global indices 3 and 4 is stored in !6r_ocessor 2.

To continue our example, assume that both processors use the derefer-

ence primitive to t_nd assigned processors an_ local indices corresponding to

particular global distributed array indices. InTable 2 we depict the results

obtained when processor 1 dereferences global indices 1 and 3, and processor
2 dereferences global indices 2, 3 and 4.

12

3.5 The Hashed Cache

Theusefulnessof the Parti primitives described in Section 3 can be enhanced

by coupling these primitives with hash tables. The hash table records the

numerical value associated with each distributed array element. The hash

table also records the processor and local index associated with the element.

Dereference uses the hash table to reduce the volume of interprocessor

communication. Recall that dereference returns the processor assignments

and the memory locations that correspond to a given list of distributed

array indices. Each distributed array index may appear several times in lists

passed to dereference. The hash table is used to remove these duplicates.

The scheduler and the data exchange procedures use hash tables to store

copies of off-processor distributed array elements. Lists of off-processor dis-

tributed array elements passed to the scheduler may have duplicates, the

scheduler uses the hash table to remove these. The gather data exchanger

(or gather-exchanger) fetches copies of off-processor distributed array ele-

ments and then places the off-processor distributed array values in a hash

table. Similarly, scatter-ezchanger obtains copies of off-processor distributed

array elements from a hash table and writes the values obtained into a spec-

ified local array element on a designated processor. Primitives to support

accumulations to non-local memory use hash tables in the same way scatter
does.

Parti supplies a number of other primitives that support reading from,

as well as writing and accumulating to, hash tables. When off-processor

accumulations must be performed, we first carry out all possible accumula-

tions to copies of distributed array elements in hash table, then we perform

an accumulation data exchange.
Currently, we use a hash function that, for a hash cache of size 2 k,

masks the lower k bits of the key. The key is formed by concatenating the

processor-local index pair that corresponds to a distributed array reference.

4 The ARF Language

We have described in earlier sections the 2 distinct layers of the compiler.

We will now briefly describe the extensions that we have added to Fortran

77 to create the ARF (ARguably Fortran) language. ARF is an interface

betweenthe application programs and the Parti run-time support primitives.

The AttF compiler generates inspector and executor loops with embedded

primitives.

13

Distributed arrays are declared in AI_F source. These distributed arrays

can either be partitioned between processors in a regular manner (e.g. equal

sized blocks of contiguous array elements assigned to each processor), or

in an irregular manner. An AI_F user declares a mapping into distributed

memory for each distributed array. When an array is to be partitioned in an

irregular fashion, mapping information is specified in a regularly distributed

integer array. Element i of the integer array describes the processor to which
element i of the distributed array is to be mapped. Examples are shown

below,

S1 distributed regular using block real k(SIZE)

$2 distributed regular using block integer map(SiZE)

$3 distributed irregular using map real y(SIZE).

$1 declaresthatk isa realarray,distributedin a regular_blockmanner,

$2 declares that map is an integer array, also distributed in a regular block

manner. $3 declares a real array y whose distribution is to be determined

by the distributed integer arraymap. In the examples we give in this paper,

all integer arrays used to specify irregular mappings were produced by hand

coded partitioning procedures and then passed to an ARF routine.

An_other addition to Fortran 77 is the on clause: The on clause has

been originally implemented in Kali [14]. It is a mechanism by which the
user has control over distributing the iteration space or work load among

processors. Distribute do is an ARF language extension, this implies that the

loop iterations in a given do loop should be distributed between processors.

In the next section we use two examples to illustrate the transformations

and optimizations performed by the ARF compiler. These message passing

Fortran codes were generated by the ARF compiler.

4.1 Code Generation by the ARF Compiler

The ARF compiler transforms an ARF program into a target program which

incorporates the primitives needed to efficiently carry out the distributed

computation. The kernels we present here have been coded in AI_F, com-

piled and run on an iPSC/860; in Section 5 we will present performance
data obtained from both kernels.

14

z

4.1.1 Sparse Block Matrix Vector Multiply

In Figure 8 we present an ARF program that carries out a block sparse

matrix vector multiply. This kernel was obtained from an iterative solver

produced for a program designed to calculate fluid flow for geometries de-

fined by an unstructured mesh [26]. The matrix is assumed to have size 4

by 4 blocks of non-zero entries. Statements $4 and $5 are loops that sweep
over the non-zero entries in each block.

Integer array partition is local to each processor and enumerates a list

of indices assigned to the processor. As mentioned earlier, the current im-

plementation partitions only one dimension, the last dimension of the array.

The Parti primitives, however, do support a broader class of array map-

pings [7]. Thus partition describes the partitioning of the last dimension

of the arrays declared in statements S1 and $2. The ARF compiler uses

the information in partition to make calls to primitives that initialize the
distributed translation tables. These distributed translation tables are used

to describe the mapping of x, y , cols, ncols and f (statements $1 and

S2).

The partitioning of computational work is specified in statement $3 by

an on clause. In this example, distributed array partition is used to specify

which loop iterations are to be carried out on each processor. The reference

x (m, cols (j, i)) in $6 may require off-processor references, ARF must con-

sequently generate an inspector to produce a schedule and a hash table to

handle accesses to the distributed array x. A reference to the irregularly

distributed array f occurs in statement $6. Note that distributed array

f is irregularly distributed using array partition and that partition is

also used by the on clause to partition loop iterations in $3. It can there-

fore be deduced that the reference to f in statement $6 is on-processor.

partition specifies how distributed array elements and loop iterations are

to be distributed between processors. A separate partitioning routine gen-

erates partition. In this paper, we simply assume that array partition

is passed to the sparse matrix vector multiply kernel after having been gen-
erated elsewhere.

The AI_F compiler generates an inspector and an executor to run on

each processor. The work of the inspector is carried out on each processor
as follows:

Call build-translation-table using the mapping defined by array part ition.

Generate distributed translation table Tpartition.

15

Call dereference to employ translation table Tpartition to find proces-
sor assignments, PA and local indices, LA for consecutive references to

x(m,cot,(j,i)).

Pass PA and LA toscheduler,generate schedule S.

Use PA and LA to setup hash table H.

The executor generated by AP_F on processor P is depicted in Figure

9. In Figure 9 we use Fortran 90 notation where appropriate to enhance

readability. Off-prococessor elements of x are gathered and placed in a

hash table H (step I Figureg)i Values i_rom x are obtained from H or from

local memory as is appropriate (step IIa, Figure 9). Arrays PA and LA are

used to distinguish local from off-processor array accesses. In step IIb, we

accumulate to y. Note that the declarations in S1 and $3 in Figure 8 allow

the compiIer to determine that accumulations to y are local.

4.1.2 The Fluxroe Kernel

In section 5 we will present the AI_F cbmpiIeroutput of a more complex

kernel. Thls kerneI is taken from a program _that computes convective fluxes

using a method based on Roe's approximate Kiemann solver [27], [28]; we

will call this kernel fluzroe. Fluxroe computes the flux across each edge of

an unstructured mesh. FIuxroe accesses elements of array yold, carries out

flux calculations and accumulates results to array y. As was the case in the

sparse block matrix vector multiply kernel, four sections of each array are

distributed and accessed in an _enticalmanner. In Figure 10 we depict an
outline of the fluxroe kernel. We denote the indices of the two vertices that

comprise edge i by nl = n(i, 1) and n2 = n(i,2). To compute the fluxes

f(i,k) across the ith edge, we need to access _old(nl, k) and _told(n2,k),

for 1 < k < 4 (part I Figure 10). Once the fluxes have been computed,

we add the newly computed flux values f(i,k) to y(nl, k) and subtract

f(i,k) from _(n2,k) (part III Figure 10). Note that arrays y and yold
are irregularly distributed using y-partition, and that distributed array

node_s_rregularly dis-t_buted Using edge-partit±on. Since the on clause

in the distributed do statement also uses edge-partition to specify how

loop iterations are to be partitioned, no off-processor references are made to

node in part I Figure 10.

In the inspector, we need to compute a schedule Snl for the off-processor

additions to _/(nl, k) (part IIIa Figure 10), and a different schedule S,_2 for

m

|

16

$1 distributed irregular using partition real*8 x(4,n), y(4,n),f(4,4,maxcols,n)

$2 distributed irregular using partition integer cols(9,n), ncols(n)

...initializationoflocalvariables...

$3 distributed do i-l,n on partition

do j=l,ncols(i)

$4 do k=1,4

sum : 0

$5 do m = 1,4

$6 sum = sum ÷ f(m,kj,i)*x(m,cols(j,i))

enddo

y(kj) : y(kj) + sum

enddo

enddo

enddo

Figure 8: ARF SparseBlock Matrix VectorMultiply

17

I. call gather-ezchanger using schedule S to obtain off-processor elements
of x

gather-ezchanger places gathered data in hash table H

count = 1

II. for all rows i assigned to processor P

do j=l,ncols(i)

do k= 1,4

suIn _ 0

IIa. if PA(count) == P then

vx(l:4)-- x(l:4,LA(count))

else

Use PA(count), LA(count) to get vx(l:4) from hash table
H

endif

do m=i,4

sum = sum + f(m,kj,i)*vx(m)

end do

IIb. y(k,i)= y(k,i) + sum

end do

count = count + 1

end do

Figure 9: Executor generated from AttF for Sparse Block Matrix Vector
Multiply

i8

the off-processorsubtractions from y(n2, k) (part IIIb Figure 10). When

parailelized, fluxroe reads as well as accumulates to off-processor distributed

array locations. As we pointed out in Section 3.2, any of the data exchange

primitives can use the same schedule. We can use schedule Snl to gather

off-processor references from yoId(k,nl) (part Ia Figure 10), and we can

use schedule Sn2 to gather off-processor references from yold(k, n2) (part 11o

Figure 10).

The work of the inspector is carried out as follows:

Call build-translation-tableusing mapping defined by array y-partition.

Generate distributed translation table TIt_l_c_rtition.

Call dereference to employ translation table Ty_1_artitior _ to find:

1. Processor assignments PAn1 and local indices LAnl for consecutive

add accumulations to y(k, nl) (the same Panx and LAnx can be

used for consecutive references to y(k, nl)).

2. Processor assignments PAn2 and local indices LAn2 for consecutive

substract accumulations to y(k, n2) (the same PAn2 and LAn2 can

be used for consecutive references to y(k, n2)).

Pass PAul and LAnl to scheduler to obtain schedule Snl; pass PAn2 and

LAn2 to scheduler to obtain schedule Sn2.

Setup hash tables Hnl and Hn2.

Figure 11 outlines the executor produced by ARF on processor P. In

Figure 11 we use Fortran 90 notation where appropriate to enhance read-

ability. In step Ia and Ib we gather two sets of off-processor elements of

yold using schedules S,_1 and Sn2. In step II we access the appropriate ele-

ments of yold either from local memory or from the appropriate hash table,

and in step III we use yold values to calculate fluxes. If the newly com-

puted fluxes are to be accumulated to a local element of distributed array

y, the appropriate addition or subtraction is carried out at once (steps IVa

and IVc Figure 11). When a flux must be accumulated to a off-processor

element of y, we accumulate the flux to a copy of y stored in a hash table

(steps IVb and IVd Figure 11). When all fluxes have been calculated and all

local accumulations are completed, we then call the scatter-add and scatter-

subtract exchangers. These exchangers carry out the needed off-processor
accumulations.

19

distributed irregular using y-partitlon real*8 yold(4,Number-nodes),

y(4,Number-nodes)

distributed irregular using edge-partition integer node(21Number-edges)

... initialization of local variables ,.

distributed do i = l,Number-edges on edge-partition

I. nl = node(1,i)

n2 = node(2,i)

do k=l, 4

_:_V_b(k) - yold(kln2) _; _:__

end do

II. Calculateflux using Va(k),Vb(k)

III.dok=l,4 :-

iIIa_y(k,nl) - y(k,ni)+ flux(k):

iiib:-y_-k,n2) = y(k,n2) - flux(k)

end do "

end do_,

Figure 10: ARF Kernel From Riemann Solver

20

The current version of the ARF compiler attempts to minimize the num-

ber of schedules to be computed. We might have produced a single schedule

for all off-processor yold data accesses. If the inspector produced a single

schedule for all accesses to yold, it would have been necessary to compute

three different schedules in the inspector. Computing a single schedule for

all references to yold might have led to a more efficient executor at the cost

of a more expensive inspector.

4.2 Memory Utilization

We will give an overview of some of the memory requirements exacted by

the methods described in this section, and suggest some ways in which these

requirements can be reduced. Many sparse and unstructured programs use

large integer arrays to determine reference patterns. In this respect, the

kernels depicted here are typical. In Figure 8, a 9n element integer array

cols is used for this purpose; while in Figure 10, a size 2. Number - edges

array node is employed. The executors depicted in Figure 9 and Figure 11

replace cola and node with local arrays that store the processor assignments
and the local indices for references to irregularly distributed arrays. In the

kernels in Figure 8, the sum of the number of elements used in all processors

to store both processor assignments and local indices is no larger than 18n;

in Figure 10 the parallelized code uses a total of 4,Number-edges elements.

The amount of additional storage needed for the parallelized code can

be reduced in the following simple manner. The iterations I of a loop are di-

vided into into two disjoint sets. The first set of iterations is Iloc_, where

all memory references are to locally stored array elements. The second

set is Io_-proconor,in this set, each iteration contains some off-processor

distributed array reference. In this case we need only to list processor as-

signments for loop iterations Io_-proceHor. Since it is frequently possible

to map problems so that most memory references are local to a processor,

a substantial memory savings will result.

The schemes described thus far would use very large quantities of extra

memory when attempting to handle a loop in which a small number of

distributed array elements are accessed many times. For instance, consider

the following loop where f is a function defined so that 1 < f(i) < 2 for any
i.

21

Ia. call gather-ezchanger using schedule Snl to obtain first set of off-

processor elements of yold

gather-ezchangerpiaces data in hash table Hnl.

Ib. call gather-ezchanger using schedule S,,2, to obtain second set of off-

processor elementsof y0id -

9ather-ezchanger places data in hash table Hn2.

count = 1

II. for edges i assigned to processor P

if (PA,,l(count).EQ. P) then

va(l:4) = yold(l:4,L l (count)) else

get va(l:4) from hash table Hnl

endlf

if (PA,_,(count).EQ. P) then

vb(l:4) = yoid(l:4,LA_2(count)) else

get vb(l:4) from hash table Ha2

endif

HI. Calculate fluxes flux(l:4) using va(l:4) and vb(l:4)

IV. if PA_l(count) .EQ. P then

IVa. yold(l:4,LA,,l(count)) = yold(l:4,LA_l(count)) + flux(l:4)
else

IVb. Accumulate flux(l:4) to hash table Hnl

endif

if PAn_(count) .EQ. P then

IVc. yold(l:4,LAn2(count))= yold(l:4,LA.2(count))-flux(1:4)
else

IVd. Accumulate flux(l:4) to hash table Hn=

endif

end do

count = count+l

Va. Call scatter-add ezchanger using schedule 5al and hash table Hnl.

Vb. Call scatter-subtract ezchanger using schedule 5n2 and hash table Hn2.

Figure 11: Executor generated from ARF for Fluxroe Kernel

22

distributed irregular partition y

do i=l, HUGE - NUMBER

.... y(f(i))

end do

In the above loop, the reference pattern of distributed array y is de-

termined by f. In this example, at most two distinct elements of y are

referenced in the loop. Loops of this sort can be handled by using a hash ta-

ble to store processor and local index assignments for each distinct memory

reference. In our example, each processor would have to store processor and

local index assignments for no more than two references to distributed array

y. There is a performance penalty that must be paid for using a hash table

to find processor and local index assignments for distributed array elements.

After examining a variety of sparse and unstructured codes, we chose not

to implement the method described in this section in the ARF compiler. In

[19], we present an analysis of the type of time and space tradeoffs outlined
in this section.

5 Experimental Results

In this section we present a range of performance data that summarizes the

effects of preprocessing on measures of overall efficiency and that gives some

insight into the performance effects of problem irregularity and partitioning.

Our computational experiments employed the fluxroe kernel and the block

sparse matrix vector multiply kernel. Both kernels were coded in ARF; the

parallelized benchmark numbers we present were obtained from programs

generated by the ARF compiler. It should be noted that the syntax accepted

by our AI_F compiler differs in some minor ways from the that presented in

the previous sections.

The experiments described in this paper used either a 32 processor

iPSC/860 machine located at ICASE, NASA Langley Research Center or a

128 processor iPSC/860 machine located at Oak Ridge National Laborato-

ries. Each processor had 8 ufegabytes of memory. We used the Greenhill

1.8.5 Beta version C compiler to generate code for the 80860 processors.

23

5.1 Unstructured Mesh Data

We use as input data a variety of unstructured meshes; both actual un-

structured meshes obtained from aerodynamic simulations and synthetically
generated meshes.

Unstructured Meshes from Aerodynamics : We use two different

unstructured meshes generated from aerodynamic slm_ations.

Mesh A: A 21,672 element mesh generated to carry out an aero-

dynamic simulation invoIvlng a mul_ie]ernent airfoil in a landing

configuration [17]. _ This mesh h_ 1i143 points.

Mesh B: A 37,741 element mesh generated to simulate a 4.2 %

circular arc airfoil in a channel [11]. This mesh has 19155 points.

Each mesh point is associated with an ix,9-) _c00rcl_nate in a physical

domain. We use d0m_ain informatio n _0_p_tition_the mesh !n_three

different ways; strips, orthogonal binary dissection algorithm ([5], [10])
and another mesh partitioning algorithm jagged partitioning, described

in [24].

Synthetic Mesh from Templates

A finite difference template is used to link K points in a square two di-

mensional mesh. This connectivity pattern is incrementally distorted.

Random edges are introduced subject to the constraint that in the new

mesh, each point still requires information from K other mesh points.

This mesh generator makes the following assumptions:

I. The problem domain consists Of a 2-dimensional square mesh of

N points,

II. Each point is initially connected to K neighbors determined by a

finite _fference_template,

III. With probability q, each mesh link is replaced by a link to a

randomly chosen mesh point.

Note that when q is equal to 0.0, no mesh links are modified and

no changes are introduced by step III. When q is equal to 1.0 we

have a completely random graph. In this paper we will make use of

two templates. One template connects each point to its four nearest

neighbors (K=4); the other template connects each point to both its

24

four nearest neighbors as well as to each of its four diagonal neighbors

(K=8). We refer to the K = 4 template as a five point template

and we refer to the K=8 template as a nine point template. In the

experiments to be described in the rest of this section, we employed a

256 by 256 point mesh.

5.2 Overall Performance

We first present data to give an overview of the performance we obtained

on the iPSC/860 from the ARF compiler output. In the results depicted

in this section, we use a blocked distributed translation table. In Table 3

we present a) the inspector time: time required to carry out the inspector

preprocessing phase, b) computation time: the time required to perform

computations in the iterative portion of the program and c) the commu-
nication time: the time required to exchange messages within the iterative

portion of the program. The inspector time includes the time required to

set up the needed distributed translation table as well as the time required

to access the distributed translation table when carrying out the preprocess-

ing in the inspector. Unstructured Meshes A and B were partitioned using

orthogonal binary dissection. In these experiments, the ratio of the time

required to carry out the inspector to the computation time required for a

single iteration ranged from a factor of 0.7 to a factor of 3.6. Most of the

preprocessing time goes to setting up and using the distributed translation

table. For instance, consider the block matrix vector multiply on 64 proces-

sors using the 21,672 element mesh. The total preprocessing cost was 122
milliseconds, of which 111 milliseconds went to work related to the trans-

lation table. We define parallel efficiency for a given number of processors

P as the sequential time divided by the product of the execution time on

P processors times P. The sequential time was measured using a separate

sequential version of the each kernel run on a single node of the iPSC/860.

In Table 3 we depict under the column single sweep efficiency, the parallel

efflciencies we would obtain were we required to preprocess the kernel each

time we carried out the calculations. In reality, preprocessing time can be

amortized over multiple mesh sweeps. If we neglect the time required to pre-

process the problem in computing parallel efficiencies, we obtain the second

set of parallel ei_ciency measurements; the executor efficiency presented in

Table 3. The executor efficiencies for 64 processors ranged from 0.48 to

0.59, while the single sweep efficiencies ranged from 0.10 to 0.17.

In the experiments depicted in Table 3, the time spent computing is

25

at least a factor of 2 greater than the communication time. The executor

efficiencies are, however, impacted by the fact that the computations in the

parallelized codes are carried out less efficiently than those in the sequential

program. The parallel code spends time accessing the hashed cache. It also

needs to perform more indirections than does the sequential program.

nprocs

I 3264

Table 3: Performance on different numb'erof processors

linspectorl comp I comm Isinglesweep] executor Itime(ms) time(ms) time(ms) efficiency efficiency

Sparse Block Matrix Vector Multiply-_YIesh A

I 148 491910"15 0"55 I122 25 9 0.10 0.48

Sparse Block Matrix Vector Multiply - Mesh B

I 32 I 20064 150

8 231

16 162

32 135

64 172

8 393

16 249

32 191

64 203

85[10i 010i 050j42 9 0.14 0.54

310 I 24 0.40

157 J 21 0.34
80 22 0.19

41 19 0.12

Fluxroe - Mesh B

534

269

156

69

23 0.41

18 0.36

23 0.28

14 0.17

0.69

0.65

0.57

0.48

0.70 I

0.68

0.62

0.59

In Table 4, we investigate the performance of the fluxroe kernel for

meshes with..................varying degrees Of regui_ri_y_d ir0_ varying mesh mappi-ngs.
We used 32 processors in this experiment. In Table 4 we depict synthetic

me§hes arer_ed_rom 5 and 9p61_t-sienc]ls with probability of edge move q

equal _o_r O._or 0:4:Thesemes_eswe_em£pped by=i:D strips Or by 2-D

blocks. As one might expect, for the synthetic meshes the communications

costs increase dramatically for increasing q. We see these dramatic i_ncreases

because both the volume of communication required and the number of

messages sent per node are much_gher for-largeq: Preprocessingcosts

alsoincreasedwith q but while the communications costswent up by at

leasta factorof 16,preprocessingcostswent up by at most a factorof 1.8.

We alsodepictin Table 4 resultsfrom Meshes A and B. We partitioned

26

Table 4: Performance on 32 processors with different meshes

nprocs lins_ectorlcompcommIsinglesweepJexecutorItime(ms) time(ms) time(ms) efficiency efficiency

5 point template synthetic mesh partioned into strips

Iq=ool2ooI 275I 22I 0_9I o_2q:O.4 310 293 361 0.25 0.37
5

q=0.4 463 291

point template synthetic mesh partioned into 2-D block
15

319
0.35 J 0.84

0.23 [0.40

9 point template synthetic mesh partioned into strips

iq:0.01_11I _83i 21i 0.58i 0.80q=0.4 385 620 530 0.31 0.42

9 point template synthetic mesh partioned into 2-D block

q=0.4 595 624 527 0.28 0.42
Mesh A

binary 134

jagged 135

strips 148

80

81

83

22

22

26

0.24

0.24

0.22

0.57

0.56

0.53

Mesh B

binary J 191
jagged 186

strips 219

136

137

149

23

21

31

0.28

0.28

0.24

0.61

0.62

0.54

27

the mesh in three different ways; strips, the orthogonal binary dissection

algorithm and jagged partitioning. Both binary dissection and the jagged

partitioning algorithm break the domain into two dimensional rectangular

regions, and the two methods produce very similar performance results.

5.3 Breakdown of Inspector Overhead

In Table 5, we measure the cost of dereferencing and scheduling the fluxroe

kernel on different numbers of processors. We again use a blocked translation
table. We use a five point template and we partition the mesh either into

1-D strips or into 2-D blocks. When the mesh is partitioned into Strips,
dereference involves mostly]ocai _data accesses slnce--t_e-_om_n data and

the translation table are-lcient_ca_Iy partit|0ned. :_en Strip partitioning

is used, translation table initialization does not involve any communication.

The measurements presented in Table 5 are defined in the following manner:

F,xecutor time is the computation and communication time required to

execute the kernel; it doe_ not include time required for preprocessing,

Table initialization time is the time needed to initialize the distributed

translation table,

Dereference time is the time taken by the dereference Parti primitive,
and

Scheduler time is the time required to produce the communications

schedule once the required processor locations and local indices have

been found by dereference.

In Table 5 we note that the majority of the costs incurred by the in-
spector are due to the translation table initialization and dereference. For

instance consider the case where 64 processors are used to carry out a sweep

over a 2-D block partitioned mesh with a 5 point template. The translation

table initialization and dereference together require 183 % of the executor

time while the generation of the schedule requires only 12 % of the executor
time.

In the problems depicted in Table 5, communication costs comprise a

rather small fraction of the executor time, consequently the method used

to partition the domain does not make a slgn]ficant performance impact on

executor time. In Table 5, the costs of translation table initialization and of

dereference are both strongly dependent on how the domain is partitioned.

28

:v

Z

2-D blockpartitioningleadsto highertranslationtablerelatedcosts,thisis

almost certainlydue to the increasedcommunication requirementsneeded

fortranslationtableinitializationand dereference.Strippartitioningper se

does not necessarilylead to low translationtablerelatedcosts.In Table 4

we note that strippartitioningactuallyleadsto higherinspectorcostsfor

both Mesh A and Mesh B. The translationtableispartitionedso thatblocks

ofcontiguouslynumbered indicesareassignedtoeach processor.However in

Mesh A and Mesh B, mesh pointsare not numbered in a regularfashionso

the indicescorrespondingto a domain stripare not contiguouslynumbered.

Table 5: Cost of dereferencingand schedulingon differentnumber of pro-

cessors

Inprocsl executor I tableinit Idereferencel scheduletime (ms) time (ms) time (ms) time (ms)

5 point template synthetic mesh partioned into strips

8 1192 I 131 143] 83

16 606 115 109 42

32 297 92 83 27

64 167 63 62 17

5 point template synthetic mesh partioned into 2-D blocks
8

16

32

64

1189

599

290

158

333

192

136

77

595

311

235

212

83

42

26

19

5.4 Cost of translation table

In Section 3.4we describedtwo straightforwardways to map a distributed

translationtableonto processors.We considerthe questionofhow to dis-

tributethe translationtableso as to minimize costsassociatedwith trans-

lationtableaccess.Table 6 compares the time requiredto carryout deref-

erenceon blocked and stripedtranslationtablesby depicting:

the time requiredto carryout a particularcallto dereferenee,

the averagenumber of non-localaccessesto tableentriesrequiredby

dereference, and

the average number of non-local processors accessed during the call to

dereference.

29

Whenweexaminethe results for unstructured Meshes A and B, we

note no consistent performance difference in the cost required to dereference

a blocked or a striped translation table. Similar numbers of off-processor
table entries need to be accessed for either translation table distribution.

Blocked translation tables do lead to superior performance when we use

the synthetic meshes. For the reasons described in Section 5.3, we obtain

particularly good results when we use a striped partition with a blocked
translation table. It is of interest tonote that the biocked transiation table

also proved to be superior when we used synthetic meshes partitioned in
2-D blocks'

Table 6: Cost of dereference on 32 processors

Problem Indirect - Blocked Indirect- Striped

(ms) Data Proc (ms) Data Proc

Synthetic: 5 point template, strip partition

q=0 109 256 1 346 2232 31

q=0.2 157 1045 17 365 2862 31

q=0.4 218 1825 17 368 3350 31

Synthetic: 5 point template, 2-D block

q=0 235

q=0.2 326

q=0.4 330

binary 97

jagged 98

strips 109

binary 130

jagged 139

strips 159

2143 9

2841 25

3352 25

Mesh

768 21

772 20

860 29

Mesh

1271 24

1293 24

1519 31

336

355

370

A

96

98

102

B

122

130

172

partition
2078 31

2782 31

3273 31

743 31

751 31

843 31

1230 31

1263 31

1513 31

5.5 Scheduler and Data Exchanger Performance

To quantify the communications costs incurred by the Parti scheduler and

data exchange primitives, we measured the time required to carry out the

scheduler, gather-ezchanger and scatter-ezchanger procedure calls and com-

pared them to the hand coded version of iPSC/860 supplied sends and re-

30

Table 7: Overheads for Parti Scheduler

Number of

Data

Elements

100

400

900

1600

2500

3600

Send

Receive

Time(ms)
0.5

1.0

1.8

2.9

4.3

6.0

and Gather-Exchanger
Gather-

Exchanger

(ratio)
1.0

1.1

1.1

1.2

1.2

1.2

Scheduler

(ratio)
2.1

1.4

1.3

1.3

1.1

1.0

Primitives

ceives; the sends and receives communicated the same amount of data as

did the Parti procedures. We performed an experiment in which two pro-

cessors repeatedly exchanged W single precision words of information. The

exchange was carried out using gather-exchangers, scatter-exchangers and

the iPSC/860 supplied send and receive calls. In Table 7 we depict the re-

sults of these experiments. We present the time (in milliseconds) required to

carry out the requisite data exchange using send and receive messages. We

then present the ratio between the time taken by the scheduler and gather-

exchanger Parti primitive calls and the time taken by the equivalent send
and receive calls. The scatter ezchanger calls were also timed, the results of

which were virtually identical to that of the corresponding gather-exchanger

call.

_,From Table 7 we see that gather-exchanger took no more than 20%

more time than explicitly coded send/receive pairs to move W words of

information between two processors. The additional overhead required for

scheduler to carry out the data exchange was a factor of 2.1 to 1.0 times the

cost of using explicitly coded send/receive pairs to move W words.

6 Relation to Other Work

Programs designed to carry out a range of irregular computations includ-

ing sparse direct and iterative methods require many of the optimizations

described in this paper. Some examples of such programs are described in

[2], [16], [4], [29] and [10].
Several researchers have developed programming environments that are

targeted towards particular classes of irregular or adaptive problems. Williams

31

[29]describes a programming environment (DIME) for calculations with un-

structured triangular meshes using distributed memory machines. Baden [3]

has developed a programming environment targeted towards particle com-

putations, this programming environment provides facilities that support

dynamic load balancing.

There are a variety of compiler projects targeted at distributed memory

multiprocessors [30], [9], [21]' :[20], [i], [25]. With ti_e exception of Kali

project [15],and the Parti work describedhereand in [22], [18],and [23];
these compilers do not attempt to efficiently deal with loops that arise in

sparse or unstructured scientific computations.

We have produced and benchmarked a prototype compiler that is able to

generate code capable of efficiently handling kernels from sparse and unstruc-

tured computations. The procedures that carry out runtime optimizations

are coupled to a distributed memory compiler via a set of compiler trans-

formations. The compiler described and tested in this paper is qualitatively

different from the efforts cited above in a number of important respects.
We have developed and demonstrated mechanisms that allow uS to Support

irregularly distributed arrays. Irregularly distributed arrays must be sup-

ported in order to make it possibl e to m_ap dat a an d computati0n_: Fork in
an-arbitrary manner. Because we:ca-nsupport irregularly distributed arrays,

it was possible for us to compare the performance effects of different problem

mappings (Section 5). Support for arbitrary distributions was proposed in

[18] and [23] but to our knowledge, this is the first implementation of a com-

piler based distributed translation table mechanism for irregular scientific

problems.
We and that many unstructured NASA codes must carry out data ac-

cumulations to off-processor memory locatiQns_ We chose one of our kernels

to demon strate_this, and designed_0urprimi_ves and_c0mpi]er to be able

to handle this situation. To our knowledge, our compiler effort is unique

in its abiI_ty to efficiently carry out irregular patterns of off-processor data
accumulations.

We augment our primitives with a hash table designed to eliminate du-

plicate data accesses. In addition_ we use the hash table to manage copies
of off-pr0cess0r array elements. Other researchers have used different data

structures for management of off-processor data copies [15]. _:
_e

=

32

|

7 Conclusion

In thispaper we describeand experimentallycharacterizea compiler and

runtime support procedures which embody methods that are capable of

handling a wide range of irregularproblems in scientificcomputing. After

examining a number ofcomplete NASA codes,we choseto demonstrate our

methods usingtwo kernelsextractedfrom thosecodes.Both ofthesekernels

involvedcomputations overunstructuredmeshes. We coded both kernelsin

ARF, our dialectofFortran,and generatedcode to ran on the nodes of the

iPSC/860. Detailedtimingswere carriedout on both kernelsusing unstruc-

tured meshes from aerodynamics, along with meshes that were generated

by using random numbers to incrementallydistortmatricesobtained from

a fixedfinitedifferencetemplate. This benchmarking suitestressedthe

communications capabilitiesofthe iPSC/860 and the Partiprimitivesin a

varietyofways.

In the experimentswe reportedin Section5.2,we saw thatthatthe ratio

ofthe time requiredto carryout allpreprocessingto the time requiredfor

a singleiterationof eitherkernelranged from a factorof 0.7 to a factorof

3.6.We then saw in Section5.3that the majorityofthe preprocessingcosts

arosefrom the need tosupport irregularlydistributedarrays.In Section5.5

the performance of the scheduler and data exchanger Parti primitives were

quantified. The data-exchangers turned out to be at most 20% more time

consuming than the analogous send and receive calls provided by Intel.

We believe that one of the virtues of our layered approach to distributed

compiler design is that we have managed to capture a set of critical op-
timizations in our runtime support primitives. Our primitives, and hence

our optimizations, can be migrated to a variety of compilers targeted to-

wards distributed memory multiprocessors. We intend to implement these

primitives in the ParaScope parallel programming environment [13]. In ad-

dition, Patti primitives can and are being used directly by programmers in

applications codes [7].

Most of the complexity of our system is in the Patti procedures. The

Patti procedures have been developed so that that transformations needed

to embed the appropriate primitives can be implemented with relative ease

in distributed memory compilers. The primitives used to implement the

runtime support include communications procedures designed to support

irregular patterns of distributed array access, and procedures to find the

33

locationof irregularly mapped distributed array data using distributed trans-

lation tables. Primitives also support the maintenance of hash tables used
to store copies of off-processor data.

8 Acknowledgements

We would like to thank Harry Jordan and Bob Voigt for their careful editing

of this manuscript. We would also like to thank the Advanced Computing

Laboratory at Oak PAdge National Laboratories and NAS at NASA Ames

for providing us access to their 128 node Intel iPSC/860 hypercubes.

We wish to thank Dimitri Mavriplis and David Whitaker for supplying

us with unstructured meshes, and to David Whitaker and P Venkatkrishnan
for access to their codes.

34

References

[1]

[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

F. ANDRI_, J.-L. PAZAT, AND H. THOMAS, PANDORE: A system to

manage data distribution, in International Conference on Supercomput-

ing, June 1990, pp. 380-388.

C. ASHCRAFT, S. C. EISENSTAT, AND J. W. H. LIu, A fan-in algo-

rithm for distributed sparse numerical factorization, SISSC, 11 (1990),

pp. 593-599.

S. BA VEN, Programming abstractions for dynamically partitioning and

coordinating localized scientific calculations running on multiprocessors,

To appear, SIAM J. Sci. and Stat. Computation., (1991).

D. BAXTER, J. SALTZ, M. SCHULTZ, S. EISENTSTAT, AND K. Chow-

LEY, An ezperimental study of methods for parallel preconditioned

krylov methods, in Proceedings of the 1988 Hypercube Multiprocessor

Conference, Pasadena CA, January 1988, pp. 1698,1711.

M. J. BERGER AND S. H. BOKHARI, A partitioning strategy for pdes

across multiprocessors, in The Proceedings of the 1985 International

Conferenceon Parallel Processing,August 1985.

H. BBRRYMAN AND J. SALTZ, A manual,for patti runtime primitives,

Interim Report 90-11, ICASE, 1990.

H. BI_RRYMAN, J. SALTZ, AND J. SCROOGE, Ezecution time support

.for adaptive scientific algorithms on distributed memory machines, Re-

port 90-41, ICASE, May 1990.

S. BOKHARI, Communication overhead on the intel ipsc-860 hypercube,

Report 90-10, ICASE Interim Report, 1990.

fit.. CHEUNO AND A. P. REEVES, The paragon multicomputer envi-

ronment: A first implementation, Tech. Rep. EE-CEG-89-9, Cornell

University Computer Engineering Group, Cornell University School of

Electrical Engineering, july 1989.

G. Fox, M. JOHNSON, G. LYZENGA, S. OTTO, J. SALMON, AND

D. WALKER, Solving Problems on Concurrent Computers, Prentice-

Hall,Englewood Cliffs,New Jersey,1988.

35

• [11] Numerical methods for the computation of inviscid transonic flows with

shock waves - a gamin workshop, in Notes on Numercial Fluid Mechan-
ics, vol. 3.

[12] H. M. GERNDT, Automatic parallelization for distributed memory muI-

tiprocessing systems, Report ACPC/TR 90-1, Austrian Center for Par-

allel Computation, !990.

[13] S. HmANXNDANI, K. K_.NNEDY, AND C. TSSr_G, Compiler support

for machine-independent parallel programming in fortran d, in Compil-

ers and Runtime Software for Scalable Multiprocessors, J. Saltz and

P. Mehrotra Editors, Amsterdam, The Netherlands, To appear i991,
Elsevier.

[14] C. KOELBBr. AND P. MEHROTRA, Compiling global name-space pro-

grams for distributed ezecution, Report 90-70, ICAtE, 1990.

[15] C. KOELB_L'::P. MEHROTRA, AND J. V. ROSENDALE, Supporting

shared data structures ond_stributed memory architectures, in 2nd ACM

SIGPLAN Symposium on Principles Practice of Parallel Programming,

ACM SIGPLAN, Mar. 1990, pp. 177-186.

[16] J. W. LIU, Computational models and task scheduling for parallel

sparse eholesky factorization, Parallel Computing, 3 (1986), pp. 327-
342.

[17] D. J. MAVHXP . S,Multigrid solution of the two-dimensional Euler equa-
tions on Unstructured triangular meshes, AIAA Journal, 26 (1988),
pp. 824-831.

[18] R. MIRCHANDANEY, J. H. SALTZ, R. M. SMITH, D. M. NICOL, AND

K. CROWLSY, Principles of runtime support for parallel processors, in

Proceedings of the 1988 ACM International Conference on Supercom-

puting, St. Malo France, July 1988, pp. 140-152.

[19] S. MmCHANDAN_.Y, J. SALTZ, P. M_HROTRA, ASD H. BP.RRYMAN, A

scheme for supporting automatic data migration on multicomputers, in

Proceedings of the Fifth Distributed Memory Computing Conference,

Charleston S.C., 1990.

A. ROG_Rs AND K. PINGAL*, Process decomposition through locality

of reference, in Conference on Programming Language Design and Im-

plementation, ACM SIGPLAN, June 1989.

[20]

36

E

.=
m

[21]

[22]

[23]

[24]

[25]

[28]

[27]

[28]

[29]

M. ROSING, R. SCHNABEL, AND R. WEAVER, Expressing comple_

parallel algorihtms in dino, in Proceedings of the 4th Conference on

ttypercubes, Conurrent Computers and Applications, 1989, pp. 553-
560.

J. SALTZ AND M. CHErt, Automated problem mapping: the crystal

runtime system, in The Proceedings of the Hypercube Microprocessors
Conf., Knoxville, TN, September 1986.

J. SALTZ, K. CROWLEY, R. MIRCHANDANEY, AND H. BERRYMAN,

Run-time scheduling and ezecution of loops on message passing ma-

chines, Journal of Parallel and Distributed Computing, 8 (1990),
pp. 303-312.

3. SALTZ, S. PIgTITON, H. BERRYMAN, AND A. RIFKIN, Performance

effects of irregular communications patterns on massively parallel mul-

tiprocessors, Report 91-12, ICASE, 1991.

P. S. TSENQ, A Parallelizing Compiler for Distributed Memory Parallel

Computers, PhD thesis, Carnegie Mellon University, Pittsburgh, PA,

May 1989.

P. VENKATKRISHNAN, J. SALTZ, AND D. MAVRIPLIS, Parallelprecon-

ditioned iterative methods for the compressible navier stokes equations,

in 12th Intermational Conference on Numerical Methods in Fluid Dy-

namics, Oxford, England, July 1990.

D. L. WHITAKER AND B. GROSSMAN, Two-dimensional euler compu-

tations on a triangular mesh using an upwind, finite-volume scheme,

in Proceedings AIAA 27th Aerospace Sciences Meeting, Reno, Nevada,

January 1989.

D. L. WHITAKER, D. C. SLACK, AND R. W. WALTERS, Solutionalgo-

rithmsfor the two-dimensional euler equations on unstructured meshes,

in Proceedings AIAA 28th Aerospace Sciences Meeting, Reno, Nevada,

January 1990.

R. D. WILLIAMS AND R. GLOWINSKI, Distributed irregular finite ele-

ments, Tech. Rep. C3P 715, Caltech Concurrent Computation Program,

February 1989.

37

[30] H. ZIMA, H. BAST, AND M. GERNDT, Superb: A tool for semi-

automatic MIMD/SIMD pa_Ilelization, ParaJlel Computing, 6 (1988),
pp. 1-18.

38

Report Documentation Page
Nal_r_ll Aefc_auhCs and
SPace Agrnp_Slfal_n

1. Repo_ No.
NASA CR-187515

ICASE Report No. 91-13
4. Title and Subtitle

2. Government AccessionNo. 3. Recipient'sCatalog No.

5. ReportDate

DISTRIBUTED MEMORY COMPILER DESIGN FOR SPARSE PROBLEMS

7. Author(s)

Janet Wu

Joel Saltz

Harry Berryman

January 1991

6. Performing OrganizationCode

Seema Hiranandani

8. PerformingOrganizationReport No.

91-13

10. Work Unit No.

9. PerformingOrganization Name and Address

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225

12. Sponsoring AgencyName and Address

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

505-90-52-01

11. Contract or Grant No.

NASI-18605

13. Ty_ ofRepo_andPeriodCovered

Contractor Report

14. Sponsoring Agency Code

15. Supplementa_ Notes

Langley Technical Monitor:

Michael F. Card

Submitted to IEEE Transactions

Software Engineering

Final Report
16. Abstract

In this paper we describe and demonstrate a compiler and runtime support

mechanism. The methods presented here are capable of solving a wide range of

sparse and unstructured problems in scientific computing. The compiler takes as

input a Fortran 77 program enhanced with specifications for distributing data, and

the compiler outputs a message passing program that runs on a distributed memory

computer. The runtime support for this compiler is a library of primitives designed

to efficiently support irregular patterns of distributed array accesses and irreg-

ular distributed array partitions. We present a variety of Intel iPSC/860 per-

formance results obtained through the use of this compiler.

17. Key Words(SuggestedbyAuthor(s))

distributed memory, unstructured grids,

sparse, compilers

19. SecuriWCla_if. {of thisreport)
Unclassified

18. DistributionStatement

60 - Computer Operations and Hardware

61 - Computer Programming and Software

Unclassified - Unlimited

i20. SecuriW Cla_if. (of thispage) 21. No. of pa_s
Unclassified 40

22. Price

A0 3

NASA FORM 1626 OCT86
NASA-Langley, 1991

