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While conventional computers must be programmed in & logical fashion by a person who
thoroughly understands the task to be performed, the motivation behind neural networks is to
develop machines which can train themselves to perform tasks, using available information about
desired system behavior and learning from experience.

Goals of the project begun under the Faculty Summer Fellowship program were threefold:

1} toevaluate various neural net methods and generate computer software to implement those
deemed most promising on a personal computer equipped with Matlab

2} to evaluate methods currently in the professional literature for system control using neural
nets to choose those most applicable to control of flexible structures

3) toapply the control strategies chosen in 2) to a computer simulation of a test article, the
Control Structures Interaction Suitcase Demonstrator, which is 3 portable system
consisting of 8 small flexible beam driven by & torque motor and mounted on springs tuned to
the first flexible mode of the beam.

At the present time, the first two goals have been met, and work on the third is on-going. Results of
each will be discussed below.

Using many references, the currently available methods for training neural nets were examined
and evaluated for ease of implementation, reliability, computer requirements, and applicability to
control systems. Some methods were rejected becouse of the vast numbers of neurons required to
work practical problems {e.g., Bidirectional Associative Memor ies); some, for example Boltzmann
machines, because of the very large amount of computer time required to train the nets; and some,
like Hopfield nets, for the extreme difficulty of implementation (in order to utilize a Hopfield net, a
Lyapunov function must be generated for system “goodriess” and appropr iate weight adjustments
based on that Lyapunov function must be determined- -a procedure requiring vast “mathematical
exper-tise and ingenuity” [ 11). While there is currently no optimum method for neural nets, after
careful evaluation, back -propagation was chosen as the most practical choice for implementation.
This method chenges network weights proportional to the partial derivative of the system error
function with respect to each weight. This approximates a gradient descent procedure, and therefore
assures that the system will reach an energy minimum, Difficulties with back - propagation include
possible network paralysis if neurons saturate, the possibility of reeching a local rather thana
alobal minimum, and long training times. However, the method is very easy to implement
algorithmicaily, and is used in the major ity of the controls applications appearing in the current
Jiterature. Methods have been proposed to fix difficulties with back - propagation, but each has its
own assoclated problems ( for example, Cauchy training eliminates the problem of convergence {0
local minima, but has a qreater instance of network paralysis then systems using beck - propagation,
and a training time one hundred times that of the already lengthy back - propagation training). Thus
back - propagation was chosen as the neural net training method to be impiemented.

Using Matlab, software was generated implementing a back - propagation trained neural net on an
{BM compatible persanal computer. For agiven problem, number of layers and number of neurons
must be "empirically determined,” [ 2] so neural nets of several sizes and configurations were
compared. Some authors have hypothesized that fewer neurons may be used for a given problem if
those neurons are arranged in more leyers [ 1]. in the trials conducted, no network was found which
failed to converge eventually, o no evidence was obtained to support or disprove this hypothesis.
However , empir icat evidence does suggest that given that both will eventually converge to a solution,
aneural net with fewer layers will converge more quickly. Figure 1, showing the error measure
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(total sum squere error) versus number of training epochs for a two-layer neural net { with one
nonlinear hidden layer and a linear output layer) and a three-layer net (with two nonlinear hidden
layers and a linear output layer), is typical of the results generated.

In the second phase of the project, recent publications in the professional literature regarding
applications of neural nets to control problems were examined and compared. Methods currently
available can be divided into roughly three categories:

a) methods in which a neural net is trained to emulate a currently existing controller, whether
human or computerized (such as [3]);

b) methods in which nets generate some state or function which is then used in a standard
controller design ( for example, [4] in which the neural net is used to generate estimates of
unknown nonlinear system parameters, which are then used in a standard adaptive
controller);

c) methods in which the neural net generates a controller for an unknown system without
human intervention [2].

Of the three types, the third is by far the most sophisticated, as it assumes no mathematical
know ledge of the system to be controlled, and does not require a human to be able to control the
system or to generate a controller which successfully does so. This would mean that nonlinear
systems which could be modeled poorly, if at ail, theoretically could still be successfully controlled
by a trained neural net. it wes decided that such a method would be the best candidate for controlling
flexible space structures.

The particular method choosen for application to the test system was that in [2]. This is atime
back -propagation system. First, a neural net must be trained to emulate the behavior of the
unknown system using standard back - propagation methods. This trained emulator is then used to
train the controller as follows:

1) Atime trejectory for system behavior is generated, with the untrained controller
generating essentially random inputs to the emulator.

2) The final emulator output is compared to the desired output.

3) Theerror is propegeted back through the emulator to generate an equivalent controller
error, which is used to train the controller.

4) The process is continued, propagating back through each time step of the trajectory until the
controller has been trained for all time steps.

S) Steps 1-4 are repested for many trajector fes.

Currently on-going is work applying the method in [2] to the test article. The neural net chasen
for use had one hidden nonlinear layer containing 35 neurons and a linear output 1ayer of 10
neurons to scale the outputs. One problem in implementing the method was difficulty in obtaining
accurate training data for the CSI Demonstrator ; the final date was generated by Mark Whorton and
John Sharkee of NASA, using a Matlab simulation of the system.

Another difficulty encountered was i1l-conditioning of the data. Although it was mentioned
nowhere in the literature, it was discovered that if inputs to the neural net vary by several orders
of magnitude, as is the case of the Demonstrator, the nonlinear neuron layer soon saturates, so that
training of that layer comes to a virtual standstiil. This causes the nonlinear layer to send the same
input to the linear layer regardless of the system input, causing the linear weights to grow without
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bound as they try to adjust to give varying outputs a constant input. This causes the error measure
to grow without bound. This problem was solved by scaling the trajectories of very large system
states to bring them down to the level of the others and prevent layer saturation.

It was also discovered that the 8088 PC being used for software development was too slow to be
practical in training a neural net to emulate the test article; currently the software is being run on
an 80386 machine with 10,000 training patterns comprising a single epoch (8 single epach tskes
approximately 45 minutes on the 80386 and over 24 hours on the 8088). Asyet, the emulator has
not converged to zero error, but to a 7SS of approximately 4. Figure 2, of TSS versus epoch
number . shows this convergence. When state traiectories for both the system and the emulator are
compared, results for different states range from that in state X where the emutator does not
adequately follow the system response ( Figure 3) to state Xz (Figure 4) in which the two are
practically identical. Possible reasons for this include an inadequate training set (i.e.,one which
does not fully span the state space) and a neural net with an inadequate number of neurons and/or
layers. Work to perfect the emulator is continuing. At such time as the emulator adequately
predicts all system states, the controtler will be trained as part of an on-going effort during the
coming academic year. Once the controller is trained, its performance may be compared to the
currently existing controllers for the system in terms of computation requirements, robustness,
etc. Other neural net strategies, such as using the neural net as an estimator for system parameters
needed by standard adaptive controllers, could also be addressed at some future time.

While neural nets have yet to be fully evaluated &s a tool for control of nonlinear or poorly
modeled systems, they show great potential in this area, and deserve further consideration and study.
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