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Abstract

Previous theoretical work on the boundary layer receptivity problem has utilized
large Reynolds number asymptotic theories, thus being limited to a narrow part of
the frequency - Reynolds number domain. We present an alternative approach for
the prediction of localized instability generation which has a general applicability,
and also accounts for finite Reynolds number effects. This approach is illustrated
for the case of Tollmien-Schlichting wave generation in a Blasius boundary layer due
to the interaction of a frec-stream acoustic wave with a region of short-scale varia-
tion in the surface boundary condition. The specific types of wall inhomogeneities
examined are: regions of short scale variations in wall suction, wall admittance and
wall geometry (roughness). Extensive comparison is made between the results of the
finite Reynolds number approach and previous asymptotic predictions. This com-
parison also suggests an alternative way of utilizing the latter at Reynolds numbers
of interest in practice.

1. INTRODUCTION

Laminar-turbulent transition is a result of instability of the laminar state. At high
Reynolds numbers, suitable perturbations to this state are amplified, eventually
leading to the stable (in-the-large) turbulent state. It is important to note that the
introduction of these “suitable” perturbations (i.c., instabilities) into the boundary
layer flow is a necessary prerequisite for transition to occur. The process by which
the boundary layer internalizes the external disturbances in the form of instability
waves is known as the boundary layer receptivity. Once generated, these instabil-
ity waves undergo linear amplification and nonlinear interactions before the flow
becomes fully turbulent.

Therefore, receptivity signifies the genesis of boundary layer transition. Goldstein!!2,
RubanB! and Goldstein et alf!l utilized high Reynolds number asymptotic methods
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to elucidate the basic mechanisms responsible for making the boundary layer “recep-
tive” to external disturbances. This pioncering work provided much of the impetus
for further work in receptivity during the past few years. In the remainder of this
section, we first briefly describe the general features of Goldstein’s receptivity the-
ory. Following this, we summarize the receptivity research that followed Goldstein’s
work, and present the problem addressed in this paper.

The classical linear stability theory is based upon the disparity between the stream-
wise length-scales of the instability motion and the mean boundary layer. The
instability waves correspond to the short-scale, nearly periodic eigensolutions of the
slowly developing boundary layer which have a small growth rate for parameter val-
ues between the neutral boundaries. The obvious implication of the locally periodic
nature of the instability wave is that the wave is decoupled from any other spatially
periodic motion with a different wavelength.

It is obvious that in order to generate an instability wave of a particular frequency,
one would require a forcing which has not only the same frequency, but also a
spatial scale that matches the instability wavelength. However, free-stream distur-
bances are governed by the inviscid dynamics outside the boundary layer, while the
instability waves represent free oscillations (or eigenmodes) of the flow within the
boundary layer. Hence, the wavelengths of these two types of disturbances are, in
general, quite different. In fact, in low-speed flows, the free-stream disturbances
(which can either be acoustic waves or convected vorticity disturbances, i.e., free-
stream turbulence) have wavelengths which are much longer than the instability
wavelengths. The frec-stream unsteadiness can then be “tuned” to the instabil-
ity length-scale only through an interaction with the spatial spectrum of the mean
boundary layer.

Since a slowly developing (or “quasi-parallel”) mean boundary layer does not have
the short length-scales required for the tuning process, receptivity will usually oc-
cur only in regions of non-parallel mean flow. Goldstein showed that there are
two classes of regions where the mean flow hecomes non-parallel. The first class of
non-parallel mean flow regions corresponds to the region close to the leading edge,
where the boundary layer thickness is changing rapidly. The second category, which
is much more diverse, involves regious farther downstream of the leading edge. Here
the mean-flow becomes non-parallel due to cither a short-scale variation in the sur-
face boundary condition or an adverse pressure gradient provoking a separation of
the mean boundary layer. The short-scale variations in surface boundary condition
correspond to changes in surface geometry (wall roughness), wall suction/blowing
velocity or wall temperature. The latter two cases are especially relevant to laminar
flow control (LFC) where suction and heating (water) or cooling (air) are utilized
for stabilizing the boundary layer. The variations in boundary conditions can be
either local (isolated roughness elements, well-scparated suction/heating strips) or
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distributed over a large number of instability wavelengths (distributed roughness,
surface waviness, closcly spaced suction/heating strips); however, the role of the
short-scale variation is the same in both cases, viz., to provide the tuning required
for producing the appropriate forcing.

In comparing the two classes of receptivity regions, it is important to note that
instability waves generated near the leading edge undergo an exponential decay
upstream of the lower branch neutral stability point, even a weak receptivity mech-
anism close to the neutral point is likely to be more important than a much stronger
receptivity mechanism near the leading edgel®l. In practice, the exponential decay
hetween the leading edge and the neutral stability point is decreased somewhat due
to the presence of an adverse pressure gradicnt region close to the leading edge.
However, in this paper we concentrate on the second class of receptivity regions.

Goldstein/?! and Ruban/®! presented analytical solutions for the specific case of recep-
tivity due to the interaction of a free-stream acoustic wave with a small but sudden
variation in the surface geometry. Their analysis was limited to two-dimensional
flows in terms of both the mean boundary layer as well as the instability wave
generated due to the interaction. However, the asymptotic framework of Gold-
stein and Ruban was later extended by other investigators to a variety of other
problems in the second class of non-parallel mean flow regions. Bodonyi et all®]
considered the case where the mean flow perturbation due to the wall hump is not
small enough to permit linearization with respect to the oncoming boundary layer.
Choudharil® analyzed receptivity mechanisms arising in LFC applications which
employ suction through a porous surface as a means of stabilizing the boundary
layer. He showed that in addition to the rcceptivity caused by mean flow gradients
due to variations in the wall suction distribution, the short-scale variation in the
admittance of the porous surface directly scatters energy from the acoustic wave to
the instability wave. The latter mechanism is operational even in the absence of a
mean flow adjustment. Choudhari and Kerschen(? studied the three-dimensional
interaction of a free-stream acoustic wave with a wall inhomogeneity of above types
which has short-scale variations in both the streamwise and spanwise directions.
Kerschen8! and Choudhari and Kerschenl®! investigated the generation of instabil-
ity waves near a wall hump due to a convected vorticity disturbance in the free
stream. Finally, localized gencration of T-S waves in two and three-dimensional
supersoni¢ boundary layers was analyzed by the present authors!% in the context
of two and three-dimensional supersonic boundary layers.

All previous investigations discussed above utilized the asymptotic (triple deck)
framework. Although useful in their own right, these predictions were based on
a single-term asymptotic expansion. However, the critical receptivity region cor-
responds to locations upstream of or close to the lower branch of the neutral sta-
bility curve, i.c., Reynolds numbers smaller than those in the main part of the
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unstable regime, where the quantitative accuracy of the asymptotic predictions is
questionable. In this paper, we present an alternative approach for the prediction
of receptivity in localized regions which would yield relatively accurate results in
the Reynolds-number-range of interest in practice. For simplicity, attention is re-
stricted to the case of incompressible flows over two-dinensional airfoils. However,
the present approach also provides a viable framework for the prediction of localized
receptivity in such complex flows as compressible and three-dimensional boundary
layers. In section 2, we formulate the problem for the local interaction of a free-
stream acoustic wave with an arbitrary wall inhomogeneity. It is shown that the
local receptivity problem reduces to an inhomogeneous Orr-Sommerfeld (henceforth
O-S) problem in the Fourier transform space, and the amplitude of the generated
instability wave can be determined as the residue of the pole corresponding to
that particular eigenvalue of the O-S problem which represents the wavenumber
of the Tollmien-Schlichting (T-S) instability wave. In section 3, we present results
which show the variation of the receptivity cocfficient in the frequency parameter -
Reynolds number space. Detailed comparison of these results with the asymptotic
predictions is also presented in Section 3. Although the discussion in this paper
pertains only to localized inhomogeneitics, in section 4, we also point out the pos-
sible application of this analysis to distributed regions of short-scale variations. In
addition to accounting for the finite Reynolds number effects, the present approach
has other advantages over the asymptotic theory, and these are discussed in Section

5.

2. ANALYSIS

This section provides a summary of the finite Reynolds number approach. In order
to assess the finite Reynolds number effects on localized receptivity mechanisms
in the simplest possible setting, we focus attention on a two-dimensional, incom-
pressible flow past a semi-infinite, flat-plate airfoil. However, the present approach
can easily be applied to other types of geometries as well. The free-stream speed,
density and kinematic viscosity corresponding to the oncoming flow are denoted by
U, p* and v*, respectively. The unsteady free-stream disturbance is assumed to
be a plane, harmonic acoustic wave propagating parallel to the plate in the down-
stream direction. Since the acoustic wavelength is infinite in the zero Mach number
limit, the free-stream flow consists of a uniform flow with mean velocity Uj, plus
a harmonic perturbation of amplitude ), and frequency w*. The uniform velocity
fluctuation u*, is also accompanied by a uniform, time harmonic pressure gradi-
ent with an amplitude iw*u®,. We assume the nondimensional amplitude of the
free-stream fluctuation to be sufficiently small (e5s = u} . /U% << 1) so that the
unsteady motion can be treated as a small perturbation of the local mean flow.
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The receptivity is assumed to occur due to a localized wall inhomogeneity involving
a variation in onc or more of the surface houndary conditions. Some remarks
concerning the application of results for the localized case to an extended region
of receptivity are presented in Section 4. We assume that the distribution of the
normal component of the steady or unsteady velocity at the wall, or the wall height
distribution has a short-scale variation with respect to the streamwise coordinate
in a local region which is a distance €* from the leading edge (Figs. la-1c and Fig,.
2). While the nonzero mean normal velocity represents the wall suction/blowing
distribution, the short-scale distribution of the unsteady normal velocity at the
wall has been introduced in order to model the effects of rapidly varying surface
admittance in an incompressible flow.

The admittance of a surface is defined as the ratio, at the surface, of the unsteady
normal velocity to the fluctuating componcut of pressure. Since the absolute value
of the pressure becomes irrelevant in the incompressible limit, we specify the dis-
tribution of the unsteady normal velocity at the wall instead of directly imposing
a short-scale distribution of the wall admittance. Even in the compressible case
analyzed by Choudharil® using asymptotic theory, the mathematical statement of
the inhomogeneous boundary condition reduces to the specification of the unsteady
normal velocity at the wall. Therefore, the present treatment of the wall admit-
tance variation poses little difficulty in the comparison of present results with the
asymptotic predictions. It is worth noting that in addition to modelling the wall ad-
mittance variation, the unsteady mass flux at the wall may also represent unsteady
disturbances within the suction system, especially the designs with large suction
slots.

The maximum amplitudes of the local variations in different types of wall bound-
ary conditions (as described above) are denoted by the nondimensional parameters
€D , where the index j varies from one to three depending on the type of wall in-
homogeneity. Specifically, the parameter e corresponds to the normalized wall
suction/blowing velocity, VX /U% , while 2 denotes v} [ul,, the unsteady vertical
velocity at the porous surface normalized by the free-stream disturbance velocity.
The parameter 2 can be related to the amplitude of the wall-adniittance varia-
tion, Byp*US,, where 37 denotes the wall admittance as defined in the preceding
paragraph. Finally, ) denotes the roughness height, H; /6*, where é* is the
displacement thickuess of the Blasius boundary layer at the location of the wall
inhomogencity (i.c., the mean flow in the absence of any localized variations). All
three paramecters e ), arc assumed to be small enough to allow linear analyses of the
different mechanisms and superposition of the results. While the assumed orders
of magnitudes for the wall-suction and wall-adinittance are consistent with typical
parameter values in LFC systems, the roughness heights can vary over a wide range

in practice. The assumption of small roughness height allows us to compare results



with the asymptotic predictions of Goldsteinl?l.

Since the roughness element and the variation in wall suction are assumed to pro-
duce only a small perturbation to the Blasius boundary layer the stability proper-
ties of the perturbed mean flow (i.e., the mean flow in presence of the perturbation
due to the wall suction or wall geometry variation) are identical to those of the
Blasius boundary layer, to the leading order. We assume the Reynolds number
Rse = UX.6*/v*, based upon the local displacement thickness of the unperturbed
mean boundary layer, to be large enough such that the stability of the unperturbed
mean flow at the location of the wall inhomogencity is governed by the classical,
quasi-parallel stability theory. Strictly speaking, the large Reynolds number as-
sumption is inherent within the boundary layer approximation for the mean flow.
In practice, however, the quasi-parallel stability theory has been found to be rea-
sonable only for Reynolds numbers much larger than those at which the mean flow
is accurately described by the boundary layer theory. For the Blasius boundary
layer, this constraint (approximately) corresponds to Reynolds numbers larger than
the minimum critical Reynolds number of 520.

We further assume that the length-scale of the local variations, L*, is of the same
order as the local T-S wavelength. This provides the necessary ingredient for the
wavelength reduction from the free-stream disturbance to the instability wave. In
this paper we restrict attention to a localized region of receptivity. However, remarks
concerning the extension of these results to distributed regions of receptivity will
also be presented in Section 4.

Since the instability wavelength is much shorter than the length-scale of the mean
boundary layer (i.e., ¢ = L*/¢* << 1), we can utilize the method of matched
asymptotic expansions to simplify the problem. Thus, we match a local approxima-
tion valid in the region of receptivity to an outer (or “global”) solution valid farther
downstream. The governing equations in the outer region are homogeneous; hence
the far downstream solution for the short-scale, unsteady motion produced by the
interaction of the free-stream disturbance with the wall inhomogencity corresponds
to a superposition of the discrete and continmous spectrum type cigenmodes in a
slowly developing boundary layer. The amplitudes of these cigensolutions are de-
termined by a matching with the solution in the region of receptivity which is the
focus of this paper.

We introduce a Cartesian coordinate system {«*, y*} centered at an arbitrary point
within this localized region (Fig. 2). Since we are considering the two-dimensional
case, 1t scems appropriaie to simplify the formulation by having the streamfunction
as the only dependent variable. The streamfunction  is normalized by U 6%,
and we define the local coordinates in the strcamwise and transverse directions as
X =z*/6andY =y*/ 6%, respectively. Although for very large Reynolds numbers,



the instability wavelength L* is of the order of several displacement thicknesses,
the choice of §* as the local length-scale is motivated by convenience. The slow
streamwise coordinate representing the growth of the Blasius boundary layer is
defined as x = x*/(*. The nondimensional time ¢ and frequency w are assumed to
Lave been normalized by §*/U% and its inverse, respectively.

The streamfunction within the local region, ¢, satisfies the two-dimensional
Navier-Stokes equation,

IV 9yl gV gpld) o9 1

o ' oY @x _ ov’ 0X Re

vipt) =0 | (2.1)

where j=1 corresponds to the case of receptivity due to wall suction variation,
j=2 to the wall admittance problem while j=3 corresponds to the wall hump case.
Streamfunctions (") and ¥ satisfy the inhomogeneous wall boundary conditions

a‘p(l)(}{, 0) -

EXe L FV(X), (2.20)

and
HA(X,0)
0X -
corresponding to specified distributions of the mean and unsteady components,
respectively, of the normal velocity at the wall. In addition, 1) and ¥ must
satisfy the no-slip boundary condition

ey €D FO(X) e7t (2.2b)

apY)(X,0)

=0,7=12. 2.2
BTG 0,5=1, (2.2¢,d)

On the other hand, %) satisfies the impermeability as well as the no-slip boundary
condition at the deformed surface location,

oy : .

p® = %—- =0 at Y, =ePFI(X), (2.3a,b)
The functions F)(X) (5 = 1 — 3) denoting the normalized spatial distributions
of the wall inhomogeneities are assumed to be arbitrary throughout the analysis.
Finally, we require that all flow quantities approach the respective free-stream values
far away from the wall. This implies

P 5 (14 €57 Y as ¥V o o0 2.4
!

One may observe that four small parameters appear in the problems defined by
equations (2.1)-(2.4), namely, R;., e, €5, and ¢ If one is interested in only a
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narrow range of the frequency parameter w, say in vicinity of one of the two neu-
tral branches, then the two parameters R;.l aund € are related to each other for
sufficiently large values of the Reynolds number. Similarly, there are restrictions
on the wall inhomogenecity amplitudes ¢ in terms of Reynolds number scaling in
order that the disturbance produced due to the wall inhomogeneity is a linear per-
turbation of the base flow. However, in the interest of having a general approach
for localized receptivity problems, we treat these parameters as independent of each
other. It will be seen from the following analysis that treating these parameters as
independent docs not affect the amplitude of the generated instability wave.

Hence, we expand the streamfunction within the local region as

P = Ty(0,Y) + epspo(e, V)™ + DX, Y)

+ereD9(X, Y)e ™ 4+ O(e2,,eD% e, R (2.5)

where the upper and lower case variables correspond to the steady and unsteady
terms, respectively. The subscript 0 denotes the base flow quantities, i.e., flow within
the local region in the absence of any short-scale variation, while the subscript 1
represents the short-scale perturbations to this base flow duc to the local wall in-
homogeneity. Thus, ¥¢(r,Y) corresponds to the Blasius strcamfunction, while
the term involving ¢ (x,Y") represents the forced signature of the unsteady free-
stream disturbance within the Blasius boundary layer. The quantities lZl['il)(X, Y)
and \11(3)( X, Y) correspoud to the short-scale mean flow perturbations due to local

variations in the wall-suction and wall-height distributions, respectively. Similarly,
the term involving ¢, (4 )( X,Y') represents the short-scale corrections to the unsteady
signature 1¥(2,Y") due to the local inhomogeneity. Specifically, (1) and 1,11(3) de-
note the leading order corrections due to interaction of the basic unsteady solution,
o, with the short-scale mean-flow perturbations corresponding to \IJ“) and \11(3)
respectively. On the other hand, the motion corresponding to ( ) is induced di-
rectly due to the short-scale variation in the unsteady wall-flux. Thus, in each case,
Y1 denotes the leading order solution for the short-scale, unstecady motion which
contains both temporal as well as spatial scales matching those of the instability

wave,

The unsteady perturbation ¥y to the Blasius houndary layer due to a small ampli-
tude, time harmonic perturbation to the uniform free-strcam was investigated by
Lighthill'?]) and later by Ackerberg and Phillips!*4 and Goldstein['l. Ackerberg and
Phillips analyzed the unsteady motion in the “leading edge region™ corresponding
to distances of the order of a convective wavelength downstream of the leading edge,

6
Le., 71 = w*(* + 2*)/U% = O(1). They showed that for ¢ = (’('j;—'[ Y << 1,



9

the unsteady motion in this region is governed by the linearized unsteady bound-
ary layer equations. Because of the parabolic nature of these equations, the far
downstream limit (&; >> 1) of 4 corresponds to a particular solution g, which
exhibits a two layer structure in the transverse direction. Ackerberg and Phillips

developed a composite expansion for 1y, which is valid to O(r) )“3/ 2 in both these
layers.
Y
"/'Op = / Uop dY y (26(1)
0

where

) 1 e o

ugp =1—¢ St nEpn)

i iM% ;
_ Fp(O)e 7 (g-a + é%az +5)0t + O(%) | (2.6)
Here o and 7 denote the Stokes layer coordinate JwRg Y7, and the Blasius variable
(8*/Reg- [€*) Y, respectively. Thus, to the leading order, 3, is independent of
the streamwise coordinate as well as the mean flow, being identical to the Stokes
shear wave solution for a purely oscillating flow over an infinite flat plate. Ackerberg
and Phillips solved the linearized unsteady houudary layer equations numerically to
demonstrate that the unsteady solution approaches the far downstream behaviour
through damped oscillations corresponding to the eigensolutions of the linearized
unsteady boundary layer equations first found by Lam and Rott!'3],

o572 372
zs/zd.]/

Goldstein[! analyzed the unsteady motion in the region farther downstream (z; =
O(¢7?)), where the unsteady motion satisfies the Orr-Sommerfeld equation with
slowly varying coefficients. This is also the region of interest in this paper since we
assumed the wall inhomogeneity to be located in a region where the quasi-parallel
stability theory is valid. Goldstein showed that the particular solution (2.6a) is also
valid in the Orr-Sommerfeld region. However, the Lam and Rott cigensolutions now
match onto the discrete spectrum of the Orr-Sommerfeld equation, the first mode
from which corresponds to the Tollimien-Schlichting (T-S) instability wave. This
is precisely how an instability wave is generated by the leading edge receptivity
mechanism alluded to in the introduction. Upstream of the location correponding
to the lower branch neutral stability point, where the instability wave decays expo-
nentially, the principal contribution to ¥ is still provided by the particular solution
(2.6a). In contrast, if the wall inhomogencity is located far downstream of the lower
branch, the contribution from the instability wave generated close to the leading
cdge may become comparable to that from ig,. Since we are interested in the gen-
cration of the instability wave and not its scattering due to a wall inhomogeneity,
we ignore any contribution to ¥y(x,Y) from eigensolutions generated upstrecam of
the wall inhomogeneity.
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Noting that the base flow quantities ¥y and ¥y, depend only upon the global
coordinate r in the streamwise direction, we can expand them both as Taylor series

in x about the origin to obtain
Po(z,Y) = $o (V) 4§ (V) 2 + O(2?), (2.7a)

and

Yop(2,Y) = J’u,;(Y) + ‘J’opr(y) z-- O, (2.7b)

where subscript r represents the partial derivative with respect to = and the su-
perscript ~ denotes the profile of a function at the origin. Since 2 = O(¢;) within
the local region, Eqs. (2.7a,b) imply that the streamwise variations of ¥¢(z,Y")
and ¥o(z,Y) in the local region can be neglected to O(er). Thus, both the steady
and unsteady base flow solutions within the local region correspond to a parallel
shear flow given by their respective profiles at the origin. This leads to a consider-
able simplification in the solution procedure for the steady and unsteady short-scale
perturbations lIlgj) and 'z[)ij ), j = 1—3. The coefficient functions in the governing
equations for these local perturbations arc now independent of any streamwise coor-
dinate, thus allowing these equations to be reduced to ordinary differential equations
after taking a Fourier transform. The rest of this section essentially considers the
solution for the short-scale perturbations \IIEJ )(X, Y) and 1/)5’ )(X, Y).

First consider the mean flow perturbations, \I'E” (X,Y) and ‘I’ES) (X,Y), due to the
local variations in wall suction velocity and wall height, respectively. Note that
the wall admittance variation is manifested only through the unsteady boundary
condition (2.2b). Therefore, to the leading order, there is no perturbation to the
mean flow for the j = 2 case, and \I/ﬁ"”(_\’, Y) = 0. Substituting the perturbation
expansion (2.5) into (2.1)-(2.4), collecting terms of O(e(uf)), and transforming the
resultant equation using the following definition for the Fourier transform,

oo

g(a) = j,_ [ saxux (2.8)

- Q

one finds that \Ilgl) (Y) and \_I-lga)(Y) satisfy the time independent form of the Orr-
Sommerfeld (O-S) equation in the wavenuuber space

WL d? 2\, N UL 1 & 22“ 9
ZG\I‘O(;[}/—,? — )‘I’l — za\I’U \I’l bl R—bo(;ﬁ;i — ) \Il] = 0 , (_,9)
subject to the inhomogeneous set of wall boundary conditions

¥"(0) = ~FY(a)fia, ¥{V'(0)=0, (2.10a,b)
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and
‘11(13)(0) =0 : \P(l«'l)l(()) — _\i)g(()) F(Zl)(n.) , (211a,b)

where the primes denote derivatives with respect to Y and the boundary condition
for \I'?) has been shifted to ¥ = 0 using a Taylor expansion in Y. Both \I:ﬁ” and

(I-Jgs) satisfy homogeneous boundary conditions far awy from the wall,

¥ =8 =0, j=1,3, asY - oo. (2.12a, b)

Although the term involving d“\I‘(lj) /dY™! in (2.9) is nominally O(Rg'), it has
been retained in order to satisfy the no-slip boundary condition at the wall. This
reflects the singular nature of the problem. Equation (2.9) contains additional
terms which are uniformly O(R;.l) and, therefore, cannot be justified on a ratio-
nal basis. A strictly rational perturbation scheme for the short-scale perturbations
‘Ilg’ ), j = 1,3 corresponds to the well-known triple deck theory. However, it involves
different expansions in three separate regions in the direction normal to the wall
(Stewartson('). In contrast, Eq. (2.9) describes the motion in the entire local re-
gion and also accounts for the finite Reynolds number effects more accurately than
just a single term triple deck expansion. N

The time independent Orr-Sommerfeld equation along with boundary conditions
(2.11a,b) and (2.12a,b) also describes the perturbation to a parallel shear flow over
an infinite flat plate due to small amplitude, sinusoidal variations in wall height. Ap-
proximate, analytical solutions to this problem were first obtained by Benjamin!!3],
He also treated the case of a flow over an isolated bump as a superposition of
the wavy wall solutions. Subsequently, Lessen and Gangwanil'®l and Aldoss and
Reshotkol!'”} integrated the Orr-Sommerfeld equation numerically to calculate the
stationary wavy-wall solutions. We also find the solutions for (1}(11) and \ilgg') numer-
ically by using a spectral collocation scheme on a staggered grid which has been
described in detail by Macaraeg et all'®l, Note that the total mean flow perturbation
can be obtained by computing the solution for all Fourier wavenumbers and then
inverting the Fourier transform. However, the focus of this work is to determine the
amplitude of the generated instability wave. It will be scen that with this limited
objective, it is sufficient to solve (2.9)-(2.12) for a single Fourier mode corresponding
to the (complex) wavenumber of the instability wave in the local region.

Having obtained the short-scale mean flow perturbation, we now analyze the short-
scale correction, :z»}’, to the unsteady base flow solution. Substituting the pertur-
bation expansion (2.5) into (2.1), collecting terms of O(efﬂ,)qs), and introducing
the Fourier transform (2.8) leads to the O-S equation with a source term which is
nonzero for j =1 and j =3

_(12
dY?

d?
dY?

—iw( o — al )P +iaby( iz — Pl — el



12

2 2

2y ) g 4 2§ g () .
—Rb“ .d},rz - ) 1/’] - —Z(}{l{iup( d}rz —Q )lI}l - lthplel } H (213)

As seen from (2.13), the forcing term on the right hand side arises due to the inter-

action of the short-scale mean flow perturbation with the unsteady hase flow term

. Since the wall admittance variation does not cause any mean flow perturbation,

the source term is identically zero for the j = 2 case.

1 &2

Utilizing the perturbation expansion (2.5) along with (2.2)-(2.3), one finds that tz’il)
satisfies the homogeneous boundary conditions at the wall

0y =40y =0, (2.14a,b)

(2 . . . . . .
Although z,!»ﬁ ) satisfies a homogeneous governing equation, it has to satisfy the in-
homogencous boundary condition corresponding to the unsteady mass-flux through
the porous surface

#2(0) = FO(a)/ia (2.15a)
in addition to the no-slip boundary condition
H2'0)=0. (2.15b)
On the other hand, shifting the boundary conditions for d}fs) to Y = 0 leads to
P0) =0, ¢'(0) = i (0) FP (k) (2.164, b)

thus implying that 1[)53) satisfies an inhomogencous boundary condition as well as
the inhomogeneous differential equation. The inhomogeneous boundary condition
(2.16b) can be viewed as arising due to the adjustment of the base unsteady solution
Yo to the locally deformed wall geometry. Finally, the streamfunctions :ZJ? ), j =
1 — 3 satisfy the homogencous boundary conditions far away from the wall,

P =g =0 j=1-3, as ¥ =00 (2.17a, b)

Thus, as pointed out by Reshotkol'?], the receptivity problem in each case reduces
to an inhomogenecous boundary valuc problem wher: the inhomogeneity is char-
acteristic of the particular receptivity mechanism. riminalel?’l and Tam[?! also
developed receptivity theories based on the O-S equ: tion subject to forcing; how-
ever, this forcing amounted simply to an inhomogen-ous boundary condition cor-
responding to the free-stream disturbance under consideration and did not involve
any short-scale structure, a necessary ingredient for receptivity as discussed in the
introduction. On the other hand, the present finite Reynolds number approach is
simnilar in spirit to the large Reynolds munber asymptotic approach of Goldstein(?
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and Rubanll. One may, in fact, view the present approach as recasting Goldstein
and Ruban’s triple-deck formulation in terms of the more familiar Orr-Sommerfeld
framework.

The solution for 1/){’ Vin the physical space is given by the inverse Fourier integral

o0
(X, Y) = \/——lt)z / VP (@, Y)da . (2.18)

2 J
where the integration path in the complex & plane is chosen to satisfy the causality
requirements, i.e., such that the time harmonic solution under consideration here
corresponds to the time-asymptotic limit of the corresponding initial value problem.
Since we are only interested in the generated instability wave which propagates
downstream (i.e., X > 0), the integration contour can be closed in the upper half
o plane. Applying the Cauchy’s integral theorem shows that the inverse Fourier
integral corresponds to a sum of contributions from the various singularities of the
integrand in (2.18). These include the pole contributions from the discrete spectrum
and branch cut contributions from the continuous spectrum of the Orr-Sommerfeld
operator. The unsteady motion associated with the generated T-S wave is then
given by the residue contribution corresponding to the pole at the T-S wavenumber
ar_g, the location of which is determined nunerically by solving the O-S eigenvalue

problem. The residue contribution is related to the Fourier transform solution 1,3? )

by
() . V2 i iar_s X
‘11’1] T—S(‘Xa} ):‘ad‘m‘)_l ST (2'19)
~—da le=ar-s

We evaluated the right hand side of (2.19) by solving 1he inhomogencous O-S prob-
lem using the spectral collocation scheme of Macaraeg et «'8], and computing the

FASIES
derivative in the spectral space, —J3—— via a central difference approximation.

. P 1) * . . .
In experiments, it is customary to mecasure ug’.)_ s, the streamwise velocity fluctu-

ation associated with the T-S wave. Tlerefore, using (2.19) and noting that the
inhomogencous terms in (2.13)-(2.17) are lincar in FV)(a), one can express ug{)_’_'s.
in the following form

uP U X, Yt = C9) ul, E(Y; w, R ) eoT-s ¥ w0 (2.20q)
where _ - '
CW = D FWD(ap_s)AP(w, Rs-) , (2.20b)

and E¢(Y; w, Rs+ ) denotes the instability wave eigenfunction for the physical quan-
tity denoted by ¢q. The eigenfunctions for different flow variables have been normal-
ized in such a way that maximum of E,(Y; w, Rs-), the cigenfunction corresponding



14

to the streamwise velocity fluctuation, is equal to unity. The factor FU)(ar_s) is
the transform of the spatial distribution of the wall inhomogeneity, evaluated at
the complex wavenumber ap_g(w; Re+ ) of the instability wave. In contrast, the
function Ay depends upon the external-disturbance frequency, w, and location of
the wall-inhomogeneity, Rs., but is independent of the local geometry. We refer to
it as the “efficiency function” for the particular comb nation of wall-inhomogeneity
and free-stream disturbance.

The product CY relates the amplitude of the generated instability wave (at the
location corresponding to the origin) to the amplitucc of the incident free-stream
disturbance. Hence, C’,(,j) may be refered to as the “local coupling coeflicient”.
Since we had remarked earlier about the sunilarity of the present method with
the asymptotic approach, it should not come as a surprise that the expression
(2.20b) for the coupling coefficient is identical in forni to the asymptotic results of
Goldstein[®l and Choudharil®l, Equation (2.20b) ecl.oes a generic result which is
valid for all types of linear localized receptivity meclianisms. Essentially, it states
that the effects of local geometry can be decoupled from the coupling coefficient
in a very simple manner. This enables onc to compare different types of localized
mechanisms solely on the basis of their efficiency functions A, irrespective of the
local geometry.

One should note that the values of the coupling coefficient €9, and hence the
cfficiency function AW, are inherently dependent upon the physical quantity chosen
for measuring the instability wave amplitude. However, having found the streamwise
velocity fluctuation produced by the generated T-S wave, the residue contributions
for other flow variables can be determined easily by using the T-S eigenfunction for
this quantity. For instance, if one measures the pressure fluctuation at the wall,

p(#)_g(Y = 0), instead of the maximum streamwise velocity fluctuation, one can

write, ' , -
PRLG(X,Y = 0,8) = C prul Ul e (o= ¥~ (2.21a)

where
Cvl()_l) — f&,’) F(])(Q'T—S) A‘E)])(("'va') , (221b)

where the efliciency function A},j) is related to As,j ) b -
AD = Ey(Y =0; w, Re) 27 (2.21c)

In the following scction we present results illustrating the variation of the efficiency
functions Af,j )(w, Ry ) and Aﬁ,’ )(w, Rs+) with the freqiency parameter and location
of the wall inhomogeneity. In computing these results, we have used an approxi-
mation for the base unsteady solution ¢y, obtained Ly using just the leading order
term in (2.6b). Computations were also performed usiag all three terms from (2.6b),
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and yielded visually indistinguishable results in all cases used for comparison. The
reasons for truncating the expansion for i, and its implications on the theoretical
accuracy of the present approach are discussed in Section 4.

3. RESULTS

First consider the variation in the cfficiency functions with the frequency of the
external disturbance for a fixed location of the wall inhomogeneity. As pointed out
in the previous section, the efficiency function has a different value depending on
the physical quantity used to measure the amplitude of the generated instability
wave. To begin with, let us analyze the behaviour of AS.J), the complex valued
efficiency functions based upon the maximum streamwise velocity fluctuation. In
Figs. (3a-3c) and (4a-4c¢) we have plotted the magnitudes and arguments, respec-
tively of As,j),j = 1 — 3, as functions of the frequency paramcter f = w*u*/U;o2,
with the local Reynolds number R = /Rcgs as a parameter. For the self-similar
Blasius boundary layer, R is related to R, the Reynolds number based on the
local displacement thickness, via the simple relation R = Rg» /1.72. Note that the
local parameters w and Rs were used in Scction 2 to formulate the problem since
the analysis presented herein is valid even for non-similar boundary layer profiles.
However, for the specific case of a Blasius boundary layer, it is more convenient
to present the results in terms of the parameters f and R. The symbols in Figs.
(3a-3c) correspond to results obtained using the present (O-S) approach, while
the lines represent single term asymptotic predictions based on Goldstein!?! and
Choudharil®l. Except in obvious cases or when stated explicitly, the same notation
will be followed in the remaining figures in this section which involve both symbols
and lines. The first part of this Section focuses only on the results obtained using
the O-S approach, while the latter part presents a detailed discussion regarding the
comparison of these two approaches.

Three different locations of the wall inhomogeneity have heen considered in Figs.
(3a-3c). The location ncarest to the leading edge corresponds to R = 350, and
probably represents the lower bound on the range of Reynolds numbers in which
the present approach can be expected to be valid. The next wall inhomogeneity
location corresponds to R = 700, while the location farthest from the leading edge is
assumed to be at R = 1050, i.c., in the range of Reynolds numbers where transition
is expected to set in on a flat plate without suction. In presence of wall suction, the
onset of transition may be delayed to much larger values of R. However, since the
T-S waves leading to transition are usually generated much farther upstream of the
transition location, receptivity locations correspouding to R > 1050 are not likely
to be important in practice. For reference, the local growth rate of the generated
T-S wave at cach of these locations has been plotted in Fig. 5 as a function of the
frequency paramcter, f. In addition, the lower and upper branch frequencies at
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the three stations hiave been marked on the horizontal axis in Figs. 3a-3c by the
respective symbols, provided these frequencies fall in the range displayed in these
figures. 7 )

From Figs. (3a-3c), one can observe two distinct trends in the behaviour of IAV )( HI
depending on the type of wall inhomogeneity. For the wall suction (j=1) and wall
admittance (j=2) cases, the value of f corresponding to the largest magnitude of
the efficiency function is less than one fourth of the lower branch neutral frequency,
fis., at both R = 700 and R = 1050. For larger frequencies, both Iz\il)l and IAEF |
decrease monotonically until f & f, 3., the frequency parameter corresponding to
the upper branch of the neutral stability curve. On the other hand, the magnitude
of AS}), the cfficiency function in the wall hump case (j=3), increases monotonically
with f until reaching its maximum somewhere in the vicinity of f = fu.5. (see also
Fig. 15b). The rate of increase in IAS;) | is fairly rapid in the range of subcritical
frequencies (f < fi.4.), but rather slow in the unstable range corresponding to fip. <
f < fus.. One may also observe that the peak value of [AS‘)] is nearly independent of
the wall inhomogeneity location, being in the range 0.46-0.48 for all threc locations
of the roughness element. Subsequent to the point of its maximum, [AS;” (f)| was
found to decrease rapidly, being smaller than 0.1 for most frequencies larger than
fu.p.. This behavior suggests that at any given location, the efficiency of receptivity
due to a wall hump is highest for frequencies which are locally unstable, Finally,
F1%s. 4a-4c show that the arguments of the complex valued efficiency functions
Aﬁ,‘ ) (f),7 = 1 — 3 change rather slowly in the frequency range of interest.

In Figs. 6a-6¢, the magnitudes of Agj ), the efficiency functions based upon the wall
pressure fluctuation produced by the T-S wave are plotted as functions of f for
the same locations of the wall inhomogeneity as in Figs. 3a-3c. One may observe
from Fig. 6a that for small values of the frequency parameter, IALI)] increases at a
nearly constant rate, in a manner similar to that of IAS,I)I in Fig. 3a. However, the
value of |A§,l)| continues to increase until f reaches approximately one-half of the
lower branch neutral frequency, fi .. Ou the other hand, the function [AL”], which
exhibits a boundary layer type behaviour in the range f << fi3., has its maximum
near f < fip./4. Furthermore, Fig. 6a shows that ]AL”! remains virtually constant
following the initial region of constant slope. This behaviour is markedly different
from that of [AE,])| which decreases monotonically in the range of larger frequencies.

The behaviour of |A§,2) |, the magnitude of the efficiency function in the wall admit-
tance case, is quite similar to that of |A§,‘)| correspouding to the wall suction case
discussed in the previous paragraph. The only qualitative difference between IA;” |

and ]Ag,z) | is that the latter displays a slight overshoot near f = fi.4./4, and subse-
quently, a small dip in the unstable range fi5. < f < fu.s.. Therefore, the previous
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discusssion regarding the differences between |A§,”| and ]AS,” | also holds in the case
of [/\5,2)| and |Af‘2)|. Finally, it is apparent from a comparison of Figs. 3¢ and 6¢c
that the efficiency functions AE} ) and A;,j ) possess different trends even in the case
of receptivity duc to a wall geometry variation (j=3). The function IA,(,B)(f)I does
not exhibit the plateau behaviour displayed by lAf,s)(f )| in the range of unstable
frequencies, fip. < f < fus.. In fact, IAEP)( £)] has a nearly lincar behaviour for all
frequencies of interest (i.c., f < fu.4.). Thus, one may conclude that irrespective of
the type of wall inhomogeneity, the frequency response of a given receptivity mech-
anism is quite different depending on the specific flow quantity used to quantify the
receptivity.

It was shown in Section 2 that the bouundary value problem governing the short-
scale unsteady perturbation involves a different kind of inhomogeneity depending
on thie particular ageney inducing the short-scale vari«tion. For instance, the recep-
tivity due to a wall suction variation is entircly due tc internal forcing representing
the interaction of the Stokes wave with the short-scale mean flow perturbation. In
contrast, the variation in the wall admittance leads to receptivity via only a forc-
ing at the boundary corresponding to the short-scale unsteady mass flux through
the porous surface. Finally, the boundary value problem for the receptivity due
to a wall hump contains an inhomogencous term in both the governing differen-
tial equation as well as in one of wall boundary conditions. As in the wall suction
case, the source term in the differential equation arises due to an interaction of the
Stokes wave with the mean flow perturbation, while the inhomogeneous boundary
condition represents the direct scattering of the Stokes wave by the wall geometry
variation. Figures 7a and 7b illustrate the nature of the source term in the dif-
ferential equation governing the receptivity due to will suction and wall geometry
variations, respectively. In both figures, we have plotted the forcing function on
the right hand side of Eq. (2.13) as a function of the transverse coordinate Y. The
location of the receptivity region has been assumed o be fixed at R = 1050, and
results have been plotted for five different values of the frequency parameter f. One
may observe that for each frequency, the shape of the forcing function in Fig. 7a is
quite different from that in Fig. 7b. The magnitude of the forcing function in the
wall suction case is maximum at the wall and decreases rapidly away from it. On
the other hand, the forcing function in the case of receptivity due to wall rough-
ness has two lobes. The inner lobe is narrower, occupying less than one third of
the boundary layer displacement thickness for most frequencies within the unstable
range. The peak corresponding to the inner lobe also represents the maximum of
the forcing function across the entire boundary layer. The maximum corresponding
to the outer lobe is ncarly one half of the maximum of the inner lobe. Figures 7a
and 7b also show that in general, the magnitude of the forcing function is signif-
icant only within distances less than one half of the boundary layer displacement
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thickness away from the wall. Thus, it scems reasonable to conclude that the energy
transfer from the acoustic wave to the T-S wave is localized to the region close to

the surface.

In order to assess the effectiveness of the two types of inhomogeneous terms leading
to receptivity in the case of wall roughness, we have plotted their contributions sep-
arately in Fig. 8 along with the sum total. The dashed curve in Fig. 8 corresponds
to contribution to the efficiency function |A£‘3) | due to the inhomogeneous term in
the differential equation, while the dotted curve represents the contribution from
the inhomogencous boundary coudition. The roughness clement is assumed to have
been fixed at a location corresponding to R = 2800 and the different contributions
to the efficiency function have been plotted as functions of f. Figure 8 suggests that
at all frequencies, the contribution due to the inhomogencous boundary condition is
much larger than that due to the interaction of the Stokes wave with the mean flow
gradients. In fact, the latter contribution is nearly out of phase with the former at
all values of the frequency parameter. Thercfore, the magnitude of the efficiency
function ]AE?)I is approximately equal to the difference of the magnitudes of contri-
butions from the two inhomogeneous terms. The asymptotic theory (Goldstein!?)
predicts that for f >> fi., the mean flow perturbation becomes very small and
hence the total efficiency function can be well approximated by the contribution
due to the inhomogeneous boundary condition alone. However, Fig. 8 shows this
not to be the case.

Figures (9a-c) illustrate the variation in ]AE’,j )],j =1 -3, for a fixed frequency dis-
turbance as the location of the wall inhomogencity, R, is varied. For completeness,
~ the arguments of the complex valued AS‘J ) functions are plotted as functions of R

in Figs. 10a-10c. Results are plotted for four different frequency parameters in the
range f = 20x107° to f = 35x107%. This particular range was selected based
upon the corresponding values for the total amplification ratio (the N factor) of a
fixed frequency T-S wave between the two branches of the neutral stability curve.
As seen from Fig. (6.4) in Mack(22] an amplification ratio of ¢? is attained first by
a T-S wave with frequency corresponding approximately to f = 27x107%. The ap-
proximate N factors for the smallest and largest values of the frequency parameter
in the range shown in Figs. 9a-9¢ are equal to 7 and 11, respectively. Hence, accord-
ing to the well-known ¢ criterion (sce Smith and Gamberonil?®!, Van Ingen(?!], as
well as Bushnell and Malik{?%]) the frequencies in this range arc likely to be most
important from the point of view of transition. For reference, the two neutral loca-
tions for each frequency parameter are indicated by arrows on the horizontal axes
in Figs. 9a-9¢c. The growth rate variation with respect to the Reynolds number is

shown in Fig. 11.

Figure 9a shows that the efficiency of receptivity due to wall suction variation is
highest in the range of locations which are significantly upstream of the lower branch
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of the neutral stability curve. The maximum value of |;\£11)| occurs when the region
of wall suction variation is located approximately two-tlurds of the distance from
the leading edge to the neutral location. At farther downstream locations, |A£,l)|
decreases, but only to reach a plateau close to the location where the streamwise
growth rate of the T-S wave is at its maximum. The value of ]A(ul)l remains roughly
constant between the locations corresponding to the maximum growth rate and the
upper branch of the neutral stability curve. Shortly after the wave begins to decay

again, |Au | drops rapidly to very small values. As remarked before, the behaviour

of the | “ | curve beyond the location corresponding to the upper branch is of
little practical interest. Figure 9b shows that similar to the wall suction case, the
local efficiency of receptivity due to a wall admittance variation is highest when the
variation occurs close to the leading edge. Of course, one must realize that the higher
levels of efficiency close to thie leading edge are offset by the larger magnitudes of the
decay factors corresponding to the exponential decrease in the T-S wave amplitude
upstream of the lower branch neutral location. One may further observe that IA(2)|
decreases rapidly as the region of wall admittance variation moves away from the
leading edge. However, the rapid decrease is halted when the wall 1nh0m0genexty
moves to locations w1t1un the unstable region. In fact, the value of | A | increases
slightly for locations close to the upper branch.

The behaviour of |\£,”| shown in Fig. 9¢ as a function of the wall inhomogeneoity
location is quite similar to that in Fig 3¢, where | \(3)| was plotted as a function of
the frequency parameter with the wall inhomogeneity fixed at a particular location.
Thus, IAu | increases rapidly until reaching the lower branch neutral location, but
the increase is quite slow within the range of unstable locations. After crossing the
upper branch location, |A(,,3)| again decreases rapidly to very small values. Note that
the crude resemblance between the two sets of figures, 3a-3¢ and 9a-9c¢, could have
been anticipated based on the qualitative equivalence between increasing down-
stream distance for a fixed physical frequency and increasing physical frequency at
a fixed location. In fact, in the infinite Reynolds number limit, this equivalence can
be quantified in terms of a similarity parameter R*/2F in the vicinity of branch I
of the neutral stability curve.

The present analysis was based on the assumption that the local instability wave-
length is much shorter than the length scale over which the mean boundary layer
properties change significautly, i.e., the distance of the wall inhomogeneity from
the leading edge. This assumption enables one to neglect thie variation of the base
flow over the length of the receptivity region. The validity of this approximation
can be verified a posteriori from the results in Figs. 9a-9c. Essentially, the “local”
approximation is valid if the efficiency function does not vary significantly over an
instability wavelength. Figures 9a-9¢ show that thc only region within the entire
domain of interest where the efficiency functions, lA )| J = 1-3, have a large gra-
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dicut corresponds to locations close to the leading edge. For instance, at a location
corresponding to R = 500, the variation in ]Af,z)‘ over an instability wavelength is
0(10%) for f = 30e — 6. Consequently, the receptivity predictions in the vicinity
of this point can be assumed to be accurate only within a comparable bound for

CITOr.

In the remaining part of this paper, we compare the results obtained using the
present approach with predictions based on the asymptotic (triple deck) framework
used by previous investigators. As remarked before, the coupling coefficient in both
cases can be expressed as a product of the geonietry and efficiency functions, FU)
and AY ), respectively. This allows us to compare the results of the two approaches
by comparing separately their respective predictions of FO and AY. For a speci-
fied spatial destribution of the wall inhomogencity, the geometry factor FO(ars)
depends only upon the instability wavenumber «r.s. which is determined by an
eigenvalue calculation. We already presented results for the imaginary part of ar.s.
in Fig. 5. This quantity is usually much smaller than the real part of ar.s.. How-
ever, it may have a significant impact on the value of F(9) for certain types of
geometries. Figure 5 shows that even though the triple deck expansions are valid
only in the vicinity of the lower branch of the neutral stability curve, the asymptotic
predictions for the strcamwise growth rate, Imag(ar.s.), exhibit correct trends in
most parts of the unstable region. Of course, since only a leading order solution
was used to compute the asymptotic results, there are significant quantitative errors
in comparison to the O-S results. For example, the asymptotic estimates for the
maximum growth ratc are consistently larger than the values predicted using the
0-S cquation. In Fig. 12 we show a comparisou of the real parts of the instability
wavenumber ar_g calculated from the two methods. In contrast to the predictions
for the imaginary part of ap_g, one finds that the asymptotic theory always un-
derestimates the value of Real(ap—g). The differences in Real(ar-s) may not be
crucial for smooth geometries such that the geometry function FU)(a) varies slowly
enough with «. However, for shapes such as a rectangular Lhump, where FO)(a)
oscillates on the scale of the hump length, the asymptotic predictions may have a
significant error. The errors in the asymptotic predictions for both Real(ar-s) and
Imag(ar—s) become smaller for larger values of the Reynolds number, especially
in the vicinity of fi;. (Figs. 13a,13b). However, the extent of this improvement is
quite marginal even for 12 as large as 2800.

Choudharil®) utilized the triple deck theory to examine the influence of the width
of a suction strip on the receptivity due to the interaction of a free-stream acoustic
wave with the mean flow disturbance induced by a uniform suction applied through
the strip. As discussed above, the local geometry enters only through the factor F
which is simply the Fourier coefficient of the wall suction distribution corresponding
to the T-S wavenumber, ap_g, at the specified acoustic frequency, w. Choudharil%l
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presented a graph illustrating the variation in F(!) with respect to the width of
the suction strip for four different locations of the strip. The geometry function
F) was evaluated using the asymptotic valuc of ar—s. However, since the results
were plotted with the suction-strip width normalized by the local T-S wavelength
(i.e., as 2wwyyrip/ Real(ar_s)), the same plot can also be utilized in the context
of the present finite Reynolds number approach by using the value of Real(ar-3s)
obtained from the O-S eigenvalue problem. The inferences drawn in this manner
will be exact for the case of a wall inhomogeneity located at one of the neutral
stations, but only qualitatively true for other locations for which Imag(ar—-g) is
Nnonzero.

In addition to the instability wavenumber ap_g, it is useful to compare the finite
Reynolds number and asymptotic predictions for E,(Y = 0) which also depends
only upon the solution to the cigenvalue problem. This quantity represents the
ratio of the wall pressure fluctuation and the maximum streamwise velocity fluc-
tuation associated with the T-S wave, and relates the the two efficiency functions
Aﬁ,’ ) and AY as shown in (2.23¢). Note that in the asymptotic theory, one has to
deal with separate expansions in three different regions in the transverse direction,
and the maximum of the streamwise velocity fluctuation can only be determined
by forming a composite expansion which is uniformly valid in all three regions. For
convenience, the predictions in Goldsteinl?! and Choudharil® utilized an approx-
imate value for this quantity based upon the maximum across the main part of
the boundary layer, i.c., across the middle deck of the asymptotic expansion. The
same approximation has also been used in the asymptotic results used in this pa-
per. The fact that the maximum of the streamwise velocity eigenfunction across
the lower deck is slightly larger than this approximate value, especially for fre-
quencies much larger than the lower branch neutral frequency would indicate that
the magnitude of E,(Y = 0) based on a composite asymptotic expansion will be
somewhat smaller than the approximate result displayed here. In Fig. 14 we have
plotted |E,(Y = 0)] as a function of f, with the wall inhomogeneity location as a
parameter. One may observe that the agrecment between the asymptotic and O-S
results is quite satisfactory for f < fi5.. However, for frequencies corresponding to
f > fis., the asymptotic predictions for E,(Y = 0) are somewhat smaller than the
values obtained from the O-S equation. Recomputing the asymptotic result using
the maximum streamwise velocity fluctuation across the lower deck led to reduced
differences with the O-S predictions in the range f > fi,.. However, since the cor-
rect approach involves using the somewhat cumbersome composite expansion across
all decks, all asymptotic predictions used in this paper are based on the maximum
across the main deck.

We now return to the Figs. 3a-3c as well as Figs. 4a-4c, and compare the values
of the efficiency fucntions ASLJ ) obtained from the asymptotic and finite Reynolds
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number approaches. Figurce 3a shows that for the j = 1 case, i.c., for receptivity
due to a wall suction variation, the agreement hetween the two approaches is quite
good for frequencies close to fi4., the frequency corresponding to the lower branch
of the neutral stability curve. The agreement is not cqually satisfactory in regions
away from f = fi;., but can still be considered reasonable. Figure 15a shows
that a better overall comparison is possible at larger Reynolds numbers. On the
other hand, it can be seen from Fig. 3D that in the case of receptivity due to
a wall admittance variation, i.e., j = 2, the asymptotic predictions for IAuJ | are
in excellent agreement with the ﬁmte Reynolds number results even at Reynolds
numbers as low as 350. The only range of frequencies where the two predictions
differ significantly corresponds to f << fis.. Figurc 3¢ shows that for j = 3,
viz., receptivity due to a roughness clement on the wall, the magnitudes of the
A( function calculated using the two approaches match V\LH at small frequencies,
f < fis.; however, as seen from Fig. 4c, the arguments of A ) differ significantly.
On the other hand, as f becomes larger than f;4.. the two predictions for the
magmtude of A( ) begin to deviate from each other, but the agreement in the phase
of ALY improves substantially. The average difference in the magnitude predictions
is of the order of 15-20 percent for fip. < f < fus.. Figure 15b shows that this
difference persists at larger values of the Reynolds number. One may remark at
this point that the asymptotic predictions of Goldstein!® matched quite well with
Aizin and Polykov'si?8] experimental findings related to the receptivity due to the
interaction of a free-stream acoustic wave with a huinp on the wall. However, the
overall asymptotic predictions were somewhat on the lower side of the range of T-S
wave amplitudes measured in the experiments.

The above trends in the comparison of the asymptotic and finite Reynolds number
approaches would suggest that predictious from the latter approach would match the
experimental results even better. Finally, if one compares the efficiency functions
hased on the pressure fluctuation at the wall (Fig. Gc), an excellent agreement is
found at all frequencies as well as Reynol(ls numbers. The differing comparison for
the two types of efficiency functions, AY and f\ﬁ,’ ), can easily be explained on the
basis of the comparison of E,(}¥ = 0) discussed previously in the context of Fig.
14.

The asymptotic theory has the advantage that it furnishes analytical solutions,
thus enabling exhaustive parametric studics to be conducted without much cost.
Therefore, in the absence of detailed numerical results, approximate results can
be obtained by using the asymptotic predictions. The comparison between the
two approaches in the preceding paragraphs showed that the triple deck theory
predicts the overall trends correctly in most of the parameter space. However,
there are significant quantitative errors in the asymptotic predictions related to
the neutral curve as well as streamwise growth rates of the T-S waves. This may
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affect the values of the geometry factor to a considerable extent. On the other
hand, the asymptotic results related to the cfficiency functions were found to be
relatively more accurate. Therefore, as a first cut measure, the accuracy of the
asymptotic predictions can be improved by calculating the geometry factor using
an O-S result for the instability wavenumber. To investigate if the accuracy of the
efficiency functions can be further improved by using a little additional information
from a numerical data base obtained with a finite Reynolds number approach, the
results from Fig. 3¢ for R = 700 and R = 1050 are replotted in Fig. 16 after
normalizing both the ordinate, ]AELB)l, and the abscissa, f, by their respective values
at the lower branch of the neutral stability curve. It is obvious that the significant
discrepancies in Fig. 3c at larger frequencies have now disappeared, yielding an
excellent agreement between the two approacles at all frequencies as well as wall
inhomogeneity locations. This suggests a way of profitably utilizing any available
asymptotic input without sacrificing the accuracy to any great extent. This type of
correlation, if applicable, will be especially valuable for boundary layer flows more
complex than the Blasius boundary layer, since the asymptotic theory may be less
accurate in such cases.

4. APPLICATION TO RECEPTIVITY IN DISTRIBUTED REGIONS
OF SHORT-SCALE VARIATIONS

The discussion in the previous sections was limited to receptivity occuring in local-
ized regions of wall inhomogeneities. However, the results obtained therein can also
be extended to receptivity occuring in distributed regions of short scale variations.
The solution for the localized case can be utilized as part of a slowly varying Green’s
function for the problem of distributed receptivity in a manner similar to Tam/2!)
who used this idea earlier in a related context, According to the stability theory
for weakly non-parallel shear flows, the uniformly valid solution for the streamwise
velocity fluctuation sufficiently far downstream of a point source at X = X, is given
by

Cu(X,Y; fX,) = Ao(zs)A(z; 22)Eu(Y, 75 f)elO®0X)=w1, (4.1)

where the streamwise origin of the coordinate system has been fixed at some arbi-
trary point sufficiently far downstream of the leading edge. The initial amplitude,
Ao(z,), in (4.1) is provided by the solution to the local problem at X=0 (i.e., the
local coupling coefficient), with the geometry factor F9(at.s.) set equal to unity
corresponding to a point source excitation. The amplitude and phase functions,
A(z; r,) and O(X) are obtained from the weakly non-parallel stability analysis.
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Summing over the contributions from the entire source region, one would obtain,

X

s = / Gu(X,Y; [| X,)F(X,)dX,, (4.2)

where the function F(X,) now denotes the streamwise distribution of the forcing
function in the equations describing the O(e ,seﬁj" ) perturbation. For instance, in
the wall admittance problem, it corresponds to the specified distribution of the
unsteady vertical velocity. Thus given the streamwise distribution of the forcing
function, the integral in Eq. (4.2) can be evaluated to determine the instability

amplitude at any given station.

By differentiating with respect to the streamwise variable, Eq. (4.2) can also be
converted to a wave amplitude equation similar to that obtained by Taml(?!],

our-s .00

X l % ur—-s+FG, + O(G(). (43)

Equation (4.3) shows that when the receptivity occurs continuously over a large
number of instability wavelengths, the local change in the amplitude of the T-S
wave is due to transfer of energy from the mean flow (in other words, the exponen-
tial growth or decay of instability waves generated upstream of the present location)
as well as due to local input from the external disturbances. As pointed out by Tam,
the relative contributions from the two types of inputs depend upon the local am-
plitude of the instability wave. Large values of the instability wave amplitude would
imply that the contribution due to the external input is much weaker compared to
the local amplification rate due to transfer of energy from the mean flow via the
Reynolds stress distribution. Thercfore, for locations close to the upper branch of
the neutral stability curve, the amplitude distribution curve asymptotes to that of
a pure T-S wave eigensoluion.

One may also remark in passing that for a spatially periodic forcing such as that
induced by wall-waviness, or suction strips with uniform spacing, the contributions
from neighbouring locations to the integral in (4.2) would tend to cancel each other.
Therefore, the Green’s function integral will be dominated by contributions from a
small range of locations in the vicinity of the point where the integrand is nearly
stationary. At this location, the instability phase © is maximally synchronized
(or “tuned”) with the phase of the external forcing F thus leading to a minimal
cancellation in the surrounding region. In othier words, the instability wave and the
forcing function are closest to being in resonance in this region.



5. CONCLUDING REMARKS

An alternative to the triple deck approach was presentd for the prediction of recep-
tivity due to the interaction of a fice-stream acoustic wave “vith localized regions of
short-scale variations in surface boundary conditions. The receptivity problem re-
duces to an inhomogenecous Orr-Sommerfeld problem i the Fourier transform space,
and the amplitude of the generated instability wave car be determined as the residue
corresponding to the T-S wavenumber. This approach is non-asymptotic, but it has
the advantage of being relatively more accurate at lower Reynolds numbers. The
leading order error term is estimated to be ()(]?;.3/4 log Rs+) or O(R;.S/S log Rs+)
depending on whether the acoustic frequency scales on the frequency corresponding
to the lower or upper branch of the neutral stability curve. Thus, at finite Reynolds
numbers, the accuracy of this approach is limited only due to the “localness” ap-
proximation and freezing the profile of the undisturbed mean flow over this local
region.

The above estimate for the error has been obtained on the assumption that one has
used the full three term asymptotic expansion in (2.6b) to obtain the unsteady base
flow solution, 1y,. Replacing 1, by its leading order behaviour corresponding to
the Stokes shear wave increases the theorctical estimate for the error to O(z7!).
For sufficiently large Reynolds numbers, this error is of O R;.]/ 4) for f close to fip.,
which is comparable to the error in the single term triple deck expansion. However,
the crror in the finite Reynolds number approach becomes much smaller in the main
part of the unstable region, since 27! is of O(R;—.zl 5) there. Moreover, we compared
the efficiency functions based on the Stokes wave approximation for g, with those
obtained using the complete three term asymptotic cxparsion in (2.6a,b) for the
case of a wall inhomogencity located at IR = 1050, and the two results were found
to be visually indistinguishable on the scale of Figs. 3a,c.

Since the T-S wave amplitude is determined numerically, using three terms from
(2.6b) i1s no more difficult than just the Stokes wave solution. However, a solu-
tion such as (2.6b) may not always be available, especially in more realistic flows
corresponding to non-similar base mean flows. In fuct, the only available infor-
mation about the acoustic disturbance may consist of the local fluctuation in the
free-stream velocity. Since the region of receptivity has been assumed to be a large
number of convective wavelengths downstream of the leading edge, it seems reason-
able to compute g, by assuming the airfoil surface to be locally flat and infinite
in both directions. Then g, satisfies the O-S equation subject to the specified
slip velocity in the free-stream. For incompressible flows the Stokes shear wave
corresponds to the zero wavenumber (i.e., acoustic) solution to the O-5 equation.To
maintain a consistent way of approximating 1, in all types of boundary layers, we
have used the Stokes wave approximation cven in the case of the self-similar Blasius
boundary layer.
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In addition to predicting the generation of the viscous T-S waves, the finite Reynolds
number approach can be utilized to predict the coupling coefficients for the case
of predominantly inviscid type instabilitics in an adverse pressure gradient bound-
ary layer where the triple deck framework is not applicable. In fact, with minor
modifications, the present approach can be extended to such complex flows as three-
dimensional and high-speed boundary layers. These flows are susceptible to various
types of instability waves, cach with its own asymptotic structure. In order to
compare the effectiveness of a wall inhomogeneity in exciting the different types of
instability waves, it hecomes necessary to have a gencral approach which will be
valid for as many of these instabilities as possible. It is for this class of problems that
the strength of the approach presented in this paper really becomes apparent. Some
preliminary results on the receptivity in high-speed and three-dimensional bound-
ary layers using this approach have been presented by the present authors in Ref.
[10]. Finally, the comparison of the present results with the asymptotic predictions
suggests that in unsteady problems governed by the triple deck framework, quite
satisfactory results can be obtained by using only a single term in the asymptotic
expansion. In addition, such a comparison can also suggest ways of utilizing the
asymptotic results with better accuracy, especially in more complicated problems
such as those outlined above.
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(a) A region of short-scale variation in wall suction velocity.

(b) A region of short-scale variation in wall admittance.

(c) A region of short-scale variation in wall gcometry.

Fig. 1 Different types of wall inhomogeneities.
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Fig. 2 Sketch of the coordinate system.
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(c) Receptivity due to wall geometry variation

Fig. 3 Magnitudes of the efficiency functions As‘j), j =1~ 3 from Eq. (2.20b) as
functions of the non-dimensional frequency parameter f = w*vy./ Uz?, with
the location of the wall inhomogeneity (R = VRe,- = Rs-/1.72) as a
parameter. The symbols denote the results from the finite Reynolds number
approach, while the lines correspond to asymptotic predictions.
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Fig. 4 Phase of the complex valued efficiency functions A j = 1-3 from Eq.
(2.20b) as functions of the non-dimensional frequency parameter f = w*vg,/ U2,
with the location of the wall inhomogeneity (R = /Re,- = Rs-/1.72) as a

parameter. The symbols denote the results from the finite Reynolds number
approach, while the lines correspond to asymptotic predictions.
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Fig 5 Streamwise growth rate, — I'mag (ar-g), as a function of f for the
same wall inhomogeneity locations as in Figs. 3 and 4.
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(c) Receptivity due to wall geometry variation

Fig. 6 Magnitudes of the efficiency functions Ag,j] 7 =1-3 from Eq. (2.21b) as
functions of the non-dimensional frequency parameter f = w'v} JUZ?, with

the location of the wall inhomogeneity (R = Re,r = R4 /1.72) as a
parameter. The symbols denote the results from the finite 'Rvynolds number
approach, while the lines correspond to asymiptotic predictions.

34



‘ f = 80e-6
' - = — [=60e6
H - { = 400-6
150.0 }
'.‘ ® (-=20e6
1

100.0

50.0

(a) Receptivity due to wall suction variation

1.5
——— { = BOe-6
- — -~ [=60e6
— f = 40e-6
® (-20e6
f=10e-6
0.0 0.5 yIs 1.0

(1) Receptivity due to wall geometry variation
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f=w'v /UL? as a parameter.
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Fig. 14 Magnitude of the factor E,(Y = 0) from (2.21c), which relates the

two types of efficiency functions, A$Y) and Ag,j ), plotted as a function
of f for the same locations of the wall inhomogeneity as in Figs. 3a-3c.
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