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NOMENCLATURE

wingspan
section chord

section lift coefficient

CL  wing lift coefficient

local skin friction coefficient, T/qe

G pressure coefficient, (P — Peo)/qoo

streamwise boundary-layer shape factor, 8; /6y
height of roughness element
Mach number

pressure

dynamic pressure, (1/2)pu?

Re; Reynolds number based on chord

Us

Uz

velocity magnitude

component of velocity parallel to flow direction at the boundary-layer edge
shear velocity, m

component of velocity normal to flow directiop at the boundary-layer edge
coordinate measured parallel to free-stream direction

spanwise coordinate

coordinate normal to wing mean reference plane

law-of-the-wall coordinate, zug/Vw

angle of attack with respect to model planform reference plane

yaw-plane flow-direction angle, measured with respect to Uo, positive outboard

. : v -
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o boundary-layer thickness
o* o : 5 pug
O streamwise displacement thickness, | -—|dz
0 Pele
. 3
- . . pw
O crossflow displacement thickness, —j dz
0 PclUe
n spanwise coordinate normalized by the semispan, 2y/b
: . o pug Uy
011 streamwise momentum thickness, — I —-—|dz
0 Pelc Ug
A sweep angle
v kinematic viscosity
P density
T shear stress
Subscripts
¢ conditions at edge of boundary layer
ms  root-mean-square value of fluctuation
t location of boundary-layer transition
w conditions at surface
oo free-stream conditions

vl



SUMMARY

The upper-surface boundary layer on a transport wing model was extensively surveyed with
miniature yaw probes at a subsonic and a transonic cruise condition. Additional data were obtained
at a second transonic test condition, for which a separated region was present at mid-semispan, aft of
mid-chord. Significant variation in flow direction with distance from the surface was observed near
the wailing edge except at the wing root and tip. The data collected at the transonic cruise condition
show boundary-layer growth associated with shock-wave/boundary-layer interaction, followed by
recovery of the boundary layer downstream of the shock. Measurements of fluctuating surface-
pressure and wingtip acceleration were also obtained. The influence of flow-field unsteadiness on the
boundary-layer data is discussed. Comparisons among these data and predictions from a variety of
computational methods are presented. The computed predictions are in reasonable agreement with
the experimental data in the outboard regions where three-dimensional effects are moderate and
adverse pressure gradients are mild. In the more highly loaded mid-semispan region near the trailing
edge, displacement-thickness growth was significantly underpredicted, except when unrealistically
severe adverse pressure gradients associated with inviscid calculations were used to perform
boundary-layer calculations.

INTRODUCTION

The predictions of methods for computing wing flow fields need to be evaluated by comparisons
with experimental data, for accuracy and range of applicability (ref. 1). Detailed low-speed experi-
ments in flows related to the flow about a swept wing are reported by van den Berg et al. (ref. 2) and
Seetharam et al. (ref. 3), but the existing transonic investigations are limited in scope. Survey data
describing the boundary layer and wake of a swept wing near its trailing edge at mid-semispan,
obtained from flight tests of the F-111 transonic aircraft technology (TACT) aircraft, are reported by
Lux (ref. 4). Boundary-layer measurements near mid-chord on the ONERA M-6 wing in transonic
flow are reported by Schmitt et al. (ref. 5). Boundary-layer measurements on a low-aspect-ratio wing
in transonic flow are reported by Keener (ref. 6); they include multiple-orifice probe surveys forward
of mid-chord and laser velocimeter surveys near the trailing edge at mid-semispan. The present
report describes efforts to provide experimental descriptions of the boundary layer on most of the
upper surface of a typical transport wing in both subsonic and transonic flow. Data from this investi-
gation are also presented in references 7-9. The experiment was limited to the measurement of mean
velocity profiles; although turbulence measurements in three-dimensional boundary layers are
needed, the practical difficulties associated with making turbulence measurements as part of the
present experiment were excessive. This investigation is part of a cooperative program among
McDonnell Douglas Research Laboratories (MDRL), Douglas Aircraft Company (DAC), and the
Ames Research Center (ARC), and was supported in part under the McDonnell Douglas Independent
Research and Development program.



FACILITIES AND EQUIPMENT

The experiments were conducted in the Ames 14-Foot Transonic Wind Tunnel. This facility is a
continuous-flow tunnel; the stagnation pressure is atmospheric, and the stagnation temperature is
controlled by exchanging air with the surrounding atmosphere. The semispan model of the wing and
fuselage, with the probe traversing assembly, are shown in figure 1, installed in the test section of the
wind tunnel. The test-section walls are slotted, but steel plates were used to cover the floor slots
during this test.

The model was obtained from DAC, selected because it was the largest high-speed model avail-
able and had no leading- or trailing-edge devices. It has a 1.113-m semispan and a 0.359-m mean
aerodynamic chord and is instrumented with 378 static-pressure orifices located at nine spanwise
stations. Figure 2 is a drawing of the model and includes some geometric properties of the wing. The
fuselage is one-half of a body of revolution, under which a 3.18-cm-thick uniform section was
added. An auxiliary wing holding a probe traversing unit is attached to the fuselage downstream of
the primary wing. The undisturbed tunnel-wall boundary layer is approximately 18-20 c¢m thick at
the model station (ref. 10 and unpublished data), the displacement thickness is approximately
3.2 ¢m, and the ratio of the undisturbed velocity at the height of the wing root (16.5 cm above the
tunnel floor) to the free-stream velocity is approximately 0.97. The model is small relative to the test
section; the blockage ratio is 0.45%, and the ratio of semispan to tunnel height is 0.26.

For an associated experiment on transonic wing buffeting, several types of dynamic instrumenta-
tion were incorporated into the model (fig. 2). In addition to their primary function, these instruments
indicated the degree of unsteadiness in the flow environment during the boundary-layer measure-
ments. Three chordwise sets of high-frequency-response miniature pressure transducers were
embedded in the upper surface of the model wing. The installation method, essentially identical to
the one used earlier with two-dimensional airfoil models and described in reference 11, provided a
fluctuating-pressure frequency response that was flat within 5% from dc to beyond 10 kHz. Other
dynamic instrumentation included an accelerometer buried in the wingtip with its sensitive axis
perpendicular to the wing plane, and strain gauge bridges at the wing root for dynamically monitor-
ing wing bending and torsion loads. The primary results from the nonsteady portion of this study are
reported separately (ref. 12), but nonsteady data pertinent to interpretation of the boundary-layer data
are included here.

Good technique in obtaining three-dimensional boundary-layer data typically includes the use of
miniature, multisensor pitot or hot-wire probes attached to the wing surface near the measuring sta-
tion, and alignment of the tips with the local flow direction by a nulling technique. This approach
minimizes probe interference effects and probe vibration, and allows accurate measurement of probe
location, It also requires considerable test time to obtain a survey and make model changes between
surveys. The high cost of operating large transonic wind tunnels and their limited availability for
rescarch investigations precluded that approach.

A two-degree-of-freedom traversing unit allowing remote streamwise positioning, and fixed-
position probe tips for flow-direction measurements, were required to complete the experimenit in



approximately one month of tunnel occupancy. Initially, a traversing unit was designed that would
attach to the lower surface of the wing. The minimum dimensions of this unit were established by
the 6.35-cm diameter of available stepper motors and position encoders. Panel-method calculations
showed that the design would produce excessive flow-field interference, and it was therefore
rejected.

The traversing mechanism used in this study was mounted on an auxiliary wing that was attached
to the fuselage downstream of the primary wing (fig. 2). The constant-chord auxiliary wing is swept
20° and lies approximately in the mean chord plane of the primary wing. The auxiliary wing is
mounted at —1.5° incidence relative to the fuselage centerline since panel-method calculations indi-
cate that this alignment minimizes interference in the flow about the primary wing at subsonic con-
ditions. The auxiliary wing has a remotely actuated trailing-edge flap for minimizing interference at
test conditions other than the primary subsonic condition. The flap chord is 20% of the auxiliary
wing chord. A strut connecting the two wingtips minimizes their relative unsteady motion. The strut
is pinned to the primary wing and to the auxiliary wing near its leading edge. A remotely actuated
pneumatic clamp is located near the auxiliary-wing trailing edge. The clamp is sized to resist forces
associated with the anticipated unsteady relative deflections, but to allow movement under the much
larger aerodynamic loads associated with static deflections.

A two-degree-of-freedom traversing unit was installed at each of nine spanwise stations on the
auxiliary wing, allowing boundary-layer profiles to be obtained along each row of static-pressure
orifices. The principal features of the traversing unit are shown in figure 3. Probe tips are attached to
a rectangular probe shaft which moves through a housing containing the horizontal-drive stepper
motor, horizontal-position encoder, and instrumentation-lead spool. A portion of each instrumenta-
tion lead (plastic tubing) lies alongside the probe shaft, from the downstream end of the shaft to the
rewind spool. The tubing is covered by a windshield, so the leads are never exposed to the airstream.
As the shaft is extended in the upstream direction, the tubing is transferred from the shaft to the
spool; it is returned when the direction of motion reverses. Maximum streamwise travel is 48 cm,
with a resolution of 0.0866 mm per encoder pulse.

The design of this traversing unit and auxiliary wing was a compromise between rigidity and
flow-field interference. The initial configuration did not include the aft supporting structure connect-
ing the probe shaft and horizontal motor-encoder assembly to the main structure attached to the aux-
iliary wing; however, excessive oscillations of the traversing unit were observed during the first
tunnel occupancy period, and the aft supporting structure was added. During this experiment, the
probe shaft could not be extended forward more than 28 cm without excessive motion parallel to the
plane of the wing. Additional streamwise extension was made possible by installing a stiffener,
which was attached to the streamwise motor-encoder housing and which provided a supporting
channel for the probe shaft to extend an additional 17.8 cm upstream of the housing,.

Motion and readout in the direction normal to the wing are provided by a similar motor-encoder
assembly installed in the airfoil-shaped strut located below the auxiliary wing. Since the range of
travel normal to the wing is only 7.6 cm, this motion can be accommodated by a coil of instrumenta-
tion leads within the strut. Position resolution is 0.0052 mm per encoder pulse. Play and backlash are
eliminated in both directions by spring-loaded bearings and antibacklash gearing. Limit switches
stop the stepper motors at the extremes of both ranges of travel.



Probe tips are small, flat, three-orifice yaw probes (fig. 4) similar to those described in refer-
ence 13. (Because of the viewing angle, only two orifices are visible in the tip detail of figure 4.)
Calibration of these probes allowed determination of the flow speed and flow direction in the plane
of the wing. Three probes with the same nominal tip geometry were used during this study. The
initial experiments were conducted with probe 1, which was used for boundary-layer surveys at the
five inboard stations, 0.165 <1 < 0.650, where M is the spanwise distance normalized by the semi-
span. This probe was subsequently damaged, and probe 2 was used for almost all remaining experi-
ments, including surveys at spanwise stations 0.300, 0.450, and 0.650, where data had been obtained
with the first probe. Probe 3 was used only at 1 = 0.300, x/c =2 0.5, where x/c is the local stream-
wise distance from the leading edge normalized by the local chord. Probes 2 and 3 were recalibrated
after the test; the post-test calibrations were in excellent agreement with the pre-test calibrations.

A number of boundary-layer profiles at inboard stations near the trailing edge were obtained
outside the pitch angle range of £10°, within which errors in measured stagnation pressure are negli-
gible. Post-test calibration data appropriate to the actual pitch misalignment range were used to
reduce the data obtained with probes 2 and 3. Errors in measured yaw angle caused by pitch mis-
alignment were small, and no corrections to yaw angle for effects of pitch misalignment were made.
Values of stagnation pressure at the boundary-layer edge in subsonic flow, obtained from probes 2
and 3, agreed with the free-stream values to within 0.5% for 85% of the profiles. Typical errors in
data obtained with the first probe were larger, but the satisfactory agreement between data obtained
with the first probe and with the second and third probes (to be presented later) indicates that effects
of pitch misalignment in the data from the first probe are minor.

The probe tips were electrically insulated from the probe shaft to allow the wing surface to be
located by an electrical contact during a test. The electrical connection from the probe tip to the relay
controlling the contact warning light was made by an insulated wire connecting the probe tip to a
spring-loaded pin at the cpposite end of the probe shaft, which made a sliding contact with a con-
ducting strip in the windshield. Contact of the probe tip with the wing surface caused a relay to
interrupt power to the vertical stepper motor, to prevent probe tip damage.

Probe data and test-section conditions were recorded with the aid of a control unit and a micro-
computer, and were stored on diskettes. The control unit was used in a manual mode to position the
probe at the desired streamwise location and bring the tip into contact with the wing surface. A
boundary-layer survey was performed by a preprogrammed sequence of probe motions and data
acquisition cycles. A pressure transducer was connected to each probe orifice through a fluid switch
wafer. This device allowed the transducer to be connected to the probe orifice, to a known reference
pressure, or to atmosphere. The switch was cycled at the beginning and end of each boundary-layer
survey, allowing data for a two-point calibration of each transducer to be obtained. Data on test-
section conditions and primary-wing static pressures were acquired by the wind tunnel data system.

Boundary-layer transition trips were applied on both upper and lower surfaces at 6% local chord,
following the recommendations of Braslow et al. (ref. 14). The roughness elements were spherical
glass beads with a nominal diameter of (.13 mm. This size corresponds to 1.5k—2k, where k is the
minimum size of an element that will cause transition to occur at the trip. The effectiveness of the
trip was verified by the fluorene sublimation technique.



RESULTS AND DISCUSSION

Plotted data from this investigation are presented in the following sections. Tabulated static-
pressure and boundary-layer profile data are presented on microfiche, located in a pocket inside the
back cover of this report. A guide to the tabulated data is presented in the appendix.

Static Pressures and Tuft Flow Visualization

Extensive upper-surface boundary-layer data were obtained at the following two test conditions:
1) Mach number, Moo= 0.50; Reynolds number based on mean aerodynamic chord, Rec = 3.4 x 106;
angle of attack, a = 6°; and wing lift coefficient, Cr = 0.583; and 2) M.. = 0.825, Re¢c = 4.5 x 106,
a =4° and Cp =0.523. A limited quantity of data were also obtained at Mo, = 0.825,
Re. =4.5 x 109, oo = 6°, and Cp, = 0.650.

Static-pressure distributions obtained at all nine spanwise pressure-orifice stations at the subsonic
test condition are superimposed on the wing planform in figure 5. The suction peaks in these pres-
sure distributions are strongest at the mid-semispan stations; they decrease near the tip as a result of
the wing twist. Interference of the auxiliary wing and traversing unit with the flow about the primary
wing, as indicated by static-pressure data, was no greater than differences associated with run-to-run
repeatability for this test condition.

Prior to each boundary-layer survey, a set of wing static-pressure data was obtained with the
probe near the surface, in position to begin the survey. Static-pressure distributions obtained
upstream of the probe tip are superimposed in figure 6 on the corresponding distributions obtained
with the probe retracted. The probe tip interference effects are similar to, but smaller than, the effects
observed in the airfoil experiments reported in reference 15. Where interference effects are present,
they usually take the form of an additional adverse static-pressure gradient. Interference associated
with the probe tip was negligible when the probe tip was aft of mid-chord, and interference at
forward survey stations was minor. .

Static-pressure data for the transonic test condition at which most boundary-layer data were
obtained (Mo = 0.825, ot = 4°) are presented in figure 7 in the format of figure 5. The Mach number,
angle of attack, and corresponding lift coefficient are the design cruise conditions for this wing. Data
obtained with the wing alone and with the wing plus the auxiliary wing are superimposed. The data
show an upper-surface shock wave near mid-chord over most of the span; near the tip, the shock
wave weakens and moves forward as a result of the wing twist. The influence of the auxiliary wing
on the primary wing flow field is moderate.

In the static-pressure distributions of figure 8, data obtained with the auxiliary wing and the
traversing unit installed at the spanwise station of the particular sub-plot are superimposed on data
obtained with the wing alone. Section lift coefficients, g, obtained from the wing-alone data, are
also included. The traversing apparatus makes the Cp values slightly more positive, primarily aft of
mid-chord, and shifts the shock slightly forward. The effect on the shock location is maximum at
7 = 0.725. The disturbance caused by the strut connecting the wings is apparently limited to the



lower-surface pressure distributions for 12 0.9. For 0.15 <1 < 0.8, the presence of the auxiliary
wing and the traversing unit decreases the local section lift coefficients by an average of 0.025

relative to the wing-alone data.

Interference in the static-pressure distributions caused by the probe tip at Mo, = (0.825 1is illus-
trated in figure 9. Probe tip interference is negligible for x/c > 0.6 and is small elsewhere, except
near the wing tip, where the scale of the probe tip relative to the local chord is maximum. Results of
an attempt to determine the effects of similar static-pressure perturbations on boundary-layer proper-
ties are summarized in reference 15, where it is tentatively concluded that these effects are small if
the noninterference Cp is used to compute velocities from pitot-pressure data.

Static-pressure data obtained at M = 0.825, a0 = 6° are presented in figure 10 in the manner of
figures S and 7. The test condition of figure 10 corresponds approximately to the break in the
CL vs. a curve at this Mach number. The character of the pressure distribution at this angle of attack
is similar to that obtained at o = 4° (see fig. 7), except for negative values of Cp near the trailing
edge at mid-semispan. These negative Cp imply the existence of a separated region; fluorescent
minituft flow visualization, surface-pressure-fluctuation measurements, and boundary-layer surveys
all indicate separation at mid-semispan, aft of mid-chord, at this test condition.

Fluorescent minituft flow visualization photographs, taken at the test conditions shown in fig-
ures 5, 7, and 10, are presented in figure 11. The tufts are (.05-mm-diam monofilament nylon, dyed
with fluorescent dye and cemented to the model surface. The rows of tufts lie in planes parallel to the
plane of symmetry of the model. The tuft pattern was photographed during a run, using ultraviolet
flash photography. The minituft technique was developed by Crowder (ref. 16).

Significant flow unsteadiness was evident throughout this set of experiments, under attached-
flow conditions as well as during separated-flow runs. The region of missing tufts in the central por-
tion of the planform in figures 11b and 11c was caused by flow unsteadiness before these photo-
graphs were taken; the wing and tufts had been subjected to runs at several test conditions, including
higher Mach numbers and angles of attack, which were associated with extensive regions of flow
separation on the central portion of the wing. Unsteady chordwise shock movement was appreciable,
not only producing the tuftless area in figures 11b and 11c, but also contributing to the spreading of
the measured shock-pressure rise that is evident in figure 7. Because the unsteadiness of the flow
field about the wing model has several implications for the boundary-layer measurements, it will be
discussed in detail in a later section of this report.

As indicated by the tufts, the flow at the wing root at each test condition is essentially unyawed.
Deviation of the tufts from the streamwise direction is minor at the subcritical condition (fig. 11a)
except near the trailing edge, where outboard flow is indicated. At the transonic condition (fig. 11b)
a moderate inboard component of flow is indicated on the forward portion of the wing along most of
the span, and the flow is outboard on most of the aft portion, particularly near the trailing edge. The
qualitative characteristics of the tuft patterns for all test conditions are similar at the tip. The two
rows of tufts nearest the tip are significantly different from each other. The row nearest the tip shows
the inboard flow forward and outboard flow aft, but the next row inboard does not show an outbourd
component of flow near the trailing edge. Separation is evident in the aft portion of the mid-
semispan region in figure 11c, as is an indication of shock-wave/boundary-layer interaction at the



more inboard and outboard locations. Limited boundary-layer data were obtained at this test
condition at inboard stations.

Boundary-Layer Profiles at the Subsonic Test Condition

Velocity magnitude and flow-direction profiles obtained at the subsonic test condition are
presented in figure 12. The ordinate, z/c, is the distance from the surface normalized by the local
chord, and the velocity magnitude, u, is normalized by the free-stream velocity. The flow inclination
angle, B, is defined relative to the free-stream flow direction, and positive values of B correspond to
outboard flow. The use of the free-stream direction as the reference for B allows the variation in
flow direction both through the boundary layer and along the chord to be presented in a single plot.
Data obtained at the spanwise station nearest the wing root, | = 0.165, are plotted in figure 12a. The
side of the fuselage is roughly planar above the wing, except for a small fillet at the wing-fuselage
intersection, and is located at M = 0.127, 4.2 cm inboard of this spanwise survey station. Mechanical
interference at this station limited the boundary-layer data acquisition to x/c 2 0.4. The velocity
magnitude profiles are moderately full and show some scatter resulting from unsteadiness. The
direction profiles show nearly streamwise, collinear flow in the aft region, with moderate outboard
inclination at mid-chord near the surface.

The data of figure 12b, at 1 = 0.300, are qualitatively different from the data obtained at the root
station, and are typical of the mid-semispan stations. Approximately 40 data points were obtained on
each profile; individual data points are omitted from the plots at the forward chordwise stations for
clarity. The velocity magnitude profiles at 1 =0.300 show greater boundary-layer growth than
those at the root station, and the flow-direction profiles show greater three-dimensionality. The flow
is inboard and nearly collinear at the forward stations. The magnitude of the edge inclination
decreases with increasing x/c, becoming nearly aligned with the free-stream direction near the
trailing edge. Profiles at the aft chordwise stations show the flow direction changing from slightly
inboard at the edge to outboard near the surface, a trend which becomes more pronounced as the
trailing edge is approached. Velocity magnitude data sets obtained with different probes at the same
chordwise station are in good agreement with each other. At this spanwise station, data for each
chordwise station were obtained with probe 1. Repeat runs were made with probe 2 at x/c 0.5 and
with probe 3 at x/c 2 0.5. Agreement between corresponding flow-direction profiles is good for the
data obtained with probes 1 and 2, but it is poorer between profiles obtained at the aft chordwise
stations with probes 1 and 3; values of B obtained with probe 3 are slightly more positive than
corresponding values obtained with the other probes (recall that probe 3 was used only at m = 0.300,
x/c 2 0.5). The tips of probes 1 and 2 more closely approximate the nominal geometry shown in fig-
ure 4 than does the tip of probe 3. As a result, the calibration characteristics of probe 3 are signifi-
cantly more nonlinear than the calibration data of the other probes. Some data points obtained near
the surface with probe 3 at the aft chordwise stations exceed the calibration range and have been
omitted.

Data obtained with both probes 1 and 2 at the next outboard spanwise station, 1 = 0.450, are
presented in figure 12c. These data are qualitatively similar to the data of figure 12b, also showing
good agreement between the B-profiles obtained with the two probes. Some data obtained near the
surface with probe 1 for x/c <£0.98 exceed the calibration range and have been omitted.



The qualitative characteristics of the boundary-layer velocity magnitude and flow-direction pro-
files obtained at the next three spanwise stations, 1} = 0.575, 0.650, and 0.725 (figs. 12d-12f), are
similar to the characteristics of the profiles obtained at 1 = 0.300 and 0.450. The influence of the
wing twist, and the associated reduction in section lift coefficient with increasing N near the tip, is
evident in the data obtained at the outboard stations, 1 = 0.800, 0.900, and 0.950 (figs. 12g-12i). The
variation of flow direction with chordwise location at the boundary-layer edge is qualitatively the
same as at the inboard stations. Profiles at forward chordwise locations are approximately collinear.
Both the growth in boundary-layer thickness with increasing chordwise distance and the variation in
flow direction through the boundary layer near the trailing edge decrease abruptly as the tip is
approached.

For two-dimensional turbulent boundary layers, a generally accepted near-wall similarity law is

u _ 1 ZUy

where uy is the shear velocity, 1/t /p (Tw is the wall shear stress, p is the density, and v is the
kinematic viscosity). A limited range of values has been proposed for the constants in this equation;
Pierce et al. (ref. 17) present a review of this situation. The incompressible law of the wall is usually
extended to flows with moderate compressibility by evaluating the density and viscosity at the wall
temperature. Prahlad (ref. 18) proposed that this similarity law be extended to three-dimensional
flows by replacing the two-dimensional velocity in equation (1) with the velocity magnitude. Pierce
et al. (ref. 17) reviewed a number of proposals, including Prahlad’s, for near-wall similarity in three-
dimensional turbulent boundary layers, using data which included direct measurement of the magni-
tude and direction of wall shear stress (ref. 19). They concluded that the magnitude of the wall shear
stress could be determined by the Clauser chart technique (ref. 20) to within 5% to 10% if data in the
range 10 <zt < 100(z" = zu [/ vy,) were used (ref. 21). This conclusion was limited to monotoni-
cally skewed boundary layers with an approximate maximum of 15° to 20° of skew.

Figure 13 illustrates the method by which the Clauser chart technique was applied to the present
data. Velocity magnitudes obtained at 1 = 0.165, 0.450, and 0.950 are plotted in semilogarithmic
coordinates. In these coordinates, equation (1) is represented by a family of straight lines with the
skin friction coefficient, Cs , as a parameter. Since the straight lines in figure 13 were drawn for the
range 10 < z+ < 1000, it is apparent that the sublayer and the inner portion of the logarithmic region
are not resolved in these data. For this reason, most of the velocity magnitude profiles do not appear
to approach zero with decreasing distance from the wall. In some cases in which a well-defined loga-
rithmic region exists, the data obtained nearest the surface lie above the line corresponding to the law
of the wall. This trend has been observed in airfoil boundary-layer measurements and is believed to
be a surface proximity effect, probably also related to relative motion of the model and traversing
unit. Note that the maximum skewing angles corresponding to many of the profiles of this investiga-
tion exceed the range of applicability of this method for estimating skin friction. Near the trailing
edge at the mid-semispan stations, the difference in B between the boundary-layer edge and the
surface sometimes exceeds 35°. For the more highly skewed profiles, it is likely that values of Ct
estimated by this method represent the correct order of magnitude.



The behavior of the boundary-layer profiles obtained at the wing root, N = 0.165, is qualitatively
different from that of the profiles at the other spanwise stations. Although these profiles do exhibit a
logarithmic region near the surface, the slope is greater than that given by equation (1). The root-
station boundary-layer profiles obtained at each of the three test conditions exhibited this feature.

Integral Properties, Skin Friction, and Edge Flow Angle Data at the Subsonic Test Condition
Values of streamwise displacement thickness, 8;, for all profiles obtained at the subsonic test

condition are presented in figure 14, normalized by the mean aerodynamic chord. The streamwise
. . * .
and crossflow displacement thicknesses, 8; and 3, respectively, are defined as follows:
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where the subscript e refers to conditions at the edge of the boundary layer, and the velocity compo-
nents w and ug are normal and parallel, respectively, to the flow direction at the boundary-layer
edge. To facilitate presentation of the displacement-thickness data, the wing planform in figure 14
has been drawn to conform to the convention of left-to-right flow, resulting in a left-wing configura-
. tion. (Recall that the model is actually a right-wing configuration; see fig. 1.) Agreement between
data sets obtained at the same location with different probes is generally good. The increase in &;
with x/c is moderate near the trailing edge at the root station, but the larger values of ¢, in the
mid-semispan region cause increased chordwise growth of §; with increasing x/c. This trend
reverses near the tip, as a result of reduced tip loading. The trailing-edge streamwise displacement
thickness no‘x"malized by the local chord varies by nearly a factor of two from mid-semispan to tip.
Values of 8; are more scattered near the tip than similar data obtained further inboard, probably
because of vibration, since the boundary layer was thinnest at the tip where the relative motion was
greatest.

The streamwise displacement-thickness data are presented in a more conventional format in
figure 15, normalized by the local chord.

Values of the streamwise shape factor, H, are presented in figure 16. These data show the
expected increase near the trailing edge at mid-semispan and have nearly constant values at the root
and tip.

Values of skin friction obtained from the Clauser charts are presented in figure 17. The data
show little variation at the root and have monotonically decreasing values of C¢ with increasing x/c
at the other spanwise stations. Data sets obtained with different probes at the same location are in
good agreement v&ith each other. The trends in the skin-friction data are consistent with trends
observed in the 8; and H plots.



Flow-direction measurements at the boundary-layer edge are presented in figure 18. Although all
the previous comparisons show significant differences between trends observed at the wing root and
at the other spanwise stations, the flow-direction results are the most dramatic in this respect. Addi-
tional data are needed for the transition region between the root and the mid-semispan stations.

The crossflow displacement thickness, 8;, is probably the most clear-cut indicator of three-
dimensionality. Distributions of crossflow displacement thickness are presented in figure 19. The
trends in these data are consistent with the velocity magnitude and flow-direction profiles of fig-
ure 12; the most significant crossflow effects are present at mid-semispan, aft of mid-chord.

Boundary-Layer Profiles at the Transonic Test Conditions

Velocity magnitude and flow-direction profiles obtained at the transonic cruise condition
M., = 0.825, a = 4° are presented in figure 20. These data show most of the same qualitative fea-
tures as the data obtained at the subsonic test condition, and also show the influence of the shock
wave. At the root station (fig. 20a) the shock location indicated by the Cp distribution (fig. 7) is in
the range 0.35 < x/c < 0.55, and the flow inclination in the inner portion of the boundary layer is
apparently influenced by the shock. The profile at x/c = 0.4 is aligned with the free-stream direc-
tion, except for a thin layer near the surface where the flow turns inboard. At x/c = 0.5 and 0.6, the
flow direction is slightly inboard at the boundary-layer edge, turning continuously outboard with
decreasing distance from the wall.

The data of figure 20b, obtained at 1 = 0.300, are typical of the mid-semispan stations. As in the
subsonic test condition, these data show significant differences from data obtained at the root station.
The flow direction at the boundary-layer edge is approximately 16° inboard at x/c = 0.2. The influ-
ence of the shock on the flow within the boundary layer is qualitatively similar to the trend observed
at the wing root. At x/c = 0.2, upstream of the shock, the flow direction becomes increasingly
inboard as the surface is approached; this trend is reversed at x/c = 0.4, downstream of the shock.
All of the profiles obtained downstream of the shock at this spanwise station show the flow direction
changing from slightly inboard at the edge to outboard near the surface. Velocity magnitude data sets
obtained with different probes at the same chordwise station are in good agreement. The flow-
direction profiles obtained with probes 1 and 2, 0.2 < x/c < 0.5, are also in good agreement, but the
agreement between profiles obtained with probes 1 and 3, x/c 2 0.5, is poorer, as it is for the corre-
sponding profiles at the subsonic test condition (fig. 12b). The data obtained with probe 3 for
x/c 2 0.98, z/c < 0.003 exceed the calibration range and have been omitted. The large angles indi-
cated near the surface by probe 3 appear questionable, but no valid reason to discard these data has
been identified.

Data obtained at the next outboard station, 1 = 0.450, are presented in figure 20c. Data sets
obtained with probes 1 and 2 are in good agreement except in the vicinity of the shock, where the
scatter is attributed to low-frequency shock-wave motion and the lack of repeatability to a shift in

mean shock location.

Data obtained at n = 0.575 (fig. 20d) are qualitatively similar to the data shown in figures 20b
and 20c, except for the substantial lack of repeatability at x/c = 0.3; where two different profiles
were obtained consecutively, with the same probe. Examination of the profile data and the
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displacement-thickness data indicates that the mean shock location may have shifted during the time
between the acquisition of the two profiles.

The reduction in section lift coefficient with increasing T near the tip is evident in the
boundary-layer data obtained at the more outboard stations (figs. 20e-20i). The growth in boundary-
layer thickness with increasing chordwise distance, and the variation in flow direction through the
boundary layer near the trailing edge, decrease abruptly as the tip is approached. Anomalies in the
velocity magnitude data near the surface at the outboard stations are believed to be associated with
relative motion of the model and traversing unit.

Velocity magnitude and flow-direction profiles obtained at M, = 0.825, o. = 6° are presented in
figure 21. The data obtained at the root station (fig. 21a) are similar in character to the root-station
data obtained at the transonic cruise condition (fig. 20a), except that the influence of the shock on the
flow-direction profiles is more pronounced. At 1 = 0.300 (fig. 21b), relatively large values of veloc-
ity at the boundary-layer edge upstream of the shock are evident (ue/ueo = 1.73 at x/c =0.20), and
large outboard components of velocity are present in the flow-direction profile at x/c =0.4. At
n = 0.450 (fig. 21c), the flow is attached at x/c = 0.3. The flow is probably intermittently separated
at x/c = 0.4, and is clearly separated at x/c = 0.5 and 0.6. There is considerable scatter caused by
unsteadiness in the profiles at 0.4 < x/c < 0.6, but the data give an approximate indication of the
extent of the viscous region. At 1 = 0.575 and 0.650 (figs. 21d, 21e), the flow appears to separate in
the vicinity of x/c = 0.4, but the viscous region is thinner at mid-chord at 1 = 0.650. The trend
toward increasingly positive values of trailing-edge Cp in the static-pressure distribution for this test
condition (fig. 10) indicates that the flow was attached for 1 2 0.80.

Clauser plots of velocity magnitude profiles for three spanwise stations at the transonic cruise
condition are presented in figure 22. These data are qualitatively similar to the corresponding data
obtained at the subsonic test condition (fig. 13).

Integral Properties, Skin Friction, and Edge Flow Angle Data at the Transonic Test Conditions

Values of streamwise displacement thickness, 8;, for all profiles obtained at the transonic test
conditions are presented in figures 23 and 24. Although it was not possiblg to obtain many profiles
that were clearly upstream of the influence of the shock, the increase in 8, associated with the
shock is apparent at the inboard stations. There is generally good agreement between data sets
obtained at the same location with different probes; however, a lack of repeatability in the vicinity of
the shock at n = 0.450 and 0.575 is eviderlt. In the most extreme cases— = 0.450, x/c = 0.5, and
1 = 0.575, x/c = 0.3—the large value of J; is consistent with values measured further downstream
of the shock, and the smaller value appears to be a continuation of the upstream trend, indicating that
a shift in mean shock location may have occurred during the time between the acquisition of the two
profiles. The trends of spanwise variation in displacement thickness at this test condition are similar
to the trends exhibited by the corresponding data for the subsonic test condition (figs. 14, 15).

Also included in figure 23 are data obtained at the two inboard stations at Me = 0.825, o= 6°.
The displacement-thickness distributions at the root station, 1| = 0.165, are nearly identical. At the
next outboard station, 1 = 0.300, a greater increase in displacement thickness at the shock is shown
by the data for o = 6°, but the distributions are similar near the trailing edge. Data obtained further
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outboard at o = 6° show extensive separation aft of mid-chord (see fig. 21). The comparison of data
from these two test conditions at M, = 0.825 implies that boundary-layer characteristics at mid-
semispan are determined primarily by local pressure gradients and are not influenced significantly by
flow at the root or by the tunnel-wall boundary layer.

Values of streamwise shape factor and skin friction are presented in figures 25 and 26 for
M. = 0.825, a = 4°. The influence of the shock is even more pronounced in these data than in the
plots of 8;. Large values of H occur in the vicinity of the shock, followed by decreases with
increasing x/c as the boundary layer recovers from the interaction. The subsequent increases in H
at mid-semispan near the trailing edge are moderate. Both the Crand H data indicate that the
trailing edge is not in a state of incipient separation.

Measurements of flow direction at the boundary-layer edge and of crossflow displacement thick-
ness are presented in figures 27 and 28 for the transonic cruise condition. These data show the same
characteristics as the corresponding data obtained at the subsonic test condition.

Integral-property, skin-friction, and edge flow angle data for the Mo, = 0.825, a = 6° case are
presented in figures 29-33. Characteristics of the streamwise displacement-thickness data at the two
inboard stations were discussed previously. Values of Cr are presented for those profiles which
exhibit a logarithmic region near the surface; integral properties are presented for those profiles
which were judged to be attached or in a state of incipient separation, and edge flow angle data are
presented for all profiles obtained at this test condition.

The influence of the shock wave at 1 = 0.300 is particularly evident in the distributions of shape
factor and skin friction. The greater chordwise extent of nonzero values of skin friction at 1 = 0.650
than at 1} = 0.450 and 0.575 is consistent with the static-pressure data obtained at this test condition,
indicating a trend toward attached flow at the outboard spanwise stations. The distributions of B¢ at
the two inboard stations (fig. 32) are similar to those observed at other test conditions.

Flow Unsteadiness

As noted earlier, flow unsteadiness was evident throughout the series of experiments. It is impor-
tant, therefore, to consider the unsteady aspects of the flow when evaluating the boundary-layer data.
The array of pressure transducers in the wing provided an overall picture of the unsteady pressure
field on the wing upper surface. In coefficient form, the pressure fluctuation intensities at
M., = 0.825, o0 = 4° are shown in figure 34. A “baseline” Cp,,,,, level, corresponding to a case of no
net loading on the wing, is also indicated. The features are characteristic of attached transonic flow;
relatively low fluctuation intensities are present up- and downstream of the shock, which produces
intense pressure fluctuations as it “jiggles” chordwise. The shaded region indicates the chordwise
extent of the overall shock pressure rise according to the section Cp distributions; this rise corre-
sponds approximately to the range of unsteady shock movement. The pressure fluctuation intensity
appears to be unusually high, especially upstream of the shock, where previous experiments in wind
tunnels (refs. 22 and 23) and in flight (ref. 24) have indicated Cprms = 0.01 or less.

A further indication of the extent of unsteady chordwise shock movement on the model wing is
given in figure 35, which shows an oscillograph record of simultaneous pressure signals from
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x/c = 0.25 and x/c = 0.40, 1 = 0.420 for the transonic test condition. Passage of the shock back and
forth over the transducer at 40% chord produces the large pressure jumps. Although the shock is
completely downstream of the 40% chord station during some periods (the steady, low-pressure por-
tions of the signal), it occasionally moves sufficiently far forward to produce positive-pressure jumps
in the output of the transducer at 25% chord. This range of unsteady shock motion was unusually
extensive, particularly for a conventional airfoil section with fully attached flow. Earlier experience
with two-dimensional airfoil models had indicated unsteady shock movement over only a few
percent of the chord.

Another important aspect of figure 35 is the indication that unsteady shock motion occurs with a
wide range of time scales, from a few milliseconds to the order of seconds. The response character-
istics of the pressure-measuring systems used to take wing Cp and boundary-layer profile data were
such that the pressure variations produced by the lowest frequency shock movements were detected
while the higher frequency fluctuations were attenuated, so that only the average value of the pres-
sure was recorded. The low-frequency response is illustrated by figure 36, which presents the enve-
lope of Cp values obtained from a number of sequential data-acquisition cycles at spanwise station
N = 0.45 for a constant flow condition; these data imply that the shock moved through a range of
about 20% chord to nearly 50% chord. The one set of individually plotted data points shows an
obvious case of the shock shifting position during the time taken by the data system to record the
pressures at two adjacent chordwise stations. Although the recorded Mach number varied between
0.820 and 0.826 over these sets of Cp data, no correlation existed between the indicated Mach
number and the shock position variations, nor was the recorded Mach number variation correlated
with section ¢, variation (which amounted to 8%).

The pressure-measurement, frequency-response problem produces uncertainty in the boundary-
layer measurements in the vicinity of the shock. The irregularity of some of the boundary-layer
profiles near the shock was a direct result of low-frequency shock motion past the boundary-layer
probe. Another important point is that an “averaged” boundary-layer profile measured in the imme-
diate vicinity of an unsteadily moving shock is not likely to be a physically real profile. A velocity
profile measured directly beneath the mean position of the shock is actually an average of the
upstream profile and the downstream profile, both of which the probe sees as the shock moves back
and forth; this “averaged” profile is different from the profile that actually exists beneath a stationary
shock.

The lowest frequencies associated with the shock motion correspond to disturbance scales too
large to be characteristic of the model flow field, and are apparently produced by disturbances in the
tunnel flow. During continuous monitoring of the boundary-layer probe output while the tests were
under way, very low frequency oscillations (< 1 Hz) were occasionally observed. Such low frequen-
cies are generally ignored in studies of wind tunnel flow quality and background disturbance level.
For example, the study of flow disturbances in various NASA Ames tunnels by Dods and Hanly
(ref. 25) considered only frequencies above 10 Hz. However, evidence does exist that large-scale,
long-period disturbances are present in transonic wind tunnel flows. Rose (ref. 26) observed flow
disturbances in the Ames 14-foot tunnel (the tunnel used for these tests) that had streamwise length
scales of at least 50 m; in the present case, this would translate into a time period of over 200 ms.
Another indication comes from a static-pressure probe used in the present tests to monitor
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test-section pressure fluctuations. Data from this probe indicate considerable energy in the low-
frequency end of the spectrum (below 10 Hz), as figure 37 shows.

A further example of the influence of low-frequency disturbances appears in figure 38, which
shows low-frequency-filtered (1-Hz cutoff) pressure fluctuations measured at 25% chord for two
different span stations at a subsonic test condition (M. = 0.499, o = 5.0°) that was frec of shock or
separation unsteadiness. Negative as well as positive correlations are apparent. (Negative correla-
tions are defined by similar time dependence but opposite signs.) Because slow variation of the test-
section static pressure affects all wing static pressures similarly, static pressure changes alone cannot
explain the periods of negative correlation. Since flow velocity variations affect wing pressures in
two ways, either by varying the Mach number (streamwise velocity variation) or by varying the
angle of attack (velocity variation perpendicular to the mean stream direction), BCp / OM and
0C,, / oo were evaluated at the wing stations in question (x/c = 0.25 at 1 = 0.420 and 0.640) to
define the local pressure responses at those stations to flow velocity in general. It was found that
dCp /oM >0 and 9C,,/ dat < 0 at both stations, meaning that a large-scale flow-velocity perturba-
tion would produce pressure variations of the same sign at both stations. To produce the occasional
negative Cp correlation, some flow disturbances must have included large-scale velocity variations
that changed sign between 1 = 0.420 and 1 = 0.640, suggesting that large-scale swirling motions
were present in the tunnel flow.

COMPARISONS AMONG MEASURED AND COMPUTED BOUNDARY-LAYER
PROPERTIES

Measured and computed flow-field properties will be compared at two spanwise locations, ong at
mid-semispan and another near the tip (fig. 39). The experimental data will be compared with the
predictions of two- and three-dimensional computational methods for 1 = 0.450 and 1y = 0.900.
However, comparisons involving computations with an infinite-swept-wing boundary-layer code use
sections normal to the quarter-chord line and their corresponding intersections with the quarter-chord
line, at M =0.554 and n = 0.870.

Results at Mach 0.50

Surface static-pressure distributions obtained at Mo, = (0.50 at the spanwise stations chosen for
the comparisons are shown in figure 40. The experimental values of the section lift coefficient, ¢,
are also included. Conditions at 1 =0.450 are representative of the relatively highly loaded mid-
semispan region, and conditions at 1 = 0.900 are typical of the more lightly loaded tip region.

Static-pressure distributions calculated by two of the Jameson-Caughey FLO-codes (refs. 27
and 28) are included for comparison. Both codes are based on the transonic full potential equation.
FLO-30 is a wing-body code in which a finite-volume scheme in conservative form is used; the
results presented do not include a boundary-layer correction. FLO-22NM is a finite-difference,
nonconservative, wing-alone code coupled by Henne et al. (ref. 29) with the two-dimensional Nash-
Macdonald integral turbulent boundary-layer method (ref. 30). It also includes an adjustment to M,
to correct for the influence of the fuselage on the wing flow field. Both FLO codes have been used
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extensively for several years; their strengths and weaknesses are well known. Results of the inviscid
calculations are incidental to comparisons between computed and experimental viscous flow proper-
ties. Agreement between the measured and calculated pressure distributions is generally good at

N =0.900 and somewhat poorer at N = 0.450. The calculated results are nearly identical except near
the trailing edge, where the effect of including the boundary layer in FLO-22NM is evident. A com-
parison between the inviscid FLO-30 result and the experimental data shows the trend, commonly
observed in the trailing-edge region, of calculated static-pressure levels that are higher than those
experimentally observed. The boundary-layer correction in FLO-22NM brings the calculated pres-
sures closer to the experimental values, although the increment is too small at the inboard station.
The excellent agreement between the two calculated results at the more forward chordwise locations
indicates that the correction for fuselage effects in FLO-22NM is adequate for this situation.

Measured and computed upper-surface boundary-layer displacement-thickness distributions are
compared in figure 41 for the subsonic case. The computations are two-dimensional. The
FLO-22NM results correspond to the computed static-pressure distributions of figure 40, and the
remaining computations were performed using the experimental static-pressure distributions.
Agreement is generally good at M = 0.900, but the computed displacement thicknesses are less than
the measured values at 1 = 0.450.

There are significant differences between the predictions of FLO-22NM and the Cebeci-Smith
finite-difference method (ref. 31) in the leading-edge region. In the FLO-22NM calculation, the
values of streamwise distance from the leading edge to the transition location normalized by the
local chord, (x/c);, were 0.008 and 0.013 at 1 = 0.450 and 0.900, respectively. The Nash-Macdonald
computations (ref. 30), based on the experimental pressures, started downstream of the transition
location predicted by the Cebeci-Smith method, and used initial conditions derived from the Cebeci-
Smith method. Although the instantaneous transition option was used in the Cebeci-Smith code, the
boundary-layer profiles computed by this code required two to three mesh points to change from
laminar to turbulent characteristics. The beginning of transition for these test conditions was pre-
dicted by the Cebeci-Smith code to be (x/c) = 0.025 and 0.05 at 1 = 0.450 and 0.900, respectively.
These locations correspond to points just downstream of the suction peaks in the local pressure dis-
tributions. At 1 = 0.900, the experimental and computed static-pressure distributions are nearly
identical; the differences between the two sets of Nash-Macdonald calculations are clearly associated
with differences in transition locations. At 1 = 0.450 the situation is less clear, but comparisons of
both sets of Nash-Macdonald calculations implies that the primary cause of differences in the calcu-
lated distributions at M = 0.45 and x/c < 0.7 is the difference in transition location; for x/c > 0.7,
differences in the static-pressure distributions near the trailing edge are clearly important. Since the
trailing-edge static-pressure distribution resulting from the FLO-22NM calculation at N = 0.450 is
not in agreement with the measurements, the better agreement of the FLO-22NM displacement-
thickness distribution with the experimental results, relative to the computations based on the exper-
imental pressures, is fortuitous. Improved agreement of experimental and computed trailing-edge
static-pressure distributions would be associated with poorer agreement of the displacement-
thickness distributions, and vice versa.

Computed displacement-thickness distributions using the FLO-30 pressure distribution shown in

figure 40 are compared with the same experimental data in figure 42. Computed results are included
from the three-dimensional integral method of Smith (ref. 32) and the Cebeci-Smith
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two-dimensional finite-difference method. Agreement between measurements and computed results
is closer for  =0.900 than for n = 0.450, and the three-dimensional predictions are closer to the
data than the two-dimensional predictions at both spanwise locations. The FLO-30 code and the
three-dimensional boundary-layer code used for these calculations are part of a coupled viscous-
inviscid interaction scheme (ref. 33). It has not yet been possible to achieve a solution with this
coupled scheme beyond the initial inviscid and boundary-layer calculations. This inability to achieve
a viscous-inviscid solution is surprising, since wings having little aft camber, such as the wing used
in the present study, usually present fewer difficulties for computation methods than more recent
designs having significant aft camber.

Experimental data, the predictions of a three-dimensional finite-difference method, and the
predictions of an infinite-swept-wing method developed by Cebeci and his coworkers (refs. 34 and
35) are compared in figure 43. Experimental static-pressure distributions were used in these compu-
tations. For the three-dimensional computations, starting conditions along the span at x/c =(.2 were
obtained from experimental data, and starting conditions at the wing root were obtained from results
generated internally by the code at 1 = 0.300.

For the infinite-swept-wing computations, airfoil-section data were obtained in planes normal to
the quarter-chord line (see figure 39). Static-pressure distributions were interpolated to these planes
normal to the quarter-chord lines from the adjacent pressure-orifice stations.

Experimental values of 8: at n =0.450, 0.575, 0.800, and 0.900 arc included in figure 43.
Results from the three-dimensional computations correspond to 1 = 0.450 and 0.900, but results
from the infinite-swept-wing computations correspond to diagonal sections between the two pairs of
adjacent stations. Substantially better agreement between measurements and results of calculations is
again shown in the tip region. The three-dimensional computations of §; agree, within plotting
accuracy, with the infinite-swept-wing values calculated with a quarter-chord sweep angle of
A = 35°; the solid line in figure 43 represents both calculations. Reducing the sweep angle in the
infinite-swept-wing calculation to the trailing-edge value of 25° produces a moderate reduction in
the predicted displacement-thickness distribution near the trailing edge.

In figure 44, the experimental spanwise variation of displacement thickness is compared with the
results of three-dimensional computations by the method of reference 34. Starting conditions at the
wing root were obtained both from results generated internally by the code and from boundary-layer
measurements at 1 = 0.300. The two sets of starting conditions agree at the forward chordwise sta-
tions, but differ substantially near the trailing edge. The results of the computation that started with
experimental data rapidly approach the computed results that started with the internally generated
solution; the span station at which the results of the two computations agree depends on the magni-
tude of the initial discrepancy. It is clear that the discrepancies between measured and computed
displacement-thickness distributions near the trailing edge in the mid-semispan region are not a
result of inaccurate inboard starting conditions for the code, because the predictions of the code
rapidly adjust to the same values with increasing n for both computations.

- - * . el
Computational and experimental values of B¢ andd, are compared in figures 45 and 46,

respectively. Since B¢ is a property of the inviscid flow, and is a boundary condition for the viscous
flow in a conventional boundary-layer calculation, figure 45 gives an indication of the degree to
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which the inviscid and viscous regions are consistent. In the three-dimensional calculations, the local
yaw-plane angles at the edge of the boundary layer are closely matched to the experimental values.
In the infinite-swept-wing calculations, the component of velocity along the span is fixed and the
velocity magnitude is controlled by the local static pressure, so that the computed local yaw-plane
angle is a function of the assumed effective sweep angle and the pressure distribution. The directions
of boundary-layer edge flow predicted by the infinite-swept-wing calculations are considerably more
outboard at the mid-semispan station than the measured values; this discrepancy is qualitatively
similar but smaller in magnitude near the tip. The differences among the yaw-plane angles predicted
by the infinite-swept-wing calculation and the measured values are indications of the degree to
which the the infinite-swept-wing approximation is valid for this flow field.

The crossflow displacement thicknesses are small at the outboard station, and the measured and
predicted values are roughly similar. At the inboard station, the measured values exceed the com-
puted values near the trailing edge, and the three-dimensional calculation predicts less crossflow than
either of the infinite-swept-wing calculations. Differences in the boundary-layer edge conditions may
be responsible for most of the differences among the computations. Variation of the assumed sweep
angle has a first-order influence on the computed crossflow at both spanwise stations.

Measured and computed values of local skin-friction magnitudes at the subsonic test condition
are compared in figure 47. The computed values were obtained from the three-dimensional calcula-
tions. Agreement is generally good, with the largest discrepancies occurring inboard, near the trailing
edge.

Results at Mach 0.825

Two-dimensional boundary-layer computations were performed using the experimental pressure
distributions obtained at selected spanwise stations at M = 0.825, o0 = 4°. The computed
displacement-thickness distributions are compared with experimental data in figure 48. Perturbations
in the static-pressure distributions, caused by the auxiliary wing and traversing unit, have little effect
on the computed displacement-thickness distributions, but the computed values are substantially less
than the measured values for 1 = 0.450, aft of mid-chord. Since the measured static-pressure rise
associated with the shock wave extends over a considerable chordwise distance, primarily because of
shock motion caused by test-section flow unsteadiness, an additional calculation was performed for a
pressure distribution in which the pressure rise caused by the shock was limited to a chordwise
extent of approximately eight times the upstream boundary-layer thickness. The resulting chordwise
extent of the interaction is in better agreement with shock/boundary-layer interaction experiments.
This modification of the static-pressure distribution had little effect on the computed displacement-
thickness distribution at the inboard station, as did the results of several other numerical experiments
(not shown) on the influence of mesh spacing in the leading-edge region, the assumed length of the
transition region, and the smoothing of the input static-pressure distribution. A more definitive
evaluation of the effect of the auxiliary wing and traversing unit on the boundary-layer growth would
be to perform three-dimensional boundary-layer calculations for edge conditions corresponding both
to the wing alone and to the wing plus the auxiliary wing and traversing unit. The difficulty of
performing three-dimensional boundary-layer calculations has precluded this approach.
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The experimental static-pressure distributions obtained with the auxiliary wing and traversing
unit are compared in figure 49 with results of calculations from the FLO-22NM and FLO-30 codes.
The experimental data and the FLO-22NM results correspond to o = 4°. The angle of attack for the
FLO-30 computation was adjusted to achieve good agreement between the calculated and experi-
mental values of upper-surface pressure distribution for x/c < 0.5, 1 = 0.450. The resulting angle of
attack for the FLO-30 computation was 4.2°. The more aft location of the upper-surface shock at
1 = 0.450 obtained from the FLO-30 solution, relative to the FLO-22NM solution, is consistent with
both the slightly higher angle of attack of the FLO-30 calculation and the conservative formulation
of FLLO-30. However, the upper-surface pressure distribution forward of the shock obtained from the
FLO-22NM solution indicates that the angle of attack for this calculation may have been slightly
low. Increasing the angle of attack for the FLO-22NM calculation would cause the Cp distribution
forward of the shock to become more negative and to move the shock aft, thus improving the agree-
ment with the experimental data and the FLO-30 solution. There is a degree of arbitrariness in the
manner in which the Kutta condition and the trailing vortex sheet are treated in potential flow calcu-
lations which can lead to discrepancies between computed and measured angles of zero lift. The
unusually small size of this model relative to the test-section size, and the slotted-wall test-section
configuration, tends to rule out the possibility of significant wind tunnel wall-interference effects in

the experiment.

The differences among the computed and the experimental pressure distributions near the trailing
edge are similar to the results shown in figure 40 for M., = 0.50; the computed static-pressure levels
are higher than the measured values near the trailing edge, except for the FLO-22NM computations
at i1 =0.900. At 1 = 0.900, neither calculation satisfactorily models the shock and expansion on the
upper surface for x/c <0.5. These discrepancies may be the result of meshes which are too coarse.

Boundary-layer computations using the static-pressure distributions shown in figure 49 are com-
pared with experimental data in figure 50. The transition locations were (x/c); = 0.04 for the three-
dimensional integral method of Smith (ref. 32) at both spanwise stations, and (x/c); = 0.022 and 0.10
at M = 0.450 and 0.900, respectively, for FLO-22NM. The influence of the difference in shock loca-
tion between the two computations is evident in the mid-chord displacement-thickness distributions
at n =0.450. The differences between the two calculated trailing-edge displacement-thickness
distributions at 1 =0.450 probably result from the significant differences in the corresponding
static-pressure distributions near the trailing edge, but differences in strength and location of the
shock may also be partly responsible. Separation is predicted in the three-dimensional calculation at
x/c = 0.97, n = 0.450; downstream of separation, a constant shape factor is used to continue the
calculation. The large differences between the computed displacement-thickness distributions at
n =0.900, x/c > 0.7 may be a result of the slightly greater overall pressure gradient in the FLO-30
pressure distribution, and the more aft location of transition in the FLO-22NM calculation.

Results of computations with the infinite-swept-wing code are compared with experimental data
for streamwise and crossflow displacement-thickness distributions (figs. 51,52) and yaw-plane flow
direction angles at the boundary-layer edge (fig. 53), for both the mid-semispan and tip stations.
Computed results are included for assumed sweep angles of 25° and 35°, and for pressure distribu-
tions obtained with the wing alone and with the wing in the presence of the traversing unit. These
results show a much greater sensitivity of the computed streamwise and crossflow displacement-
thickness distributions to the assumed sweep angle than the corresponding results for Mo, = 0.50,
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presented in figures 43 and 45. Because the influence of the assumed sweep angle is so large and the
computed inviscid yaw-plane flow-direction angles near the trailing edge are in poor agreement with
the experimental values, the geometry of this wing is such that the infinite-swept-wing approxima-
tion is inadequate.

CONCLUDING REMARKS

Boundary-layer survey data were obtained over most of the upper surface of a transport wing
model at subsonic and transonic cruise conditions. A less extensive set of data was also obtained at a
transonic test condition for which a separated region was present at mid-semispan, aft of mid-chord.
The data were obtained with miniature three-orifice yaw probes that allowed determination of the
flow speed and flow direction in the plane of the wing. In addition to the boundary-layer data, sur-
face static-pressure distributions and fluorescent minituft flow-visualization photographs were
obtained. Dynamic instrumentation, primarily high-frequency-response pressure transducers, were
installed in the model; nonsteady data pertinent to interpretation of the boundary-layer results are
presented.

Significant variation in flow direction with distance from the surface was observed near the
trailing edge at both the subsonic and transonic cruise conditions, except at the wing root and tip.
The transonic data show boundary-layer growth associated with shock-wave/boundary-layer
interaction, followed by recovery of the boundary layer downstream of the shock.

Compromises in the design of the data acquisition equipment, related to flow interference and
rigidity, were necessary to permit acquisition of an extensive set of data in a reasonable wind tunnel
occupancy period. The influence of the traversing unit on the wing static-pressure distributions was
negligible at the subsonic condition and moderate at the transonic conditions. Low-frequency test-
section flow unsteadiness also had an adverse influence on this experiment. However, the internal
consistency of the data, including generally good repeatability, indicates that the data should provide
useful test cases for three-dimensional, turbulent, boundary-layer computation methods.

The boundary-layer and surface static-pressure data are compared with computed predictions
obtained from inviscid wing and wing/body codes based on the transonic full potential equation, and
from two- and three-dimensional boundary-layer codes. Good agreement was generally obtained
between measured and computed static-pressure distributions; the primary discrepancies occurred
between experimental data and inviscid calculations in the trailing-edge region, and at the shock near
the tip at the transonic test condition. Results of the inviscid computations and comparisons with
experimental static-pressure distributions are incidental to the comparisons of computed and
measured boundary-layer properties.

The boundary-layer computation methods used in this limited set of comparisons gave reason-
able results in the outboard regions where three-dimensional effects are at a minimum and adverse
pressure gradients are moderate. In the more highly loaded mid-semispan region near the trailing
edge, displacement-thickness growth was significantly underpredicted, except when the unrealisti-
cally severe adverse pressure gradients associated with inviscid calculations were used to perform
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the boundary-layer calculations. Questions associated with the experimental data imply a need for
additional data to corroborate the present results.
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APPENDIX

Tabulated static-pressure and boundary-layer profile data are contained on microfiche pages
located in an envelope in the back cover of this report. The following is a list of these tables with
brief descriptions of their contents.

Table A 1. Run summary of wing static-pressure data for which boundary-layer surveys were
obtained. This table contains a run summary of wing static-pressure data obtained at test condi-
tions corresponding to the boundary-layer surveys. Data are presented corresponding to the wing
alone, the wing plus the auxiliary wing, and the wing plus the auxiliary wing with the traversing
unit mounted at a survey station, with the probe tip retracted. Definitions of terms used in the
static-pressure tabulations are also included.

Table A2. Wing static-pressure data for which boundary-layer surveys were obtained. This table
contains test-section conditions and wing surface-pressure coefficients as a function of percent
local chord and fraction of semispan.

Table A3. Run summary of boundary-layer profile data. This table contains run numbers, edge
conditions, integral properties, and skin friction coefficients for the boundary-layer surveys.

Definitions of terminology used in this table are also included.

Table A4. Detailed profile data, M = 0.50, o. = 6°, probe 1. The terminology used in presenting the
detailed profile data is defined at the beginning of this table.

Table AS5. Detailed profile data, Mo, = 0.50, ot = 6°, probes 2 and 3.
Table A6. Detailed profile data, Mo = 0.825, 0. = 4°, probe 1.
Table A7. Detailed profile data, M = 0.825, ot = 4°, probes 2 and 3.

Table A8. Detailed profile data, M., = 0.825, o = 6°, probe 1.
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Figure 1. Transport wing-fuselage model with traversing unit in NASA Ames 14-Foot Transonic

Wind Tunnel.
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Figure 2. Wing, fuselage, and boundary-layer traversing unit.
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(a) Mes = 0.50, a = 6°.

(b) Mo, =0.825, o = 4°,
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Figure 43. Measured streamwise displacement-thickness distributions compared with predictions
computed by methods of Cebeci et al.; Moo = 0.50.
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Figure 46. Measured crossflow displacement-thickness distributions compared with predictions
computed by methods of Cebeci et al.; Moo = 0.50.
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Figure 47. Measured and calculated skin-friction magnitudes; Me = 0.50.
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Figure 48. Measured streamwise displacement-thickness distributions and two-dimensional
computations; Mo, = 0.825, o = 4°.

68



a Experiment, wing plus
auxiliary wing and
traversing unit, & =4.0°

------ FLO-30, inviscid, o =4.2°
FLO-22NM, inviscid

plus boundary

layer, @ =4.0°

-1.5

n = 0.450 n = 0.900

C,-0.5

0.5

0 0.5 1.0
x/¢ x/¢

Figure 49. Surface static-pressure distributions at two spanwise stations; Moo = 0.825.
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Figure 50. Measured streamwise displacement-thickness distributions and two- and three-
dimensional computations; Mo, = 0.825, a0 = 4°,
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Figure 51. Measured streamwise displacement-thickness distributions and infinite-swept-wing
computations; Moo = 0.825, o0 = 4°.
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Figure 52. Crossflow displacement-thickness distributions; M., = 0.825, a0 = 4°.
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Figure 53. Measured and calculated flow directions at the boundary-layer edge; M., = 0.825, o = 4°.
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