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ABSTRACT

Validated results are presented for the new 3D body of revolution finite element-

boundary integral code. As usual, a Fourier Series expansion of the vector electric and

magnetic fields is employed to reduce the dimensionality of the system and the exact

boundary condition is employed to terminate the f'mite element mesh. The mesh

termination boundary is chosen such that it leads to convolutional boundary operators for

low O(n) memory demand. Improvements of this code are discussed along with the

proposed formulation for a full 3D implementation of the finite element-boundary integral

method in conjunction with a CGFFF solution.

OBJECTIVE

The objective of this task is to develop innovative techniques and related software

for scattering by three dimensional composite structures. The proposed analysis is a hybrid

f'mite element-boundary integral method formulated to have an O(n) memory demand. This

low storage is achieved by employing the FFT to evaluate all boundary integrals and by

resorting to an iterative solution algorithm. Particular emphasis in this task is the

generation of software applicable to airborne vehicles and the validation of these by

comparison with measured and other reference data. Because the approach is new, a step

by step development procedure has been proposed over a three-year period. During the

first year the technique was developed and implemented for two-dimensional composite

structures. Support software for the two-dimensional analysis such as pre- and post-

processor routines were developed during the second year and a formulation was also

developed and implemented for three-dimensional bodies of revolution. Finally, during the

third year, we will develop, implement, and test the method for arbitrary three dimensional

structures.



BACKGROUND

Interest in three-dimensional (3-D) methods has increased in recent years, however,

the associated demands in computation time and storage are often prohibitive for electrically

large 3-D bodies. Vector and concurrent (i.e. hypercube, connection, etc.) computers are

beginning to alleviate the fast of these demands, but a minimization of the storage

requirements is essential for treating large structures.

The traditional Conjugate Gradient Fast Fourier Transform (CGFFT) method [1] -

[4] is one such frequency domain solution approach which requires O(n) storage for the

solution on n equations. This method involves the use of FFFs whose dimension equals

that of the structure under consideration [5] - [7] and, therefore, demands excessive

computation time when used in an iterative algorithm. Also, the standard CGFFT requires

uniform rectangular gridding that unnecessarily includes the impenetrable portions of the

scatterer. With these issues in mind, a new solution approach is proposed for solving

scattering problems. The proposed method will be referred to as the Finite Element-

Conjugate Gradient Fast Fourier Transform (FE-CGFFF) method.

During last year's effort the FE-CGFFT method was developed for two-

dimensional scatterers where the finite element mesh was terminated at a rectangular box.

Inside the box boundaries, Helmholtz equation is solved via the finite element method and

the boundary constraint is obtained by an appropriate integral equation which implicitly

satisfies the radiation condition. Along the parallel sides of the box, this integral becomes a

convolution and is, therefore, amenable to evaluation via the FFT. The dimension of the

required FFT in this hybrid method is one less than the dimensionality of the structure thus,

making it attractive for 3-D simulations. Also, because it incorporates the finite element

method, the FE-CGFFT formulation remains valid regardless of the structure's geometry

and material composition.

The proposed method described in the University of Michigan Report 025921-6-T

(see also [8]) is similar to the moment method version developed by Jin [9]. Jin's method

was in turn based on work published in the early 70's by McDonald and Wexler [10] who

introduced an approach to solve unbounded field problems. The proposed method is also

similar to other methods (a few of which will be mentioned here), neither of which

provides a storage reduction comparable to the proposed FE-CGFVF method. The

unimoment method [11] uses finite elements inside a fictitious circular boundary and an

eigenfunction expansion to represent the field in the external region. The coefficients of the

expansion are then determined by enforcing field continuity at the finite element (FE) mesh

boundary. The coupled finite element-boundary element method [12] uses the finite

element method within the boundary and the boundary element method to provide the
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additionalconslraintattheterminationof themesh.Unlike theproposedmethod,the

solutionin [12] wasaccomplishedbydirectmatrix inversion(asin [9]), andtheoutermesh

boundaryis notrectangularto takeadvantageof theFFT for theevaluationof theboundary

integrals.

 R.O._G.RF,

Part of our efforts in this task were devoted to debugging and validating the three

dimensional body of revolution (BOR) code developed in the previous months. The

analysis associated with this code is described in the U of M technical report 025921-18-T

where we also include validation data obtained over the past two months. Some of these

are shown in figures 1-3 and refer to an ogive, a circular cylinder and a sphere.

Unfortunately, it was found that as the bodies became larger the system's condition

deteriorates and this was traced to the pulse basis formulation employed for the

discretization of the boundary. Through several tests we have now shown that A

Galerkin's linear basis formulation will correct the convergence difficulties. For example,

this formulation was already employed in solving large systems (with more than 120,000

unknowns) associated with the scattering by frequency selective surfaces (FSS) and large

Mates. As shown in figure 4-5, the Galerkin's formulation with linear basis permitted a

solution of this system in less than 70 iterations! In comparison, the pulse basis-point

matching formulation would require several thousand iterations before reaching

convergence. Consequently, we are in the process of incorporating the Galerkin's linear

basis formulation into our existing 2D and 3D BOR codes. Further, it was found that the

ech area converges much sooner than the mean square error and permitted us to speed-up

solution time.

During this last quarter we also began the development of the proposed finite

element formulation for general non-symmetric inhomogeneous bodies. The basic discrete

elements in this case are tetrahedra in conjunction with edge-based expansion functions.

The associated finite element formulations is described in Appendix A and we are now in

the process of implementing it. Initially, the finite element mesh will be terminated by a

fictitious absorbing layer whose dielectric parameters were determined by a minimization of

the reflection coefficient over the entire range of incidence angles. For a three layer

coating, each of thickness 0.05 wavelengths, it was found that their respective dielectric

properties to minimize the reflection coefficient over all angles of incidence are
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erl=(-0.1249205, - 1.731605), larl=(- 1.031792_ -0.1039932)

er2=(0.040699530, 0.1750280), I.tr1=(0.3155941, 0.3190330)

er3=( - 1.278644, 0.9625375), I.tr3=(-0.1721315, -5.389832)

The corresponding plot of the reflection coefficient as a function of incidence is given in

figure 7 along with scattering patterns based on the proposed termination model. As seen,

for the chosen fictitious absorber the reflection coefficient is less than one percent for 0 up

to 62 degrees and less than 2 percent for 0 up to 77 degrees. For the same error criteria,

the corresponding angles associated with the second order Pad6 ABC are 35 and 41

degrees, respectively. The fictitious ABC has, therefore, a substantially better performance

over the existing ABCs, and its effectiveness will be examined further in the next few

months.

The three dimensional finite dement meshes required in the analysis will be

generated by SDRC IDEAS and we have already began to develop the software for

transforming the output of this commercial package to the input files of our analysis codes.

Similar drivers were already developed for the two dimensional code which was developed

last year.

Finally, during this period we performed extensive testing of the two-dimensional

code and have in the progress developed several new pre- and post- processing algorithms

for this code. Two of the new geometries (see fig. 8 and 11) whose scattering was

computed with our 2D finite element - CGFFT code are displayed in figures 9, 11 and 12.

These represent airfoil configurations, one of which is coated with a dielectric material.

CONCLUSIONS

The project continues to evolve in accordance with our original plan and schedule.

Most importantly, so far, our expectation of the finite element CGFFT formulation have

been realized and we are, therefore, pleased with its performance for the intended

applications.

TRANSITIONS

All of our efforts in the next six months will be devoted to the development of the

3D finite element boundary integral code for arbitrary structures. In the immediate future

we will also pursue improvements for our existing codes primarily directed at speeding the

convergence of the CG or BiCG algorithm.
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(solid line) with an approximate result obtained by truncating the infinite FSS.
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case 2: Coated Trailing Edge

Yin =t
_+14 1-(x/2.5) 2

_+0.8232 A(x)

-2.5<x<0

0__x<2.5

A(x) - 5/(1-(x/2.7182)2) - 0.3926

Yout = +0.8116 B(x) 0. l_<_x<3.0

Yout=Yin elsewhere

B(x) - 5/ 1-[(x-. 1)/3.1416] 2 -.3846

13r=2- j 1 between Yin and Yout

FEM Mesh

Figure 8: Geometry and finite element mesh of the illustrated coated trailing edge
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Figure 9: E and H polarization scattering patterns for the configuration shown in figure
8. Comparison of results between the FE-CGFFF and the moment method.

16



Perfectly conducting airfoil

All dimensions in wavelenlFhs. The _foil section is made by 5 _cs:

• OA : strLil_ht line

• AB : circle of radius _ = 7_o and of center 02

• BC : polynomia/parametric equation

• CD : polynomial parametric equation

• DO : circle of radius R1 = 9,Xo aad of center O1

The polynomial equation are given by:

=(,) ffi_..,_-,_"_ y(,) ffi_. ,b,. ,c,_ 0 <, _<I

and I_ for BC arc _ Lnd b_ for CD azc

41 = 4.61149 ks = 1.53278 as = -1.62131 /)1 = -0.12,563

as = -12.11403 iq = -3.22680 q = 4.54389 bs = 0.30612

as = 8.88606 lh = 0.90615 as = -3.32901 b: = 0.16113

a4 ffi 0.442'i'5 b4 - 1.24623 ¢G = 0.35663 b4 = -0.00343

= -0.51440 _ = 0.4(9"/7 q = -1.40984 bs = -0.51216

ae = -6.86720 lq = -0.41007 q = -5.40758 _q = -0.23609

Figure 10: Geometry of a PEC Airfoil whose scattering is given in figures l I & 12.
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Appendix A

Finite element formulation for tetrahedral
elements and edge-based expansion basis

1 Derivation of finite element equations

Let us consider a three dimensional inhomogeneous body occupying the

volume V. In order to discretize the electric field E inside the body, we

subdivide the volume V into a number of small tetrahedra, each occupying

volume V_(e = 1,2,..., M) with M being the total number of tetrahedraI

elements. Within each tetrahedron, the electric field satisfies the vector

wave equation

iv =V x x E - ko2e,E 0 (1)
#,

where p, is the permeability of the medium, e, is the medium permittivity

and ko is the free space wave number. The next step is to expand the

electric field within V, as

6

E = _ E;W; (2)
j=l

where W_ are edge-based vector basis functions and E; denote the

expansion coefficients of the basis, all defined within the volume V,. W_ is

tangential to the jth edge of the eth tetrahedron with zero tangential

component along the other edges of the tetrahedral element. On

substituting (2) into (1), we obtain

Z, E; v x x w_ - ko_,w, = o (3)
jml _r

In order to solve for the unknown expansion coefficients E_, we take the dot

product of (3) with W_ and then integrate the resulting equation over the

element volume V, (Galerkin's technique). The wave equation thus reduces
to
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2:)E_ W, . V x × W_- koe,Ws dv = O (4)
j=l #r

The first term in the integral of the above expression can be simplified by

using basic vector identities. Since

w_. v x x w; = v. (v x wj) x w_ + _(v x w_). (v x w;)P*

the divergence theorem can be readily applied to (4) resulting in the

following expression:

0 = _E; (V x WT). (V x W;)- koe,Wi.Wj dv
j=l

(_)

where Se denotes the surface enclosing V_. Using vector identities , (5) can

be further simplified to yield the weak form of Maxwell's equation:

,., e 2 _ _ W_.(n × H)dss t (v × w_). (v x wj) - ko_W,.Wj dv = S_o
j=l

(6)

where n × H is the tangential magnetic field on the exterior dielectric

surface. Equation (6) can be conveniently written in matrix form as

[A _][E "] = [B "] (7)

where

Ai_ = (V × W_). (V x W;)- koe,.Wi.W.i

B_ = 3W#O /s W_.(n x n)ds (9)
e

On assembling all the M tetrahedral elements that make up the geometry,

we obtain a system of equations whose solution yields the field components

over the entire body. Therefore, summing over all M elements, we have
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which gives

M M

[A e][E e] = _[B e] (10)
e=l e=l

[A][E] = [B] (11)

where [A] is a N x N matrix with N being the total number of edges

resulting from the subdivision of the body and [El is a N x 1 column vector

denoting the edge fields. Due to the continuity of the tangential component

of the magnetic field at the interface between two dielectrics, an element

face lying inside the body does not contribute to [B] since the surface

integrals over the faces of adjacent tetrahedra cancel each other. As a result,

[B] is a column vector containing the tangential magnetic field only over

the exterior surface of the body. Equation (11) can therefore be written as

As,Ea+ AaiEi = Ha

AiaEs + AiiEi = 0 (12)

where the subscript s denotes the edges on the surface and i represents the

edges inside the body. It is thus readily seen that (11) relates the electric

field inside and on the surface of the body to the on-surface tangential

magnetic field.

2 Basis functions

Vector fields within tetrahedral domains in three dimensional space can be

conveniently represented by expansion functions that are linear in the

spatial variables and have either zero divergence or zero curl. The basis

functions defined below are associated with the six edges of the tetrahedron

and have zero divergence and constant curt. Assuming the four nodes and

the six edges of a tetrahedron are numbered according to Table 1, the

vector basis functions associated with the (7 - i)th edge of the tetrahedron

are defined as

f7-i + gT-i × r, r in the tetrahedron (13)WT-i = O, otherwise

where i = 1,2,... ,6 and f and g are constant vectors. On direct

evaluation, it is readily seen that
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V'Wi -- 0

V x Wi = 2gi

(14)

(15)

Since the complex scalar Ej in (2) is the projection of the electric field

onto the jth edge of the tetrahedral element,

Wi.ej [r on jth _ag. = 6ij (16)

where 6ij is the Kronecker delta. Solving (13) and (16) for the unknown

vectors yield[l]

br-i

fT-i -- 6vrq X ri2

b_bT-iei
g7-i --

6V

(17)

(18)

where V is the volume of the tetrahedral dement, ei = (ri= - ril)/b_ is the

unit vector of the ith edge and bi = ]ri2 - ri, [ is the length of the ith edge.

All distances are measured with respect to the origin.

Since there are two numbering systems, local and global, a unique global

direction is defined (e.g., always pointing from the smaller node number to

the larger node number) to ensure the continuity of n × E across all edges.

This implies that (13) should be multiplied by (-1) if the local edge vector

(as defined in Table 1) does not have the same direction as the global edge

direction. Even though Wi forces no conditions on the normal component

of E, it has been shown[2] that the continuity of electric flux can be satisfied

within the degree of approximation with the above formulation. Finally,

since V- Wi = 0 the electric field obtained through (2) exactly satisfies the

divergence equation within the element, i.e.V. E = 0. Therefore, the finite

element solution is free from contamination of spurious solutions[2].

3 Mesh termination

Differential equation methods, such as finite elements, can only solve

boundary value problems. Since electromagnetic problems are open

boundary-infinite domain types, a means to truncate the solution domain

to lie within a finite boundary must be found. On this boundary, a

condition is enforced thus ensuring that the fields will obey the Sommerfeld
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radiation condition at distancesasymptotically far from the object. These
absorbingboundary conditions (ABCs) have a significant advantageover
the global methods of solving unboundedproblemsusingfinite elementsin
that they are local in nature. Due to this, the sparsematrix structure of
the finite element formulation is retained. One disadvantage,however,is
that ABCs are approximate and do not model the exterior field exactly.
The objective of absorbingboundary conditions is to truncate the finite
elementmeshwith boundary conditions that causeminimum reflectionsof
an outgoing wave.TheseABCs shouldprovide small, acceptableerrors
while minimising the distancefrom the object of interest to the outer
boundary. This minimal distanceis required to reducethe number of
unknownsin the problem for computational efficiency.A three dimensional
vector boundary condition will be investigatedherefor terminating the
finite elementmeshof the body describedin section 1.1. We begin with the
Wilcox representation[3]of the electric field which hasan expansion

E(r) =-- e-Jkroo A.(e, ¢) (19)
r n=0 rn

From (19), we get

{ I+D1} e-Jkr_-._nAn,V×E= jk_x-- E (20)
r r 2 r n

n=l

where Ant = t x A,_ is the transverse component of An and, for a vector F,

DaF is given by

sinO (sinOF*) OF°"0¢ _

1 [ OF" ] [F° OF" ¢ (21)+z-_nO [ O0 sinOF¢ _ + O0

Using the recursion relation

-2jknA,u = n(n - 1)An-l,t + D4An-1

where
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1 o 2cos80A¢.
Do A,_ = 2 c9;_ s_n2oA,, sin2000

2 OAt 1 _ 2cosO OA_
De A,, - sinO 0¢ sin2_ A" + sin20 0¢

and D is Beltrami's operator[3], we can derive the representation correct to

r -4. Applying the recursion relation in (20) yields the desired relationship

for the vector ABC:

where

V x E = c_(r)E + _(r)D4E (22)

c_(r) = jk{_ r (l+j-@r) #x } (23)

1 1

fl(r) = 2jkr 2(1 + 1/jkr) (24)

The ABC formulated above is applicable to spherical boundaries and hence

would be storage intensive and numerically inefficient when used to

terminate the mesh of long and thin geometries. It would be highly

desirable to choose an outer boundary that conforms to the shape of the

object. An approximate boundary condition based on the asymptotic

representation of fields for a two dimensional scalar problem has already

been derived[4]. It is the author's intention to extend the derivation of the

two dimensional scalar boundary condition to a three dimensional vector

absorbing boundary condition for an arbitrary outer boundary.

4 Solution of the finite element equations

An inspection of (11) reveals that for an inhomogeneous body, there is no

a priori information about the tangential magnetic field over the exterior

surface of the body. Relation (11) therefore contains two unknown vectors,

[E] and [B], and thus another condition is required involving the two

variables to permit an evaluation of the fields inside and on the surface of

the body. This condition relating the tangential electric field to the

tangential magnetic field on the surface is provided by (22). Since the

ABC in (22) refers to the scattered field, we can rewrite it as

25



V x E_ = a(r)E_" ÷/3(r)D4E, _

H: = _ [_(r)E: +/3(r)D4E_]

-- ICE, _ (25)

where K: = _ [_(r) +/3(r)D4] and the subscript s denotes the field on the
surface and the superscript s represents the scattered field. Since the total

field is a sum of the incident field and the scattered field, therefore from

( 25), we obtain

H: = K;E_

H.-H_ c = K_(E.-E_ "c) (26)

Substituting (26) into (12) and simplifying gives

(As,- K;)Es + As, El = H'_ c- K:E_ n_

A_sE, +A,Ei = 0 (27)

The above equation can thus be solved for the unknown electric fields both

inside and on the surface of the body.
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