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Summary

A Navier-Stokes equations solver based on a pressure
correction method with a pressure-staggered mesh and
calculations of separated three-dimensional flows are
presented. It is shown that the velocity-pressure decoupling,
which occurs when various pressure correction algorithms are
used for pressure-staggered meshes, is caused by the ill-
conditioned discrete pressure correction equation. The use of
a partial differential equation for the incremental pressure
eliminates the velocity-pressure decoupling mechanism by
itself and yields accurate numerical results. Example flows
considered are a three-dimensional lid-driven cavity flow
and a laminar flow through a 90" bend square duct. For the
lid-driven cavity flow, the present numerical results compare
more favorably with the measured data than those obtained
using a formally third order accurate quadratic upwind
interpolation scheme. For the curved duct flow, the present
numerical method yields a grid independent solution with a
very small number of grid points, and the calculated velocity
profiles are in good agreement with the measured data.

Nomenclature

A, coefficient for incremental velocity, (i=u, v, or w)

D, hydraulic diameter of the curved duct

(¢, m, n) index for mesh

n, outward normal vector, n.= [nx,ny,nz}

P pressure

Re Reynolds number

T, radius of curvature for inner (suction side) wall
for curved duct flow

r radius of curvature for outer (pressure side) wall

for curved duct flow
velocity component, uj=[u,v,w]

*NASA Resident Research Associate at Lewis Research Center.

X cartesian coordinates x=(x,y,z)

g molecular viscosity of fluid

En0 curvilinear coordinates

Superscripts

n iteration count

nb neighboring grid points; (£+1,m,n), (£-1,m,n),
({,m-1,n), ({,;m+1,n), ({,mn-1) and ({,,mn+1)

* current value

¢ incremental (or corrective) value

Subscripts

ij index for spacial coordinates, i={1,2,3} and
=11,2,3)

Mathematical Symbol

pX summation

Introduction

In many flow problems of practical importance, the boundary
geometries are complex, and arbitrary shaped blockages may
exist inside the flow path. However, an original numerical
method based on the SIMPLE algorithm (refs. 1 and 2) has
been used to solve incompressible flows whose domain can
be discretized using orthogonal meshes. Thus, a number of
numerical methods to extend the pressure correction methods
for flows with arbitrary geometries have appeared (refs. 3 to
10). Along with the efforts, various pressure correction
algorithms (ref. 11) to enhance the convergence nature itsclf
and to increase the convergence rate have also been proposed.
A finite volume method to solve the Navier-Stokes cquations
is presented in this paper. The method is based on a pressure
correction method and is valid for both incompressible and
compressible flows including Reynolds-averaged Navier-
Stokes equations (ref. 12). Calculation of threc-dimensional
incompressible laminar flows using the method is presented
in this paper. Calculations of various two-dimensional flows



using the present numerical method can be found in refs. 12
to 14. Example flows considered in these references include:
a developing laminar channel flow, a developing laminar pipe
flow, a two-dimensional laminar flow through a 90" bend
channel, a laminar polar cavity flow and a supersonic flow
over a compression ramp with shock wave - turbulent
boundary layer interaction.

A number of grid layouts have been proposed and tested to
identify the most suitable one to solve the Navier-Stokes
equations defined on arbitrary, complex geometries. In Shyy
et al. (ref. 3), the standard fully staggered mesh is used to
solve the Navier-Stokes equations defined on curved
geometrics. This grid layout can not be used to solve flows
inside a 90" bend duct; see Malisika and Raithby (ref. 5) for
more details. In reference 5, the standard fully staggered
mesh is extended in such a way that the three velocity
components are located at all grid points except at the pressure
grid point. In this case, the number of degrees of freedom for
velocity is tripled while the degrees of freedom for pressure
remains the same as that of the original fully staggered mesh.
The accuracy of a numerical method depends not only on the
number of velocity grid points but also on the number of
pressure grid points. Hence the accuracy can not be improved
as much as the tripled velocity degrecs of freedom might
suggest. A collocated mesh is used in Rhie (ref. 6), Dwyer
and Ibrani (ref. 7), Peric et al. (ref. 8) and Majumdar (ref. 9).
In reference 6, the velocity-pressure decoupling is prevented
by including a fourth order artificial dissipation in the
pressure correction equation, while in reference 7, the same
purpose is achieved by evaluating the incremental velocities
(u’,v’,w") at mid-sides of the control volume. In Peric et al.
(ref. 8) and Majumdar (ref. 9), a velocity-pressure coupled
solution is obtained by interpolating the pressure gradient
term differently from the other terms in the discrete momentum
equation. This method is called as the “momentum
interpolation” scheme (ref. 9). Majumdar (ref. 9) showed that
the momentum interpolation scheme of Peri et al. (ref. 8) may
yield a numerical result that depends on the under-
relaxation parameter, and proposed an improved momentum
interpolation scheme that yields a unique solution. In
Vanka et al. (ref, 10), the vclocities are located at the same
grid points and the pressure is located at the cetroid of the cell
formed by the four adjacent velocity grid points (for the
two-dimensional case). The pressure-staggered mesh for the
three-dimensional case is shown in figure 1 for clarity in the
following discussion. The pressure-staggered mesh was
first used in the control volume method by Vanka et al.
(ref. 10). They mentioned that it was not easy to obtain
convergent solutions due to the velocity-pressure decoupling.
The mechanism that leads to the velocity-pressure
decoupled solution is heuristically shown in reference 5.

In the present pressure correction algorithm, a partial
differential equation for incremental pressure is solved to
correct the velocity and pressure field. The mechanism that
leads to the velocity-pressure decoupled solution in the

pressure-staggered mesh (ref. 10) is identified in the following
section, and it is shown that the use of the partial differcntial
equation for incremental pressure eliminates the velocity-
pressure decoupling mechanism by itself. The use of the
same incremental pressure equation in the collocated mesh
also yields a velocity-pressure coupled solution (ref. 15). In
the case of an orthogonal, collocated mesh, the present pressurc
correction scheme becomes very similar to the momentum
interpolation scheme (refs. 8 and 9), and both schemes yicld
strongly diagonally dominant systems of equations for the
incremental pressure, sece reference 15 for details.

A few pressure correction algorithms, to enhance the
convergence nature and to accelerate the convergence rate,
have also been proposed and are in use to solve the Navicr-
Stokes equations. Among these are the SIMPLE-C and the
SIMPLE-R (ref. 11). However, it is shown in Jang et al,
(ref. 11) that the performance of each pressure corrcction
algorithm (SIMPLE-C or SIMPLE-R) depends somewhat on
the particular flow problems to be solved. With any of these
methods, the relative error and the mass imbalance can be
reduced only to a few orders of magnitude (c.g., 10)
especially when a highly graded mesh is used. In the present
method, solving the partial differential equation for the
incremental pressure does not require the use of any
specialized pressure correction algorithm. It is shown in the
“numerical results” section that the present method yields
highly converged results (i.c., the relative error and the
mass imbalance are reduced to order of 10®) within a
reasonable number of iterations for the curved duct flow. It
can also be found in reference 13 that the relative error can
be reduced to the same order for a transonic flow with shock
wave - turbulent boundary layer interaction even with the
use of a highly stretched mesh (e.g., grid aspect ratio of
approximately 100,000).

Numerical Method

The incompressible laminar flow equation are given as;
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where the subscripts i and j denote each coordinate direction,
and the repeated indices imply summation over the index
unless otherwise stated.

In the pressure correction methods, the velocities and the
pressure are decomposed as;

*
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where the superscript * denotes the current velocities which
may not satisfy the conservation of mass equation yet. The
discrete momentum equation for u-velocity can be written as;

Ay(m, )y (&,m,n) = S{ A} - 22 45,7,
nb ax,

no sum on i 5)

where A, is the cocfficient of the u-velocity at the velocity
grid point (,m,n), S is the load vector originating from the
curvilinear grid structure, the subscript nb denotes the
neighboring grid points, and the pressure gradient is left in
continuous form deliberately. Substituting equations (3) and
(4) into eq. (5) yields;
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where the grid point index (£,m,n) has been deleted in
equation 6 for convenience. The discrete u-momentum
equation based on the current flow variables which may not
satisfy the conservation of mass equation can be written as;

1ui* = Et:){Aiui*} - g_P_+

i

S;V, nosum on i

™
Subtracting equation (7) from equation (6) yields;
1 ’
uj = ——i, no sum on i ®)
Ai axi

In deriving equation (8), the summation over the neighboring
grid points in equations (6) and (7) have been disregarded.
Substituting equation (3) into equation (1) yields;

uj_ 9w

an aXJ

®

Substituting equation (8) into equation (9) yields the partial
differential equation for the incremental pressure given as;

’ all"
_Q__ Lap =3 (10)
axJ A] axJ ax,

where the last term in equation (10) represents the mass
imbalance. Applying the standard finite volume procedure to
equation (10) yields the discrete incremental pressure equation.
In this case, the value of A, at the interface of the pressure
control volumes is obtained by averaging the A, values defined
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at the four adjacent velocity grid points (fig. 1(c)). Asall the
central-differenced finite volume equations for diffusion
equations are strongly diagonally dominant, the present
discrete pressure correction equation is strongly diagonally
dominant. The momentum interpolation scheme (rcf. 8)
may yield a numerical result that depends on the under-
relaxation parameter (ref. 9). On the other hand, the present
pressure correction scheme does not yield a numerical result
that depends on the under-relaxation parameter. The pressure
correction equation, (eq. (10)), clearly statcs that the
incremental pressure is driven only by the mass imbalance.

For clarity, the mechanism that leads to the velocity-pressure
decoupled solution, when various pressure correction
algorithms (refs. 1, 5 and 10) are applied to the pressure-
staggered (or collocated) mesh, is described below.  In these
pressure correction algorithms, the influencing pressure
nodes for each velocity grid point are identified first. In the
case of a pressure-staggercd mesh, it is argued that the
velocity at a velocity grid point is influenced by the eight
adjacent pressure grid points, see figure 1(b). The pressure
gradient at the interface of the pressure control volumes is
obtained by a veraging the pressure gradicnts at the four
adjacent velocity grid points, sce figure 1(c), and that of cach
velocity grid point is given as:
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(12)
The discrete pressure correction equation is obtained by
substituting equations (8) and (11) into equation () and
integrating it over the pressure control volume. This discrete
pressure correction equation contains 27 entries inter-
connecting 27 adjacent pressurc grid points (for the three-
dimensional case) and is not diagonally dominant in general.
For uniform flow with uniform mesh, the diagonal entry of
this pressure correction equation vanishes, and thus the mass
imbalance for a particular pressure grid point tends to
correct only the pressure of the adjacent pressure grid points.
The velocity-pressure decoupling occurs in such a case, and
a convergent solution can not be obtained. On the other hand,



the discrete pressure correction equation, obtained by applying
the standard finite volume procedure to equation (10), is
strongly diagonally dominant even for highly skewed mesh.
For uniform flows, all the off-diagonal entries of the pressure
correction equation vanish and only 7 diagonal entries remain
in the present pressure correction algorithm, and this discrete
equation is strongly diagonally dominant. The rest of the
numerical procedures are bricfly described below.

The power law upwind differencing scheme (ref. 1) is used
for the momentum equation. The pressure gradient in the
momentum equation is evaluated using equation (11) with the
incremental pressure replaced by the pressure. The current
flow velocities are obtained by solving equation (10) with the
mass imbalance evaluated from the current velocities. The
velocity corrections are obtained using equation (8) and
incremental pressure. The velocity and pressure are corrected
using equations (3) and (4), and the corrected velocities and
pressure are used to obtain new current velocities. The
systems of discrete incremental pressure equations and the
discrete momentum equations are solved by the Tri-Diagonal-
Matrix-Algorithm (ref. 2). The systems of equations are
solved iteratively until the residuals become smaller than the
prescribed convergence criteria. Each iteration consists of 3
sweeps for the momentum equation and 7 sweeps for the
pressure correction equation in each coordinate direction,
respectively. The convergence parameters used are;

du;
R =), = (12a)
NC|77J
(ak¥ —al.e)
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K

x fork = (u,v,w,p)

(12b)

where N_ is the number of pressure control volumes; the
subscript k denotes each flow variable; the subscript £
denotes each grid point; N denotes the number of grid points;
and A ' denotes the maximum magnitude of the k-th flow
variable at (n+1)th iteration. The iteration is terminated if
either equation (12(a)) or equation (12(b)) becomes smaller
than the prescribed convergence criterion.

Numerical Results

The numerical method described in the previous sections is
tested and evaluated by solving a three-dimensional lid-driven
cavity flow (ref. 16) and a laminar flow through a 90° bend
square duct (ref. 17).

Lid-Driven Cavity Flow

The lid-driven cavity flow is schematically shown in
figure 2. The cavity flow at Reynolds number (based on the
transverse velocity, v, and the length of the lid) 3200 is
considered in this paper. The flow domain is discretized by
48x35x35 and 78x67x67 meshes in x-, y-, and z-coordinate
directions, respectively. The convergence criterion used is
1.0x10%, The residuals at the time of convergence are
R, =8.0x10? and R,=1.0x10", respectively. The calculated
transverse velocity (v) profiles on the symmetric plane at
y=0.075 m are compared with the measured data (ref. 16) and
the numerical results by Freitas et al. (ref. 18) in figure 3(a).
It is shown in the figure that the present fine mesh result
compare more favorably with the measured data than the one
calculated by Freitas et al. (ref. 18) using a formally third
order accurate quadratic upwind interpolation scheme. The
calculated vertical velocity (w) profiles on the symmetric
plane at z=0.075 m are shown in figure 3(b). Again, the
present fine mesh result compares more favorably with the
measured data than that by Freitas et al. (ref. 18) as shown
in the figure.

Laminar Flow Through a
90° Bend Square Duct

The laminar flow through a 90" bend square duct is
schematically shown in figure 4. The Reynolds number
based on the hydraulic diameter of the duct (D,=0.04 m) and
the bulk velocity is approximately 800. The measured data
can be found in Humphrey et al. (ref. 17). Both grid and
flow domain independence studies are made for this flow.
In the first case, the upstream boundary is located at 4D,
upstream of the curved section and the exit boundary is
located at 10D, downstream of the curved section. The
symmetric half of the flow domain is discretized by
68x18x33 and 110x38x61 meshes in x-, y-, and z-coordinate
directions, respectively. In the second case, the upstrcam
boundary is located at 10D, upstream of the curved section,
and the symmetric half of the flow domain is discretized
by a 92x18x33 grid points in x-, y-, and z-coordinate
directions, respectively. In each case, the velocity profile of
a fully developed square duct flow is prescribed at the inlet
boundary and the vanishing gradient boundary condition is
used at the exit boundary. The numerical results obtained
using the smaller flow domain are presented below.

The convergence history for the 110x38x61 mecsh s
shown in figure 5. It is shown in the figure that the converged
solution is obtained in approximately 800 iterations. In the
finite volume methods, the discrete system of equations is
derived by integrating the governing differential equations
over the control volume (ref. 1). For flows with arbitrary
geometries, the number of interpolations to obtain flow
variables at the cell boundaries for the present pressurc-



staggered mesh is as small as that of any other grid layout
discussed previously. The enhanced convergence rate is partly
attributed to the grid layout which requires fewer interpolations.

The calculated longitudinal velocity profiles are shown in
figure 6. The present numerical results obtained using the
coarse mesh are almost the same as those obtained using the
fine mesh which has approximately twice as many grid points
in each coordinate direction. The difference between the two
sets of present numerical results is less than a few percents
in most of the flow domain, which shows that the present
numerical method yields an almost grid independent
solution with as small as 68x18x33 grid points in the x-, y-
, and z-coordinate directions, respectively. It is also shown
in the figure that the calculated secondary peaks of the
longitudinal velocity near the inner wall (r=r) are in good
agreement with the measured data. It is shown later that such
secondary peaks are formed by the secondary fluid motion.

The calculated pressure distributions on the inner and outer
walls at the symmetric plane are shown in figure 7, where s is
the distance measured along the center line of the duct and
s=0 at ¢=0". Tt can be scen in the figure that the present
numerical results are in good agreement with those obtained
by Humphrey et al. (ref. 17). The projected velocity vectors
on a plane very close to the outer wall ({=0.005D,) are shown
in figure 8(a) and the pressure distribution on the same
plane is shown in figure 8(b). The plane is located so close
to the wall that the velocity component normal to the plane
is by far smaller than the velocity component in the figure. It
can be seen in these figures that the velocity vectors are
aligned in the direction of decreasing pressure, which shows
that the fluid motion in the region very close to the wall is
governed mostly by the pressure distribution. Due to the
strong adverse pressure gradient, a small reversed flow
region is formed near the corner wall and the reversed flow
region extends up the =37 as can be seen in figure 8(a).
The projected velocity vectors and the pressure distribution
on a plane very close to the side wall (n=0.005D,) is shown
in figure 9. Again, the velocity component normal to the
plane is negligible, and thus the fluid motion in the near-
wall region is mostly governed by the pressure distribution.
The small reversed flow region near the corner wall,
caused by the strong adverse pressure gradient, can also be
seen in figure 9(a).

The secondary fluid motions and the pressure distributions
at four cross-sections of the curved duct are shown in
figure 10. At the inlet of the curved section, figure 10(a), the
fluid particle moves upward and recirculatory (or vortex)
motion has not becn formed yet. On the other hand, the
numerical results in Humphrey et al. (ref. 17) show that the
recirculatory motion already exists in the same region. To
clarify any possible dependence of the numercial results on
the location of the inlet boundary, the same flow field is
calculated with the inlet boundary located at 10D, upstream of
the curved section. The numerical results obtained using the
larger flow domain are practically identical to the one
shown in figure 10(a). It can be seen in these figures that the
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recirculatory motion becomes stronger as the fluid particle
travels in the downstream dircction and that the pressure
decreascs almost uniformly from the outer (pressure side)
wall toward the inner (suction side) wall. These results indicate
that the secondary fluid motion is more strongly governed by
the strains caused by the streamline curvature than by the
pressure distribution. It can also be found from these figures
that the secondary peaks of the longitudinal velocity, see
figure 6, are caused by the mass carricd toward the inner wall
by the secondary motion of the fluid.

Conclusions and Discussion

A finite volume method to solve the Navier-Stokes equations
and calculations of a three-dimensional lid-driven cavity flow
and a laminar flow through 90° bend square duct are presented.
A vpartial differential equation for the incremental pressure
and the pressure-staggered mesh form the basis of the present
numerical method.

The use of various pressure correction algorithm (refs. 1,
5 and 10) for pressure-staggered mesh yields ill-conditioned
discrete pressure correction equation, and the velocity-pressure
decoupling is caused by the ill-conditioned discrete pressurc
correction equation. For example, the diagonal entry of the
discrete pressure correction cquation obtained by applying
various pressure correction algorithms (refs. 1, 5 and 10)
vanishes for a uniform flow, with the flow domain discretized
uniformly using the pressure-staggered mesh. In such case,
the mass imbalance at a particular pressure node corrects only
the pressure of the adjacent pressure grid points, and a
converged solution can not be obtained. On the other hand,
the use of a partial differential equation for incremental pressure
yields a strongly diagonally dominant discrete pressurc
correction equation even when highly graded and skewed
mesh is used to discretize the flow domain (ref. 13), and it
also yields a unique solution. The present method can also
be extended to solve compressible flows by including
convective incremental pressure terms into the pressure
correction equation (ref. 13).

The use of the same incremental pressure equation in the
collocated mesh yields a velocity-pressure coupled solution
even though the resulting numerical method is not as
strongly convergent as the present method adopting the
pressure-staggered mesh. The pressure-staggered mesh is
preferred over the collocated mesh for its strongly
convergent nafure, and is also preferred over the other grid
layouts (ref. 5) for its compactness. As a remark, the present
pressure correction scheme becomes very similar to the
momentum interpolation scheme (refs. 8 and 9) in the case of
an orthogonal, collocated mesh (ref. 15). Even in this case,
the present pressure correction algorithm yields a unique
solution without the use of a specialized interpolation scheme
as the one proposed by Majumdar (ref. 9).

In the region very close to the bottom wall of the lid-driven
cavity, the transverse velocity (v) obtained wusing the



quadratic upwind interpolation scheme (ref. 18) compares
more favorably with the measured data than the present
numerical result. However, in most of the flow region, the
present numerical results compare more favorably with the
measured data than the other numerical results (ref. 18). A
similar situation can be found in a lid-driven polar cavity
flow for which the numerical results obtained using the
present method compare more favorably with the measured
data than those obtained using a second order differencing
scheme (ref. 12). These observations indicate that correctly
resolving the pressure field is as important as, or more important
than, using a higher order differencing scheme.

It is shown that the present numerical method yields a grid
independent solution for the curved duct flow with a very
small number of grid points. It is also shown that the method
yields a rapidly convergent solution for the fine mesh case.
The mass imbalance decreases approximately eight orders
of magnitude within a reasonable number of iterations for
the fine mesh case. These errors are a few orders of
magnitude smaller than those obtainable using various
other pressure correction algorithms (ref. 11), especially when
a fine mesh is used to discretize the flow domain. Such an
improved convergence nature is also attributed to the present
pressure correction algorithm. The domain independence
study shows that the numerical results obtained with the inlet
boundary located at 10D, upstream of the curved section are
practically identical to those obtained with the inlet boundary
located at 4D, upstream of the curved section. Both numerical
results show that the recirculatory motion has not been formed
at the inlet of the curved section, while the numerical resuits
of Humphrey et al. (ref. 17) shows such a recirculatory
motion at the same location. At further downstream locations,
the present numerical method predicts a stronger secondary
flow motion than that of Humphrey et al. (ref. 17) does. The
present numerical results are in very good agreement with
the measured data and indicate that the secondary peak of
the longitudinal velocity is formed by the mass carried toward
the inner wall by the secondary motion of the fluid.
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(a) 2-D projection of pressure-staggered mesh.
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Figure 1.—Pressure staggered mesh.
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Figure 2.—Lid driven cavity flow.
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Figure 3.—Velocity profiles for cavity flow.

Figure 4.—Laminar flow through a 90° bend square duct.
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Figure 10.—Secondary velocity vector and pressure contour.
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