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CRITICAL-LAYER NONLINEARITY IN THE RESONANCE GROWTH OF THREE-DIMENSIONAL

WAVES IN BOUNDARY LAYERS

Reda R. Mankbadi

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135

ABSTRACT

This paper addresses the nonlinear interactions of a triad of initially

linear stability waves. The triad consisted of a single two-dimensional mode

at a given frequency and two oblique modes with equal and opposite spanwise

wave numbers. The oblique waves were at half the frequency and streamwise

wave number of the two-dimensional mode. Attention was focused on the

boundary-layer transition at low frequencies and high Reynolds numbers. A

five-zoned structure and low-frequency scaling were used to derive the

nonlinear-interaction equations. In this study, we analyzed the initial

nonlinear development of the waves; the results indicated that the two-

dimensional wave behaves according to linear theory. Nonlinear interactions

caused exponential-of-an-exponential growth of the oblique modes. This

resonant amplification of the subharmonic depended on the initial amplitude of

the two-dimensional wave and on the initial phase angle between the two-

dimensional wave and the oblique waves. The resonant growth of the oblique

modes was more pronounced at lower frequencies than at higher frequencies.

The results presented herein are in good agreement with experimental results

and offer new explanations of the observed process.

1. INTRODUCTION

Linear stability theory indicates that, for unstable boundary layers, a

Tollmein-Schlichting wave at sufficiently small amplitude would grow and,

subsequently decay along the boundary layer. This, by itself, cannot explain

the transition to the turbulent state and the three-dimensionality of the flow.



In the experiment of Klebanoff, Tidstrom, and Sargent (1962), a predominantly

two-dimensional disturbance of prescribed frequency was introduced into the

boundary layer by way of a vibrating ribbon. At relatively large Tollmein-

Schlichting amplitudes, the experiment showed that a spanwise periodic three-

dimensional structure evolved. This structure is characterized by spanwise

alternating peaks and valleys, that is, regions of enhanced and reduced

amplitude. The structure grows in intensity with downstream distance. The

growth of the wave at peak positions is much larger than the original Tollmein-

Schlichting growth and is in contrast to the slow Tollmein-gchlichting linear

growth rate on the viscous scale.

Linear stability theory cannot account for such three-dimensional waves

growing more rapidly than the two-dimensional component of the initial

disturbance. To explain this discrepancy, Craik (1971), among others, proposed

a resonant-triad interaction. The triad comprises a two-dimensional wave and

two oblique waves propagating at equal and opposite angles to the flow

direction, such that the three waves have the same phase velocity in the

downstream direction. Craik's (1971) temporal stability analysis of the triad

showed that the nonlinear interactions can cause a large energy transfer from

the mean shear flow to the oblique waves. This energy transfer would cause the

oblique waves to grow rapidly and may be responsible for the rapid development

of three-dimensionality in unstable boundary layers. Craik (1971, 1978, 1985)

and Usher and Craik (1975) supported this analysis by approximating the

interaction coefficients for the kind of interplay that might take place.

Craik accounted for the resonance in one of the experimental conditions of

Klebanoff et al. (1962), but not for that observed at other conditions. Since

peak-valley splitting is not associated with the subharmonic waves, however,

his results were criticized.



The presence of the subharmonic of the fundamental wave at the laminar-

turbulent transition in a boundary layer is now generally accepted, having

been well established by such experimental observations as those of Kachanov,

Koslov, and Levchenko (1977), Thomas and Saric (1981), Saric, Carter, and

Reynolds (1981), Kachanov and Levchenko (1984), and Corke and Mangano (1989).

The appearance of the subharmonic causes the flow to become three-dimensional.

This manifests itself in the formation of X-shaped structures arranged in

staggered, alternating rows. Thus, aligned X-structure corresponds to the

peak-valley splitting, whereas the alternating one corresponds to subharmonic

resonance. In the transition described by Kachanov and Levchenko (1984J, the

parametric resonant excitation of a pair of oblique subharmonic waves by the

plane fundamental wave is the main cause of the appearance of the low-

frequency fluctuation. The oscillations with the subharmonic frequency reach

considerable amplitudes only in the region of the upper branch of the neutral

stability curve and behind it. Kachanov and Levchenko's (1984) observations

indicated that three-dimensionality can come into play initially as a resonant-

triad phenomenon; this revived interest in Craik's model.

Attributing the occurrence of three-dimensionality in Klebanoff et al.'s

(1962) experiment to spanwise differential amplification of Tollmein-

Schlichting waves is supported by the theoretical work of Landahl (1972).

However, the peak-valley splitting and the three-dimensionality of the

disturbances may also be explained in the light of Craik's triad interactions

by considering the two oblique waves to be at the excitation frequency but

interacting with a two-dimensional wave at twice the excitation frequency. The

peaks are thus given by the amplitudes of four waves: three waves at the same

excitation frequency (one two-dimensional and two obliques) and a weaker two-

dimensional wave at twice the frequency. The valleys are then given by the



amplitudes of two plane waves, one at the excitation frequency and one at twice

the frequency. This explanation is supported by Klebanoff et al.'s (1982) and

Cornelius' (1985) observation that the frequency tends to double at the

valleys. With proper definition of fundamental and subharmonic frequencies,

Craik's (1971) triad can apply to the transitions described by both Klebanoff

et al. and Kachanov and Levenchko (1984).

Of interest here are nonlinear interactions that arise from the continued

growth of a resonant triad of initially linear instability waves. The triad

consists of a single two-dimensional mode at a given frequency and two oblique

modes with equal and opposite spanwise wave numbers. The oblique waves are at

half the frequency and the streamwise wave number of the two-dimensional mode.

Attention herein is focused on the technologically significant problem of

boundary-layer transition at low frequency and high Reynolds numbers. Low-

frequency scaling is used to derive the nonlinear equations. In the present

analysis, nonlinearity first comes into effect in the common critical layer of

these modes. This is consistent with the data of Klebanoff et al. (1962), with

the numerical simulations of Croswell (1985) and Singer et al. (1987), and with

Craik's (1971) finding that the nonlinear energy transfer takes place mainly in

the vicinity of the critical layer. The amplitude equations are obtained by

equating the velocity jump calculated from outside the critical layer to the

velocity jump calculated from the solution within the critical layer.

Two regimes of fundamental-subharmonic interactions can be identified in

Kachanov and Levchenko's (1984) experiment. In the initial development of the

three-dimensionality, the subharmonic is smaller than the fundamental, and the

latter behaves as if the former is not present. Thus, although the subharmonic

resonates, the fundamental is still given by its linear growth rate. In a

second stage, where the subharmonic exceeds the fundamental, a back-reaction



process is observed in which the two waves behave nonlinearly. The initially

negligible back-reaction on the two-dimensional wave allows the oblique modes

to exhibit faster-than-exponential growth, while the two-dimensional mode

continues to grow at its initial linear growth rate. This initial nonlinear

interaction of the waves is the subject of the present study.

The overall plan of this paper is as follows: the five-zoned structure

and the scaling are discussed in section 2; the linear solution is obtained in

section 3 (the nonlinear critical-layer interaction gradually evolves from a

resonant triad of strictly linear, small growth rate and low-frequency

solutions); in section 4, the critical-layer flow is considered; then, the

amplitude equations are obtained in section 5, where the relevant expansions

are worked out, and the solution that matches the solution outside the critical

layer is then found by taking the Fourier transforms with respect to the cross-

stream coordinate (the resulting solution is restricted to the case where the

order of the oblique waves is not much l_rger than that of the two-dimensional

wave); the solution of the amplitude equations in the nonlinear region is

presented in section 6; the composite solution that matches the upstream linear

solution is formed in section 7 (this leads to a different type of amplitude

equation that involves upstream history effects and is different from that of

Craik (1971)); results and discussions are presented in section 8; and a

detailed comparison to available data is given in section 9. The experimental

comparisons seem very encouraging, yielding both qualitative and quantitative

agreement. The results presented herein explain the observed subharmonic

resonance and the three-dimensionality of the flow. New features of the

subharmonic resonance are discussed.



2. FIVE-ZONEDSTRUCTUREAND SCALING

The upstream flow starts as a resonant triad (fig. 1) of linear, spatially

growing instability waves: a single two-dimensional mode of normalized

frequency _ and wave number a; and two subharmonic oblique modes of

frequency _/2, streamwise wave number nearly equal to a/2, and spanwise wave

number ±B. All velocities are normalized by the upstream velocity U ,

lengths by $*, time by $*/U , and pressure by pU_, where p is the fluid

density and $* is the boundary-layer thickness defined as $* = V_x/U.

The flow under consideration here is that of a laminar boundary layer of

Blasius profile (fig. 2). The development of the waves outside the nonlinear

region follows the weakly nonparallel linear theory. In the nonlinear region,

the unsteady flow is not affected by the boundary layer growth over the region

in which the nonlinear interaction takes place. The experimental observations

of Kachanov and Levchenko (1984), Saric et al. (1984), and Corke and Mangano

(1987, 1989) have indicated that subharmonic resonance takes place in the

vicinity and beyond the upper branch of the neutral stability curve. Coldstein

and Durbin (1986) showed that upper-branch scaling applies over almost all of

the unstable region, only breaking upstream in the close proximity of the lower

branch. In this range of Reynolds number, the disturbance solution is a five-

zoned structure (see Drazin and Reid 1981, Graebel 1966, Eagles 1969, Fraenkel

1969, DeVillers 1975), as shown in figure 3. Zone I is the closest to the

wall, where the unsteady viscous sublayer reduces to zero the effect of the

streamline displacement at the wall. Zone II is an inviscid rotational zone of

adjustment within which the critical layer III is induced. Zone IV is above

zone II; it is an inviscid rotational region comprising most of the boundary

layer, and it is the place where the disturbance nearly provokes a small

quasi-steady displacement of the streamlines of the basic boundary-layer
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flow. Above zone IV, the displacement also provokes the quasi-steady zone V,

lying outside the boundary layer, in which the flow properties are of an

inviscid irrotational type because the basic flow is almost the free stream

U = 1, V = O, where U is the velocity component in the flow direction and V

is the perpendicular component in the y-direction.

The normalized complex wave number a is small, and its imaginary part

is smaller than its real part (Reid, 1965; and fioldstein, Durbin, and Leib,

1987}. Then each of the three modes has a critical layer at nearly the same

transverse position Yc, where the real part of their nearly common phase

velocity c is equal to the streamwise velocity U.

The mean boundary-layer velocity is given by the Blasius velocity UB,

where

k2 4

UB = ky 2.4! y + as y * 0 (2 .I)

denotes the scaled BlasiusThe wall is located at y = O, and the constant

skin friction (k = 0.332 in the present coordinates).

We introduce the asymptotically small parameter

= alOR .

a, where

This small parameter a can be related to the normalized frequency

F* - _v 12
-U2 =a

Goldstein and Durbin (1986), by

Here, R is the Reynolds number based on the local momentum thickness,

order-one scaled Reynolds number and is a real quantity for time-periodic,

spatially growing disturbances, and

(2.2a)

F*, as in

(2.2b)

is an

(2.3)
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where

that the most rapidly growing modes correspond to the scaling

_Sa : _ + O(a 4) ,

and _ are order-one real constants. Goldstein et al. (1987) showed

/_ec o = ac o + O(a 4) ,

(2.4)

(2.5)

-- a_ , (2.6)

and

Yc = aye + O(a4) ' (2.7)

where _ is an order-one real spanwise wave number, Y is an order-one real
C

constant, and c is the phase velocity of the two-dimensional wave. The
0

scaling of a and R given by equations (2.4) and (2.2a) is consistent with

Reid's (1965) equation (3.128).

3. LINEAR SOLUTION

Outside the critical layer the unsteady flow is governed by the linear

dynamics, as first pointed out by Haberman (1972), and the velocity field is

given by

8@° •u = UB(Y) + _e cAo(X 1) _ (Y,Xl,O)e IX + SA(x 1) [U+(y,x 1,a)e iz

+ U_(Y,Xl,a)e-iZ]e ix/2_ , (3.1)

v _= /_e i[eaAo¢oeiX ÷ 6yh(eiZ ÷ e-iZ)¢e ix/2] , (3.2)

and

w= 6 _eh(W+eiZ+ W_e-iZ)e ix/2 (3.3)

where

4
Xl-aX , (3.4)



X _ _(x - act) , (3.5)

Z _ a_z , (3.6)

and

2_- ÷ (g)2 (3.7)

The amplitudes Ao and A are for the two-dimensional and the oblique waves,

respectively. The symbols _ and 6 are the measure of the amplitudes of

the two-dimensional and the oblique instability waves, respectively. Since

the initial development of the instability waves is linear, we can take A(Xl)

to initially be a real quantity, but we allow the two-dimensional amplitude

Ao(Xl) to be complex. Later on, because of the nonlinear effects, both A(Xl)

and Ao(Xl) become complex. In equations (3.1) and (3.2), U± and Wz are

related to @ through the relations

u _*&w =D@ , (3.8)
y ± y ±

and

z- W÷ = 13U' (3.9)

Y ± Y - ¢y2 _ [32

B
D = 8---y ' (3.10)

By using the Squire (1933) transformation, the linearized equations for

and @ are
0

(D 2 -_2)2¢ 0 = iodl[(U - Co)(D2 -_t2)@ 0 - U"@o] (3.11)

and



(°2 y2)20 i R[ uoi 02y21000] (3.12)

where the primes denote differentiation with respect to the relevant arguments.

The solutions of equations (3.11) and (3.12) are subject to the wall boundary

conditions

¢ = @o = 0 at y = 0 (3.13)

and

@' = @o 0 at y = 0 (3.14)

The complex wave numbers a

given by

and y and the phase velocities c and c are
0

!

4 o (3.15)(z = a_ + _ iA '
0

_

a a A' (3 16)
Y = crY + 2i _ A ,

Co = 3 A' ' (3.17)
o 0

1+---

i_ Ao

and

o_
c = 3 (3.18)

1+2(7 A'
'-- A
l<Z

Equations (3.8) and (3.9) can be manipulated to produce

U cos e ± W sin e = D@ 2°3 U' A'
* ± _ U - c ¢ i-A sin2e ' (3.19)

where

e = sin -1 __ (3.20)
Y

is the propagation angle of the oblique waves.
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3.1. Solution in Viscous Sublayer (Zone I)

For the viscous effects to come into play in this region, the scaling for

y should be

4" (3 i 1)y=ay , ..

A

where y is order one. In the classical theory, the wall layer thickness is

order (ctRc)-1/3 which is order O(a4), consistent with equation (3.1.1).

Substituting (2.1) into (3.11) and (3.12), we obtain, up to the required order

of approximation,

[_4 _ i_j_()_a3y_ c)_2]; = 0 , (3.1.2)

where _ represents _o or ¢; ¢z represents _ or Y; c represents Co or

c; and D is the derivative with respect to y. We expand _ as

= go + agl + a2g2 + a3g3 + (3.1.3)

A

and with oc and c expanded according to (3.15) to (3.18), we obtain

(_4 + iR_ CoD2)go " 0

The solution of (3.1.4) not only must decay as y -

to the conditions

go(O)- g_(0}= 0 .

The first-order solution is given by

go = m

(3.1.4)

but it also is subject

(3.1.5)

(3.1.6)

m2 = -i_uqc ° , (3.1.7)

where b o is an arbitrary constant to be determined by matching with the

solution at zone II. A similar solution is obtained for the oblique waves.

11



U

The corresponding velocity components are given by

_8 [cAobo(1- e-roT)e iX + SAb cos e2 cos Z(1-e-NT)e ix/2

[ bo(: )v = Be -to 5 <_ _-- y + e -my 1 eAoeiX

l/  2cosZe- i a 5 _ _ y + e- iX/2

]
(3.1.8)

and

+ .] , (3.1.9)

where

iv = _ [2ib sin Z sin e(1 - Me-MT)sAeiX/2 + . .] , (3.1.1o)

M2 =-iyRc (3.1.11)

3.2. The Tollmein Region (Zone II)

As pointed out by Goldstein, Durbin, and Leib (1987), the solution for

this region is obtained by introducing the scaled transverse coordinate

Y = _ (3.2 I)

directly into equations (3.11) and (3.12) and by using equations (2.1) and

(3.15) to (3.18). The solution is obtained in the form

_ = _[(c 1 + ac2 + a2c3)+ (c 2 + ac 4

As will be shown, the matching requirements give

the solution can be written as

¢ = _(_, + aa)V + _4F(y,¢)

+ 2c6jY]'_1 + 4 F • (3.2.2)

c 1 = c 2 = c 3 ffi O; therefore,

(3.2.3)

12



where a is an order-one constant that depends on a, and F satisfies the

relation

Yc ) 1 X2Y(Yc
82F I ÷ - +

- Pc Y - Y 48Y2 c Y)
(3.2.4)

where

)2y2
C

Pc 4 (3.2.5)

and _ = XY .
C

Since equation (3.2.4) is singular at Y = Yc, F can be discontinuous

across Yc, and F± denotes the solution above or under this point.

Integrating equation (3.2.4) gives

F±(y,,) = F(O)+ _ c{½ y2 + yc[(y_ yc)(ln[Y - yc[ + i_±)

+ } k2 Y3(Yc + 1 Y) (3.2.6)+ Yc( In Yc i;-)] - 4-7_3.t _ ,

where the normal velocity is continuous across the critical layer. The

constants of integration _± and _ are, in general, a complex function of

x 1. The value of F as Y- 0 is F(O), which is determined via matching

with the solution in zone I. The corresponding velocity components are given

by

[ ] [ uu = _Oe eA° (X + aa) + a3F(y,d_) eix + 2$A cos Z (),+ aa)cos 0 + U - c

x sin 0 tan 0 a(_ ÷ aa)Y ÷ _3cos 0 F'(Y,_)

4 U' ] iX/2÷ a U- c sin 0 tan 0 F(Y,_b) e , (3.2.7)

v = Be {-eAoi_a21(_,+ aao)Y ÷ a3F(V,_)]e ix

- 8Aiya2[(_. + aa)Y + a3F(y,,)]2 cos Z eiX/2}, (3.2 .S)

13



and

Be _2i _A siW

t
U' a(), ÷ <_a)Yn Z sin O (), + aa) - U - c

_' j_(y,,}]eix/2}+ _3F(Y'_) - U - c '

3.3. Solution in Zones IV and V

(3.2.9)

Miles' (1962) solution, which is uniformly valid for y = 0(1) and y _ 1

in the limit as y,_- O, is given by

_------= ^ + 0

u - c (u- _)2n*
(3.3.1)

where

n* . 1 _a31 2n2_(1 - _)2 ÷ % + + : ÷ '
(3.3.2)

' IIn° (1- c}2 (I _)2 (u c)2 '
y

(3.3.3)

co

_ 2 l (U - c)2nodY , (3.3.4)
_1 = (1 - _)2 y

and ' _ t

Ii 12°'2o]n2 =- (U- c) 2 (1 --c) 2 + n dy (3.3.5)

By substituting equations (3.3.1) to (3.3.4) into the classical "inviscid

function" (Lin, 1955, p. 37), which is defined as

| _ .. cD_ (3.3.6)
u'_ - (u - _}_ '

and by inserting U = UB and equations (3.15) to (3.18) into the result,

expanding for small ¢, and then using equation (2.1), we obtain

14



wt(y;a,c O 3
i_ f

W : y) + {, -_- ,.c°s e + (3.3.7)

and

_

t-r 3 2i x o
W° = W .Y;_,Co,C_ ) + cr

_ 2 A
0

(3.3.8)

where

W'['(y;a,_,_.) = U'-----_c(1_ a_) -2 2_2j3 1 2acX J1 + 2°cJ2 + + 8"k y
(i - o0)4

+ O(y3)]

(3.3.9)

Coefficients J1 to J5 are defined in the appendix.

3.4. Matching Solutions

Matching the solution in zone I and the solution in zone I[ is easily done

by matching the velocities. The inner solution for the two-dimensional wave

(eqs. {3.1.8) to (3.1.10)) as y-_ =, reduces to

u = _0 boeiX , (3..4 1)

v = Be [-i_za5bo(Y _.1) + .]eiX (3.4.2}

For the solution in zone II (eqs. (3.2.7) to (3.2.9)), as Y- O, we have

u = _ D, + oa + a3F'(O) + . .]e ix (3.4.3}

v = ]_e [-iaS_oF'(O) +. .]e ix . (3.4.4)

Matching the u-velocities gives

0
(3.4.5)

whereas matching the v-velocities gives the imaginary part of F(O) as

F(O) =
I

-),
(3.4.6)

15



Matching the velocities of the obliques waves produces similar expressions,

with c replacing Co and _ replacing _.

Matching the solution in zone II and the outer solution in zones IV and V

is most easily achieved by using the inviscid function. The inviscid function

for the solution in zone II is obtained by substituting equation (3.2.3) into

equation (3.3.6) and re-expanding:

U 3 Pc c Y - Yc in_ F{O_ 1 kycY(2Yc + y) + O(a4)_._+o _ In Vc - -xy c -_
(3.4.7)

(0+) (o o), or _ - _ Matchingfor Y > Yc where a_ denotes either _- -

equations (3.3.7) and (3.3.8) shows that

!

= _ ÷ a32._-_ + O(a 4) ,
0

(3.4.8)

x _-(I - _)-2 _ i - ( ( )
(1 - ac) 4 J1 + 2acl2 + a c J3 + a2_C)" J4 + ocJ5

7 _2 2k fl_Ao_ _Fr(O) kY3 ]In vc - 4-__-_- _--2 Ao)- _Vc + _ Sno
=0 (3.4.9)

-2- -2

os 0 + = - Yc (AdP) +

cos 0 A _)2 _kyc

(3.4.10)

and

o __ )+ +i_

)2 Yc(A¢_o _ \A° niAo 2c° 2coYcX tial
(3.4.11)

Equations (3.4.8) and (3.4.9) are dispersion relations which determine

and _ in terms of _ (or in terms of the scaled Strouhal number _c). Since

their coefficients are all real, they are consistent with our original

16



assertion that _ and c are real quantities. In fact, it follows from

equations (3.7) and (3.4.8) that

@ A,g- _ + _ a3flm _-_ + 0(a 4) (3.4.12)
o

This shows that _ and _ satisfy the usual long-wavelength, small-growth-

rate resonance condition to within the order of the detuning. To a first

approximation, equation (3.4.9) shows that Co and _ satisfy the usual

long-wavelength, small-growth-rate dispersion relation

Co z _ . (3.4.13)

The imaginary part of the dispersion relations (i.e., the matching between

zones II and III) produces the real parts of equations (3.4.10) and (3.4.11).

A

For the initial linear growth, _¢ is real. The amplitude A is real, and Ao

is initially complex, but its imaginary part remains equal to its initial

value. Nonlinearity causes both amplitudes to become complex. Since the

3
amplitudes appear as order a in the dispersion relations, the imaginary

parts of A'/A or A'/A are balanced by the imaginary part of the
0 0

corresponding A_. Therefore, equations (3.4.10) and (3.4.11) in their complex

form are valid for both the linear and nonlinear growth regimes; they relate

the (slow) growth rates of the instability waves A'/A and A_/A o to the

phase jumps A_ and A_o across the critical layer. To determine these

latter quantities, we must consider the flow in the critical layer.

Equations (3.2.3), (3.2.6) to (3.2.9), (3.4.5), and (3.4.6) show that the

flow field in zone II can be written as

17



4y2121u = aXY- a F _.t y2 + Re ), + aa o + a3(f ' + ilacYc¢o)] ,AoeiX +2
'Xco._aa0

tan 0 sin 0 + a 3 {f' cos 0 +

tan 0 sin 0

),y - I XF(o) + pc c

× [(Y- Yc)InlY-VcI + Yc In Yc] + ),y2[1 iac -

' _°-s,nEe)l),co,Z,,,e'X'2XY - c
+ •

v = -o2),Y _e [i_¢AoeiX ÷ 2i_(cos Z)6Ae ix/2] +

_X iAeiX/2
w = -26(sin 0 sin Z) Re XY - c + ....

. , (3.4.14)

, (3.4.15)

(3.4.16)

and

where

p = acX Re [cAoeiX + 2(cos e cos Z)6Ae ix/2] + , (3.4.17)

f' = Pc ¥ + Yc lnl¥ - Yc ! + Yc _ _ y2 c ÷

This solution clearly becomes singular at the critical level

to be rescaled in this region.

4. CRITICAL LEVEL

As indicated in the preceding section, the solution obtained for zone II

(eqs. (3.4.14) to (3.4.17)) becomes singular at the critical layer. The

(3.4.18)

Y = Yc and has

18



appropriate transverse coordinate in this region, which matches the linear

growth rate, is

Y-Y
C

2 (4.1)

Reid (1965) predicted the critical layer thickness of the order (aR) -1/3

is O(a3), in agreement with the scaling in equation (4.1). Introducing

, which

equation (4.1) into equations (3.4.14) to (3.4.17) and expanding the result for

small _ shows that the critical-layer solution should expand as follows:

6+ - 8 1 2
u - c = c3),_ + ¢ PCYCrl + c Pc 2 (_) + _c-2u-2 + _a-lu-1 + Su0 ÷ _au I + $c2u2

+ 2 (o)+ $c3u3 + eu_ °) ecu_°) + sc u 2 + ec3u_°) + (4.2)

= -e¢-2_XYc Be iAoeix - 8a-2y_Yc 2 cos Z R_ iAe iX/2 + . , (4.3)

w = 5¢-2w_2 + _¢-1w_1 + gw0 + &cwI + _¢2w2 + &c3w 3 + (4.4)

and

p = eackReA e ix + _cc_ cos 8 2 cos Z ReAe iX/2 + . , (4.5)
0

where we have set

m

v = a v (4.6)

and

(4.7)

o and oThe linear analysis indicates that u O, u 1, u 0 are independent of _ and

that

0
u 2 = u 2 = w0 = w2 = 0 (4.8)
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The linear solution ((3.4.14) to (3.4.18)) shows that the functions

u 3 are discontinuous and singular across the critical layer. The other

functions u_2, U_l, Ul, w_2, w_ l, and w1 are singular at n = O, and

therefore, the linear solution is invalid. The full nonlinear momentum

equations are thus needed to obtain a valid solution at the critical level.

The nonlinear terms in the critical-layer solution will balance the

velocity jump at the same order as in the linear solution when

10

By substituting the expansions (4.2) to (4.5) into the full momentum

equations, the latter can be expressed in terms of the scaled variables

x 1, X, Z, and n as

where we have set

Du =-(aPX + a3Pxl, a-8P_, _PZ)

and the continuity equation can be written as

3

g_ux + _'_ + wz ÷ e Uxl = 0 ,

::

On _ + _-Z - e3H 8_ 2

and

0

u 3 and

(4.9)

(4.1o)

(4.11)

(4.12)

u - (4.13)

The Haberman parameter

H B

1

Ra 10

1
w

is order one.

(4.14)
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It is also convenient to work with the equation for

_, which can be written as

aFk_ffi _(<7-2UzW_ + o_owz - a6_zWx - aO;CZWxl )

Z-component vorticity

The first stage of the development of the waves, which occurs when the

amplitude of the oblique waves does not exceed the order of that of the two-

In this case all modal amplitudes are

(4.15}

dimensional wave, is considered here.

of the same order so that

= c (4.16)

Substituting (4.16) into (4.2) to (4.5), combining terms of equal power, and

substituting the resulting expansion into {4.10} and (4.13}, gives

cosz ix--_o u_2 =
\y/

(4.17)

o_o Ul " CuOxl - Vl)' - _P3x + - PcYcnu-2x + - kYcp c /_e E ,

(4.18)

_0 u3 = cu2x 1 - v3k - 5X + - PcYc _ _ + )'_ Uo

) )- + u-2 O_ - )'Yc _¢ E O___+ w_2_ O-Z -2
Orl Jk_ + u , (4.19)

(4.20)_o w-2 _c _ _ 2 sin Z _eAe ix/2
-¥ 2

°_o Wl = -_YcP_nW-2x - k_W-2x I - _P3z - CwOxl- '
(4.21}
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fo w3 = Cw2xl- - P_:Ycn°'Wox- )'nWoxl - _Psz + )'YcW-2n _e E

_ - 1 -2
-a(u_2w_2 x w_2U_2x> - apc _ r_ W_2X ,

_o "-2_ " _XW-2z'

o_0 u1_ = -CnO_×l + k(BWlZ- nU_2xl_ > YcP_(U_2x + nU_2x_> ,

°_0 U3_"-P3¥C(_Uo_x - _Woz>- k[_UOnxl- _W3Z - ¥c(U-2_ ÷ Pc> _" El

>- g(w-2U-2z - u-2W-2Z)- - cU2_xl + Pc_ 2 W-2Z '

_u_2 x + Bw_2 z = 0 ,

aulX + v1_ + _wlZ + U-2x I = 0 ,

and

where

and

_U3x + v3n ÷ _W3Z + UOxl = 0 ,

8
--- -H--

82

a_ 2

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

E = i_Ao_eiX+/ 2Ay cos Z e ix/2) '_ (4.30)

These equations ultimately determine the amplitude equations. Equations for

velocity components at other a orders are not displayed here, since they do

not influence the amplitude equations. The y-momentum equations indicate
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that the pressure derivatives with respect to _ are zero up to the a 18

order.

5. AMPLITUDE EQUATIONS

The set of equations (4.17) to (4.28) must be solved subject to the

transverse boundary conditions so that they match the outer solution, equations

(4.2) to (4.5), Equations (4.17) and (4.20) indicate that the lowest order

solutions are given by

and

where Q satisfies

u_2 = 2 tan {9 cos Z Be[iQ(n,x 1)e iX/2] (5.1)

w_2 = 2 sin z_eQ(_,xl)eiX/2 , (5.2)

L1Q = _X_(sin e cos O)A ,

subject to the transfer boundary condition

Q " 0 as _ - ±®

8 2
En _ ifftn X_ - H for n = 1,2

2 8_2 '

We have set

Equations (4.22), (4.23), (4.25), and (4.26) are manipulated to obtain

+ _- - + _ +y /'- + _ +
-cU0 x1   cc ,nu-2)nX X°+wl

and

sin
- X_U+2xl q - XW_2xl O

+ ),Ycp c cos 0 BeE- lacYc_(_Uo_ X - D+wo)

-(,_2D+u_2- U_2D+W_I)_ - CU2_xl,
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+, _pc_( x- + D+Wl)_o u3_ " TnUl_x-

(5.3)

(5.4)

(5.5)

(5.6)

{5.7)



where

and

+

un = un cos e + wn sin e for n = 1,2,3, (5.8)

4-

The functions ui_ and u3_ must be expressible in the form

+ EUl_ - _
m,n=O

Q(1) (_ ,Xl)ei [ (n/2)x+ (m-1)z]n,m-I

and

3

+ E °(3)u3_ =/_e "n,m-1
m,n=O

(n,xl)ei[(n/2)X+(m-1)Z]

where otljt _ satisfies the relation
"1,1

(5.9)

(5.1o)

(5.11)

- (1) sin O ,
LIQ1,1 = -XW_2Xl

Q(3) satisfies the relation
1,1

E n (3) = a + )'Yc _ sin 0 A q + iPcYA cos O1"1,1 _- n _" "1,1 0 _ '

and _(3) satisfies the relation
q2,0

(5.12)

(5.13)

t

_ fl(3)2.2,0 - COS O[i_ tan20 O_- XYc_(A tan 0 Q_- 2i_cAo cos 0>] (5.14)

Here, the asterisks denote the complex conjugate.

Examination of equations (3.4.14), (3.4.17), and (4.2) to (4.5) indicates

÷

that only u3_ is discontinuous across the critical layer. Therefore, it

follows from equations (3.4.10), (3.4.11), and (5.11) that these solutions

must satisfy
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° : )Q dn - _ co e + (5,15)

and

I  2 ,3,d-00-2 :i_2Ao 2AoiAo .
__o a 2_/2 R o i

cos e (5.16)

in order to match the discontinuous 0(013 ) terms in equation (3.4.14).

Equations (5.15) and (5.16) arise from the requirement that the changes in the

fundamental and subharmonic components of the velocity across the critical

layer as calculated from the external solution be the same as when they are

calculated from the internal solution. This latter solution is obtained by

solving equations (5.3) and (5.12) to (5.14) and by substituting the result in

equations (5.15) and (5.16).

To obtain the inner solution, we introduce the following normalized

variables:

= x I - x 0 , (5.17)

n - 6__, (5.18)
C

h - 2H (5.19)
_x_3 '

where x o is the origin of the nonlinear region. Introducing these into

equations (5.3) and (5.12) to (5.14) and taking the Fourier transforms with

respect to n gives

- 2v(sin e)A(_)H(-k)e hk3/3 , (5.2o)

a_(1) ehk3/3 ;-_,. ___ sin20 dA H(k)dk
ax _ _ _ '

(5.21)
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I_ )2 l 2hk ,3_(3) 4VYc ehk3/3 sin 0 -
_ AotXjA* ^j¢ _ r_,_ e_1,1 c

(5.22)

_(3) hk3/6 _ A2

"2,0 = e [X_fi 2

e

x 5(k 1 ÷ k 2 - k3)dk 1 dk 2 dk 3 -

k

c_c3y 0

Yc, 1__-7-i_cH(-k) ,+

yc

(5.23)

where the notation

F(k) = ,I e-ikn F(n)dn (5.24)

is used to denote the Fourier transform of any function F(n) so that its

inverse is given by

1 [= ikn F(k)dk .F(n)= 5 e (5.25)

Since the integral over n is just the zero wave number component of the

Fourier transform, then equation (5.15) gives

m(coso, co-_)-_
2

A + 21_ ) NoA + iFA*Ao ,
(5.26)

where

_'Yc (+)2NO = _ t_c
2_

(5.27)

and
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-2 -3-
r = _. y--- a_._¢ _ sin20

-2 X2
(5.28)

Solving for Q2,0 shows that the nonlinear interaction term makes no

contribution to the velocity jump integral of equation (5.16), so it follows

that the fundamental amplitude g ° is still determined by the linear growth

relation

t

Be A° _r _2 X2

Fx

which can be integrated to give

where

(5.29)

(5.30)

x2
ko = 8 X3 + (5.31)

This shows that the fundamental is determined by the linear growth relation

o (ko+iki)x
Ao = aoe (5.32)

o is the complex amplitude of the fundamental instability wave atwhere a°

= O, and k i is the initial wave number detuning factor, which can be chosen

as an initial condition. This shows that there is no back-reaction of the

oblique mode on the two-dimensional mode, and that, consequently, the two-

dimensional wave follows the linear theory.

With the fundamental wave given by equation (5.32), the oblique waves'

amplitude equation (5.26) is written as

dA 4 g + Dig A* (5.33)
dx = g k° o '
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where

3 _3
D = _ "rr_-- (5.34)

and the following relations are used to the order of approximation of the

analysis:

- 1 _ --R (5.35)
= y, cos 0 = _, c =_= _Yc = ¢

Equation (5.33) can be split into magnitude and phase equations, respectively:

4 (:idx = _ k°[A[ - D a e sin(_oi + kix - 2_)[A I (5.36)

d_____=D a e cos(, ° ÷ k._ - 2_1 (5.37)
d_ 1 '

where _ is the phase angle of A and _o is the phase angle of a_. The

solution of equations (5.36) and (5.37) is subject to the condition that it

match with the upstream linear solution.

6. DEVELOPMENT OF AMPLITUDES WITHIN THE NONLINEAR REGION

In the nonlinear region, k o, k i , and R can be taken as constants. The

amplitude of the two-dimensional wave follows the simple linear growth relation

of equation (5.32). The solution for the oblique waves' amplitude equations

(5.36) and (5.37) depends on the initial detuning factor. In section (6.1), we

present an analytical solution for the case of perfect tuning, that is, k i = O.

The effect of the detuning factor will be discussed in section (6.2.)

6.1. Perfect Tuning

For k i = O, the system of equations (5.36) and (5.37) can be solved

analytically to obtain
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IAJla°exp( ko lOxpo 1[ 4DJk°a°1_o a P _ In 1 + c 4 e+ 1+c4
(6.1)

where

koX
P = e , (6.2)

and the effective phase angle _e defined as

_e = _'o - 2_ (6.3)

is given by

r - I (6 4)sin(_e) = r + 1

where

-4(D/ko) [ a°JP

r=c4e (6.5)

The constants a° and c 4 are to be determined from matching with the outer

linear solution x * -_, and c 4 can be related to the phase angle _eo at

_= Oby

1 + sin *eo (6.6)
c4 = 1 - sin _eo '

The first exponential factor in equation (6.1) is the linear growth rate.

The next exponential factor represents augmentation or suppression of the

growth above the linear growth, depending on the initial phase angle _eo

(which determines c4). Note that c 4 ranges from 0 to ®. Two values of Veo

are of particular interest. If _eo = v/2, c 4 = _ and equation (6.1) reduces

to
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w

If _eo = 3_r/2, c 4 = 0 and equation (6.1) reduces to

For

(6.7)

IA, a exp(4 koxlex<_ ° a° lek°x)= o (6.8)

_eo = 3_r/2, the second exponential factor in equation (6.8) represents an

explosive, exponential-of-an-exponential growth. Thus the resonant-triad

interaction is a very powerful mechanism for augmenting the growth rate of the

oblique instability waves that propagate at an angle of 60 ° to the downstream

direction.

The amplitude of the oblique waves in the nonlinear region (eqs. (6.1) and

(6.4)) at various initial phase angles *eo is shown in figure 4 for ]a°Io "

I B

1

and R = 0.8 Rup' where Rup is the upper-branch scaled Reynolds number.

Figure 4(a) shows that the amplitude grows explosively for _eo = 3_/2, as

given by equation (6.8). The trend is reversed when _eo = _/2 (eq. (6.7)).

The phase of the amplitude is shown in figure 4(b). If _eo = _/2 or 3_/2,

the effective phase angle _e remains at its initial value. If _eo = 0

or _, the effective phase angle develops rapidly to an asymptotic value of

_e = 3_/2.

6.2. Effect of Detuning Factor

Since perfect tuning may not always be achieved, we discuss here the

effect of the initial detuning factor k i. The magnitude of the plane wave's

amplitude, equation (5.32), is independent of the detuning factor. The

detuning factor causes the phase angle of the plane wave to vary linearly

in 2. The effect of the detuning factor on the oblique waves is obtained by

solving equations (5.36) and (5.37) numerically for several values of ki; the

results are shown in figure 5. Only large values of k i, compared to k o, can
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influence the solution. Figure 5(a) shows that detuning only moves the

location of the resonant amplification downstream; however, detuning causes the

effective phase angle to vary in the upstream linear region, as figure 5(b)

indicates. But the effective phase angle reaches its optimum value of

sin _e = -1 some distance downstream, which allows for the explosive growth to

occur. This can be understood by noting that the solution of equation (5.37)

is independent of that of equation (5.36), and that the former can be written

as

wile r e

dxi I °] ek°_ cos x. (6.9)dx -, k i - 2D a ° 1

xi = *o + ki_ - 2_ (6.10)

For large x values, equation (6.9) reduces to that of perfect tuning. Thus,

for *eo = 270°, if k i = O, sin _e = -1 is achieved immediately at _ = O.

As k i increases, the optimum angle is achieved farther downstream. The

nonlinear contribution to equation (5.36) is dependent on k i in sin(xi).

Since sin(xi) reaches the optimum value at some downstream location that

increases with k i, the only effect of k i on the amplitude is to move down

the location of resonance amplification. Since for reasonable values of k i

the effect of detuning is thus negligible, the solution at k i = 0 can be

considered a good approximation. Therefore, in the following sections, where

the composite solution and the results are presented, we assume k i = 0 and

use the analytical solution (eqs. (6.1) to (6.5)).

7. COMPOSITE SOLUTION

The overall instability-wave growth is strongly dependent on both the

nonlinear effects discussed here and the weakly nonparallel effects. In order

to incorporate both effects into a single formula, we use the composite
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expansion as suggested by Van Dyke (1975). The composite expansion is formed

from the present inner solution Ain and the slowly varying outer solution

Aou t. Here the composite solution for the case of perfect tuning, that is,

k i = O, is presented. In section 7.1 the composite expansion in the unscaled

coordinate x, which is the dimensional streamwise coordinate normalized by

the local boundary-layer thickness, is obtained• In section 7.2 the integrals

that depend on the boundary-layer variations are evaluated and the solution is

presented in terms of the unscaled boundary-layer coordinates.

7.1. Composite Expansion of the Two-Dimensional Wave and Oblique Waves

as

Consider first the plane wave. The outer linear solution can be written

where x 2

disturbances is at

be approximated by

a ko(X2)dx
0

Ao,ou t = A°(x2)e (7.1)

where

is the slowly varying boundary-layer variable. The origin of the

x = 0 (see fig. 2). As x 2 * x o, this outer solution can

koX
(7.2)ho,ou t • a° e = h0 o,i/o

a 4 _ x° k d
0 OX

a ° = Ao°(O)e0

Consider the inner solution of the plane wave (eq. (5.32)) as ÷ -_; the

solution can be written as

(7.3)

ko_
• _ a° e = A (7.4)

Aln o o,in/out

The composite solution is given according to van Dyke (1975) as
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Ao,inho_out

Ac = A,in/ou t

Thus, for the plane wave, the composite solution is given by

(7.5)

4]a ko(X2)dx
0Ao, c = A°(o)e (7.6)

and we have approximated h_(x2) by

A°(x2) = A°(x-O) (7.7)

The composite solution for the plane wave (eq. (7.6)) is thus the same as its

outer solution. This is an expected result since the two-dimensional wave in

the nonlinear region is still given by its linear solution.

With respect to the oblique waves, the outer solution is given by

X

(4/5)a4 _0 k°dx
Aou t = A°(x2)e (7.8)

As x 2 * x o, this outer solution can be written as

(4/5)ko_

hout * a e = Ain/out (7.9)

where

(4/5)a 4 _ x° k dx
0 o

a = A°(o)e (7.10)

The inner solution for the oblique waves, equations (6.1) to (6.4), can be

written as

where

(4/5)ko_
A. = a e g(_)

in
(7.11)
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g(x) = exp[T

sin (_o 2_) r - 1- -r_l'

and

-4T
r - c4e

AS x * -_,

A°

In
÷ae

(4/5)ko,_
_A

in/out

The composite solution

Ai nAou t
A -

c Ain/out

is then given by

A = A°(o)e
C

(4/5)a4 f: ko dx
g(_)ei_ ,

where A°(x2) has been approximated by

A°(x2) ffi A°(x ffi O)

We allow the coordinate system origin shift x o to occur naturally by

rewriting equation (7.13) as

j IkoT = D a ° e ax .
O

I I
for [a°l from equation (7.3) we obtainSubstituting 0I I

(7.12)

(7.13)

(7.14)

(7.15)

(7.16)

(7.17)

(7.18}

(7.19)

(7.20}
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x

T = a 4 AO(x = O) I

0

4
0

De

kodX

dx . (7.21)

The constant c 4, equation (7.15), is given by

1 ÷ sin _oi

c4 = 1 - sin _oi
(7.22)

where _oi is the initial phase angle of the fundamental.

7.2. Composite Solution in Unscaled Boundary-Layer Coordinates

Here the solution of the amplitude functions in the unscaled boundary-

layer coordinates is presented. The composite solutions (eqs. (7.16) and

(7.18)) can be integrated once the boundary-layer variation with x is given.

Let

4;xI = a ko(X2)dx (7.23)
0

where ko(X2) is given by equation (5.31) and x is normalized by the local

boundary-layer thickness _* If _* is the boundary thickness at x = O, we
• 0

can write

= Ri _ (7.24)
0

where Ri is the scaled Reynolds number at x = O. If x w is the distance

between the leading edge of the flat plate and the origin of the disturbances

x = O, then according to Schlichting (1955), we can write

_* x1/_d + 1

_o
(7.25)
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where x d is the dimensional streamwise coordinate. Equation (7.23) can be

integrated to obtain

i 1.21i .tj11 (x"[" ln(x "[" + 1) + x.[. + 1I = a4Ri 24 )3 + 1 + 4) - 4 +
4_f2R i

(7.26)

where

x _ _ x
x (7.27)

W

As in Goldstein and Durbin (1986), the scaling parameter a can be replaced

by the dimensionless frequency F*, defined as

F* _ 12- _ = _ (7.28)
U2

and equation (7.26) can be written as

[ -- _' I

24 )3 + 4) + 1 - 4 + [ x_J)2 1 ln(x t + 1) +

4_/2 _ xf+l

(7.29)

The composite solutions are now written as

J.oJ-IAo°l°' ,7 o,
[A[ = A° e(4/5)Tg(T) , (7.31)

and

-4T
c4e - 1

sin qJe = -4T ' (7.32)
c4e +1

where g(T) is defined in equation (7.12). From equation (7.21), T can now be

written in terms of the boundary-layer coordinates as
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The coordinate

xt
I + 0.5x f

(1 + xJ') 3/2

Deldx t

x f can be replaced by the local Reynolds number since

(7.33)

(7.34)

The scaled initial amplitudes

amplitudes A° and A° by
n o,n

and

A° and A° can be related to the unscaled
0

A° = F*lO/12A ° (7.35)
n

A° = F*10/12A° (7.36)
o,n o

8. RESULTS AND DISCUSSION

Results are presented here for the development of the fundamental and the

subharmonic waves as given by equations {7.30) to (7.32). The solution of

these equations is dependent on the initial levels of the fundamental and

subharmonics and on the initial phase-difference angle between the two-

dimensional mode and the oblique modes. These factors, among others, will be

discussed here.

8.1. Effect of Initial Level of the Fundamental

Figure 6 shows the amplitudes of the fundamental and the subharmonic waves

normalized by the initial level of the fundamental. The normalized frequency

F_ = 10-5, and the initial phase angle _oi is 3v/2. The unscaled initial

level of the subharmonic is fixed at 10-8 , whereas the unscaled initial level

of the fundamental is varied between 10-5 and 10-2.5 . Since the fundamental

behaves linearly, as indicated herein, the figure shows that the amplification
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of the fundamental is independent of its initial level. The development of

the fundamental is also independent of that of the subharmonic. Kachanov and

Levchenko (1984) have indicated that the development of the fundamental wave

does not depend on the subharmonic development in an initial region of the

amplification of small priming subharmonic fluctuations. Their results

indicate no back-reaction on the fundamental up to a fundamental's initial

level of 0.218x10 -2, which is consistent with the present results.

In this analysis, the subharmonic does not initially react back on the

fundamental. This allows the fundamental to grow according to the linear

theory. On the other hand, the subharmonic grows as the exponential-of-an-

exponential, as figure 6 shows. This is consistent with the observations of

Kachanov and Levchenko (1984), Saric, Kozlov, and Levchenko (1984), and Corke

and Mangano (1989). This growth of the subharmonic is dependent on the growth

of the fundamental, which acts as the catalyst for the resonant growth. The

growth of the subharmonic waves increases with increasing fundamental initial

amplitude, and as figure 6 indicates, the subharmonic saturates with the

fundamental's decay.

8.2. Effect of Initial Level of the Subharmonic

An interesting feature of the present analysis is that the subharmonic

amplitude is given by a linear function in A. The ratio A/A ° and the

amplification rates are thus independent of the initial level of the

subharmonic. The role of the initial amplitude of the subharmonic is clearly

shown in the experiments of Saric et al. (1984) and Kachanov and Levchenko

(1984, fig. 14(c)) in the case of simultaneous ribbon excitation at Tollmein-

Schlichting frequency and its subharmonic. In the experiment, the initial

level of the subharmonic was varied sinusoidally. This resulted in an

amplitude A of the amplified subharmonic, which varied sinusoidally as the

38



initial disturbance and was proportional to the initial amplitude of the

phase-locked component of the ribbon excitation. This indicates that the

growth of the subharmonic is linearly dependent on the initial level of the

subharmonic, which is consistent with the present analysis.

8.3. Effect of Initial Phase-Difference Angle

The magnitude of the fundamental's amplitude, which is governed by a

linear process, is not dependent on the phase angle, as equation (7.6)

indicates. On the other hand, the amplitude of the subharmonic,

equation (7.31), is dependent on the constant c4. This constant is

determined via the initial phase angle, _oi, by using equation (7.22). Thus,

the nonlinear process is dependent on the initial phase angle _oi between

the fundamental and the subharmonic.

The effect of _oi on the growth of the subharmonic is shown in figure 7.

The effective phase angle _e controls the sign of the nonlinear term in the

subharmonic's amplitude equation (5.34). For _oi = v/2 or 3v/2,

equation (7.31) reduces to

[A[ _ A° e (4/5)I e ±T , (8.3.1)

where the negative sign is for _oi = v/2 and the positive sign is for

_oi = 3v/2. The nonlinear effects can thus amplify or reduce the growth rate,

depending on the initial phase angle. The amplitude of the subharmonic at

R/R i = x/2 is shown in figure 7(b) as a function of _oi' The figure shows

that, except in the vicinity of _oi = v/2, the amplitude is close to its

maximum value, which occurs at _oi = 3v/2.

If _oi _ 3v/2, equation (7.22) shows that c 4 = 0 and thus

equation (7.33) gives sin _e _ -1 irrespective of x.

infinity and _e is also a fixed value independent of

gives sin _e _ 1. If _oi is not close to _/2, c 4

If _oi = w/2, c 4 is

x, equation (7.33)

is finite and, as x

39



increases, _e reaches an asymptotic value sin _e = -1. Thus, except for

_oi = _/2, sin _e tends to be -1 as x increases; these results are

demonstrated in figure 8. The sign of the nonlinear term in the oblique waves'

amplitude equation (5.36) is determined by sin _oi' Thus, except for

_oi _ v/2, the amplitude of the subharmonic is close to its value of

_oi = 3v/2, as was shown in figure 7(b).

In free-shear flows, the dependence of the subharmonic amplification on

the initial phase difference was observed and studied by several researchers.

The analysis of Monkewitz (1988) and the numerical simulations of Patnaik,

Sherman, and Corcos (1976) and Riley and Metcalfe (1980) for vortex pairing in

two-dimensional mixing layers, showed that the pairing process depends on the

phase difference between the fundamental and subharmonic instability waves. In

the experiment of Zhang, Ho, and Monkewitz (1985) for a two-dimensional shear

layer under bimodal excitation, significantly different merging patterns were

observed as a result of changing the initial phase difference between the

fundamental and the subharmonic. For a round jet under fundamental-subharmonic

excitation, Mankbadi (1986) showed that the initial growth rate of the

subharmonic is highest when the two waves are in phase. The effect of phase

difference on the subharmonic's peak was found to depend on the Strouhal-number

pair. For a round jet under two frequency excitations, Mankbadi, Raman, and

Rice (1990) demonstrated that the interaction between the fundamental and

subharmonic waves depends on an effective phase angle identical to the one

defined here in equation (6.3).

For boundary layers, Klebanoff and Tidstrom (1959) showed that the

disturbance grew to a large amplitude, which appears not to be qualitatively

reproducible. This can be explained by the present analysis, which indicates

that these high peaks may or may not occur, depending on *oi. Since no
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control was exercised over _oi in Klebanoff and Tidstrom's (1959} experiment,

it could vary at random. The analysis herein showed that if _oi was optimum,

peaks were observed, and if _oi was close to v/2, then peaks were not

observed; thus, the variation of the initial phase-difference angle can explain

why the observed peaks were not reproducible.

For the case of resonant amplification of controlled subharmonic priming

oscillations, gachanov and Levchenko (1984, p. 231) observed that resonance

occurs at a given phase shift _r between the crests of the fundamental wave

and the subharmonic. They also reported that Zelman and Maslennikova's (1982}

numerical results showed the same feature. Zelman and Maslennikova {1982}

calculated the growth of the waves at various initial phase shifts between the

subharmonic and fundamental. The results of their calculations show that when

an initial phase of the subharmonic minus the resonant phase, measured on the

cycle of the subharmonic, is 90 ° (or 180 ° measured on the cycle of the

fundamental}, the subharmonic not only fails to grow, but it also damps with

approximately the same rate as the amplification at _r. Other things being

equal, the damped subharmonic lags behind the subharmonic having _oi = _r by

an order of magnitude or more in amplitude. These numerical results are

consistent with those obtained herein (fig. 7(a)) for the cases of _oi = v/2

and 3v/2, where the difference between the two values is v on the

fundamental cycle or v/2

simulations.

on the subharmonic cycle, as in the numerical

8.4. Nonlinear Function

The nonlinear function g in equation (7.32} is the ratio of the

nonlinear amplitude to the linear amplitude, This function, defined in

equation (7.12), can be written for _oi - 3v/2 as

41



[g[ = exp
0.3 _" [AO[_ 4 g4 'xt 1 + 0.5x t

_l ol up _ JO (1 + xt) 3/2 eldxt
(8.1)

m

Here, Rup, which is equal to 0.1537, is the upper-branch scaled Reynolds number

based on the linear theory. The location g is defined by

up

(8.2)

where R. is the initial Reynolds number. Thus, _ < 0 corresponds to the
1

location of the origin of the disturbances (e.g., vibrating wire) ahead of the

upper branch of the linear neutral curve, and _ _ 1 corresponds to a location

of the origin of disturbances beyond the upper branch of the neutral curve

(i.e., in the linear stable region). Other parameters being the same,

equation (8.1) indicates the nonlinear interaction increases with the initial

Reynolds number, Ri. Also, as shown in figure 6, the nonlinear interaction

increases with [A_ , which reaches its maximum at the upper branch. These two

factors explain why the observed subharmonic resonance occurs at or beyond the

upper branch.

The effect of frequency on the nonlinear function is shown in figure 9,

which indicates that the nonlinear effects increase considerably with

decreasing the frequency. Note that the argument of the exponent I in

equation (8.1) also increases with decreasing frequency, as given by

equation (7.29). Thus, the nonlinear interactions are quite sensitive to the

normalized frequency F*. Since low values of F*, correspond to higher

transitional Reynolds numbers, the present nonlinear phenomenon is particularly

significant at high-Reynolds-number flows.
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8.5. Nonlinear Upper Branch of Neutral Curve

Because of the nonlinear effects, the subharmonic can continue to grow

beyond the upper branch of the neutral curve. The amplification factor for the

oblique waves, based on the linear theory, is 0.8k o, whereas 0.8I is that

which accounts for the variation of the boundary-layer thickness. However, the

total amplification rate of the oblique modes is given by the sum of the linear

and nonlinear amplifications. For _oi _ 3_/2, the nonlinear upper branch of

the neutral curve for the oblique modes can be obtained from equation (7.31) by

setting

which can be written as

O.8I + T .. 0 , (8.3)

0.8I+ 0"3_" IA°IR4 g___4_4_x_" 1+0.5x t
), o up _ 0 (1 + xt) 3/2 eIuxt"

0 (8.4)

The solution of this equation determines the location of the nonlinear upper

branch. This equation indicates that the nonlinear neutral curve is dependent

on the initial Reynolds number as well as on the initial level of the

fundamental. The first term in equation (8.4) is the linear growth rate of the

subharmonic, which includes the small nonparallel flow effects. The second

term is the nonlinear contribution to the neutral curve. As A°* O, the
o

nonlinear contribution vanishes, and the nonlinear curve coincides with the

linear one,

Since the nonlinear contribution in the upper-branch equation (8.4) is

o nonlinear effects extend thealways positive for nonzero values of Ao,

critical Reynolds number Thus, depending on A°o and Ro, the upper branch of

the neutral curve can be eliminated. Goldstein and Ourbin (1986) have pointed

out that nonlinear critical layers eliminate the upper branch of spatially
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growing Tollmein-Schlichting waves. Figure 10 shows both the linear and the

nonlinear upper branches of the neutral curves for the subharmonic. The

accounted for in both curves ___A_,n = 0.001 andboundary-layer growth is

0.8). The figure shows that at high frequencies the two curvesRi/Rup

approach each other. But at low frequencies the nonlinear upper branch's

Reynolds number is much larger than that of the linear one. The upper-branch

Reynolds number can be increased further by increasing the initial level of

the fundamental. Thus, at low frequencies, the upper branch is practically

eliminated, so an initially linear stability wave can encounter nonlinear

effects that cause a state of suspended, nondecaying waves, as in the fully

turbulent case.

9. DETAILED COMPARISON WITH EXPERIMENTS

The results presented in section 8 are in qualitative agreement with the

available data. Further detailed comparisons with the data of Kachanov and

Levchenko (1984) and Corke and Mangano (1987) are presented in this section.

In figures 11 to 13 the amplitudes of the two-dimensional and oblique waves

are compared with the corresponding experimental data. In calculating these

amplitudes, the initial amplitudes and Reynolds numbers were taken to be the

same as in the experiment.

Figure 11 shows the calculated amplitudes at

Kachanov and Levchenko's {1984) experimental data.

agreement in the initial region. Further downstream, for R > 600, the

measured amplitude of the oblique waves is less than the calculated one.

Figures 12 and 13 show the calculated amplitudes at other frequencies and

initial conditions compared with the corresponding data of Corke and Mangano

(1987). These figures also show an excellent agreement for the initial

development of the waves. The plane wave grows almost at its linear growth

F* = 137x10 -6 compared with

The figure shows excellent
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rate. But both theory and observations show considerable growth of the oblique

waves beyond that of the linear theory. At points downstream, the measured

amplitude of the oblique waves is less than the predicted one. Since the

amplitude of the subharmonic exceeds that of the fundamental, the disturbed

flow enters a higher amplitude regime, and rescaling of the amplitudes is

required. The present theory thus successfully predicts the initial resonance

of the oblique waves. When the amplitude of the oblique waves exceeds that of

the two-dimensional wave, a second mechanism comes into effect that reduces the

growth of the oblique waves.

10. CONCLUDING REMARKS

The nonlinear interactions between a two-dimensional fundamental stability

wave and a pair of oblique subharmonic waves of equal and opposite propagation

angles were studied by using low-frequency scaling. Attention was focused on

the initial stage of the nonlinear development of the waves. The present

analysis indicated that the two-dimensional fundamental mode growth was given

by the linear theory, whereas the subharmonic oblique modes grew explosively as

the exponential-of-an-exponential. The fundamental acted as a catalyst for the

growth of the subharmonic; therefore, the nonlinear growth of the subharmonic

increased with an increase in the initial level of the fundamental.

The development of the subharmonic was found to be dependent on the

initial phase-difference angle between the two-dimensional fundamental mode and

the oblique subharmonic modes. For the case of perfect tuning, the optimum

initial phase difference was 3_/2, measured on the cycle of the fundamental.

If the initial phase difference was changed v from its optimum value, the

subharmonic not only failed to grow, but decayed at a rate almost equal to its

amplification rate for the optimum initial phase-difference angle.
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The nonlinear growth of the subharmonic increased as the nondimensional

frequency F* decreased. Thus, the present triad interactions are stronger at

lower frequencies. Keeping other parameters the same, the nonlinear

interaction increases with Reynold's number. Nonlinear effects tended to

increase the upper-branch Reynolds number of the oblique modes. At low

frequencies, the upper branch of the neutral stability curve for the oblique

modes was practically eliminated.

Detailed comparisons with available data indicated that the present

analysis successfully predicts the initial resonance of the oblique waves. If

the subharmonic was not much larger than that of the fundamental, both theory

and observations indicated that the fundamental grew according to the linear

theory while the subharmonic grew at rates much higher than that predicted by

the linear theory. The strong agreement between theory and experiment here

has established the origin of the subharmonic resonance and of the observed

three-dimensionality of the flow at boundary-layer transition.
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APPENDIX

In this appendix we list the numerical coefficients that appear in

(3.3.9).

J1 - u -X

0 UB

J2[iI 2- --_ + UB

UB

1 2
+

(),y)3 (Xy)2
dy .
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