Hubble Space Telescope Secondary Mirror Vertex Radius/Conic Constant Test

Robert Parks
Optical Sciences Center
University of Arizona
Tucson, Arizona 85721

Prepared for:
George C. Marshall Space Flight Center
Marshall Space Flight Center, AL 35812

March 15, 1991

Hubble Space Telescope Secondary Mirror Vertex Radius/Conic Constant Test (Backup Secondary S/N 003)

Executive Summary

The Hubble Space Telescope (HST) backup secondary mirror was tested at the University of Arizona Optical Sciences Center (OSC) Large Optical Shop on December 28-29, 1990 to determine the vertex radius and conic constant. The tests were performed according to procedures submitted to and approved by MSFC and other interested NASA centers. Three completely independent tests (to the same procedure) were performed. Similar measurements in the three tests were highly consistent. The values obtained for the vertex radius and conic constant were the nominal design values within the error bars associated with the tests. Visual examination of the interferometric data did not show any measurable zonal figure error in the secondary mirror.

Introduction and Background

Although all evidence to date indicates that the imaging error in the HST is due to the incorrect conic constant on the primary mirror, it seemed prudent to perform a test on the backup HST secondary mirror to see if it was figured to the correct radius and conic constant. Because the backup secondary mirror was polished and tested concurrently with the flight secondary by the same personnel, there is good reason to believe the global characteristics (vertex radius and conic constant) of the backup mirror are within fabrication tolerances of being the same. On the other hand, because every optic is an individual work of a highly skilled craftsman, there is no reason to believe that the fine scale surface structure on the two mirrors is the same.

As a result of these considerations, it was proposed to test the backup secondary to see if the vertex radius and conic constant were the nominal design values. The test most easily performed was the traditional Hindle test using a large, fast sphere to autoreflect the test beam back to an interferometer. Although this test was easy to perform using existing test equipment at OSC, it had 2 regrets; only 85% of the on-axis aperture of the secondary could be viewed, and the long optical path required for this test meant that the interferometric data would be "noisy" due to atmospheric turbulence and vibration. These regrets are minor within the objectives of the test to determine the radius and conic constant.

The test actually performed by Perkin Elmer (now Hughes-Danbury Optical Systems) at the time of the manufacture of the secondaries was a better test than the one now being reported on in the sense that the full clear aperture of the mirror could be seen, and the unequal optical path was very short so there was little noise due to turbulence and vibration. The test performed at Optical Sciences had the advantage, however, that it was done with different test equipment and in a fundamentally different manner than the original test and thus provided a completely independent check on the original test.

In the following sections of this report, we will go over the details of the tests and the test data. We begin by describing where the test was performed and by whom it was witnessed. This is followed by a description of the principles of the test. Then the raw data from the 3 individual tests is given. An analysis is made of the systematic and statistical errors in the data and then the values are given for the vertex radius and conic constant. This is followed by an analysis of the interferometric figure error data for third order spherical aberration.

Details of the HST Secondary Mirror Tests

Comments on the test environment

The tests were conducted in the Large Optics Shop at the Optical Sciences Center, University of Arizona in Tucson. The room is about 10×40 meters with an 8 -meter ceiling height. The room is below ground and has a laminar air flow system. These circumstances makes the room exceptionally free of vibration and the temperature is generally constant to half a degree fahrenheit over days at a time.

Overall test layout

All the test hardware was assembled on a 4×20 foot Newport table with the exception of the $60-\mathrm{in}$. Hindle sphere and the 6 -in. fold flat (a list of test equipment used appears in Appendix A). The Newport table, Hindle sphere and fold flat stand were all grounded (not floating) to the shop floor so there would be no relative movement between parts of the test set up. A schematic layout of the test set up is shown in Fig. 1.

Temporal sequence of the tests and calibrations

The actual test was run 3 times "for real," plus once prior to this to be sure of alignment of all components and to find out if there were any hidden surprises. Then a partial test at the end was run, with the secondary rotated 90° in its cell, to see if there were any errors attributable to mounting distortion of the secondary. In the first and the subsequent "for real" tests, every piece of test equipment was
moved from its position in the previous test and repositioned following the written procedures. The measuring rods used to set up the test conjugate positions were calibrated both before the tests were run and again after doing the 3 tests. The interferometer/diverger pairs and the Hindle sphere were each calibrated just once following the tests of the secondary. The calibration data in these tests was consistent with similar data taken for other previous tests in the shop.

Witnesses to the testing

The following individuals witnessed some or all of the testing reported on here. All witnessed at least one of the "for real" tests. Only Amanda Harris, Richard Sumner, and Lian Zhen Shao witnessed the interferometric test data taking in order to minimize the disturbance to the test environment.

Tom Dubos	HDOS	Henry Garrett	JPL
Howard Hall	HDOS	Lian-Zhen Shao	TORC
Amanda Harris	MSFC	Richard Sumner	OSC
Danny Johnston	MSFC	George Lawrence	OSC
Edward Motts	JPL	Robert Parks	OSC

Explanation of the principles of the test

The vertex radius and conic constant of a perfect hyperbolic secondary mirror can be calculated from the object and image conjugates as shown in Fig. 2. A perfect hyperboloid will perfectly image an on-axis object at the short conjugate into the focal plane of the long conjugate. Knowing the long and short conjugate distances from the secondary vertex allows one to calculate the vertex radius and conic constant exactly, assuming a perfect hyperbolic figure.

In general, the figure will not be perfect so we adopted the following strategy. A distance equal to the design value of the sum of the long and short conjugates was established. The secondary mirror was inserted between the two conjugates near its nominally correct position. The secondary was then adjusted along the axis defined by the conjugates until it autoreflected to the previously set long conjugate.

At this point the vertex radius and a provisional conic constant were calculated as shown below. Error bars associated with the measurements of the conjugates were also applied to the values of the radius and conic constant. Any residual third order spherical aberration found in the interferometric test data could then be added to (or subtracted from) the provisional conic constant to give the apparent conic constant. The actual test procedure followed in the tests is given in Appendix B.

Conjugate test data

Because a distance equal to the sum of the long and short conjugates was established prior to inserting the secondary mirror, this number (6687.847 mm) is constant for all three tests and has an associated error $(0.628 \mathrm{~mm})$ as derived in the error analysis in Appendix C. Once the secondary mirror was inserted in the test and moved axially to obtain the best visual focus at the long conjugate, a value of the short conjugate distance was obtained for each of the 3 tests. These values were:

	Short conjugate distance
Test \#1	611.059 mm
Test \#2	611.033 mm
Test \#3	611.059 mm
Average Value	$611.050 \mathrm{~mm} \pm 0.015 \mathrm{~mm}$

with the scatter in measured data much less than the systematic error estimated in the error analysis in Appendix C .

Using the derivation for vertex radius and conic constant given in Appendix C along with the estimated errors of the conjugate measurements, we find:

	Measured	Design
Vertex radius	$1358.726 \pm 0.257 \mathrm{~mm}$	1358.0 mm
Conic constant	-1.49718 ± 0.00012	-1.49686

Interferometric data analysis

In this section we discuss the analysis of the interferometric data taken of the secondary mirror. This data was taken with two purposes in mind. First, if there was residual spherical aberration in the figure of the secondary, this could be scaled and added to the conic constant derived from the conjugate data. Second, if there was a significant amount of astigmatism in the test results, it might indicate that the secondary mirror was being distorted in its cell and thus the measurements of the conjugates might be affected by the distortion. We will treat each of these cases separately.

Test error sources

In trying to determine if there was any residual spherical aberration in the secondary mirror to the level of $0.01 \lambda \mathrm{rms}$, it was necessary to be sure there was no residual spherical in any of the test optics. This made it necessary to calibrate the interferometer with each of the divergers used during the tests as well as calibrating the Hindle sphere. These wavefront errors then had to be subtracted out of the Hindle test data before making a determination of residual spherical in the secondary.

Because the errors we were looking for were quite small and the interferometric data somewhat noisy because of the long optical path of the test, we only did the analysis on the third order spherical aberration (or the 8th Zernike coefficient). For the mounting error part of the analysis, we used just the 2 Zernike astigmatism coefficients, c_{4} and c_{5}. In all cases referred to here, we are using the full aperture Zernike coefficients (ones that do not take into account the central obscuration) because the raw data was reduced by drawing fringes right through the central obstruction.

Method of calibration - interferometer/diverger

The method of calibrating the interferometer and diverger is outlined at the beginning of the Procedure and data sheet contained in Appendix D. This calibration must be done for each of the 2 divergers used in the tests. The actual Hindle test was done with an $f / 15$ diverger because the $f / n u m b e r$ of the long conjugate is very slow, about $f / 25$. The Hindle sphere however is reasonably fast and was tested using an $\mathrm{f} / 2.5$ diverger.

Once the calibration is complete, average values for the residual astigmatism and spherical aberration Zernike coefficients of the interferometer/diverger are obtained. These errors are units of waves of surface error expressed as Zernike coefficients. Since about 25 interferograms are made during the calibration, the average values of the coefficients have associated variances that indicate the noise in the measurement.

Method of calibrating the Hindle sphere

The Hindle sphere is calibrated by making a series of interferograms of the surface error in the sphere. The residual errors in the fast interferometer/diverger are then subtracted, leaving just the errors in the Hindle sphere. Again, averaging of the interferograms gives variances for an indication of noise in the test.

Correcting the Hindle test data

A series of about 10 interferograms were taken during each of the 3 Hindle tests. The surface error Zernike coefficients of these groups of interferograms were averaged and saved in 3 separate files. First the errors in the slow interferometer/diverger and then the errors (astigmatism and spherical aberration) in the Hindle sphere were subtracted from each set of data separately to yield the error just in the Hindle test alone, that is, in the secondary. These values were then divided by 2 , because the secondary surface errors affect the wavefront twice. The final value gives the secondary mirror surface error expressed in terms of Zernike coefficients.

Outline of data treatment

The procedure described above was applied to the data for each of the 3 tests as shown on the data sheets in Appendix E. To give a feel for the operation in a more concise form, we provide a line by line outline similar to a tax form.

1. Hindle sphere surface error data
2. Fast interferometer/diverger data expressed as surface error
3. Line 1) minus line 2) - Pure Hindle sphere surface error
4. Hindle test data expressed as surface error (WF divided by 2). Slow interferometer/diverger data expressed as surface error
5. Line 4) minus line 5) - Pure Hindle test surface error
6. Line 6) minus line 3) - Pure secondary mirror wavefront error
7. Line 7) divided by 2 - Secondary mirror surface error

Results of the tests

The data from the three Hindle tests were averaged to find the magnitude of the astigmatism and spherical aberration in the secondary mirror. The third-order spherical aberration amounted to 0.028λ peak-to-valley $\pm 0.026 \lambda$ or $0.009 \lambda \mathrm{rms}$ at $\lambda=0.633 \mu \mathrm{~m}$. This can also be expressed as a change in the conic constant of $\Delta K=-0.008 \pm 0.008$. This would make the measured value of the conic constant using the conjugate plus interferometric data to be $K=-1.505 \pm 0.008$.

We feel the spherical aberration results are realistic because of the consistency with the astigmatism results. If the values of the astigmatism coefficients for the 3 tests are averaged, we find c_{4} $=0.018 \pm 0.079$ and $c_{5}=0.042 \pm 0.084$ or there was astigmatism with a magnitude of $0.092 \pm$
0.230λ peak-to-valley with an orientation of 23.2° above the x -axis. This is the residual astigmatism in the secondary mirror after subtracting about 4 times this much astigmatism due to the Hindle sphere.

As a check on the procedure, the secondary was rotated 90° clockwise in its cell (when viewed from the mirrored surface side) and another set of interferograms were taken. When this data was reduced, the residual astigmatism in the secondary was $0.092 \pm 0.252 \lambda$ peak-to-valley oriented at 57.3° above the x -axis. The magnitudes of the error agree identically (as they should if the Hindle sphere astigmatism error was being subtracted correctly and the cell was not influencing the secondary mirror shape). The angle also agrees within 10° of what it should when the left-to-right image flip is taken into account when the mirror is rotated the 90°. Given the noisy nature of the data, the consistency is remarkable and gives one confidence in the data-reduction method.

Alternative method of treating the interferometric data

If one is more interested in analyzing the results of the interferometric testing in a manner that matches the drawing specification for the secondary mirror, then we can approach the data in the following way. Since the errors in the secondary mirror and the test optics are considered in an rms or lump-sum sense, we will add (or subtract) the errors quadratically and in all cases, add the variances quadratically.

The actual data are dealt with in Appendix F. Our approach was to add quadratically the interferometer calibration errors to those of the Hindle sphere and Hindle test data. We then subtracted (quadratically) the Hindle sphere from the Hindle test data for each of the 3 tests. When these data were averaged and divided by 2 to account for the double-pass nature of the Hindle test, we find our original figures for R_{v} and K, i.e., 1358.714 mm and -1.49716 with a residual rms surface error on the secondary of $0.043 \pm 0.14 \lambda$ at 633 nm .

This value of rms surface error is consistent with the astigmatism and spherical aberration values found above and is typical of the magnitude of error obtained when testing large optics over air paths of 10s of meters. This is not to say the error could not be reduced by more care and more data. Recall, hoever, that the test originally done by Perkin-Elmer was the test designed to give the least error due to the environment. Also, we do not know the definite pedigree of the back up mirror to the flight version.

Conclusion

The backup secondary mirror was tested using the traditional Hindle test and found to match the nominal design within the errors of the test. The mean value of the test data showed overcorrection by a ΔK of -0.008 ± 0.008.

The test did not turn up any surprises and leads on to conclude that the original test was correctly performed within the originally established error budget. Although this retest gave a mean value of K indicating a small overcorrection, the error bars associated with this test and the lack of a good pedigree with the flight mirror indicate that fossil data for the flight mirror should be the primary source of data used in any attempt to correct the errors in the HST.

Fig. 1. Schematic layout of Hindle secondary mirror test.

ORIGNAL PACE IS
Fig. 2. Parameters of HST secondary mirror Hindle test.

Appendix A

Equipment List

Steel balls, $0.5^{\prime \prime}$ diameter, class 25
Dummy secondary mirror made of aluminum
Point source microscope and light source (made up of Ealing and EG\&G components)
Phase measuring interferometer and objectives (built at Optical Sciences)
2 - $\mathrm{x}-\mathrm{y}-\mathrm{z}$ positioning stages, not used for measuring
2 - x-y positioning stages, not used for measuring
1 - x motion stage only, not used for measuring
Mirror mount, $6^{\prime \prime}$ diameter with tilt adjustments
Set of measuring rods, custom made and calibrated
Pair of $72^{\prime \prime}$ vernier calipers, calibrated $12 / 90$
Inside micrometer, Starrett with $26^{\prime \prime}$ capacity
Plano mirror, coated and certified to $\lambda / 10$
2 - Stands to support measuring rods
Stand to hold $6^{\prime \prime}$ mirror and mount
Large mirror mount to hold secondary mirror and cell (3 translation and 2 tilt adjustments)
Cell and cover for secondary mirror
Large Newport optical table to support interferometer and secondary mirror
Hindle sphere and mount, $60^{\prime \prime}$ diameter $\times 158^{\prime \prime}$ radius

Appendix B

Procedure for Measuring the Vertex Radius and Conic Constant of the Backup HST Secondary Mirror

Note: Refer to the Figure for details of the test setup.

Procedure:

1. Place a point source microscope at the center of curvature of the Hindle sphere. Adjust microscope for best focus.
2. Without touching the microscope, move a $0.50^{\prime \prime}$ diameter steel ball in front of the microscope such that the center of the ball is coincident with the focus of the microscope.
3. Position the folding mirror longitudinally. The folding mirror is a $6^{\prime \prime}$ diameter flat certified to $\lambda / 10$ and has a $0.50^{\prime \prime}$ diameter steel ball cemented to its center. Using the calibrated measuring rod of length $3324.86 \mathrm{~mm}\left(130.900^{\prime \prime}\right)$, move the folding mirror up to the measuring rod. This will place the surface of the mirror at 3343.92 mm from center of curvature of the Hindle sphere. (In performing this step, first bring one end of the rod up to the ball at the center of curvature of the Hindle sphere. Use a piece of thin shim stock to determine position of rod relative to the ball. Then bring the ball on the fold mirror up to other end of the rod, again using shim stock.)
4. Locate another $0.50^{\prime \prime}$ diameter steel ball at roughly the same height as the ball at the center of curvature of the Hindle sphere and about 400 mm to the side of it. Use the 3324.86 mm measuring rod to determine the longitudinal spacing of this ball. Use the same method as in step 3) to position this ball.
5. Adjust an interferometer with a nominally 300 mm focal length diverger that has already been calibrated per the appropriate procedure so that the focus of the diverger is coincident with the center of the ball located in step 4). The axis of the interferometer should be pointing at the center of the fold mirror. (The interferometer will now be focused at the long conjugate of the Hindle test.)
6. Offset the steel ball at the interferometer focus so the interferometer diverging beam illuminates the fold mirror.
7. Insert the secondary mirror/cell assembly into the large mirror holder that is located about 600 mm from the short test conjugate (the conjugate at the center of curvature of the Hindle sphere). Handle the mirror using the overhead crane to move the assembly from its special storage box to the mirror holder. When the mirror is in place and before removing the lifting strap, secure the mirror assembly with 2 bolts.

7a. Remove the Lexan protective cover from the secondary mirror.
8. Adjust the tilt of the secondary until the autoreflected light beam is centered on the interferometer diverger and there is an indication of fringes.
9. Continue to adjust the focus, decenter and tilt of the secondary until the fringe pattern is largely free of coma, focus and tilt. Ideally alignment would be continued until the fringes were nominally straight and about 10 fringes filled the monitor screen.
10. Record and store 5 interferograms of the Hindle test wavefront in a file named \qquad -
11. Position a $0.50^{\prime \prime}$ steel ball at the vertex of the secondary mirror. Center the ball laterally by eye. Adjust longitudinally by using a piece of shim stock to determine the proximity of the ball to the vertex.
12. Without touching the ball, move the mirror assembly back away from the ball about $2^{\prime \prime}$.
13. Replace the protective Lexan cover on the mirror being careful not to touch the ball.
14. Attach the crane strap and remove the 2 securing bolts holding the secondary mirror assembly.
15. Use the crane to remove the mirror assembly and replace it in its storage box. Secure the lid on the box.
16. Using a pair of inside micrometers, measure the distance between the ball at the vertex of the secondary and the ball at the short conjugate. Use shim stock to determine the fit of the micrometers.
17. Verify with the point source microscope that the ball at the short conjugate has not moved.
18. Check the inside micrometer reading with the calibrated calipers. Remember to add in half the diameter of the ball (12.7 mm) to get the short conjugate distance. Record s as \qquad mm .
19. As an intermediate step, calculate $R=2\left(s s^{\prime}\right) /\left(s^{\prime}-s\right)$ and $k=-\left(\left(s+s^{\prime}\right) /\left(s^{\prime}-s\right)\right) 2$.
20. In the computer, average the 5 interferograms of the Hindle test and store in a file named
\qquad .
21. Subtract the Hindle sphere wavefront from the data in the file above and store in a file named
\qquad .
22. Subtract the interferometer/diverger calibration wavefront from the data in the above file and store in a file named \qquad -.
23. Using the residual first order (3 term fit) focus term, correct the R value found in step 19) and record $\mathrm{R}^{\prime}=$ \qquad _.
24. Using the residual 3rd order spherical aberration coefficient from the above file, correct the value of k found in step 19) and record as $k^{\prime}=$ \qquad .
25. Repeat the above procedure 2 more times to gather a complete data package for the test of the secondary mirror.

Appendix C

Error Budget for HST Secondary Testing

The errors associated with each step of the procedure are first determined. Then these total errors are associated with the parameters used to determine the secondary vertex radius and conic constant.

1. Place microscope at center of curvature of Hindle sphere.

- Use a $10 \times$ microscope objective.
- Actual cone angle limited by secondary mount to $\mathrm{f} / 5$
- Depth of focus is $\lambda(\mathrm{f} / \#)^{2}$ or $12.5 \mu \mathrm{~m}$ for $\lambda=0.5 \mu \mathrm{~m}$ (white light source)
- Error for step 1) is plus or minus $12.5 \mu \mathrm{~m}$

2. Position center of ball at microscope focus

- Use same 10x microscope objective.
- Cone now governed by NA of objective at 0.2
- Depth of focus is $\lambda /\left(2(\mathrm{NA})^{2}\right)=6.3 \mu \mathrm{~m}$
- Error for step 2) is plus or minus $6.3 \mu \mathrm{~m}$
- Total error in location of ball at short conjugate is $\pm 19 \mu \mathrm{~m}$

3. Position fold mirror at 3343.92 mm from HS C of C

- Calibration uncertainty for calipers $=25 \mu \mathrm{~m}$
- Reading error in each rod measurement $=25 \mu \mathrm{~m}$
- Uncompensated thermal error of $0.5^{\circ} \mathrm{C}=18 \mu \mathrm{~m}$
- Positioning of fold mirror to rod $=12 \mu \mathrm{~m}$
- Error due to cement layer under ball $=12 \mu \mathrm{~m}$
- Total error in positioning mirror $=160 \mu \mathrm{~m}$

4. Position a ball at 3343.92 mm from fold mirror

- Same errors as in step 3) are present
- Total error in this step $=160 \mu \mathrm{~m}$

5. Adjust interferometer to ball set in step 4)

- Assuming we can see $0.1 \lambda \mathrm{p}$-v error in focus with interferometer or delta sag of $0.03 \mu \mathrm{~m}$
- Interferometer objective f / \neq is 15
- Detectable delta R is then $54 \mu \mathrm{~m}$
- (Error due to $1 / 10$ th fringe power in fold flat, i. e., an effective radius of $112,500 \mathrm{~m}$, in the location of the long conjugate $=200 \mu \mathrm{~m}$)
- Total error in determining long conjugate position is $\pm 574 \mu \mathrm{~m}$

6. Adjust the secondary mirror axially for "zero" focus error at interferometer, i. e., to less than 0.1λ p -v wavefront error in focus.

- The shift in secondary position to produce a 0.1λ focus error is $3 \mu \mathrm{~m}$

7. Position ball at vertex of secondary mirror

- Error in positioning ball due to "touch" $=12 \mu \mathrm{~m}$
- Error in knowing height of vertex due to flat at vertex is $12 \mu \mathrm{~m}$

8. Measure short conjugate distance with inside micrometer

- Error in setting of micrometers due to "touch" $=12 \mu \mathrm{~m}$

9. Calibration error of inside micrometer $=25 \mu \mathrm{~m}$ determined in cross check with calibrated calipers

- Total error in location of secondary vertex $=64 \mu \mathrm{~m}$

Application of errors in conjugate location to the determination of the vertex radius and conic constant of the secondary.

1. Total error in short conjugate ball location $=19 \mu \mathrm{~m}$
2. Total error in secondary vertex location $=64 \mu \mathrm{~m}$
3. Total error in long conjugate ball location $=574 \mu \mathrm{~m}$ so total error in short conjugate distance is 83 $\mu \mathrm{m}$ and $638 \mu \mathrm{~m}$ for the long conjugate distance.

Now from first order theory it is easy to show that

$$
R=2 \frac{\left(s s^{\prime}\right)}{\left(s^{\prime}-s\right)}
$$

where $R=$ secondary mirror vertex radius;
$s=$ the short conjugate distance; and
$s^{\prime}=$ the long conjugate distance.
Also we have

$$
\kappa=-\left(\frac{s^{\prime}+s}{s^{\prime}-s}\right)^{2}
$$

Taking derivatives

$$
\begin{aligned}
& \frac{\partial R}{\partial s}=2 \frac{s^{2}}{\left(s^{\prime}-s\right)^{2}}=2.47 \\
& \frac{\partial R}{\partial s^{\prime}}=-2 \frac{s^{2}}{\left(s^{\prime}-s\right)^{2}}=-0.025 \\
& \frac{\partial \kappa}{\partial s}=-4 \frac{s^{\prime}\left(s^{\prime}+s\right)}{\left(s^{\prime}-s\right)^{3}}=-0.001 / \mathrm{mm} \\
& \frac{\partial \kappa}{\partial s^{\prime}}=4 \frac{s\left(s^{\prime}+s\right)}{\left(s^{\prime}-s\right)^{3}}=0.0001 / \mathrm{mm}
\end{aligned}
$$

The errors in the 2 conjugate measurements were

$$
\Delta s^{\prime}=0.628 \mathrm{~mm} \quad \text { and } \quad \Delta s=0.104 \mathrm{~mm}
$$

Thus the combined error in R is

$$
\begin{aligned}
\Delta R & = \pm \sqrt{\left[\frac{\partial R}{\partial s}\right]^{2}(\Delta s)^{2}+\left[\frac{\partial R}{\partial s^{\prime}}\right]^{2}\left(\Delta s^{\prime}\right)^{2}} \\
& = \pm \sqrt{(2.47)^{2}(0.104)^{2}+(-0.025)^{2}(0.628)^{2}} \\
& = \pm 0.257 \mathrm{~mm}
\end{aligned}
$$

and the combined error in k is

$$
\begin{aligned}
\Delta \kappa & = \pm \sqrt{\left[\frac{\partial \kappa}{\partial s}\right]^{2}(\Delta s)^{2}+\left[\frac{\partial \kappa}{\partial s^{\prime}}\right]^{2}(\Delta s)^{\prime}} \\
& = \pm \sqrt{(-0.001)^{2}(0.104)^{2}+(-0.0001)^{2}(0.628)^{2}} \\
& = \pm 0.00012
\end{aligned}
$$

Appendix D

Procedure for Calibrating the Interferometer/Diverger

Note: This procedure must be repeated for each diverger used (or each different $f / \#$ cone over which the same diverger is used). If divergers are changed, they do not have to be recalibrated if they are reinserted in the interferometer in the same azimuthal orientation as when they were calibrated and if they are used at the same $f / \#$ as when they were calibrated.

Principle of the calibration technique: A nominally spherical steel ball is placed so that its center is coincident with the focus of the diverger. It is assumed that both the figure of the ball and the residual error of the interferometer/diverger are small (less than $\lambda / 4$) over the $f / \#$ cone of interest. Numerous interferograms are made as the ball is rotated about its center, the assumption being that the figure of the ball at each different position is uncorrelated with that at any other position.

Since the figure error due to the interferometer/diverger is common to all interferograms, when the interferograms are averaged, the result will be the signature of the interferometer/diverger plus a noise term equal to the average figure of the ball divided by the square root of the number of measurements. If the ball has an average error of less than $\lambda / 4$, then there will be less than $\lambda / 20$ noise in the calibration for 25 interferograms.

Procedure:

1. Insert the appropriate diverger in the interferometer for the test to be performed.
2. Rotate the diverger to a zero fiducial to locate the azimuthal position and finger tighten the lock screw.
3. After obtaining fringes off of the object under test (or a dummy object that defines the appropriate $\mathrm{f} / \#$ cone for the test to be performed), set an aperture coincident with the edge of the object on the computer display.
4. Insert a steel ball concentric with the diverger focus. The ball should be supported in a mount such that it is easily and repeatably rotated. A hex socket wrench socket makes a good support.
5. Using either the interferometer or the ball mount, adjust tip, tilt and focus until the fringes are broken out to less than one.
6. Using the PMI option, take 25 interferograms of the ball, each in a different rotational position. Discard any data sets where the data is bad and keep taking data until there are 25 good sets. Readjust the fringes to less than one if any rotation misaligns the relative position of the ball and interferometer. Rotate the ball using something that will not contaminate the surface, a clean tissue would be good for this.
7. Average the data sets and store the average (under an appropriate file name) as the residual error for the interferometer/diverger pair at the $f / \#$ of the calibration.
8. Review the data to insure that all the interferograms going into the average were less than $\lambda / 4$. This insures that the individual ball figure measurements are less than $\lambda / 4$ and thus the noise will be less than $\lambda / 20$.
9. Remove the ball from the diverger focus.

This completes the interferometer/diverger calibration.

Procedure for Calibrating the Figure of the Hindle Sphere

Note: This procedure need only be done once at the outset of testing as long as the sphere is not moved or readjusted in any way.

Procedure:

1. Calibrate the interferometer/diverger following the procedure for doing so.
2. Align the interferometer/diverger to the sphere using only adjustments on the interferometer.
3. Adjust the interferometer imaging focus so the CCD camera is conjugate to the Hindle sphere surface. Do this by placing an object near the sphere surface and adjusting the interferometer imaging lens until a sharp shadow is seen on the display.
4. Set the circular aperture on the display monitor to be coincident with the edge of the Hindle sphere.
5. Identify the top and left hand side of the sphere and record the locates as they appear on the monitor
6. Using the FAST option, capture and reduce 5 interferograms.
7. Average the 5 interferograms and store in a file labeled \qquad .
8. Subtract the interferometer calibration wavefront from the file just saved. Store the pure Hindle sphere wavefront in a file labeled \qquad .

This completes the calibration of the Hindle sphere.

Appendix E

Interferometric Data Reduction Work Sheet (First "Real" Test)

1. Hindle sphere surface error data (HSCAVE)
$C_{4}-0.165 \pm 0.052$
$C_{5} \quad 0.123 \pm 0.049$
$\mathrm{C}_{8} \quad 0.088 \pm 0.009$
2. Fast interferometer/diverger data (HGCAVE)
$C_{4}-0.002 \pm 0.038$
$C_{5} \quad 0.030 \pm 0.040$
$\mathrm{C}_{8}-0.010 \pm 0.008$
3. Line 1) minus line 2)
$\mathrm{C}_{4} \quad-0.163 \pm 0.090$
$C_{5} \quad 0.093 \pm 0.089$
$\mathrm{C}_{8} \quad 0.0098 \pm 0.017$
4. Hindle test data expressed as surface error (HTBCAVE)
$\mathrm{C}_{4}-0.192 \pm 0.057$
$\mathrm{C}_{5} \quad 0.122 \pm 0.066$
$C_{8} \quad 0.106 \pm 0.006$
5. Slow interferometer/diverger data (HFCAVE)
$\mathrm{C}_{4} \quad-0.012 \pm 0.017$
$\mathrm{C}_{5} \quad-0.012 \pm 0.011$
$C_{8} \quad-0.008 \pm 0.005$
6. Line 4) minus line 5) - Pure Hindle test surface error
$C_{4}-0.180 \pm 0.074$
$C_{5} \quad 0.134 \pm 0.077$
$\mathrm{C}_{8} \quad 0.114 \pm 0.011$
7. Line 6) minus line 3) - Pure secondary wavefront error
$C_{4}-0.017 \pm 0.164$
$\begin{array}{ll}C_{5} & 0.041 \pm 0.166\end{array}$
$C_{8} \quad 0.016 \pm 0.028$
8. Line 7) divided by 2 - Secondary mirror surface error
$\mathrm{C}_{4}-0.008 \pm 0.082$
$\mathrm{C}_{5} \quad 0.021 \pm 0.083$
$C_{8} \quad 0.008 \pm 0.014$

Interferometric Data Reduction Work Sheet (Second Real Test)

1. Hindle sphere surface error data (HSCAVE)
$C_{4}-0.165 \pm 0.052$
$C_{5} \quad 0.123 \pm 0.049$
$C_{8} \quad 0.088 \pm 0.009$
2. Fast interferometer/diverger data (HGCAVE)
$\mathrm{C}_{4}-0.002 \pm 0.038$
$C_{5} \quad 0.030 \pm 0.040$
$\mathrm{C}_{8} \quad-0.010 \pm 0.008$
3. Line 1) minus line 2)
$C_{4} \quad-0.163 \pm 0.090$
$C_{5} \quad 0.093 \pm 0.089$
$\mathrm{C}_{8} \quad 0.0098 \pm 0.017$
4. Hindle test data expressed as surface error (HTCCAVE)
$C_{4}-0.215 \pm 0.039$
$C_{5} \quad 0.219 \pm 0.056$
$C_{8} \quad 0.0131 \pm 0.020$
5. Slow interferometer/diverger data (HFCAVE)
$C_{4} \quad-0.012 \pm 0.017$
$\mathrm{C}_{5} \quad-0.012 \pm 0.011$
$C_{8}-0.008 \pm 0.005$
6. Line 4) minus line 5) - Pure Hindle test surface error
$\mathrm{C}_{4}-0.203 \pm 0.056$
$C_{5} \quad 0.231 \pm 0.067$
$\begin{array}{ll}C_{8} & 0.139 \pm 0.025\end{array}$
7. Line 6) minus line 3) - Pure secondary wavefront error
$C_{4} \quad-0.040 \pm 0.146$
$\begin{array}{ll}C_{5} & 0.138 \pm 0.156\end{array}$
$\mathrm{C}_{8} \quad 0.041 \pm 0.042$
8. Line 7) divided by 2 - Secondary mirror surface error
$\mathrm{C}_{4}-0.020 \pm 0.073$
$\begin{array}{ll}C_{5} & 0.069 \pm 0.078\end{array}$
$\mathrm{C}_{8} \quad 0.021 \pm 0.021$

Interferometric Data Reduction Work Sheet (Third Real Test)

1. Hindle sphere surface error data (HSCAVE)

$$
\begin{array}{llllll}
C_{4} & -0.165 \pm 0.052 & C_{5} & 0.123 \pm 0.049 & C_{8} & 0.088 \pm 0.009
\end{array}
$$

2. Fast interferometer/diverger data (HGCAVE)
$\mathrm{C}_{4}-0.002 \pm 0.038$
$\begin{array}{ll}C_{5} & 0.030 \pm 0.040\end{array}$
$\mathrm{C}_{8} \quad-0.010 \pm 0.008$
3. Line 1) minus line 2)

$$
\mathrm{C}_{4}-0.163 \pm 0.090
$$

$C_{5} \quad 0.093 \pm 0.089$
$\mathrm{C}_{8} \quad 0.0098 \pm 0.017$
4. Hindle test data expressed as surface error (HTDCAVE)
$\mathrm{C}_{4}-0.227 \pm 0.054$
$\begin{array}{ll}C_{5} & 0.154 \pm 0.084\end{array}$
$C_{8} \quad 0.144 \pm 0.012$
5. Slow interferometer/diverger data (HFCAVE)
$\mathrm{C}_{4}-0.012 \pm 0.017$
$\mathrm{C}_{5} \quad-0.012 \pm 0.011$
$\mathrm{C}_{8} \quad-0.008 \pm 0.005$
6. Line 4) minus line 5) - Pure Hindle test surface error
$\mathrm{C}_{4}-0.215 \pm 0.071$
$\begin{array}{ll}C_{5} & 0.166 \pm 0.095\end{array}$
$\begin{array}{ll}C_{8} & 0.152 \pm 0.017\end{array}$
7. Line 6) minus line 3) - Pure secondary wavefront error
$C_{4}-0.052 \pm 0.161$
$\mathrm{C}_{5} \quad 0.073 \pm 0.184$
$C_{8} \quad 0.054 \pm 0.034$
8. Line 7) divided by 2 - Secondary mirror surface error
$\mathrm{C}_{4}-0.026 \pm 0.081$
$\begin{array}{ll}C_{5} & 0.037 \pm 0.092\end{array}$
$C_{8} \quad 0.027 \pm 0.017$

Interferometric Data Reduction Work Sheet (Secondary Rotated 90°)

1. Hindle sphere surface error data (HSCAVE)
$\mathrm{C}_{4} \quad-0.165 \pm 0.052$
$C_{5} \quad 0.123 \pm 0.049$
$\mathrm{C}_{8} \quad 0.088 \pm 0.009$
2. Fast interferometer/diverger data (HGCAVE)
$\mathrm{C}_{4}-0.002 \pm 0.038$
$\begin{array}{ll}C_{5} & 0.030 \pm 0.040\end{array}$
$\mathrm{C}_{8} \quad-0.010 \pm 0.008$
3. Line 1) minus line 2)
$\mathrm{C}_{4}-0.163 \pm 0.090$
$C_{5} \quad 0.093 \pm 0.089$
$\mathrm{C}_{8} \quad 0.0098 \pm 0.017$
4. Hindle test data expressed as surface error (HTECAVE)
$\mathrm{C}_{4} \quad-0.253 \pm 0.046$
$C_{5} \quad 0.130 \pm 0.060$
$\mathrm{C}_{8} \quad 0.152 \pm 0.028$
5. Slow interferometer/diverger data (HFCAVE)
$\mathrm{C}_{4}-0.012 \pm 0.017$
$\mathrm{C}_{5} \quad-0.012 \pm 0.011$
$\mathrm{C}_{8} \quad-0.008 \pm 0.005$
6. Line 4) minus line 5) - Pure Hindle test surface error
$\mathrm{C}_{4}-0.241 \pm 0.107$
$C_{5} \quad 0.142 \pm 0.071$
$C_{8} \quad 0.160 \pm 0.033$
7. Line 6) minus line 3) - Pure secondary wavefront error
$\mathrm{C}_{4} \quad-0.078 \pm 0.197$
$\begin{array}{ll}C_{5} & 0.049 \pm 0.160\end{array}$
$\mathrm{C}_{8} \quad 0.062 \pm 0.050$
8. Line 7) divided by 2 - Secondary mirror surface error
$\mathrm{C}_{4}-0.039 \pm 0.098$
$\mathrm{C}_{5} \quad 0.025 \pm 0.080$
$\mathrm{C}_{8} \quad 0.031 \pm 0.025$

Appendix \mathbf{F}

Analysis of Interferometric Data Using rms Residual Errors

Rms error values are surface errors at $\lambda=633 \mathrm{~nm}$ after removal of tilt, focus, and coma and apply to the full circular aperture.

Hindle sphere rms surface error: $\quad 0.0998 \pm 0.0189$
Interferometer/fast diverger
calibration error:
0.0290 ± 0.100
rss Hindle sphere error:
0.1039 ± 0.0214
Hindle test rms surface error (for each of the 3 test series)
HTBCAVE: $\quad 0.1165 \pm 0.0092$
HTCCAVE: $\quad 0.1472 \pm 0.0156$
HTDCAVE: $\quad 0.1430 \pm 0.0280$
Interferometer/slow diverger calibration error: 0.0110 ± 0.0048
rss Hindle test data:
HTBCAVE: $\quad 0.1170 \pm 0.0104$
HTCCAVE: $\quad 0.1476 \pm 0.0163$
HTDCAVE: 0.1434 ± 0.0284
rss Hindle test less Hindle sphere:
HTBCAVE: $\quad 0.0538 \pm 0238$
HTCCAVE: $\quad 0.1048 \pm 0.0269$
HTDCAVE: 0.0988 ± 0.0356
above divided by 2 to give rms secondary surface error
HTDCAVE: $\quad 0.0269 \pm 0.0119$
HTCCAVE: $\quad 0.0524 \pm 0.0135$
HTDCAVE: $\quad 0.0494 \pm 0.0178$
Average rms secondary surface error $=0.043 \pm 0.014 \lambda$
jECONDARY MirROR
Verrex Radius/Conic Constant $5 / \sim 003$

Data
Handtinc Procedunes
Test Procedures
CERTIFICATION
Deviations
ATTENdees Fom Dufo HOOS 203-797-5440 Amanda Aharich Nastimste $\left(\begin{array}{l}303) 971-6635 \\ (205) \\ (844-243\end{array}\right.$

 $\circ C 5=0.019 \circ C 11=0.000^{\circ} \mathrm{C17}=0.000^{\circ} \mathrm{C} 23=0.000^{\circ} \mathrm{C} 29=0.000 \circ \mathrm{C}=05=0.000$
 $\bullet^{\circ} \mathrm{C}=0.000^{\circ} \mathrm{C12}=0.000^{\circ} \mathrm{C18}=0.000^{\circ} \mathrm{C24=0.000} \circ \mathrm{C} 30=0.000^{\circ} \mathrm{C} 36=0.000$

Abort
Continue

Zernike Coefficients

position cursor to coefficient using mouse or arrow keys
Press mouse button or ENTER to change coefficient under cursor
Press both buttons to zero coefficient under cursor

$\circ C 1=0.000 \circ C 7=0.000 \circ C 13=0.000 \circ C 19=0.000 \circ C 25=0.000 \circ C 31=0.000$
 $\circ \mathrm{C2}=0.000^{\circ} \mathrm{CB}=0.057 \circ \mathrm{C14=0.000} \mathrm{\circ} \mathrm{C20}=0.000^{\circ} \mathrm{C26=0.000} \mathrm{\circ} \mathrm{C32=} 0.000$
 $\circ C 3=0.000^{\circ} \mathrm{C9}=0.000^{\circ} \mathrm{C15}=0.000^{\circ} \mathrm{C} 21=0.000^{\circ} \mathrm{C27}=0.000^{\circ} \mathrm{C33}=0.000$
 $\circ \mathrm{C4}=-0.079 \circ \mathrm{C} 10=0.000^{\circ} \mathrm{C16=0.000} \circ \mathrm{C} 22=0.000 \circ \mathrm{C} 28=0.000 \circ \mathrm{C} 34=0.000$
 $\circ C 5=0.019^{\circ} \mathrm{C11=0.000}^{\circ} \mathrm{C} 17=0.000^{\circ} \mathrm{C} 23=0.000^{\circ} \mathrm{C} 29=0.000^{\circ} \mathrm{C} 35=0.000$ ט.

Abort
Continue

Zernike Coefficients

position cursor to coefficient using mouse or arrow keys
Press mouse button or ENTER to change coefficient under cursor Press both buttons to zero coefficient under cursor
 $\circ C 1=0.000 \circ C 7=0.000 \circ C 13=0.000 \circ C 19=0.000 \circ C 25=0.000 \circ C 31=0.000$

 - C3 $=0.000^{\circ}$ C9 $=0.000^{\circ}$ C15= 0.000° C21 $=0.000^{\circ}$ C27= $0.000 \circ$ C33= 0.000
 - C4 =-0.079 - C10= 0.000 - C16= $0.000^{\circ} \quad C 22=0.000^{\circ} \quad C 28=0.000 \circ C 34=0.000$
 - $\mathrm{C} 5=0.019^{\circ} \cdot \mathrm{C11=0.000}^{\circ} \cdot \mathrm{C} 17=0.000^{\circ} \mathrm{C} 23=0.000^{\circ} \mathrm{C} 29=0.000^{\circ} \mathrm{C} 35=0.000$
 - C6 = 0.000 $\quad C 12=0.000^{\circ} \quad C 18=0.000 \circ C 24=0.000 \circ C 30=0.000 \circ C 36=0.000$

Zernike Coefficients

nnsition cursor to coefficient using mouse or arrow keys
ass mouse button or ENTER to change coefficient under cursor fress both buttons to zero coefficient under cursor
 $\circ C 1=0.000^{\circ} C 7=0.000^{\circ} C 13=0.000 \circ C 19=0.000^{\circ} \mathrm{C}=25=0.000 \circ C 31=0.000$
 $\circ C 2=0.000^{\circ} \mathrm{C} 8=-0.025^{\circ} \mathrm{C} 14=0.000^{\circ} \mathrm{C} 20=0.000^{\circ} \mathrm{C} 26=0.000 \circ \mathrm{C} 32=0.000$
 $\circ C 3=0.000{ }^{\circ} \mathrm{C} 9=0.000^{\circ} \mathrm{C} 15=0.000 \circ \mathrm{C} 21=0.000 \circ \mathrm{C}=1=0.000 \circ \mathrm{C}=03=0.000$
 $\circ C 4=0.004{ }^{\circ} \mathrm{C} 10=0.000^{\circ} \mathrm{C} 16=0.000^{\circ} \mathrm{C} 22=0.000 \circ \mathrm{C}=08=0.000 \circ \mathrm{C} 34=0.000$
 - $C 5=0.060^{\circ} C 11=0.000^{\circ} C 17=0.000^{\circ} C 23=0.000 \quad \circ \quad C 29=0.000^{\circ} \quad C 35=0.000$
 $\circ C 6=0.000{ }^{\circ} \mathrm{C} 12=0.000{ }^{\circ} \mathrm{C18}=0.000 \circ \mathrm{C} 24=0.000{ }^{\circ} \mathrm{C} 30=0.000 \circ \mathrm{C}=06=0.000$

Abort
continue

HTCCAVEZAN

Zernike Coefficients

Position cursor to coefficient using mouse or arrow keys Press mouse button or ENTER to change coefficient under cursor Press both buttons to zero coefficient under cursor

$C 1=0.000^{\circ} C 7=0.000 \circ C 13=0.000 \circ C 19=0.000 \circ C 25=0.000 \circ C 31=0.000$

 $\circ C 3=0.000^{\circ} C 9=0.000^{\circ} C 15=0.000^{\circ} C 21=0.000^{\circ} \quad C 27=0.000^{\circ} \mathrm{C}=23=0.000$
 $-C 4=0.169^{\circ} \mathrm{C10}=0.000^{\circ} \mathrm{C16=0.000} \circ \mathrm{C} 22=0.000{ }^{\circ} \mathrm{C}=28=0.000^{\circ} \mathrm{C} 34=0.000$
 - C5 = -0.170° C11 $=0.000^{\circ} \quad C 17=0.000 \circ$ C23 $=0.000^{\circ} \mathrm{C} 29=0.000^{\circ} \mathrm{C} 35=0.000$

Abort

Continue

HTDCAVE, 2RN

Zernike Coefficients
Position cursor to coefficient using mouse or arrow keys Press mouse button or ENTER to change coefficient under cursor press both buttons to zero coefficient under cursor Öááa ${ }^{2}$ anááo $\circ C 1=0.000^{\circ} C 7=0.000^{\circ} C 13=0.000^{\circ} C 19=0.000 \circ C 25=0.000^{\circ} \quad C 31=0.000$

$C 2=0.000^{\circ} C 8=0.057^{\circ} C 14=0.000^{\circ} \mathrm{C2O}=0.000^{\circ} \mathrm{C2} 6=0.000 \circ \mathrm{C}=22=0.000$
 - C3 $=0.000^{\circ} \mathrm{C} 9=0.000^{\circ} \mathrm{C} 15=0.000^{\circ} \mathrm{C} 21=0.000^{\circ} \mathrm{C} 27=0.000 \circ \mathrm{C}=03=0.000$
 - C4 $=-0.079 \cdot C 10=0.000 \cdot C 16=0.000 \cdot C 22=0.000 \cdot C 28=0.000 \circ C 34=0.000$

$$
\begin{aligned}
& \text { Daily Loo } 12,2 \geqslant 180 \\
& \text { Addition Modification's } \\
& \text { Notes: }
\end{aligned}
$$

Hancluare moditicention - The addition of the six washes will allow the plastic safety retainer to Remuri flow with the minion edge and the holding fixture. This will relieve ing y. unwanted Bending moment applisil to the plastic Keeper.

1.) Cal. micrometer to measure ball diameter.

TEmp. $69.3^{\circ} \mathrm{F}$
uncertainty Shock
.000002
.5" Jo BLock
mic Reading . 5002
.000000
Brown/shappe To BLock Set 5/T R4300

$$
\text { CAl. dATE } 10 / 4 / 68
$$

2.) Measure Ball diameter. 5002

$$
\frac{-.0002}{.5000} \text { Mire uncentainky }
$$

3.) Measure Dim. A using Brown/sharp dial indicator This value includes Ball din t Bond line.

$$
.5005^{\circ}
$$

4.) Measure wedge in Flat. 003 inch

$$
\begin{aligned}
& \text { T.Du80s } \\
& 12 / 27 / 90
\end{aligned}
$$

ORigin: mate is OF POOR QUALITY

ALL RODS will Be measured in sections usins G Foot Calip
Certified By Washington calibration

$$
\begin{aligned}
& \text { CRRT } 17430-7 \\
& \text { DATE } 12-19.91 \\
& \text { S/N A.083615 }
\end{aligned}
$$

$$
\begin{aligned}
H=\frac{r^{2}}{2 R} & r=\frac{D / 2}{2} \mathrm{~mm} / 3 \mathrm{~mm} \\
R & =\frac{Y e r 7 e x ~ R a d i u s}{1 / 358 \mathrm{~mm}} \\
H & =\frac{(13)^{2}}{2(1358)} \frac{169}{2716} .06222 \mathrm{~mm} .002449 \text { inch } \\
H & =62.22 \mu
\end{aligned}
$$

Secondary Mirror
$5 / 2003$

Rotation

Before r

$$
\begin{aligned}
& H D H \\
& 12 / 29 / 90
\end{aligned}
$$

Procedure for calibrating the figure of the bindle sphere

Note: This procedure need only be done once at the outset of testing as long as the sphere is not moved or readjusted in any way.

Procedure:

1) Calibrate the interferometer/diverger following the proce- ? dure for doing ac.
2) Align the interferometer/diverger to the sphere using only 7% adjustments on the interferometer.
3) Adjust the interferometer imaging focus so the CCD camera is conjugate to the Hindle sphere surface. Do this by placing an object near the sphere surface and adjusting the interferometer imaging lena until a sharp shadow is seen on the display.
4) Set the circular aperture on the display monitor to coincident with the edge of the Hind le sphere.
5) Identify the top and left hand aide of the sphere and record $7 \rightarrow$. the locates as they appear on the monitor
6) Using the FAST option. capture and reduce is interferograme. ? ? 7) Average theft interferograma and store in a file labelled in i,
7) Subtract the interferometer calibration wavefront from the file just a sued. Store the Kindle sphere wavefront in a file labelled \qquad -.

This completes the calibration of the Kindle sphere.

Procedure for calibrating the interferometer/diverger

Note: This procedure mull t be repeated for each diverges used (or each different $f /$ cone over which the game diverges is used). If divergere are changed, they do not have to be recalibrate $i f$ they are reinserted in the interferometer in the are azimuthal orientation as when they were calibrated and if they are used at the ane f/ as when they were calibrated.

Principle of the calibration technique: A nominally spherical steel ball ia placed so that ital center is coincident with the focus of the diverges. It in assumed that both the figure of the ball and the residual error of the interferometer/diverger are anal (leas than lambda/4) over the f/* cone of interest. Numerous interferograma are made es the ball ia rotated about its center, the assumption being that the figure of the ball at each different position ia uncorrelated with that at any other position.

Since the figure error due to the interferometer/diverger ie common to all interferograms, when the interferograma are -veraged, the result will be the aignature of the interferometer/diverger plus note term equal to the average figure of the ball divided by the square root of the number of measuremonte. If the ball has an average error of leas then lambde/4, then there will be leas than lambda/ 20 noise in the calibration for $\chi 25$ interferograme.
*
procedure:

1) Insert the appropriate diverges in the interferometer for the teat to be performed.
2) Rotate the diverges to zero fiducial to local azimuthal position and finger tighten the lock merev.
3) After obtaining fringes off of the object under test (or a dummy object that defines the appropriate f/* cone for the test to be performed), set an aperture coincident with the edge of the object on the computer diepley.
4) Insert abel ball concentric with the diverges focus. The bell should be supported in mount such that it is easily and repeatably rotated. A hex socket wrench socket makes good, sport.
5) Using either the interferometer or the ball mount, adjust tip. tilt and focus until the fringes ere broken out to less then one.
6) Using the PMI option, take :̆ 25 interferograme of the ball. each in a different rotational position. Dimcerdeny data efta where the data ia bad and keep taking date until there are 25 good seta. Readjust the fringe e to leas then one if any rotation miaaligne the relative position of bell and interfer ometer. Rotate the ball using something that will not contami- \therefore nate the surface, clean tissue would be good for this.
7) Average the 25 bets of date and fore the average (under an appropriate file name an the reaidualerror for theinterfer i., ometerldiverger pair at the f/* of the calibration.
8) Review the data to insure that all the interferograme going into the average were leas than lambde/4. This inaurea that the individual ball figure meaeurementaere leas then lambdas irk and thus the noise will be less than lembde/20.
9) Remove the ball from the diverger focus.

This complete a the interferometer/diverger calibration.

Procedure for calibrating the interferometer/diverger

Note: This procedure must be repeated for each diverger used (or each different f/* cone over which the same diverger is used). If divergera are changed, they do not have to be recalibrate if they are reinserted in the interferometer in the abe azimuthal orientation as when they were calibrated and if they are used at the same $f /$ as when they were calibrated.

Principle of the calibration technique: A nominally spherical steel ball is placed so that its center is coincident with the focus of the diverges. It is assumed that both the figure of the ball and the residual error of the interferometer/diverger are small (leas than lambda/4) over the f/* cone of interest. Numerous interferograme are made as the ball is rotated about its center, the amumption being that the figure of the ball at each different position is uncorrelated with that at any other position.

Since the figure error due to the interferometer/diverger is common to all interferograma, when the interferograma are averaged, the result will be the signature of the interferometer/diverger plus noise term equal to the average figure of the ball divided by the square root of the number of measurements. If the ball has an avers ge error of less then lambda/4, then there will be less than lambda/20 noise in the calibration for 25 interferogreme.

$$
\because 27
$$

Procedure:

1) Insert the appropriate diverges in the interferometer for the teat to be performed.
2) Rotate the diverger to a zero fiducial to locate azimuthal position and finger tighten the lock screw.
3) After obtaining fringes off of the object under test (or a dummy object that define e the appropriate f/* cone for the test to be performed), aet an aperture coincident with the edge of the object on the computer dieplay.
4) Insert abel bell concentric with the diverger focus. ball mould be supported in mount such that it ia easily and repeatably rotated. A hex socket wrench socket maker a good sport.
5) Using either the interferometer or the bell mount, adjust tip, tilt and focus until the fringes are broken out to leas than one.
-k Nth
6) Using the PMI option, take 25 interferograme of the ball, each in a different rotational position. Diecardany data aet where the data 1 a bad and keep taking data until there are 25 good seta. Readjust the fringes to lesa than one if any rotation miseligna the relative position of bell and interfereometer. Rotate the ball using something that will not contaminate the surface, a clean tissue would be good for this.
7) Average the $2 \tilde{U}^{\prime \prime}$ seta of data and store the average (under an 7 j appropriate file name) as the residual error for the interfere-? ometer/diverger pair at the $f / *$ of the calibration.
8) Review the data to insure that all the interferogramagoing into the average were lease than lambda/4. This insures that the individual ball figure measurements are lesa than lambda/4 and thus the noise will be leas than lambde/20.
9) Remove the ball from the diverger focus.

This completes the interferometer/diverger calibration.

HST Backup Secondary Mirror Handling Procedures $/ 2 / 27 / 90$

1. Transfer of mirror in original shipping case

STEP

ACTION
1.0 Verify the 4 latches are latched.
$\frac{\text { OPTICIAN }}{\text { TO }}$
1.1 Using 2 people, lift the shipping case onto a sturdy cart using the handles on the box.
1.2 Secure the box to the cart so the box cannot slide off the cart.
1.3 Q.C. verifies cart pathway is free of obstructions.
1.4 Cart is guided by 2 persons to final destination.
1.5 Using 2 people, lift the shipping case to a sturdy table or floor of storage room.

HST Backup Secondary Mirror Handling Procedures
2. Removal of mirror from shipping case

STEP
ACTION
OPTICIAN QA
2.1 Unlatch box cover, remove cover and set in clean location.
2.2 Remove foam pad and tissue and set on cover
(1) if)
4.2. 1 Perform visual inspection for damage
2.3 Grasp mirror through fingerhbles in foam insert, lift mirror from box and set on a non-metallic stand.
2.4 Replace foam pad and tissue in box and replace cover. Latch cover and remove box.

HST Backup Secondary Mirror Handling Procedures
3. Insertion of mirror in test fixture

STEP

ACTION
OPTICIAN QA
3.1 Place mirror insertion fixture on a sturdy, clean work table
3.2 Place mirror mount over the insertion fixture
3.3 Place the secondary mirror on the instrlion fixture while centering the mirror by eye
3.4 While one person lifts the mirror mount up around the mirror, the second person sees that the mirror is centered in the mount so that the mirror will not contact the metal portion of the mount
3.5 Continue to lift the mount clear of the insertion fixture and set the mount on the table
3.6 Secure the mirror in the mount with 3

(i, $\quad x x_{j}^{\prime}$
3.7 Secure the plastic shield over the mirror with 3 bolts finger tight only)
$+($ fin g

* KNelt

ORHEMEL PAGE IS OF POOR QUALITY
4. Handling the mirror test fixture

STEP
ACTION
OPTICIAN QA
4.1 Once the mirror is in the test fixture, the test fixture shall be stored in its own box until the mirror is needed for testing. Verify that the plastic cover is in place

(1)	e nt
(1)	(1)
(1)	(1)

4.4 The lid of the stroage box shall be secured

4,2 Position the storage box adjacent to where the test fixture is
Emit
comet $\quad 4 \times 3^{2}$ Using 2 persons, lift the test fixture using the 2 attached handles to a safe location by means of procedure 1
omit $4-5$ The storage box shall be moved by 2 persons
4.1.5 using crane, lift test furtive $*$ position; 'then placutext act (l) att fixture into storage box.
4.1.6 Remorse crave from fixmely Stage oo x
$* *$ Storage box is in a safe
location.

HST Back-up Secondary Mirror Handling Procedures

5. Transfer mirror/fixture to test set-up

STEP
ACTION
5.1 Remove storage container cover.
5.2 Using slow speed of overhead crane, remove mirror/fixture from box via lift rings.
5.3 Transfer to test set-up and secure tow retainer bolts. For lateral stability.
5.4 Remove crane from fixture and store.

OPTICIAN QA
 (i)
 (b)
()
(i)
()
si,

HST Back-up Secondary Mirror Handling Procedures

4.0 Handling the mirror test fixture

STEP

ACTION

OPTICIAN
4.1 Once the mirror is in the test fixture, the test fixture shall be stored in its own box until the mirror is needed for testing.
Verify that the plastic cover is in place.
4.1.5 Using crane, lift fixture, and place into storage box
4.1.6 Remove crane from fixture/storage box
4.2 Was omitted

4.3 Was omitted

4.4 The lid of the storage box shall be secured
** Assure storage box is in a safe location.
(Repeat 5.0 as necessary)
5.0 Transfer mirror/fixture to test set-up
5.1 Remove storage container cover.
5.2 Using slow speed of averhead crane, remove mirror/fixture from box vialift rings.
5.3 Transfer to test set-up and secure to retainer bolts. For lateral stability.
5.4 Remove crane from fixture and store.
(Repeat 4.0 as necessary)

HST Back-up Secondary Mirror Handling Procedures
4.0 Handling the mirror test fixture

$$
4.20 \mathrm{Pm} \quad 2,25 \mathrm{y}
$$

STEP

ACTION

OPTICIAN
QA
-4.1 Once the mirror is in the test fixture, the test fixture shall be stored in its own box until the mirror is needed for testing. Verify that the plastic cover is in place.
-4.1.5 Using crane, lift fixture, and place into storage box
-4.1.6 Remove crane from fixture/storage box
$(, 1)$

4.2 Was omitted

4.3 Was omitted

-4.4 The lid of the storage box shall be secured
** Assure storage box is in a safe location.
(Repeat 5.0 as necessary)

5.0 Transfer mirror/fixture to test set-up

5.1 Removestorage container cover.
5.2 Using slow speed of overhead crane, remove mirror/fixture from box via lift rings.
5.3 Transfer to test set-up and secure tow retainer bolts. For lateral stability.
5.4 Remove crane from fixture and store.

(Repeat 4.0 as necessary)

AND GCNG ICNSTANT IF THE BACK
Hst SECONDARy MIRRLIR.

TEST NO. \qquad

DATE OF TEST \qquad $12 / 28 / 90$
$=N G \quad$ Nammyry.thente 12/29/90

Procedure for measuring the vertex radius and conic constant of the backup HST secondary mirror

Note: Refer to the Figure for details of the test setup.

Procedure:
(1) Place a point source microscope at the center of curvature of the Kindle sphere. Adjust microscope for best focus.
2) Without touching the microscope, move a. 50" diameter steel ball in front of the microscope such that the center of the ball is coincident with the focus of the microscope.
(3) Position the folding mirror longitudinally. The folding mirror is 6^{n} diameter flat certified to lembda/10 and has a $65.4 ? 5$ $0.50^{\prime \prime}$ diameter steel ball cemented to its center. Using the 65.451 calibrated measuring rod of length $3324.86 \mathrm{~mm}\left(130.900^{\circ}\right)$, movel30. 897 the folding mirror up to the measuring rod. This will place the surface of the mirror at 3343.92 mm from center of curvecure of the Hindle sphere. (In performing this step, first bring one end of the rod up to the bell at the center of curvature of the Kindle sphere. Use piece of thin shim stock to determine position of rod relative to the ball. Then bring the ball on the fold mirror up to other end of the rod, again using anim stock.) (.001 shim stock ow eAch end of RD D)
4) Locate another 0.50^{*} diameter tel ball at roughly the same height as the ball at the center of curvature of the bindle sphere and about 400 mm to the eide of it. Use the 3324.86 mm measuring rod to determine the longitudinal spacing of this ball. Use the same method as in mop 3 l to position this bell.
5) Adjust an interferometer with a nominally 300 mm focal length diverger that has already been calibrated per the appropriate procedure so that the focus of the diverger is coincident with the center of the bell located in step 4). The axis of the interferometer should be pointing at the center of the fold mirror. (The interferometer will nov be focused at the long conjugate of the Kindle tenet.)
(6) Offset the steel ball at the interferometer focus so the $/ \mathrm{l}$ interferometer diverging beam illuminate the fold mirror.
7) Insert the secondary mirror/cell assembly into the large mirror holder that is located about 600 mm from the short tet conjugate (the conjugate at the center of curvature of the Kindle sphere). Handle the mirror using the overhead crane to move the assembly from its special storage box to the mirror holder. When the mirror is in place and before removing the lifting strep, secure the mirror assembly with 2 bolts.
 8) Adjust the tilt of the mecondary until the autoreflected light beam is centered on the interferometer diverger and there

) R=anig~ Sontinue to adjust the focua, decenter and tilt of the secondary until the fringe pattern is largely free of coma, focus and tilt. Ideally alignment would be continued until the fringes vere nominally straight and about 10 fringes filled the monitor gcreen.
10) Record and atore 5 interferograme of the Hindle teat wavefront in a file named \qquad - -
11) Position a $0.50^{\prime \prime}$ ateel ball at the vertex of the secondary misror. Center the ball laterally by eye. Adjust longitudinally by using a piece of shim stock to determine the proximity of the ball to the vertex.
12) Without touching the ball, move the mirror asembly back away from the ball about 2".
13) Replace the protective Lexen cover on the mirror being careful not to touch the ball.
14) Attach the crane strap and remove the 2 eecuring bolts holding the aecondary mirror asembly.
15) Use the crane to remove the mirror asembly and replece it in ite storage box. Secure the lid on the box.
16) Using a pair of inside micrometers, measure the distance between the ball at the vertex of the eecondery and the ball at the short conjugate. Uee shim stock to determine the fit of the micrometers.
17) Verify with the point source microscope that the ball at the short conjugete hes not moved.
18) Check the ineide micrometer reading with the calibrated calipere. Remember to add in half the diameter of the bell (12.7 mm) to get the short conjugate distande. Record a as mm.
19) As an intermediate atep, calculate $R=2\left(s^{*} \boldsymbol{B}^{\prime}\right) /\left(s^{\prime}-s^{\prime}\right)$ and $\left.k=-\left(\left(\varepsilon^{+} E^{\prime}\right) /\left(\theta^{\prime}-\right)^{\prime}\right)\right)^{\wedge}$ 。
20) In the computer, averege the 5 interferograme dit the Hindle test and atore in file nemed
21) Subtrect the Hindlephere vevefront from the date in the file above and store in a file nemed
22) Subtract the interferometer/diverger calibration wavefront from the data in the above file and tore in a file named
23) Using the residual first order (3 term fit) focus term, correct the R value found in step 19) and record $R^{\prime}=\ldots \ldots$.
24) Using the residual 3rd order apherical aberration coefficient from the above file, correct the value of k found in step 19) and record as k^{\prime} =
25) Repeat the above procedure 2 more times to gather a complete data package for the teat of ithe secondary mirror.

ORIGINAL PAGE IS

$R_{s}=2 \frac{s s^{\prime}}{s-s^{\prime}}$
$k=-\left(\frac{s+s^{\prime}}{s-s^{\prime}}\right)^{2}$
Fig. 1 Sehsmatic of Secondary Hindle Test

IE GT Number．One

$$
F+F_{2}
$$

$$
\frac{\not \hbar E_{1}}{\underline{Z}}=.5000 / 2
$$

$$
\text { ME:NOAS ROD }{ }^{*} 1
$$

$$
\because D R_{2}=\quad \begin{array}{r}
.5000 \times 2= \\
0669.3^{\circ} \mathrm{F}
\end{array}
$$

MEASURINg：ROO＊ 2
$\frac{t B_{3}}{2}=.5000 / 2=$

Other

$$
F_{1}+F_{2}=
$$

Test Calculations：

$$
\begin{gathered}
R_{v}=2 \frac{F_{1} \cdot F_{2}}{\left(F_{2}-F_{1}\right)}=1358.525 \\
K=(-1) \cdot\left(\frac{F_{1}+F_{2}}{F_{1}-F_{2}}\right)^{2}=-1.49686 \\
E=K+1
\end{gathered}
$$

Nominal $E=-.49636$

$$
R_{v}=1358.00 \mathrm{~mm}
$$

$$
\text { NOMINAL } K=-1.49686
$$

$$
\begin{aligned}
& \text { Mesiorine ROD }=3 \\
& 22305 \\
& \text { ミかっ: } \\
& \text {. } 50 ミ 4 \\
& \frac{D B_{1}}{2} \\
& 2500
\end{aligned}
$$

$$
\begin{aligned}
& 0=20 \\
& F_{1}=\left(F_{1}+F_{2}\right)-F_{2}=6687.795-610.9691=6076.936
\end{aligned}
$$

 And Cenic cerustant of the beck． S゙くごいDARY MRRG

Procedure for measuring the vertex radius and conic constant of the backup HST eecondery mirror

Note: Refer to the Figure for details of the teftetup.
Procedure:
(1) Place point source microscope et the center of curvature of the Hind le sphere. Adjust microscope for beat focus.
 ball in front of the microscope much that the center of the bell is coincident with the focus of the microscope.
3) Position the folding mirror longitudinally. The folding $\boldsymbol{\text { B }} \boldsymbol{J}$ mirror ia $6^{\prime \prime}$ diameter flat certified to lambde/lo and hes a 0.50" diameter step ball cemented to lite center. Using the calibrated measuring rod of length $3324.86 \mathrm{~mm}(130.900$) , move the folding mirror up to the measuring rod. This will plece/30.899 the surface of the mirror et 3343.92 mm from center of curveture of the Hindlephere. (In performing this top, first bring one end of the rod up to the ball et the center of curvature of the Hind le sphere. Use piece of thin shimetock to determine position of rod relative to the ball. Then bring the ball on the fold mirror up to other end of the rod, again using shim etock.), OOI shim At each end
 height es the bell at the center of curvature of the Hind le sphere and about 400 mm to the ide of it. Use the 3324.86 mm measuring rod to determine the longitudinal spacing of this 130.899 bell. Use the meme method en in atop 3) to position this ball. 5) Adjust an interferon
length diverger that hes already been calibrated per the eppropriste procedure so that the focus of the diverges is coincident with the center of the bell located in step 4). The axis of the interferometer enould be pointing at the center of the fold mirror. (The interferometer will now be focused et the long conjugate of the Hind le teat.)
6) Offset the steel bell at the interferometer focus so the 7 ? interferometer diverging berm illuminate the fold mirror. mirror holder that if located bout 600 mm from the short test conjugate (the conjugate at the center of curvature of the Hindlephere). Handle the mirror using the overhead crane to move the assembly from its special storage box to the mirror holder. When the mirror if in piece end before removing the lifting strep, secure the mirror assembly with 2 bolts.

$$
\text { Ti me } 6757 \quad 4500 m \quad 12 / 26 / 90
$$

Te) Remove the Lexen protective cover from the eecondery 7 mirror.
8) Adjust the tilt of the econdery until the eutoreflected $/ \underset{j}{ }$ light beam is centered on the interferometer diverger end there $k:$: 1* an indication of fringes.
9) Continue to adjust the focus, decenter and tilt of the 1 Jy secondary until the fringe pattern is largely free of come, focus and tile. Ideally alignment would be continued until the fringes were nominally straight and about 10 fringes filled the monitor screen.

3 OR MORE AA

10) Record and tore fincerferogreme of the Hind le teat Th

11) Position e 0. S0" betel bell at the vertex of the secondary $7,-\mathcal{J}$ mirror, Center the bell laterally by eye. Adjust longitudinelly by using piece of shim stock to determine the proximity of the ball to the vertex. . 002 2 him
12) Without touching the bell, move the mirror assembly beck 7 array from the bell about 2^{*}.
13) Replace the protective Lexer cover on the mirror being careful not to touch the bell.
14) Attach the crane trap and remove the 2 securing bolt holding the secondary mirror assembly.
15) Use the crane to remove the mirror assembly and replace it in its storage box. Secure the lid on the box.
16) Using parr of inside micrometer e, measure the diatance<f, D between the ball at the vertex of the econdery and the bell at the short conjugate. Use shim stock to determine the flt of
 the micrometers. mirporen BAll eND that the bell $\frac{23.802}{10 t}$
17) Verify with the point mure microscope the the bell It I J id mic de
the short conjugate hes not moved.

- meas.

18) Check the inside micrometer reading with the calibrated caliper. Remember to add in half the diameter olecher as (12.7 mm) to get the hort conjugate distance. Recon 604.57 - mm. 23.802 inches
 20) In the computer, averegeofne 3rintorierogreme test and store in e Else namer --- HTBAAVE
19) Subtract the interferometerldiverger calibration wavefront from the data in the above file and tore in ale named
20) Using the residual first order (3 term if t) focus term. correct the R value found in step 19) and record $R^{\prime}=\ldots \ldots .$.
21) Using the residual ard order spherical aberration coefficient from the cove file, correct the value of found in top 191 and record - x^{\prime}
22) Repeat the above procedure 2 more times to gather complete data package for the tet of the secondary mirror.

First＂Reai－Test

$$
\begin{aligned}
& (F 1+F Z) \\
& \phi B_{1} / 2 \text {.2500 } \\
& \text { MRI } \\
& \text { 130. } 8=9 \\
& \geq p B_{2} \\
& 1.000 \\
& \text { いこ } \\
& \text { 130.99) } \\
& \text { pRy } \quad .2 \leq 00^{-}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\left.F_{1}+F_{2}=6687.896 \mathrm{~mm} \quad \begin{array}{rl}
(\mathrm{Nom} & = \\
=537.347) \\
& =49 \mathrm{~N}
\end{array}\right) \\
=1
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& F_{2}-\begin{array}{rr}
M R 3 & 23.902 \\
S_{A} & .0024
\end{array} \\
& \text { SHM . } \mathrm{SH}_{\mathrm{H}} \\
& \phi B_{1} / 2 \quad .250 \\
& \Sigma=240574 \mathrm{in} \\
& 611.058 \mathrm{~mm} \\
& \text { (Non: } \begin{array}{c}
G 10.759 \mathrm{~mm}) \\
D=300 \mathrm{~N}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& F_{1}=6076.839 \\
& F_{2}=611.050
\end{aligned}
$$

$$
\begin{array}{ll}
R_{H}=1358.24 & (D=+740 N \\
K=-1.49718 & (\Delta=-.0003) \\
N O M=-1.49686 &
\end{array}
$$

FKCCEDNE こん WEASURMNG -

$3 / N$
ZST EENDCTOR \qquad

HDOS Rep

TEST NO

Procedure for measuring the vertex radius and conic constant Of the backup HST secondary mirror

Note：Refer to the Figure for details of the tet setup．

Procedure：

（1）Place point source microscope at the center of curvature ファン of the Hind le sphere．Adjust microscope for bet focus．
2）Without touching themicromcope，move o．50＂diameteretelfノM ball in front of the microscope such that the center of the ball ia coincident with the focus of the microscope．

3）Position the folding mirror longitudinally．The folding／30．899 mirror ia a 6＂diameter flat certified to lambda／lo and has e 0．50＂diameter teri bali cemented to it center．using the\％Jo calibrated measuring rod of length $3324.86 \mathrm{~mm}\left(130.900^{\prime \prime}\right)$ ，move the folding mirror up to the measuring rod．This will place the surface of the mirror at 3343.92 mm from center of curve－ tore of the Hindlephere．（In performing this step，first bring one end of the rod up to the ball at the center of curvature of the Kindle there．Use piece of thin shimetock to determine position of rod relative to the ball．Then bring the ball on the fold mirror up to other end of the rod．again using shimetock．）． $001^{\prime \prime}$ shim on enchen ．
4）Locetenother 0．S0＂diameter steel ball at roughly the ane．J iv height es the bell et the center of curvature of the Hind le sphere and bout 400 mm to the bide of it．Use the 3324.86 mm measuring rod to determine the longitudinal spacing oi this， 30.890 bell．Use the em e method as in beep 3）to position this bill． 30.899 5）Adjust en interferometer with a nominally 300 mm focal 7 J length diverger that hes beady been calibrated per the appropriate procedure so that the locum of the diverges in coincident with the center of the ball located in step il．The axis of the interferometer should be pointing at the center of the fold mirror．（The interferometer will now be focused at the long conjugate of the Kindle tent．）
6）Offset the tel bell th et interferometer focus so theM J． interferometer diverging beam illuminate the fold mirror．

7）Insert the eecondery mirrorlcell assembly into the large mirror holder that is located about 600 mm from the hort teat conjugate（the conjugate at the center of curvature of the Hindlepherel．Handle the mirror using the overhead crane to move the assembly from its special storage box to the mirror holder．When the mirror is in place and before removing the lifting strep，secure the mirror assembly with 2 bolts．

Ta) Remove the Lexen protective cover from the eecondery mirror.
8) Adjust the tilt of the cindery until the atoreflected light beam ia centered on the interferometer diverges and there 1. an indication of fringes.
9) Continue to adjust the focus, decenter end tilt of the secondary until the fringe pattern is largely free of come, focus and tilt. Ideally alignment would be continued until the fringes were nominally straight and about 10 fringes filled the monitor screen.
10) Record and etóre géninterferograme of the Hind le teat

11) Position e 0.50" step bell at the vertex of the secondary mirror. Center the ball laterally by eye. Adjust longitudinelly by using a piece of shim stock to determine the proximity of the ball to the vertex. .002" shim used
12) Without touching the bell, move the mirror assembly beck J id aray from the bed about 2°.
13) Replace the protective Lexan cover on the mirror being $/ J 0$ careful not to touch the bell.
14) Attach the crane strap and remove the 2 securing bolter holding the secondary mirror assembly.
15) Use the crane to remove the mirror assembly and replace it in lite storage box. Secure the lid on the box.
16) Using a pair of inside micrometers, measure the distance between the bell at the vertex of the eecondery and the bell at the short conjugate. Use shim bock to determine the flt of the micrometers. 00020.001
17) Verify with the point not moved.
the hort conjugete hae not moved.
18) Check the inside micrometer reading with the calibrated caliper. Remember to add in half the diameter of the bell (12.7 mm) to get the hort conjugate distance. Record a $\begin{array}{lll}604545 & 23.805-.004 & =23.801 \\ -604.570 & 23.806-.004 & 2024\end{array}$ 19) As en intermediate step, calculate R o $2\left(\theta^{\circ} \theta^{\prime}\right) /\left(\theta^{\prime}-\infty\right)$ and
 20) In the computer, evoriagethowinterferograme of the Hind le

21) Subtract the Hind le sphere veveiront from the date in the

d

22) Subtrect the interferometerldiverger calibration vavefront from the deta in the bove file and etore in e file named
23) Uaing the remidual first order (3 term fit) focue term, correct the R value found in etep 19) and record R '
24) Using the reaidual 3rd order apherical aberration coefficient from the abovefile correct the velue of k found in etep 191 and record $a k^{\prime}$ \qquad
25) Repeat the bove procedure 2 more timea to gether complete deta packege for the teat of the aecondary misror.
"Serond Real Tet

$$
\begin{aligned}
& \begin{array}{lll}
\text { (F2) } M R 3 & 23.801 \\
& S A C & .0034 \\
& \text { GHIM } & .003 \\
& \neq B_{1} / \frac{2}{\Sigma} & .2500 \\
& & 24.0564 \mathrm{NCH}=611.033 \mathrm{~mm}
\end{array} \\
& F_{1}=\left(F_{1}+F_{2}\right)-F_{2}=6076.863 \\
& R_{v}=1358.692 \quad \Delta=683 \mu \\
& K=-1.49715 \quad(\Delta=-.0003) \\
& N \text { Nem }=-1.49606
\end{aligned}
$$

FRECEDLRE FR MEASURIMC TE vEREX RAOUS AND CINIC CONSTANT OF THE B+E OPOST SEECNDARY MIRROR

quanty Clemanda Geftarebs nasamsfe
TEST NO. 4
DITE CF TEST \qquad $12 / 29 / 90$

ENG

$$
\text { Naxnyy fhant } 12 / 29 / 40
$$

Procedure for measuring the vertex radius and conic constant Of the beckup HST secondary mirror

Note: Refer to the Figure for detail e of the test meetup.

Procedure:

1) Place point source microscope at the center of curvature of the Kindle sphere. Adjust microscope for bet focus.
2) Without touching the microscope, move o. 50* diameter tel bell in front of the microscope such that the center of the bell ia coincident with the focus of the microscope.
3) Position the folding mirror longitudinally. The folding mirror is e 6^{\prime} diameter flat certified to lambda/l0 and hae a 0.50" diameter betel ball cemented to ito center. Using the calibrated measuring rod of length $3324.86 \mathrm{~mm}\left(130.900^{*}\right)$, move the folding mirror up to the measuring rod. This will place the surface of the mirror at 3343.92 mm from center of curvecure of the Hind le sphere. (In performing this atop. first bring one end of the rod up to the ball at the center of curvature of the Hind le there. Use e piece of thin anim stock to determine poilition of rod relative to the ball. Then bring the ball on the fold mirror up to other end of the rod, again using anim stock. l. 001 shim etch end
4) Locate another 0.50" diameter step ball at roughly the ane height af the bell at the center of curvature of the Hind le sphere end bout 400 mm to the ide of it. Use the 3324.86 mm measuring rod to determine the longitudinal spacing of this bell. Use the meme method an in step 3) to position this ball. vol shim at exch end
5) Adjust an interferometer with a nominally 300 mm focal length diverges that he e ready been calibrated per the appropriate procedure so that the focus of the diverges is coincident with the center of the bell located in atop 4). The axis of the interferometer should be pointing at the center of the fold mirror. (The interferometer will nov be focused at the long conjugate of the Hind le tet.)
6) Offset the eater bell st the interferometer focus so the interferometer diverging beam illuminates the fold mirror.
7) Insert the secondary mirror/cell assembly into the large mirror holder that is located about 600 mm from the short test conjugate (the conjugate et the center of curvature of the Kindle apherel. Handle the mirror using the overhead crane to move the assembly from te special atorege box to the mirror holder. When the mirror is in place and before removing the lifting strep, secure the mirror assembly with 2 bolts.

7e) Remove the Lexan protective cover from the eecondery mirror.
8) Adjust the tilt of the econdery until the eutoreflected light beam ie centered on the interferometer diverger and there 1. an indication of fringes.
9) Continue to adjust the focus, decenter and tilt of the secondary until the fringe pattern it largely free of come. locum and tilt. Ideally alignment would be continued until the fringes were nominally straight and about lo fringes filled the monitor screen.

OR MORE AT

10) Record and store sAinterferogreme of the Hind le teat

11) Position e 0. 50" tel bull at the vertex of the econdery mirror. Center the bell laterally by eye. Adjust longitudinelly by using e piece of mim stock to determine the proximity of the bell to the vertex. .002
12) Without touching the bell, move the mirror assembly every from the ball bout $2^{\prime \prime}$.
13) Replace the protective Lexan cover on the mirror being careful not to touch the ball.
14) Attach the crane strap end remove the 2 securing bolts holding the secondary mirror assembly.
15) Use the crane to remove the mirror assembly and replace it In its storage box. Four them bid on tremeong between the bell at the vertex of the eecondery and the ball at the hort conjugate. Use shim stock to determine the fit of the micrometers.
16) Verify with the point source microscope that the bell at T. the short conjugate hes not moved.
17) Check the inside micrometer reading with the calibrated calipers. Remember to add in half the diameter of the ball (12.7 mm) to get the short conjugate distance. Record a a GOUSI20-- mm. .00! shim on etch end. 23.802
 $k=-\left(\left(a^{\prime}+e^{\prime}\right) /\left(a^{\prime}-\operatorname{l}\right) \wedge 2\right.$.
18) In the computer, average the shinterierogrems of the Hind le

19) Subtract the Handle sphere wavefront from the data in the side above and tore in if le named
＂Third PE～－TE＂
$F 1+F 2$

$$
\begin{aligned}
& \not \subset \geq 1 / 2-.2500 \\
& \text { 131 130.899 } \\
& \therefore \text { … } \\
& \because:-30.309 \\
& \text { ・ことい } \\
& .2040 \\
& \text { 上: ミj3.303 incites } \\
& \text { GO2-. } 396 \mathrm{~mm}
\end{aligned}
$$

$E ?$

$$
\begin{aligned}
& \because \text { ころ 23.302 } \\
& \text { こaj , 202 } \\
& \text { Shm } \\
& \text {, } 2030 \\
& \text { \$21/2 } \\
& \text { - 2500 } \\
& \Sigma \text {. } 24.0574 \\
& =611.058
\end{aligned}
$$

$$
\begin{aligned}
& F I=(F \mathcal{Y}+F \hat{E})-F 2 \cdot 6076.838 \mathrm{~mm} \\
& R_{V} \quad 1358.795 \mathrm{~mm} \quad D=+745 \mathrm{~N} \\
& \text { iJOMINAL }=1350 \mathrm{~mm} \\
& \begin{array}{ll}
K=1 & -1.49718 \\
\text { Nomist } & -1.49686
\end{array} \quad \Delta=-0.0003
\end{aligned}
$$

HDHALL 12／29／50
\# 7 69-1873.001 / s/~003
12,2980
G.o ThanrFec Minion Thom Tzs T Foxture to shipponj Box
6.1 TransFer Test Fixtum/minion assembly to 3 heg plattonm.
6.2 Remove Lexan couer.
G. 3 Remove 6 Bolts and 3 plastic Retainers.
6.4 ZiE Fixtuce AwAy From Minnor $C+$
6. 5 perFoam visuac Inspection Wote: sprany situer scutfeo AwnyFrom Cewter p度 Minion suyace

CAUSED By shim stock RUB8nig on surfare of unvig meaturement.
6.6 Transfer minnon to shippong (t) Contrinien.
6.) Install lexa~protectime Cous々.
6.8 Inrtall protectre foum.
6.9 Install wooden coven and secure (L) 6.co Install satety stanas.
$\frac{\text { TRanstan to Hoss }}{\text { TDCBOU/H. }}$
Ct.
than corny.
Acceteantors -ok.

Patiey at bar ditheral Pomomial Orders Ien I instit Cenaike Polymmial Eselficients 3092 ? 1.035 0.100 1.000

 1.OOL - 1.OU 1.001
 -1.104 - $.01561 .0650 .014-0.01050 .015$

 Emile Sellitiets

Pheres les

| hsumove | Phose Anolysis Softwore Tools Version 2.08 |
| :---: | :---: | :---: | :---: |
| $13: 08: 39 \quad 12-27-90$ | Phose Shift Tech, Inc. (c) 1986-1989 |

CALBRAT心N DCCrItNTATUN

