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Sybil Huang Morren

National Aeronautics and Space Administration
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Abstract

Transonic flow of dense gases for two-dimensional, steady state, flow over a NACA 0012

airfoil was predicted analytically. The computer code used to model the dense gas behavior

was a modified version of Jameson's FLO52 airfoil code. The modifications to the code

enabled modeling the dense gas behavior near the saturated vapor curve and critical

pressure region where the fundamental derivative, F, is negative. This negative F region

is of interest because the nonclassical gas behavior such as formation and propagation of

expansion shocks, and the disintegration of inadmissible compression shocks may exist.

The results of this study indicated that dense gases with undisturbed thermodynamic states

in the negative F region show a significant reduction in the extent of the transonic regime

as compared to that predicted by the perfect gas theory. The results of the thesis support

existing theories and predictions of the nonclassical, dense gas behavior from previous

investigations.
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Chapter 1

Introduction

The purpose of this thesis is to investigate an airfoil flow environment for dense gases

which exhibit nonclassical gasdynamic characteristics such as the formation and

propagation of expansion shocks. The behavior of such fluids are referred to as non-

classical gasdynamics because their fluid characteristics are often contrary to those

predicted by perfect gas theory. The nonclassical fluids are of interest because their

behavior can not be predicted by the perfect gas theory. The potential benefits for these

fluids maybe realized when these fluids are employed as the turbomachinery working

fluid. Increased efficiency of the turbomachinery, extended life cycle of turbines, reduced

hardware design requirements, and increased hardware reliability are only a few of the

advantages which may be possible with the nonclassical gasdynamic working fluid.

The analytical predictions for the nonclassical gasdynamic fluids, hereafter referred to as

the Bethel-Zel'dovich2,3-Thompson 4 (BZT) fluids, were generated with FLO52. FLO52

is a two dimensional, steady state, Euler solver airfoil code developed by Dr. Anthony

Jameson of Princeton University. The modifications to FLO52 involved removing all

expressions which contain perfect gas thermodynamic assumptions. The perfect gas

expressions were replaced with the corresponding expressions for the modeling the BZT

fluids.



TheBZT fluids offer numerous advantages for turbomachinery applications because they

have the potential of supporting subsonic flow for high freestream Mach number

conditions and/or high blade angles of attack. That is, for unusually high freestream flow

speeds and high blade angles of attack, no compression shocks will be encountered.

Energy losses due to compression shocks would be eliminated. Adverse pressure gradient

effects resulting from compression shocks would not exist. As a result, losses from

shock-induced boundary layer flow separation would also be eliminated.

The BZT fluids contain finite regions where the fluid fundamental derivative 4,

(1.o)

...... , .,.,.T, .......

is negative. Here, a, p, and s, are the thermodynamic sound speed, density, and entropy,

respectively. The fundamental derivative characterizes the nonlinearity of a fluid. A fluid

which remains solely in a thermodynamic region of negative F will admit expansion

shocks only. Details of the shock existence theory are presented later. Fluids with high

specific heats are most likely to exhibit BZT fluid characteristicsl,2, 5.

An altemate form of the fundamental derivative is given by

(1.1)

where v is the specific volume. Inspection of Equation (1.1) indicates that the

fundamental derivative is proportional to the curvature of an isentrope in the P- v plane and

2



a2vl
has the same sign as "_'-Is "

Fluids with solely positive fundamental derivative values can be shown to admit only

compression shocks. An example of a strictly positive r fluid is the perfect gas.

Consequently, the perfect gas admits only compression shocks. Expansion shocks in

perfect gases disintegrate into expansion fans. The classical gasdynamic phenomena,

such as sonic conditions obtained at minimum cross sectional area (i.e., a nozzle throat)

for internal flow, Fanno line flow, and shock conditions for airfoils have been analyzed

for the perfect gas model.

Little interest in the BZT fluids was evident until the 1970's and 1980's. The only

significant works prior to this time were conducted by Bethe 1 and Zerdovich 2.3. In 1942

Bethe I determined that the region of negative nonlineari_ existed near the saturated vapor

line in the vicinity of the critical pressure. Bethe considered many fluids which could

exhibit negative nonlinearity, but he argued that the practical applications of these fluids

would still be in the positive F region. Bethe and 7_erdovich 2 speculated that the van der

Waals equation of state would simulate the gas behavior of the fluids which exhibit

negative F values. They also determined that a fluid which could exhibit negative

nonlinearity would necessarily possess large specific heats, i.e., C,[R >>10.

In the early 1970's Thompson and Lambrakis4.5. 6 published their work on negative F

fluids. It was Thompson 4 who did the fast work for BZT fluids in steady state isentropic

flow, Fanno line flow, and weak shock theory. In 1972 Lambrakis and Thompson 5

provided evidence that many real fluids contained finite regions of negative nonlinearity

near the saturated vapor curve near critical pressure, as predicted earlier by Bethe I and



Zel'dovich 2,3. Thompson and Lambrakis 6 also investigated fluid behavior of gases which

exhibited both positive and negative nonlinearities.

In the mid 1980's much work in the area of BZT fluids which contain both positive and

negative nonlinearities was conducted by Cramer and Kluwick 7, Cramer et. al. s, Cramer

and Sen 9,1°, and Cramer 11.12,13. The behavior of fluids with both positive and negative F

values differ from those which have strictly positive or strictly negative values of the

fundamental derivative.

This study concentrates on describing BZT fluid flow environments for a NACA 0012

airfoil. In the following sections, discussions of the BZT fluid shock existence theory,

analytical analysis employing the van der Waals equation of state, and BZT fluid results are

presented. The results support the BZT fluid theories and show a tremendous reduction in

the extent of the transonic regime as compared to the extent predicted by the perfect gas

theory.

4



Chapter 2

General Theory

The gasdynarnic theory for the BZT fluids is based upon relations which hold true for

general fluids. This section begins with the classical gasdynamic analysis and expand to

the shock existence theory which is specific to BZT fluids. The BZT fluid analysis for

external flow over an airfoil is based upon conventional, single-phase, Navier-Stokes

fluids. The flow is assumed to be compressible, inviscid, and two dimensional; therefore,

the Navier-Stokes equations simplify to the Equations of (2.0).

3,o+ d(pU)+ d(pV)= 0 (2.0a)
a & o_ -

a(pu) _ + =o (2.0b)

a(pv d(pvv)a(pV) + ÷ = 0 (2.0c)

a(pVH)a(pE) ÷ d(pUH) _. =0 (2.0d)
& & &

Often referred to as the Euler equations, Equations (2.0a) through (2.0d) represent the

continuity, momentum in the x direction, momentum in the y direction, and the energy

equation, respectively. The two additional equations required to form a closed system of



equations are the equations of state, and the internal energy equation.

The first term in each equation from Equations (2.0) represents the local rate of change of

the conserved element. The second and third terms of the Equations (2.0) are the

corresponding fluxes and pressure forces. The quantities of U and V are the velocity

components in the x and y directions. The pressure, density, total internal energy, and

total enthalpy are shown as P, p, E, and H. Equations (2.0) are the governing differential

equations used in the BZT fluid analysis.

General aerodynamic analysis classifies fluid flow into compressible and incompressible

flow. The density of an incompressible flow is for all practical purposes considered to be

constant; while for compressible flow, the density may vary greatly. The science of

thermodynamics describes the physics of energy relations or transformations and is

incorporated in the analysis for both incompressible and compressible flow. However;, the

thermodynamic effects are extensive in compressible flow due to changes in kinetic energy,

internal energy, density, and gas temperature which are characteristic of compressible

gases. The analysis of compressible flow is more specifically referred to as gasdynamics.

An important index used for describing the gas velocity is the Mach number which is

defined as the ratio of the flow velocity to the thermodynamic sound speed. Fluid

velocities equal to the speed of sound are referred to as sonic flows. Fluid velocities

greater than the speed of sound are referred to as supersonic, while those below the speed

of sound are termed subsonic.

In conventional gasdynamics, flows which have reached sonic velocities or greater may

result in shock waves. The shock waves may be of two types, namely compression or

expansion shocks. Compression shocks decelerate supersonic flow across the shock.



Pressure, density, entropy, and temperature increase across a compression shock.

Unfavorable gas behavior results, such as shock-induced boundary layer separation, and

enthalpy and pressure losses. In a rarefaction or expansion shock, the flow is accelerated

through a shock; and the pressure, density, and enthalpy decrease across an expansion

shock. The supersonic to subsonic transition may also occur across expansion shocks just

as it does for compression shocks. In both shock conditions the entropy across the shock

increases; and both types of shocks result in an irreversible thermodynamic process. Since

expansion shocks provide a favorable pressure gradient for boundary layer separation, it

appears that a major loss mechanism can be eliminated or minimized through the use of

fluids admitting only expansion shocks.

Admissible shock conditions for general fluids are determined by

Pl Vl = P2 V2 - rfi (2.1a)

+,by1--p2 2 (2.1b)

el +.._ + V1 = e2 + P2 + V1
Pl 2 P2 2

(2.1c)

th(s2- Sl) > 0 • (2.1d)

The Equations (2.1) are the continuity, momentum, energy, and entropy inequality,

respectively, for a stationary, normal shock. They may be applied to a moving shock by

transformation to an appropriate frame of reference. The solution to this system of

equations represents all possible upstream and downstream conditions which may be

reached through the dynamic process of a shock. Equations (2.1) are known as the



Rankine-Hugoniotshock jump conditions and are found in the gasdynamic literature (e.g.

John TM.Anderson 15, or Bertin 16 ).

These conditions may be rewritten as

[pV] =0 (2.2a)

V1V2 = [p[-_] (2.2b)

8

21

(2.2.c)

[s] > 0 (2.2d)

where [X] = X 2 - X_ . The first equation is simply the continuityequation. The second is

the result of the combination of the mass and momentum equations. The third equation is

known as the Hugoniot equation, and is obtained by combining the continuity, momentum,

and energy equation. The Hugoniot equation contains purely thermodynamic parameters;

therefore, all solutions to equation (2.2c) correspond to thermodynamic states which may

be connected by a shock wave. Figure 2.0 is a sketch of the Hugoniot equation for a BZT

fluid. This curve is often referred to as the shock adiabat.

Now consider the shock existence conditions for general fluids. A given shock condition

will be admissible only if the Rayleigh line connecting the proposed upstream and

downstream states lies entirely above or below the shock adiabat. The Rayleigh line is

defined as a straight line connecting any two points in a P-v diagram where the end

points denote the upstream and downstream states. If the Rayleigh line lies above the



shock adiabat, a compression shock (P2 > Pl) is the admissible shock condition. Figure

2.0 depicts compression shock conditions for curves with state points 1 to 2, and 3 to 4. If

the Rayleigh line lies below the shock adiabat, an expansion shock (P2 < P1) is admissible

for the proposed shock condition. One example of an expansion shock is represented by

the Rayleigh line between state points 2 and 3. Therefore fluids with positive shock adiabat

curvatures admit compression shocks; and those with negative curvature shock adiabats

admit expansion shocks. Admissible shocks will remain in the flow as discontinuities.

Inadmissible shocks will undergo either a partial or total disintegration.

Previously the admissible shocks were shown to be related to the curvature of the shock

adiabat. Now the relationship of the fundamental derivative to admissible shocks will be

discussed. The fundamental derivative given in Equation (1.1) may be shown to be

proportional to the curvature of the isentrope 13. The sign of the fundamental derivative

may also be shown to determine the direction of curvature of the shock adiabats as well. In

general it can be shown that the slopes and the curvatures of the shock adiabat are identical

to those of the isentropes at the same point, i.e.,

a2p2 l, 2p . .
lira -_v2 =i.-_---,2-J (Pl , Vl)

v2"h vl s

(2.3)

Details of the derivation of equation (2.3) may be found in Reference 13.

Thus, fluids for which the fundamental derivative is positive everywhere also have positive

shock adiabat curvatures which indicate compression shocks are the only admissible shock

type. The perfect gas is an example of such a fluid; and therefore, admits only

compression shocks. For fluids with strictly negative fundamental derivative values, the

9
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shockadiabatcurvatureis alsonegativeandindicatesadmissible expansion shocks. For

fluids which contain mixed nonlinearity ( F > 0 and F < 0), the shock adiabat will contain

inflection points. The fluid of Figure 2.0 is such a fluid with both positive and negative

values of F. Both types of shocks, possibly from the same upstream state, may occur

when mixed nonlinearity is present.

Most classical gasdynamic theory involves the assumption of perfect gas behavior. The

perfect gas equation of state,

P = pRT (2.4)

where P is the pressure, p is the density, R is the gas constant, and T is temperature,

leads to convenient simplifications of gasdynamic relations. One of the motivations for the

use of the perfect gas model is its simplicity and accuracy when applied to many real gases

at atmospheric conditions. A real fluid's compliance t'o perfect gas behavior may be

quantified by a parameter called the compressibility factor

Z = BPv (2.5)
RT

where Z is the compressibility factor, and v is the fluid specific volume.

According to Equations (2.4) and (2.5), a perfect gas has a compressibility factor of unity.

A skeleton sketch of the compressibility chart for nitrogen is given in Figure 2.1. Any

thermodynamic conditions which result in a compressibility factor other than unity are

deviations from ideal gas behavior. In general, the perfect gas model is based upon the

assumption of widely spaced molecules and negligible molecular interaction. Therefore the

perfect gas equation clearly is not valid as a fluid approaches the saturated vapor curve



where molecular interaction is significant. More detailed discussions of the perfect gas

regime may be found in Van Wylen and Sonntag 17.

The perfect gas model is not adequate for analytical simulation of the negative F fluids.

The thermodynamic region of interest for observing nonclassical gasdynamic characteristics

(i.e. the region of negative F ) has been determined by Bethe and Zel'dovich to be located

near the saturated vapor curve and near critical pressures as shown in Figure 2.2. For

reasons previously stated, the perfect gas model is invalid in the dense gas regime; and

therefore, cannot accurately simulate the negative F region.

To successfully simulate fluid behavior in the dense gas region, a more comprehensive

equation of state must be employed. The van der Waals equation

or

RT a

v-b
(2.6)

p= pRT otp2
1-bp

is known as a generalized equation of state, which means that it holds for generalized (i.e.,

real gas) behavior, and should model fluids in dense gas region sufficiently. The

coefficients a and b are corrections for the intermolecular forces of attraction and

repulsion between the molecules, and for the volume occupied by the molecules. These

van der Waals coefficients can be evaluated from the critical point data.

For the generalized gas the critical isotherm at the thermodynamic critical point has a slope

and curvature of zero. Therefore the fast and second derivatives of the isotherm are zero at

the critical point. The van der Waals coefficients are evaluated at this inflection point and

11



8a-e

Vc= 3b

2 2
27 R T_

64 Pc

b = RTc
8ec

(2.7)

where the critical point values of temperature, pressure, and specific volume are shown

respectively as Tc, Pc, and vc. The critical compressibility factor for a van der Waals fluid

is Z, = 0.375. This critical compressibility value was used throughout this thesis.

The van der Waals equation of state was employed successfully by Bethe l, Zel'dovich 2,

Thompson and Lambrakis 6, Cramer and Sen 9A0, CramerllA 3, and others for modelling

fluids with regions of negative F. More exact equations such as the Martin-Hou equation

of state have been used. Examples of Martin-Hou equati()n calculations may be found in

Table 2.018 and in Figure 2.35. The Martin-Hou equation is regarded as one of the most

realistic equation of state for power systems. However, the more complicated equations of

state do not improve upon the qualitative results of the van der Waals model. Therefore,

the van der Waals equation of state was deemed reasonable and sufficient for the present

purpose.

12



Chapter 3

Analytical Approach

In order to analytically simulate the flow characteristics of BZT fluid flows, the FLO52

airfoil code by Anthony Jameson of Princeton University was modified by removing all

influences of the perfect gas assumption and replacing them with the corresponding van der

Waals gas equations. FLO52 is a two dimensional, steady state, finite volume airfoil code.

Such finite volume codes have been extensively tested, and are well understood for perfect

gases; therefore FLO52 was selected as the tool for the BZT analysis in this study.

Although FLO52 has the multi-grid generation capability, the single grid generation option

was used when modeling the BZT fluids.

The numerical solution scheme for FLO52 is based upon an explicit, semidiscrete finite

volume scheme with implicit residual smoothing. The implicit nature of the solution allows

the use of large time steps. The semidiscretizaton method is similar to finite differencing

methods in that the difference representation is used to approximate the differential terms in

the equations. However in the finite volume method the dependent variables are assumed

to be known at the center of each grid cell instead of at the the intersection points of a finite

difference grid. The Euler equations (2.0a) through (2.0d) take on a finite volume form 19

of

(3.0a)

13



where Sij is the cell area, wij represents the conserved term, and Qij is the net flux out of

the cell.

The fhlx term 19 call be evaluated at each cell as

Qij= Y. (Ayffk- Z_kgk) (3.0b)
k=l

where f_ and gk represent the flux vectors on the kth edge for the x and y directions

respectively. The Ay and Ax are the increments of x and y along the edge of the cell, and

the sum is over the four sides of the cell. The flux vectors 19 are taken as

1

:2= (3.0c)

where fi+l.j and fi,j are the flux values of the cells on either side of edge 2. This method

reduces to a central difference scheme on a Cartesian grid. More detail discussion of the

numerical methods employed in FLO52 may be found in Reference 19.

Upon initial inspection one would assume modification of the perfect gas to van der Waals

equation of state to be a straightforward process; however, the perfect gas simplifications

of the thermodynamic parameters are extensively embedded in most airfoil codes. The

compressible gas relations used in FLO52 had to be developed for a van der Waals gas.

The required van der Waals expressions for code modification were derived by applying

the van der Waals equation of state, Equation (2.6), to the general expressions of the

sound speed, internal energy, enthalpy, pressure, entropy, and the lift and drag

coefficients; and then placed into equivalent expressions found in the FLO52 code. The

14



FLO52 airfoil codecontainedthermodynamicexpressionsfor theperfectgasmodelof the

form

e--p(e,p)
,-_(e,p)
s-s(e,p)
a=a(P,p)

, e- e(s,p)
(3.1)

where the P is the pressure, e is the internal energy, a is the speed of sound, and p is the

The entropy term is S-exp, f (s:_'r)l, Therefore, thedensity. thermodynamic
t Cv J

expressions with the van der Waals gas assumption were cast in the same manner.

Each expression was converted to the nondimensional form by

P
/5=u

P
r

e

(3.2a)

b = bpr

g=V
Ur

15



a 2

a2 = U--_r

The reference values for Equations (3.2a) were taken to be:

e**

Pr = Pc,.

er = CvTr- aPr

Hr= H**; where H**= h** + l v 2

(3.2b)

S r was not needed explicitly because all entropy expressions are defined with the entropy

term S ; and Cv is the constant volume specific heat.

The first pressure expression, P = P(e,p), was obtained by integration of the general

internal energy equation from Van Wylen and Sonntag 17. The general form of the

differential of the internal energy, e, expression is given in Equations (3.3).

(3.3a)

de=CvdT+ P-'l,,"_)pJp-p-p-_
(3.3b)

Equation (3.3a) is the more common from of the generalized internal energy expression;

16



however,Equation(3.3b)wasemployedhere. Thepartial derivativein Equation(3.3b),

_- , wasobtained by taking the partial derivative of the van der Waals Equation (2.6).

Substituting Equation (2.6) and

(3.4)

in (3.3b) lead to

de= CvdT- o_dp• (3.5)

The specific heat Cv is take to be a constant. Integrating Equation (3.5) gave

_;rde= T pCv a'r- I; ap

e-er:C(T-T)-ot(p-pr ) (3.6)

where Cv, ot are assumed to be constant. Solving for temperature T led to

e-e+ a(p - p r )
T = T + • (3.7)

c

Substituting Equation (3.7) into Equation (2.6) resulted in

17



Eliminationof thereferencevaluesT and e was accomplished by replacing e
r r r

expression e = C T - ap which lead to the pressure expression
r 1_ r r

e_

R p(e+ap)

Cv 1-bp
otp2= p(e,p) • (3.9)

with the

Through the application of Equations (3.2a), the nondimensional form of Equation (3.9)

became

/_= R _(_+_pp) _2 • (3.10)
Cv 1-b_

The internal energy expression as a function of pressure and density was found by solving

Equations (3.9) for e

(p÷ bp)
e = R -/xp - (3.11)

where the nondimensional from is given by

(P + _'-ffp2X1-/_P ) -_

_R ap. (3.12)

The entropy expression was derived from the general expression of

ds= Cv-_-(_)dv (3.13a)

18



(3.13b)

from VanWylen andSonntag17.SubstitutingEquation(3.4) into Equation.(3.13.b)gave

(
• r -_l--:-G)p " (3.14)

Integration of Equation (3.14) led to

s- sr Cv[ln(T )- tn(Tr)]- p dp
= R_'prp(1-S'bp )

S-Sr l_r] R lnF(1-bpy Pr 1]Cv =in +-_v Lt,-_ Jt,'l --bpr J.] "

(3.15)

If the exponential of both sides are taken, then we can write

s-s r 1' = exp(--_ = ,n -'P Pr _-_vl]

where C v , R, and b, are taken to be constants.

The temperature T, and the reference temperature Tr=T** of Equation (3.15) were

replaced with the following expressions:

T=(1-bp)(P+Otp2) (3.16)

pR

p.R

19



Equations (3.16) and (3.17) were obtained by solving Equation (2.6) for the temperature.

Substitution of Equations (3.16) and(3.17) into (3.15) yielded an intermediate form of the

entropy expression given by

R

The parameters of pressure, density, a, and b, were replaced with the appropriate

expressions from Equations (3.2a). The final nondimensional expression for the entropy

relation as a function of pressure and density is

- 1-bff | C'xr/_+_pp2"

exp L i+_ (3.19)

and

The other pressure relation required by the FLO52 is one which relates pressure as a

function of the entropy expression S, and density, p. This expression is easily obtained

from solving Equation (3.20) for pressure. The resulting pressure equation became

c
(3.21)

The last expression derived was for the speed of sound for a van der Waals fluid. The

20



generalthermodynamicsoundspeedis

(3.22)

By expandingthederivativein Equation(3.22), thesoundspeedtooktheform of

a2 = "_ps : - L L-o_jr + (--a_)_(-_ )" (3.23a)

and

where 3"1" = Cv Therefore, the sound speed became

(3.23b)

The derivatives

= v b _ +_ (3.24a)_-r (-)

(3.24b)

were obtained by differentiating the van der Waals equation (2.6). Substituting Equations

21



(3.24a) and (3.24b) into Equation (3.23b) resulted in

a2 = RT [1 + R]_ 2otp(1-bp) 2 t-vJ
(3.25)

Replacing RT with

P
(3.26)

lead to the final form of the sound speed for a van der Waals fluid

a2 = :P-+.-_---_2.yI+ _vl- 2ap •

The non-dimensional form Equation (3.27) is given by

82 = 1 + - 2Cr45 •

LPU- 'P))L %)

(3.27)

(3.28)

The coefficients for lift and drag were obtained by integrating the pressure over the airfoil

surface. The general form of the pressure coefficient is

P-P

Cp= 1 0_ (3.29)
2 p**V_

where Cp denotes the the general form of the pressure coefficient. In the original FLO52

code the pressure coefficient was defined specifically for the perfect gas. The FLO52

22



pressurecoefficientwasof theform

/_- 1 (3.30)

Cp= i
2

where Cp represents the nondimensional pressure coefficient for a perfect gas, ?
is

If we let Cb denotes the form of the pressure coefficient for the van der Waals gas, then

Cp = 1 M 2 -2
ooUoo

(3.31)

where _** is the non-dimensional freestream sound speed for a van der Waals gas found to

be

O-b)
(3.32)

Therefore we can write Cp = 6",,--Y_-Y,_;and the _or_aon factor for transforming the perfect
//

gas pressure coefficient, _'p , to that of the van der Waals fluid is Y

23



Thelift, drag,andpressurecoefficientsfor the van der Waals fluid are related to the perfect

gas versions in a similar manner by :

The relations derived in the above discussion are for FLO52 specifically; however, they

should be applicable to other existing airfoil codes for two dimensional and steady state

conditions. The version of FLO52 modified for a van der Waals fluid shall be referred to

as the modified Euler code in order to avoid confusion when discussing the codes in

subsequent sections.

24



Chapter 4

Results and Discussion

The modified Euler code, FLO52, was used to model various flow conditions for a NACA

0012 airfoil in a BZT fluid environment. In the following discussion of the results, all the

studies were conducted for a NACA 0012 airfoil. Several thermodynamic states were

chosen for the van der Waals fluid to illustrate the nonclassical and classical gas behavior.

The results presented in this section attempt to illustrate the aerodynamic differences and

advantages of the BZT fluid over the perfect gas. Critical Mach number predictions were

made for the BZT fluid to define the freestream states which remain subsonic over the

entire wing. Following the critical Mach number predictions are the analytical data

generated by the modified Euler coded for both BZT and perfect gas fluids. These results

support the critical Mach number predictions for BZT fluids, and give further evidence that

these nonclassical gasdynamic fluid characteristics provide distinct advantages over the

perfect gas. The unique characteristics of the BZT fluids were further examined by

consideration of a high specific heat fluid which is subjected to various freestream

thermodynamic conditions where the fluid transitions from the perfect gas behavior to that

of the BZT fluid. Also, the dense gases which predict the existence of expansion shocks

were investigated in this thesis.

In the subsequent discussion of the thesis results, all the data generated by the modified

FLO52 code were determined to have reached convergence based upon several elements

outlined below. Initial runs of the modified Euler code were made to predict perfect gas
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behavior with the van dcr Waals equation of state. This was accomplished by setting the

van der Waals coefficients to zero and the R/C = 0.4 to reproduce the results for air. The

perfect gas simulation exercise provided an additional check on the validity of the modified

FLO52 results. The results for the perfect gas cases compared well with other published

results 19,2° as shown in Table 4.0. The surface plots for Mach number and pressure

coefficient and the contour plots for Mach number were typical of perfect gas behavior for a

NACA 0012 airfoil. The BZT fluid convergence criteria were also based upon the residual

of the last iteration cycle, the number of iteration cycles, and the comparison of the

analytical data for isentropic flow to the pressure and local Mach number predicted by the

BemouUi equation.

For the criteria of residual numbers, the maximum and average residual for each iteration

cycle indicated the difference between data of a given cycle and that of the previous cycle.

Residuals of the order of 10-3 are an indication that convergence has been achieved. In

addition to small residual values, changes in the data due to increase in the number of

iteration cycles were considered. Numerical data that has reached convergence will not

change when the iteration cycle number is further increased. The BZT fluid test cases were

run at 500, 1000, 1500, 2000, 2500,and 3500 cycles. Note that the multi-grid option in

FLO52 was not used for generating the BZT fluid results; therefore, the cycle numbers are

for a single grid numerical scheme. The results indicated that 2000 cycles were adequate

for reaching a convergence condition for the BZT fluids. At the 2000 cycle condition the

residuals were of the order of 10 -4 to 10 -3. Also, the local pressure and Mach number

results for isentropic flow conditions at 2000 cycles compared extremely well with the

pressure and Mach numbers predicted by the Bernoulli equation as shown in Table 4.1.

Equations (4.2), (4.3), (4.4) and (3.25) were used to make local Math number and



pressure calculations where a freestream Mach number was assumed and the density was

varied. In the calculations of local pressure and Mach numbers, Equation (4.4) was

rearranged to solve for the local Mach number explicitly. Also, the stagnation conditions

calculations were useful for checking the stagnation pressure calculated by the Euler code.

The calculations of the stagnation pressure condition was obtained by setting the local Mach

number in Equation (4.4) to zero and assuming a stagnation density value for _ = P-_
P..

BZT fluid critical Mach number calculations were made because the critical Mach number

estimates are a simple means of predicting the transonic limits of a flow. By definition, the

freestream Mach number at which the local Mach number fL,'Stbecomes sonic is the critical

Mach number for that fluid and airfoil geometry. Because the maximum Mach number

corresponds to the minimum pressure for the flow of interest, then we can say that the

minimum pressure on the airfoil surface is equal to the pressure required to attain a local

Mach number of one for the case of a critical Mach number flow. The minimum pressure

coefficient on the airfoil is typically estimated from the Prandtl-Glauert equation

(4.0)

for a fixed wing shape. The Cpl is the minimum pressure coefficient on the wing
tm'n

is the incompressiblesurface at a freestream Mach number of M** . The Cpinc rain

minimum pressure coefficient for a given airfoil geometry and fluid. The pressure
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coefficient for a fluid may given by

P-1

C, = ½M_. = g(M-,M)"
(4.1)

The expressionforthe pressureP isgiven by

T 1 p
(4.2)

where Z_ =
(1-4- _')(1 +/_)"

Equation (4.2) was obtained by combining the van der Waals

equation of state (2.6), and the iscntropic condition of

(4.3)

R
where 8 =

The critical Mach number was calculated from the Bernoulli equation

2 2 T

 _-z.ttr.)l 1-/Tpj k 1-b)J

4_ _ - _2 2

(4.4)

where the freestream speed of sound was obtained by evaluating Equation (3.25) at

freestream conditions.
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Therefore,the critical Mach number estimation is the freestream Mach number which

satisfies

/(M.)-- =i) (4.5)

Equation (4.5) may be solved graphically by plotting g(M..,M = 1) which is represented by

Figure 4.0, curve (1), for a perfect gas. Curve (2) of Figure 4.0 represents the Prandtl-

Glauert equation of (4.0). The intersection of curve (1) and (2) is the solution to equation

(4.5). The curves of Figure 4.0 were found by the parametric solution for Equation (4.0)

and (4.1). Solutions to Equation (4.0) were obtained by varying the freestream Mach

numberforagjvenCpinc [ value. TheCpi _ was calculated by the Euler code for
rain n rain

the NACA 0012 airfoil at zero angle of attack. The parametric solutions for Equation (4.1)

was found by setting the local Mach number to 1 in Equation (4.4) and varying the density

term, /_ = P-if-, in Equations (4.2),(4.3),(4.4), and (3.25). The detail derivation of
P**

Equations (4.2) through (4.4) may be found in Appendix A.

The potential advantages of the BZT fluids may first be recognized from the critical Mach

number curves shown in Figure 4.1. Figure 4.1 represents the critical Mach number

curves for the perfect gas fluid and a van der Waals fluid at specific volume ratios of

V_v _ = {3.03, 2.0, 1.429, 1.25). In all BZT fluid cases the pressure ratio was taken to be

'_p= 1.0, and the heat term assumed be ff/_, 0.02. 4.1 showsspecific was to Figure

that the critical Mach numbers increase as the fluid approaches the dense gas states. This

initial study indicates that the BZT fluids may allow much higher freesa'eam fluid velocity
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conditionsandhigher angles of attack for a given airfoil than predicted for the perfect gas.

The critical Mach number study is only a crude estimate of the BZT fluid capabilities. To

further substantiate the BZT fluid characteristics, the modified Euler code was used to

predict the flow field for a NACA 0012 air foil.

The first results from the modified FLO52 code were for a freestream Mach number of

M.= 0.8 with a NACA 00i2 airfoil, and _gles of attack of 0 to 6 degrees. These results

were compared to perfect gas predictions under the same freestream conditions and airfoil

geometry. The comparison of the BZT fluids to the perfect gas clearly defines the

advantages of the BZT fluids over the perfect gas. The thermodynamic state of the van der

Waals gas was chosen to be at a specific volume ratio of v=/vc=l.25 and pressure ratio of

P./Pc=I.O which is a point in the single phase vapor region near the saturation curve and

critical pressure, and well within the region of nonclassical fluid behavior (i.e. negative

F). The specific heat term R/C v = 0.02 roughly corresponds tothe case of normal decane

(n- C_oH22 ). This gave van der Waals coefficients for if, and /_ of 1.92, and 0.267

respectively. The specifications for the perfect gas runs were for a R[Cv = 0.02 which

gave a typical perfect gas ratio of specific heats, Cp/C,, value of 1.02.

Figures 4.2a, 4.3a, and 4.4a, are the surface plots of the pressure coefficient and local

Mach number for the BZT fluids at free stream condition of M** = 0. 8. The plots show

how the flow near the airfoil changes due to the increase in angle of attack from 0 to 6

degrees. Even at an angle of attack of 6 degrees, the flow appears to be only slightly

sonic. In contrast the surface plots for the perfect gas in Figure 4.2b indicate massive

compression shocks for an angle of attack of 0 ° at a freestream Mach number of 0.8. At

increasing angles of attack for a perfect gas fluid, the shocks become increasingly
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stronger. For an angle of attack of 6 degrees, the maximum local Mach number has

reached 1.5 as shown in Figure 4.4b.

The differences between the BZT fluid and perfect gas are further illustrated by Figures 4.5

to 4.6. The lift and drag curves for both the BZT fluid" and the perfect gas are predicted by

the Euler equations. Therefore, no boundary layer effects such as boundary layer

separation are accounted for in the lift and drag results. Figure 4.5a show that the lift

coefficients for the perfect gas are greater than the BZT fluids for a Mach number of 0.8.

However, the BZT fluid lift coefficient curve for M** =0.92 is greater than for perfect gas

as shown in Figure 4.6a. The wave drag coefficient plots of Figures 4.5b, 4.5c, 4.6b,

and 4.6c, further support the reduction or elimination of kinetic energy losses due to

shocks for the BZT fluids. The wave drag curve for the BZT fluid lies close to zero

whereas the perfect gas curve increases sharply for the entire range of angles of attack in

Figures 4.5b and 4.6b. Because the BZT fluid flow is subsonic for the flow conditions of

Figures 4.5 and 4.6, the low wave drag coefficients are likely due to numerical errors

which result from large gradients at the leading and/or trailing edges. The wave drag plots

of figures 4.5c and 4.6c reflect a substantial reduction of the wave drag for the BZT fluid

over the perfect gas. The wave drag is also a measure of the strength of the shocks. The

actual drag is expected to be even stronger due to shock induced separation which is

expected to occur in actual flows. The BZT fluids are capable of sustaining subsonic, and

therefore shock-free, flow at much higher angles of attack than for perfect gas fluids.

O O

The corresponding contour plots at M** = 0.8 and the angle of attack ranges from 0 to 6

for BZT fluids and perfect gas of Figures 4.7 to 4.9 further support the nonclassical

gasdynamics predictions of previous investigations. The classical gasdynamic behavior of
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the perfect gas is observed in Figure 4.7b. The sonic contour region of Figure 4.7b,

referred to often as the sonic bubble, is located on the wing surface over the maximum

wing thickness. The resulting compression shock is located downstream of the maximum

wing thickness. Both the sonic bubble and the compression shock location are typical of

the perfect gas and agrees well with results of published literature 19,2°. All perfect gases

will behave in a manner similar to that seen in Figure 4.7b. That is the sonic bubble and

compression shock will be located in relatively the same location for a given wing surface.

For the BZT fluids, none of the contour plots of Figures 4.7a and 4.8a gave indications

that a sonic region existed on the wing surface. The Mach number contour plot for an
O

angle of attack of 6 shows a very small region of sonic flow in Figure 4.9a. Figure 4.10

depicts a more severe flow environment in which M. = 0.92 and the angle of attack of is 4

degrees. Even in this case the sonic bubble is only slightly larger. The sonic regions of

Figures 4.9a and 4.10 are located near the leading edge of the airfoils as opposed to sonic

region location predicted by the perfect gas theory. Also, there is no indication of a

compression shock in Figure 4.10. Therefore, the Euler code results indicate that BZT

fluids significantly delay supersonic flow. This conclusion is in agreement with

predictions by Thompson 4, and the critical Mach number estimates presented earlier in this

chapter.

The BZT fluid surface and contour plots also indicate the existence of a phenomenon

referred to as Mach number oscillations 21. The local Mach number for a BZT fluid may

decrease and increase while the corresponding density is increasing monotonically. That is

a Mach number versus density curve may contain local minimums and maximums as

shown in Figure 4.11. The detailed arguments leading to Figure 4.11 are found in

Reference 21. This phenomenon does not exist for the perfect gas because the perfect gas
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theory indicatesthatthe local Mach number will decrease monotonically as density

increases.Figure4.11isa qualitativeBZT fluidplotof M versusp forvarious stagnation

densityconditionsindicatedon the M = 0 line.The J = 0 curve of Figure4.11 isthe locus

of allmaximum and minimum pointsfortheM vs p curves. The nonclassicalgasdynamic

region isinsidethe J = 0 curve where J > 0. Curves such as a, b, and c,representhigh

stagnationdensityconditionsand containdiscretesectionswhich arclocated in theJ > 0

region. Therefore, curves a, b, and c contain a localmaximum and minimum. In a
9

perfect gas, J < 0 and p/" > 1 is true everywhere. Thus the p_ to p_ and J > 0 region
a

shrinks to zero. Figure 4.12 is a BZT fluid plot of M, p versus Cartesian X axis of the

computational grid as predicted by the Euler code. The X values are grid Cartesian

coordinates normalized by the airfoil length. The airfoil surface data lies between X values

of 0.0 and 1.0. The minimum values of the Mach number curve located near the X= 0.0

and X--1.0, correspond to the leading and trailing edges ofthe airfoil. The regions of local

Mach number maxima correspond to monotonically increasing density values. Figure 4.12

most closely resembles curve c of Figure 4.11 where the curve is subsonic in the region

near the local Mach number maximum.

The surface and contour plots give further support to the prediction of oscillating Mach

numbers for BZT fluids. For perfect gas fluids, the Mach number and negative pressure

coefficient surface plots have a one to one correspondence. That is, given a Mach number

surface plot, one can easily predict the the pressure coefficient variation on the airfoil

surface. This local Mach number to pressure relationship no longer is true for BZT fluids

as shown by the surface plots of Figures 4.2a, 4.3a, and 4.4a. The surface plots of

Figures 4.2a, 4.3a, and 4.4a contain local Mach number maximums at the leading and
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trailing edge of the airfoil. These Mach number maxima correspond to the maxima of

Figure 4.11. The Mach number contour plots of Figures 4.7a, 4.8a, 4.9a, and 4.10, show

multiple contour regions for the a given Mach number value at both the leading and trailing

edges. The corresponding pressure contours indicate monotonically increasing pressure

contours at the leading edge and monotonically decreasing pressure contours at the trailing

edge. Thus, the oscillating Mach number phenomenon is another significant difference

between the BZT fluid and perfect gas.

The gasdynamic characteristics of high specific heat fluid (i.e., C,/R > 50) which is

modeled with the van der Waals equation of state may assimilate fluid behavior from

perfect gas to BZT fluids when subjected to the appropriate undisturbed thermodynamic

conditions. Figure 4.13 is for a perfect gas with an ideal gas specific heat ratio of 1.02.

Figures 4.14, 4.15, and 4.16, depict the gasdynamic trends of the high specific heat fluid

def'med by C,/R=50, Z_--0.375, P./P_=I.O, and v../v¢ over the range of 1.25 to 3.03.

Figure 4.14 is the surface for the undisturbed thermodynamic state of v./v,=3.03, and

P./P_=I.0 at zero degree angle of attack and freestream Mach number of 0.8. Figure 4.14

compares well with the perfect gas of Figure 4.13 because the thermodynamic state of

v./vc=3.03, and P../P,=I.O is near the perfect gas regime. A region of supersonic flow

exists over the wing surface of Figure 4.14, and resembles the perfect gas predictions of

Figure 4.13. In Figure 4.15, the undisturbed thermodynamic state of v,./v,--2.0 and

P../P_=I.0 is moving away from the perfect gas regime toward the BZT fluid condition.

Figure 4.15 still contains a supersonic region; however the number of grid points which are

supersonic are much less than shown in Figure 4.14. The high specific heat fluid subjected

to the undisturbed thermodynamic state of v../vc=l.25 and P../P,=I.O is shown in Figure
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4.16. The supersonic region and consequently the compression shock seen in the previous

figures are nonexistent in Figure 4.16. The freestream thermodynamic state is located near

the saturated vapor curve and critical pressure region (i.e. negative F region) and hence

shows marked contrast with the perfect gas theory.

Other interesting results from this dense gas investigation are shown in Figure 4.17 which

predicts the existence of both compression and expansion shocks in the flow. Figure 4.17

reveals a small region of sonic and supersonic flow near the trailing edge of the wing. As a

result, a compression shock is generated in order to decelerate the flow to stagnation

conditions. An expansion shock is observed in the region at the leading edge. This

conclusion is based upon the decrease in pressure indicated by the pressure coefficient

curve. Figure 4.18 is the corresponding Mach number contour plots for the expansion

shock case. Figure 4.18 is also a good example of the Mach number oscillation

phenomenon where double sonic contours occur at the leading and trailing edges of the

airfoil. Again the results support the theoretical prediction of the existence of expansion

shocks for BZT fluids. All the results to date indicate the existence of expansion shocks

are accompanied by a trailing edge compression shock. It is of interest to ask whether a

thermodynamic state and Mach number combination may exist which would result in a

flow involving only expansion shocks. Future work which investigates the existence of a

flow with only expansion shocks would be a valuable contribution in the study of dense

fluids for aerodynamic applications.

The thesis results support the conclusions from the BZT fluid theory which predicts that a

high specific heat fluid must have freestream thermodynamic conditions in the dense gas

region (i.e. near the saturated vapor curve and in the vicinity of the critical pressure) in
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orderto exhibit nonclassicalgasdynamiecharacteristics.Theresultsalsoserve to further

conf'm'n the validity of the modified FLO52 code data since the code predicts behavior

similar to that of the perfect gas for the v./v_=3.03 and BZT behavior for the v./v_ =1.25.

The advantage of the BZT fluids over those of the perfect gas is in the area of extended

subsonic flow for as high an angle of attack as 6 °. A turbine blade ordinarily experiences a

wide range of fluid velocities from an inlet conditions of M=0.6 to an outlet condition of

1.5; therefore, turbine blades are subjected to strong shock environments when the

working fluid behaves as a perfect gas. The surface plots for the BZT fluids indicated a

shock free environment up to an angle of attack of 6.0 degrees at a freestream Mach

number of 0.8. Therefore, the energy losses resulting from shocks can be greatly reduced

for a turbine or perhaps even eliminated through the application of the BZT fluid as the

turbomachinery working fluid. In addition adverse pressure gradients due to compression

shocks result in shock-induced boundary layer separation. The elimination of shock

waves, particularly compression shocks, will eliminate this loss mechanism.

36



Conclusions

Chapter 5

and Recommendations

This thesis is an important first step in the investigation of dense gases as practical working

fluids for turbomachinery. The modified Euler code results indicate that the BZT fluids

significantly delay supersonic flow over a NACA 0012 airfoil as compared to the

predictions for the perfect gas theory. Drastic reduction in drag for the dense gases over

perfect gas was observed. The dense gases were shown to behave as perfect gases at low

density conditions; however, as the freestream density value was increased from

p.. = 0.33Pc to p** = 0.SPc the fluid behaved as a BZT fluid. The Euler code results for

BZT fluids also indicated the existence of expansion shocks accompanied by weak

compression shocks on the leading and trailing edges of the wing, respectively.

The study revealed numerous advantages of BZT fluids. The shock free or weak shock

environment of the BZT fluids allows turbine blades to sustain high freestream Mach

number flows at high angles of attack without the detrimental effects of strong compression

shocks. In addition the high angles of attack may extend the stall limit of the turbine

blades; and therefore, extend the operating range of turbines. The BZT fluid results from

this thesis supports many of the predictions made from the previous investigations.

More studies must be conducted before all the feasibility issues are answered for BZT fluid

technology. More real fluids need to be investigated for BZT fluid characteristic potentials

so that a broader range of working fluids are available. Currently there is little experimental
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data for BZT fluids. Experimental data for BZT fluids need to be obtained to verify

existing analytical predictions and to uncover feasibility issues which have not been

anticipated. Experimental efforts could begin with employing a shadowgraph or schlieren

flow visualization technique for observing shock waves in a BZT fluid at subcritical

frccstrcam Mach numbers.
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Table 2.0 Negative F fluids calculations from the Martin-Hou equation of state. Each
fluid was found to have a region of negative nonlinearity in the single-phase region. The

last column gives the minimum values of pF/a on the critical isotherm (Reference 18).

Fluid

CLOF22

CloFls(PP5)

CllF20(PP9)

C13F22(PP10)

C 14F24(PP 11)

C16F26(PP24)

C17F3o(PP25)

C12F27N(FC -
43)

C15F33N(FC-
70)

C18F39N(FC-
71)

C11F23HO3

C14F29HO4

C17F35HO5

R

74.8

64.5

72.8

78.4

97.3

112.0

123.0

93.0

118.7

145.0

578

565.2

586.6

632.2

650.2

701.2

687.3

567.2

608.2

646.2

12.9

17.3

16.4

16.0

14.4

15.1

10.9

11.2

10.2

0.255

0.262

0.261

0.283

0.269

0.289

0.239

0.260

0.270

0.2759.3

82.9

109.0

135.7

536

568

595

10.7

8.3

7.6

0.254

0.245

0.239

0.04

0.11

0.05

-0.08

-0.15

-0.36

-0.22

-0.03

-0.17

-0.29

0.10

-0.02

-0.11
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Table 4.0 Comparison of theEulcrcode datawith publisheddataforliftand drag
coefficients.

Case Lift Coefficient Drag Coefficient
0

34.=0.8, a=0, ?'=1.4
Euler Code

Dadone & Moretti 2°

Jameson & Yoon 19

M**=0.8, a =1.25", ?'=1.4

Euler Code

Dadone & Moretti 2o

Jameson & Yoon 19

O

M**=0.85, ct=0, ?'=1.4
Euler Code

Dadone & Moretti 2o

Jameson & Yoon 19

M**=0.85, a=l*, ),=1.4

Euler Code

Dadone & Moretti 20

Jameson & Yoon 19

0.0

0.0

0.0

0.3454

0.3750

0.3513

0.0

0.0

0.0

0.3116

0.3610

0.0091

0.0071

0.0086

0.0228

0.0229

0.0230

0.0454

0.0431

0.0471

0.0536

0.0522

42



Table4.1 Comparisonof Bemoulli's equation calculations and Euler code data of

local Math number and pressure values at freestream conditions of/14. = 0.92,

v**= 1.1 lv c, P.. = 1.08P o and R/Cv = 0.02.

Density

1.2638

1.2284

1.1994

1.1601

1.1049

1.0286

0.9999

Mach No.
BemouUi

Equation

0.4506

0.5425

0.6131

0.7026

0.8088

0.9022

0.9204

Pressure
Bernoulli

Equation

1.0701

1.0577

1.0487

1.0378

1.0241

1.0066

1.00

Mach No.
Euler code

0.4512

0.5416

0.6125

0.7019

0.8080

0.9010

0.9198

PreSSure

Euler code

1.0701

1.0577

1.0487

1.0378

1.0241

1.0066

1.000
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Cv/R =50. The subscript c denotes conditions az ",.hethermodynamic critical
point (Reference 10).
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Figure 4.0. Perfect gas cridcal Mach number estimates for a NACA 0012
airfoil at 0.0 degree angle of attack.
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Figure4.I. CriticalMach number estimatesfortheperfectgas and BZT
fluids,and fortheNACA 0012 airfoilatzeroangleofattack.
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Figure 4.2a. BZT fluid surface plots of negative pressure coefficient and local

Mach number for a NACA 0012 airfoil at freesucam condiSons of M. = 0.8,

angle of attack of 0.0 degree. The fluid is at conditions of V. = L25Vc ,

P, = 1.0Pc, and has a specific heat value of R/Cv = O.02.
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Figure 4.2b. Perfect gas surface plots of negative pressure coefficient and

local Math number for aNACA 0012 airfoil at M. - 0.8, angle of attack of

0.0degree.The fluidhasa specificheatvalueof R/C, = 0.02.
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Figure 4.3a. BZT fluid surface plots of negative pressur¢ coefficient and
local Mach number for a NACA 0012 airfoil at freesur.am conditions of

M, = 0.8, angle of attack of 4.0 degrr.cs. The fluid is at conditions of

1/, = 1.25V c , P, ffi 1.0Pc, and has a specific heat value of R/C v = 0.02.
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Figure 4.3b. Perfect gas surface plots of ncgadvc pressure coefiicicnt and

local Mach number for a NACA 0012 airfoil at M, = 0.8, and an angle of

attack of 4.0 degrees. The specific heat value of the fluid is R/Cv= 0.02.
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Figure 4.4a. BZT fluid surface p]ots of negative pressure coefficient and
local Mach number for a NACA 0012 airfoil at freestre.a_ conditions of

M. - 0.8, and an angle of attack of 6.0 degrees. The fluid is at conditions of

V, = 1.25V c , P. = 1.0Pc, and has a specific heat value of R/C, = 0.02.
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Figure 4.4b. Perfect gas surface plots of negative pressure coefficient and

local Mach number for a NACA 0012 airfoil at M. ffi0.8, angle of aty,ack of

6.0 degrees. The fluid has a specific heat value of R/Cv.ffi 0.02.
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Figure 4.5a. BZT fluid and perfect gas lift coefficient versus angle of attack

for a NACA 0012 airfoil st M. = 0.g, and angle of attack range of 0.0 to 6.0

degrees. Both fluids have specific heat values of R/C, _ 0.02.
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Figm'e 4.5b. BZT fluid and perfect gas drag coe_cicnt versus angle of a_ck

for NACA 0012 airfoil at M. = 0.g, and angle of attack range o[0.0 to 6.0

degrees. Both fluids have specific heat values of R/C,, : 0.02.
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Figure 4.5c. BZT fluid and perfect gas drag coefficient versus lift coefficient

for a NACA 0012 airfoil at M. = 0.8, angle of attack range of 0.0 to 6.0

degrees. Both fluids have specific heat values of R/Cv = 0.02.
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Figure 4.6z BZT fluid and pefca gas lift coefficient versus angle of at_k

for A NACA 0012 airfoil at M,= 0.92, and angle of attack range of 0.0

4.0¢kgrees. Both fluids have specifichut valuesofR/C, = 0.02.
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Figure 4.6b. BZT fluid and perfect gas drag coefficient versus angle of attack

for A NACA 0012 airfoil at M. = 0.92, and angle of attack range of 0.0 to

4.0 degrees. Both fluids have specific heat values of R/Cv "- 0.02.
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Figure 4.6c. BZT fluid and perfect gas drag coefficient ve_'sus lift coefficient

for a NACA 0012 airfoil at M. = 0.92, and angle of attack range of 0.0 to

4.0 degrees. Both fluids have specific heat values of R/Cv = 0.02.
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Figure4.?a BZT fluid Machnumbercontourplots for aNACA 0012airfoil
at M. = 0.8, and angle of attack of 0.0 degree. The fluid is at conditions of

V. = 1.25Vc, P,- 1.0Pc, and has a specific heat value of R/Cv = 0.02.
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Figure 4.7b. Perfect gas Mach number contour plots for a NACA 0012

airfoil at M. ffi0.8, and an angle of attack of 0.0 degree. The fluid has a

specificheatvalueofR/C,,= 0.02.
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Figure 4.8a. BZT fluid Math number contour plots for a NACA 0012 airfoil

az M. = 0.8, and an angle of attack of 4.0 degrees. The fluid is at conditions

of V. = 1.25Vc,p, = l.OPc,and has a specificheatvalue of R/C,= 0.02.
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Figure 4.8b. Perfect gas Mach number contour plots for a NACA 0012

airfoll at M, = 0.8, and an angle of attack of 4.0 degrees, The fluid lm a

specificheatvalueofandR/Cv= 0.02.
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Figure 4.9a. BZT fluid Mach number contonr plots for a NACA 0012 airfoil

at M, = 0.8, and an angle of attack of 6.0 degrees. The flLdd is at conditions

of I/. = 1.25Vc, P. = 1.0Pc, and has a specific he,at value of R/C v- 0.02.
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Fig_u'c 4.9b. Perfect gas Mach number contour plots for a NACA 0012

airfoil at M. = 0.8, and an angle of attack of 6.0 degrees. The fluid has a

specific heat value of R/C, = 0.02.
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Figure 4.10. BZT fluid Mach numnber contour plots fora NACA 0012 airfoil

at M. = 0.92, and an angle of attack of 4.0 degrees. The fluid is as

conditionsof V. = L25Vc, P. = 1.OP¢, and has a SpeCific he,at value of

R/C,=0.02.
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Figure4.1I.Mach number versusdensitycurvesforvariousstagnation

conditionsas given by theBernoulLiequation(Reference21).
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Figure 4.12. I_nsity and Mach number v_sus the X Cartesian coordinates
of _c computational grid for a BZT fluid. The flow cnvironrmnt is at

M, ---0.92 for a NACA 0012 airfoil, and an angle of attack of 0.0 dcgr_s.

The fluid has a specific heat value of R]Cv = 0.02.
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Figure 4.13. Perfect gas surface plots of negative pressure coefficient and

local Mach number for a NACA 0012 airfoil at M. = 0.85, and an angle of

attack of 0.0 degree. The fluid has a specific heat value of R/C v: 0.02.
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Figure 4.14. Dense gas surface plots of negative pressure coefficient and

local Mach number for a NACA 0012 airfoil at M. = 0.85, and angle of

attackof 0.0 degree asgiven by thevan derWaals equationof state.The

fluidisatconditionsof V,,= 3.03Vc, P. = 1.0Pc,and has a specificvalue of

RIC, =0.02.
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Figure 4.15. Dense gas surface plots of negative pressure coefficient and

local Math number for a NACA 0012 airfoil at M. ffi 0.85, and angle of

attack of 0.0 degree as given by the van tier Waals equation of state. The

fluid is at conditions of V, = 2.0V c, P. = 1.0Pc, and has a value of

R/c, =0.o2.

73



$

4

DISTANCE ALONG WING CROSS SECTION

Figure 4.16. Dense gas surface plots of negative pressure coefficient and

localMach number fora NACA 0012 airfoilatM.. ,*0.85,and angleof

attackof0.0degreeasgivenby thevan dcrWaals equationofstate.The

fluidisatconditionsof V..--1.25Vc,P= = 1.0Pc,and hasa spc.cificheat

valueofR/C, = 0.02.
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Figu_ 4.17.BZT fluidsurfaceplotsofnegativepressureand localMach

number fora NACA 0012 airfoilatM. = 0.95,angleofattackof0.0dcgr_.

The fluidisatconditionsof V. = LOVc, P.= 1.08Pc,and and hasa specific

heatvalueofR/C, = 0.02.
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Figure 4.18. BZT fluid Mach number contour ploLs for a NACA 0012 airfoil

at M, = 0.95, angle of attack of 0.0 degree. The fluid is at cond/fions of

V. = I.OVc, P. = LOSPc, and has a specific heat value of R/C, = 0.02.
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Appendix A

The derivation and application of Equations (4.0), to (4.5) are discussed below. Equations

(4.0) through (4.5) were used to make critical Mach number estimates, calculate stagnation

pressure, and calculate local pressure and Mach numbers for a given freestream Mach

number condition.

We will begin with the derivation of Equation (4.4) which is obtained from the Bernoulli

equation

V 2 2
h + -- = h., + V_" (A 1.0a)

2 2

which may also be written as

a2 M 2 2 2a**M_
h+--= h**+_

2 2
(A1.0b)

The enthalpy term h maybe written as

h = e + --p (A 1.0c)
P

where e is given by Equation (3.6) and P-- is from the van der Waals equation of state
P

(2.7). Thus, the enthalpy becomes

R/C,,h = er- CvTr+ otp,+ CvT 1.41----bp) 2otp (A2.0)
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Substitutingthe speed of sound from Equation (3.25), and Equation (A2.0) into Equation

(A 1.0b) and then solving for the freestream Mach number results in

g{ CT--_.Jl, 1---_p J-1+ 1 :bp

4a a2 2

a:. t p,. J a,r.

(A3.0)

The non-dimensional form of (A3.0) is given by Equation (4.4).

The pressure expression of (4.2) was obtained by substituting the appropriate expressions

of (3.2a) into Equation (2.7). The form of Equation (2.7) employed was

P RT
otp • (A4.0a)

p 1-bp

Replacing the parameters P, p ,T,b, and a with equivalent expressions from Equations

(3.2a) gave

PP** RT P**

: _ <':p-"
(A4.0b)

Multiplying Equation (A4.0b) by p'* and symplifying the expression resulted in
P..

p .:_¢,y , ]_
7: --bT-.tT-S.)t_) _" (A4.0c)
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Let Z** = p..RT** and solving for P gave Equation (4.2).
e..

The isentropic condition given by Equation (4.3) was found by applying the isentropic

assumption to Equation (3.15) which resulted in

R

• _=0 L/_r)_ P l_---ffpr ) JJ (A5.0)

_=exp(S-._vv .)=exp[tn1(T_l-bp Or )-_vl]

and reduced to Equation (4.3).
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