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I. INTRODUCTION

The original objective for this project was to demonstrate a new algorithm for synthesizing multirate sampled-

data control laws by application to a representative aircraft control problem. That algorithm, developed in

connection with another research effort supervised by the Principal Investigator and based on a finite-time

quadratic cost function, eventually proved unsuitable for the aircraft control problem. To complete this project

we therefore developed a new multirate control law synthesis algorithm, based on an infinite-time quadratic

cost function, along with a new method for analyzing the robustness of multirate systems, and applied both to

the aircraft control problem

The following is a complete list of the contributions of this project:

° A new generalized multirate sampled-data control law structure (GMCLS) was introduced. Features of

this structure include an arbitrary dynamic order and structure for the processor dynamics; and sampling

rates for all sensors, update rates for all processor states, and update rates for all actuators that can be

selected independently. (discussed in Section ID

2. A new infinite-time-based parameter optimization multirate sampled-data control law synthesis method

and solution algorithm were developed. (discussed in Section [IT)

3. A new singular-value-based method for determining gain and phase margins for multirate systems was

developed. (discussed in Section IV)

. The finite-time-based parameter optimization multirate sampled-data control law synthesis algorithm

originally intended to be applied to the aircraft problem in this project, was instead demonstrated by

application to a simpler problem involving the control of the tip position of a two-link robot arm.

(discussed in Sections llI and V)

. The GMCLS, the new infinite-time-based parameter optimization multirate control law synthesis method

and solution algorithm, and the new singular-value based method for determining gain and phase

margins were all demonstrated by application to the aircraft control problem originally proposed for this

project. (discussed in Section VI)

These five contributions are discussed in order in the following sections of this report. The fast three sections

are in a summary form only and the reader is referred, for details, to preprints of journal papers in the

appendixes. The next two sections present applications of the parameter optimization techniques. The final

two sections present our conclusions and suggest topics for future research.



II. THE GENERALIZED MULTIRATE SAMPLED-DATA CONTROL LAW STRUCTURE

A key point often ignored by the developers of multirate sampled-data control law synthesis methods is that, in

order for any such method to be practically useful, it must provide the control law designer with the flexibility

to independently choose the sampling rate for every sensor, the update rate for every processor state, and the

update rate for every actuator. Such flexibility is frequently essential for efficient utilization of real-time

control hardware, and for systems that include distributed processing and/or utilize sensors that provide only

discrete-time signals at fixed sampling rates [1]. In this section we present a general-purpose, multirate

sampled-data control law structure (GMCLS) that provides that flexibility.

To understand the GMCLS, it is necessary to establish a certain notation regarding the scheduling of sampling

and update activities for a multirate system. Figure 1 shows an example of the time lines for the sampling and

update activities of a multirate system. We define the shortest time period (STP) as the greatest common

divisor of all of the sampling, update and delay periods; and we def'me the basic time period (BTP) as the least

common multiple of all of the sampling, update and delay periods. We reserve the symbol T to represent the

STP, and the symbol P to represent the (integer) number of STP's per BTP. Finally, we frequently make use

of a doubly-indexed independent (time) variable, so that, for example, x(m,n) represents x at the start of the

(n+l)th STP of the (m+l)th BTP, for m=0,1 .... and n=0,1 .... ,P-I.

A block diagram of the GMCLS is shown in Figure 2. _ represents the incoming, noise-free, continuous-

time sensor signal; v is the discrete-time sensor noise signal; and _ is the continuous-time conlrol signal. The

sampling period of the one sampler is the STP of the complete system's sampling/update schedule. The delay

blocks are one-STP delays; and the ZOH block represents a zero-order hold.

Time Lines for Sampling/Update Activities:

T Tin_ (Seco_) 2ff

0 4/" 8T 12/" lOT 20/" 24"/'

0 3I" 61" 91" 127" 1ST 1ST 21T 247"

Figure 1 Example Multirate Sampling/Update Schedule
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Figure 2 Generalized Multirate Sampled-Data Control Law Structure

A key feature of the GMCLS is its use of the switching matrices, Sy(n), Sz(n), and Su(n), for n=0,1 ..... P-l,

to represent the variations in the sensor sampling, processor state update, and control update activities,

respectively. We define a switching matrix as a binary, diagonal matrix. Sy(n) is the switching matrix that

describes the sensor sampling activities at the start of the (n+l)th STP (of every BTP). If the ith diagonal

element of Sy(n) is 1, then the ith sensor's signal is sampled at the start of the (n+l)th STP of every BTP, and

the sampled value, with the sensor noise v added, is immediately stored as the ith element ofT. If the ith

diagonal element of Sy(n) is 0, then the same element oft is simply held at those instants. The update activities

for the processor state vector z and for the actuator hold state vector _, in Figure 1, are similarly represented

by the switching matrices Sz(n), and Su(n), respectively, for n--0,1 .... ,P-1.

For a detailed discussion of the GMCLS see [1]. The key points are:

1. The switching matrices Sy(n), Sz(n), and Su(n) are completely determined by the system's sampling and

update activities schedule.

2. The only unknowns are the processor matrices Az(n ), Bz(n ), Cz(n), and Dz(n )

3. The dynamic order of the processor dynamics (i.e., the dimension of z) is arbitrary.

For design purposes, the implications of these points are the following:

lo The GMCLS provides complete flexibility with regard to the selection of sampling rates for all sensors,

update rates for all processor states, and update rates for all actuators. The single constraint is that the

ratio of all sampling, update and delay rates must be rational, so that the complete sampling/update

schedule is periodic.

, The GMCLS provides complete flexibility with regard to the dynamic order and structure of the control

law; i.e., the input-output dynamics of virtually any multirate sampled-data control law of practical

interest can be realized with the GMCLS.

, Apart from the (significant) problem of choosing sampling and update rates, the GMCLS reduces the

control law synthesis problem to one of determining the processor matrices Az(n), Bz(n ), Cz(n), and

Dz(n ), for n=0,1 .... ,P-1.



Forthepurposeof numerically determining Az(n ), Bz(n ), Cz(n), and Dz(n ) it is convenient to represent the

GMCLS in the following state model form (see [1] for details):

c(m,n+l ) = Ac(n)c(m,n) + Bc(n)y(m,n) (1)

u(m,n)= Cc(n)c(m,n)+ Dc(n)y(m,n) (2)

where

c(m,n) = [z(m,n) _(m,n) if(re,n)] T (3)

I [l--Sz(n)]+Sz(n)Az(n) Sz(n)Bz(n)[l-Sy(n)] 0 ]
Ac(n ) ffi 0 I-Sy(n) 0

Su(n)Cz(n) S,,(n)Oz(n)[l--Sy(n)] l--Su(n)

(4)

VSz(n)Bz(n)Sy(n)l

B_(.)= I S,(.) I

L Su(n)Dz(n)Sy(n)_l

(5)

Cc(n) = [S_(n)Cz(n) Su(n)Oz(n)[l-Sy(n)] l-S,,(n)] (6)

Dc(n) = [Su(n) Oz(n) Sy(n)]y(m,n) (7)

with u(0 = u(m,n) for all t on [(rap + n)T, (mP + n + 1)T).

The compensator parameters, Az(n ), Bz(n), Cz(n), and Dz(n), can be separated from the sampling schedule,

Su(n), Sy(n), Sz(n), in an output-feedback representation of the GMCLS. Assuming a discretized model of

the plant dynamics of the form

p(m,n+l) = Ap p(m,n) + Bp u(m,n) + Ep v(m,n) (8)

y(m,n) = Cp p(m:) + Fp w(m,n) (9)

where v and w represent represent process and measurement noise, respectively, we can rewrite the closed

loop system in the output feedback form

= + + (10)
c(m,n+l) 0 0 c(m,n) 0 I c(m,n+l) 0 0 w(m,n)

Iy mn' 1o oo (11)

u(m,n) Oc(n) Cc(n) p(m,n)][ ]
Bc(n) Ac(n) c(m,n)

(12)



Nowthecompensatormatricescanbefactoredasfollows.

Bc(n) Ac(n) Bz(n)

Cz(n) -1
| S2(n) + S3(n)

Az(n) I
(13)

where Sl(n), S2(n), and S3(n) are functions of Su(n), Sy(n), and Sz(n).

Equation (13) is important because it allows us to separate the unknown compensator parameters Az(n), Bz(n),

Cz(n ), and Dz(n) from the known sampling schedule.

In the following section we will introduce two synthesis algorithms that can be used to determine the optimum

compensator parameters Az(n), Bz(n), Cz(n), and Dz(n).

llI. PARAMETER OPTIMIZATION CONTROL LAW SYNTHESIS METHODS

There are five well-recognized techniques for synthesizing multirate control laws: successive loop closures,

pole placement, singular-perturbation-based methods, LQG Optimal methods, and parameter optimization

methods.

The advantages of successive loop closures are that it is easy to use, that it can (conceivably) be used to

synthesize control laws of arbitrary dynamic order and structure, and that it is particularly effective in

applications where the control loops are not strongly dynamically coupled. Its disadvantage is that its one-

loop-at-a-time approach cannot fully account for all dynamic coupling between control loops.

The problem with pole placement is determining where the closed-loop poles should be placed. It is a

particularly difficult problem in the multirate (as compared to the single-rate) case because the STP-to-STP

dynamics of multirate systems are periodically time-varying [2]. Only the BTP-to-BTP dynamics of multirate

systems are time-invariant, and it is the poles of those dynamics that are assigned by pole-placement. In

applications, determining desirable BTP-to-BTP closed-loop poles for a typical multirate system is difficult

because the BTP of its sampling/update schedule will typically be longer than many of its desired closed-loop

characteristic times.

Singular-perturbation-based control law synthesis methods amount to successive loop closures prefaced with a

coordinate transformation to separate the full control law synthesis problem into two or more dynamically

decoupled control law synthesis problems of different time scales. A complete decoupling requires changes in

not just the state coordinates, but in the input and output coordinates as well. Such a decoupling is not

possible in the multirate case because the input and output coordinates represent physical sensor and actuator

signals destined to be sampled/updated at different rates.

The advantages of the LQG optimal control law synthesis methods are that stabilizing control laws are

relatively easy to obtain and that the control laws for all control loops are synthesized simultaneously, taking

full advantage of all dynamic coupling between the control loops. The disadvantages are that the dynamic



order and structure of the control law is fixed, that stability robustness objectives are difficult to achieve, and

that the resulting control laws are periodically time-varying [2]-[3].

We favor para=neter optimization methods for control law synthesis for multirate systems because they offer

the principal advantages of the successive loop closures and LQG optimal synthesis methods. These

advantages are that control laws of arbitrary dynamic order and structure can be synthesized, and that control

laws for all control loops can be synthesized simultaneously, taking full advantage of all dynamic coupling

between control loops. The disadvantage of parameter optimization methods is that a numerical search is

required to determine the control law parameters.

In this section we present two parameter optimization methods for synthesizing multirate control laws. Both

utilize the GMCLS discussed in Section II. The first is based on a ('mite-time quadratic cost function while the

second is based on an infinite-time quadratic cost function. Both methods solve the multirate compensator

synthesis problem by using a gradient-type numerical search to find a set of compensator parameters that

minimize a quadratic cost function.

The multirate optimization problem is as follows.

Given:

1. The plant dynamics represented by

(t)-- + a(t)+ (14)

yft)=?:p (15)

Here_ istheplantstatevector,_ isthecontrolinputvector,_ isthenoise-freemeasurementoutput

vector,and_ isthenoiseinputvector.

2. The complete sampling and update schedule for the compensator. This amounts to specifying Su(n),

Sy(n), and Sz(n), for n=O,1 ..... P-1.

3. The order for the processor dynamics (the number of dements in z in (3)).

4. The desired structure (e.g., a diagonal structure) for the processor matrices, Az(n ), Bz(n), Cz(n), and

Dz(n), for n-0,1 ..... P-1.

. The number of distinct sets of processor matrices and when they are active. The optimization algorithms

allow Az(n), 8z(n), Cz(n), and Dz(n) to be periodically time varying. The designer can specify equality

relations among the compensator matrices. For example, ff a time invariant compensator is desired then

the designer can specify that Az(O) = Az(l ) ..... Az(P-1), and similarly for B z ,C z and D z.

6. The power spectral density _' of the process noise _ (in (8)).



7. The covariance W(n), for n=0,1 ..... P-l, of the sensor noise w (in Fig. 1). w is assumed to be a

periodically stationary, gaussian, purely random sequence, with period equal to the BTP of the

sampling/update schedule.

8. The time t/and non-negative definite weighting matrices Q and R for the performance index

J(t/)=E _0 Lu(t)J 0 R Lu(t)Jdt (16)

Find:

where E is the expected value operator.

In the finite time optimization problem t/must be a multiple of the BTP of the sampling/update schedule.

In the infinite time optimization problem if----)o* and Jinfinite.time= lira J ( tf)
tf--) **

A set of processor matrices, Az(n), Bz(n), Cz(n), and Dz(n), for n---0,1..... P-l, such that the performance

index

is minimized.

This optimization problem can be solved using either the finite-time cost function or the infinite-time cost

function.

Solution Method Usimz the Finite-Time Cost Function.

The finite-lime optimization algorithm was developed in connection with another research effort supervised by

the Principal Investigator. This method synthesizes the multirate compensator that minimizes J(t/) for a finite

tf. A detailed discussion of this method can be found in [1]. A summary of the solution procedure follows.

1. Determine closed-form expressions for the performance index J(tf), and for its gradients with respect to

the elements of the processor matrices Az(n), Bz(n), Cz(n), and Dz(n), for n=0,1 .... ,P-1.

2. Use a gradient-type numerical optimization algorithm to determine a set of processor matrices, Az(n),

Bz(n), Cz(n), and Dz(n), for n=0,1 .... ,P-l, that minimizes J(tf).

3. Obtain a steady-state solution by re-optimizing for larger and larger t/until t/gets to be large compared to

all of the closed-loop system's characteristic times.

The advantage of this method is that with t/finite, the cost function J(tf) remains finite even if the compensator

is destabilizing. The designer does not need to fred a stabilizing compensator to start the optimization process



as long as tf is small enough that J(tf) does not exceed the numerical limits of the computer performing the

optimization.

The disadvantage of this method is that the closed-form expressions that have b,_en developed thus far for the

performance index J(tf) and for its gradients with respect to the elements of the processor matrices are very

complex and computationally intensive. In addition, we encountered difficulties when applying this method to

the aircraft control problem because our solution algorithm lacked provisions for automatic scaling of the

control law parameters (i.e., the independent variables) during the numerical search. The sheer complexity of

the finite-time performance index and gradient expressions prevented us from adding the automatic scaling

provisions that would have allowed us to apply this method to the aircraft control problem.

Solution Method Using Infinite-Time Cost Function

Instead of modifying our existing finite-time-based algorithm to alleviate the scaling problem discussed in the

previous paragraph, we chose to develop a new infinite-time-based multirate sampled-data control law

synthesis method, based on corresponding developments for single-rate systems by Mukhopadhyay [4], for

which much simpler performance index and gradient expressions are easy to derive. For a complete

description of that method, and the solution algorithm we developed to implement it see [5]. A summary of

the solution procedure follows.

° Find an initial stabilizing guess for the processor matrices Az(n), Bz(n), Cz(n), and Dz(n ), for

n=0,1 ..... P-1. The finite-time solution algorithm requires an initial stabilizing compensator because

Js, is infinite when the closed loop system is unstable. From our experience, many multirate problems

can be stabilized using successive loop closures. The aircraft problem was open loop stable, and so

determining a stabilizing compensator was trivial.

. Determine the necessary conditions (given in [5]) for the processor matrices, Az(n ), Bz(n ), Cz(n), and

Dz(n), for n=0,1 ..... P-1 to minimize Jss. These are represented by three sets of coupled matrix

equations. Two sets are Lyapunov equations, one governs the steady state covariance of the plant and

control states, and the other governs a Lagrange multiplier. The third represents the gradient of Jss with

respect to the compensator parameters.

3. Use a gradient-type numerical search to solve the necessary conditions and determine a set of processor

matrices, az(n), Bz(n ), Cz(n ), and Dz(n ), for n=0,1 .... ,P-l, that minimizes Jss.

The advantage of this method is that the gradient of Jss with respect to the compensator parameters is easy to

evaluate via the necessary conditions. For a given problem, the infinite-time optimization algorithm typically

requires fewer computations to find the optimum compensator parameters than does the finite-time

optimization algorithm even when both algorithms are initialized with the same stabilizing compensator.

Even though the finite-time and inf'mite-time based solution algorithms can determine optimum compensator

parameters, there is no guarantee that the design will be robust. In the following section we present a method

for analyzing the robustness of a multirate control system.

10



IV_ GAIN AND PHASE MARGINS FOR MULTIRATE SYSTEMS USING SINGULAR-VALUES

There are many established methods for synthesizing multirate compensators, see Section HI, but surprisingly

few methods for analyzing the robustness of these systems. Current robustness analysis methods rely

principally on the transfer function of the system. A multirate transfer function, in the traditional sense, does

not exist, because multirate systems are periodically time varying. Without modification, established single-

rate analysis methods cannot be applied directly to multirate systems.

As part of this project, we developed an approach for extending the nyquist criterion and singular value

analysis to multirate and periodically time varying systems. For a detailed discussion of this approach,

including application of structured singular value robustness analysis to multirate systems, see [6]. In this

section we present a summary of the important ideas from that paper used to calculate gain and phase margins

of multirate systems using singular values.

As we saw in Section II, a multirate compensator can be modeled as a linear periodically time varying system

(1)-(2). Equations (1)-(2) from Section II can be written as

c(m,n+ l ) = Ac(n)c(m,n) + B c(n)y(m,n) (17)

u(m,n) = Cc(n)c(m,n) + Dc(n)y(m,n) (18)

This system (17)-(18) can then be transformed to an equivalent single-rate system (ESRS) by repeated

application of (17)-(18) over the BTP [7]. The ESRS has the form:

c(m+l,0) = Aec(m,O) + Be_(m,O)

_(m,O) Cec(m,O) ^= + Dey(m,O)

ry(m,O) "I r.(re,O)1
_- ]. oro 1'(:") [ o

I_y(ra,P- 1)3 I_u(m ",P-1)3

(19)

(20)

(21)

The transfer function for the ESRS is

_(z,P) .,. Gp(gP)_(z P) (22)

where Gp(z P) = Ce(Iz P - Ae)-lBe + De (23)

For a detailed discussion of the ESRS, see [6]. The key points are:

1. The ESRS is a time invariant single-rate system with a sampling period of one BTP and the unique

property that the inputs are time correlated and the outputs are time correlated.

11



. In general Gp(z P) has a very complicated form, but it can be shown that if the system is time invariant

with G(z) equal to a constant, then Gp(z P) will also be constant and block diagonal with G(z) on the

diagonal.

° The ESRS allows us to manipulate time invariant and periodically time varying systems (e.g. multirate)

as if they were both time invariant. The state space or transfer functions descriptions can be used to

calculate input-output relations for systems in series or in a feedback loop just as in classical control [8].

For example, to calculate the ESRS of a multirate compensator in series with a time invariant plant, we

would calculate the ESRS of the plant and compensator individually and then combine them using block

diagram arithmetic.

4. Kono [9] has shown that if the ESRS is stable then the multirate system from which it was derived will

be stable.

5. Single-rate robustness analysis techniques can be applied to the ESRS as long as the results are

interpreted in light of the fact that some of its inputs and outputs are time correlated.

Generalized gain and phase margins for the ESRS (and equivalendy the multirate system) can be calculated

using singular value analysis. If we assume a plant uncertainty of the form

G(Z)Actual = G(Z)Nomi ke ° (24)

then the ESRS plant uncertainty has the form

Ge(zP)Actual = Gp(zP)Nomind(koJO)p

(ko/°)e = diag[keJ°, ko/° ..... /c,e/°]with e blocks

[Recall that if H(z) is constant, Hp(z 1') is block diagonal with H(z) on the diagonal.]

(25)

The multirate system is guaranteed to remain stable whenever

_((ko_)'t-1) < 4(1+ Gp(zP)) on the nyquist contour (26)

Traditional gain margins can be obtained by setting 0 = 0 and solving (26) for k. Phase margins can be found

by setting k = 0 and solving (26) for 0.

As with most singular value robustness analysis methods, the k and 0 found using (26) are conservative. If,

however, ke/0 is diagonal, the conservativeness associated with (26) can be reduced by diagonally scaling

G/,(z/'). We used Osborne's method of preconditioning matrices to increase the lower bound for Gp(z P) and

thus to improve our estimate of the gain and phase margins.

12



V. APPLICATION OF THE FINITE-TIME-BASED PARAMETER OPTIMIZATION ALGORITHM TO

A TWO LINK ROBOT ARM CONTROL PROBLEM

The original proposal for this project called for the finite-time-based parameter optimization multirate sampled-

data control law synthesis method of Section _I to be applied to an aircraft control system design problem.

That method and a solution algorithm to implement it had been previously developed as part of another

research effort supervised by the Principal Investigator. Due to the solution algorithna's lack of adequate

provisions for automatic scaling of the control law parameters (i.e., the independent variables) during the

numerical search, we were not able to apply it successfully to the aircraft control problem. We maintain,

however, that the problems we encountered with it were a consequence of problems with the solution

algorithm and are not necessarily indicative of problems with the synthesis method.

In this section we therefore present an application of the f'mite-time-based multirate sampled-data control law

synthesis method to a two-link robot arm control problem. The robot arm application demonstrates the utility

of the method without being so poorly conditioned that automatic scaling of the control law parameters was

required during the numerical search.

The two-link robot arm system we dealt with is shown in Figure 3. The first link is long and massive, for

large-scale slewing motions. The second is short and lightweight so high-bandwidth conlrol of the tip position

can be achieved with a relatively small motor at the second joint. The pin joint, rotational spring, and

rotational damper at the midpoint of the first link model flexibility in that link. The control inputs are the motor

torques, T 1 and T2. The measured outputs are the joint angle 0 and the tip position 6. The spring constant (k)

and damping coefficient (b) values (in Fig. 3) yield an open-loop vibration mode with a 10 Hz natural

frequency and 1% damping.

T2

Parameters: Mass Length

Lt 0.5kg 0.Sm
L2 0.5 kg 0.5 m k = 37.33 N/tad
L3 0.04kg 0.2m b=0.012N, s/m

The natural frequency of the vibration mode is 10 hz.

Inputs: Torques T1 andT2

Outputs: O and

Figure 3 Two-Link Robot Arm System
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Weused the finite-time-based multirate control law synthesis method of Section HI to synthesize multirate

sampled-data control laws for this system. Our performance objective was high-bandwidth control of the tip

position 8, and it is intuitively clear that this can best be accomplished, given a fixed real-time computation

capability, by trading low-bandwidth control at T 1 for high-bandwidth control at T2. Thus, for an 8-to-1

control bandwidth ratio, we chose the sampling/update rate for 8 and T2 to be 8-rimes faster than that for 0 and

T 1. For comParison purposes, we designed also corresponding analog and single-rate sample-data control

laws.

For the TLA system, the tip position (8) responses to a commanded step change in the tip position obtained

with the analog, single-rate and multirate control laws we synthesized are shown in Figure 4. See [1] for

additional results and details. A summary description of those designs follows.

LQR Analog Design The LQR Analog response was obtained with an analog LQR (full state feedback)

control law that is optimal with respect to a quadratic performance index that yields 0.7071 damping

(41 = _2 = 0.7071) and an 8-to-I ratio of characteristic frequencies (03,t2/conl = 8) for the two closed-loop

modes.

Third-Order Analog Successive Loop Closures Design The Third-Order Analog Successive Loop Closures

response was obtained with a successive loop closures control law that consisted of a single lead network from

0 to T1, and two identical cascaded lead networks from 8 to T2. The gains, and zero and pole locations were

chosen to yield dominant closed-loop poles coincident with those obtained with the LQR Analog control law.

Third-Order Multirate Tustin Design The Third-Order Multirate Tustin response was obtained with a

multirate sampled-data control law obtained by discretizing the lead compensators of the Third-Order Analog

Successive Loop Closures design using Tustin's method [10]. The 0-to-T 1 control-loop sampling/update rate

is a factor of 8 times the characteristic frequency of the lower-frequency closed-loop mode from the Third-

Order Analog Successive Loop Closures design; and the 8-to-T 2 sampling/update rate is the same multiple of

the characteristic frequency of the higher-frequency closed-loop mode from the Third-Order Analog

Successive Loop Closures design.

Optimized Third-Order Multirate Tustin Design The Optimized Third-Order Multirate Tustin response was

obtained with a control law synthesized by the finite-time-based multirate sampled-data control law synthesis

method of Section HI. This control law is the Third-Order Multirate Tustin control law, but with its gains and

its pole and zero locations optimized to minimize the same performance index as is minimized by the LQR

Analog control law.

Analog Third-Order Design The Analog Third-order response was obtained with a third-order, generally-

structured, analog control law synthesized using Ly's Sandy algorithm [11]-[12] to minimize the same

performance index as is minimized by the LQR Analog control law.
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Multirate First-Order, Second-Order & Third-Order Designs The Multirate First-Order, Second-Order, and

Third-Order responses were obtained with multirate, generally-structured, sampled-data control laws

synthesized by the finite-time-based multirate sampled-data control law synthesis method of Section III to

minimize the same performance index as is minimized by the LQR Analog control law. The sensor sampling

and actuator update rates are the same as in the Third-Order Multirate Tustin control law. In the First-Order

case, the update rate for the one processor state is the same as the faster sensor-sampling/actuator-update rate.

In the Second-Order case, one processor state is updated at the faster rate and the other at the slower rate. In

the Third-Order case, two processor states are updated at the faster rate and one is updated at the slower rate.

Single-Rate Third-Order Design Finally, the Single-Rate Third-Order control law response was obtained

with a single-rate, generally-structured, sampled-data control law synthesized by the finite-time-based multirate

sampled-data control law synthesis method to minimize the same performance index as is minimized by the

LQR Analog control law. Its single sampling/update rate was chosen to require the same average number of

computations per unit time for real-time operation as is required for real-time operation of the Multirate Third-

Order control law.

The TLA results in Figure 4 demonstrate some of the benefits of multirate control. For example, the tip

position overshoot (6) with the multirate compensator is much less than with its equivalent single-rate

counterpart. But more importantly, the results demonstrate that the finite-time-based multirate sampled-data

control law synthesis method can be used to synthesize multirate control laws of arbitrary structure and

dynamic order, with arbitrarily selected sampling rates for all sensors, and update rates for all processors states

and actuators. The third-order multirate compensator, for example, uses two different update rates for the

processor states, inputs and outputs, and a general compensator structure with full coupling between inputs,

outputs and processor states of different rates.
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VI. APPLICATION OF THE INFINITE-TIME-BASED PARAMETER OPTIMIZATION ALGORITHM

TO A YAW DAMPER AND MODAL SUPPRESSION SYSTEM FOR A COMMERCIAL AIRCRAFT

A practical application of multirate control can be found in aircraft. The limited computational resources of

aircraft dictate that their control systems must function efficiently. Multirate control allows the designer to

efficiently allocate these resources by trading slow sampling and update rates in control loops associated with

low-bandwidth control functions for fast sampling and update rates in control loops associated with high-

bandwidth control functions. In this section we consider a particular application of multirate control: a

combination yaw-damper and modal suppression system for a commercial aircraft.

In the interest of weight reduction for fuel efficiently, aircraft are being constructed with less structural rigidity.

Structural vibration modes can be excited in such aircraft by wind gusts or by movements of control surfaces.

These vibrations affect not only the structural integrity of the fuselage but also passenger ride quality. In the

lateral direction, such vibrations are often induced by rudder activity associated with the yaw-damper. A

"modal suppression system" can be added to the yaw-damper loop to suppress these vibrations. The modal

suppression system would traditionally be designed by successive loop closures.

In this section we describe the design of a multirate combination yaw-damper and modal suppression system

for a commercial aircraft using the infinite-time-based multirate compensator synthesis algorithm and

robusmess analysis technique discussed in Sections 1II and IV. For comparison purposes we also designed

corresponding analog and single-rate sample-data systems.

The goal for each compensator design was to increase the damping of the dutch-roll mode to 0.6, and to

decrease the covariance of lateral accelerations at the nose and aft of the airplane, particularly those components

associated with low frequency flexible modes. The performances of the compensators were compared by

comparing the closed loop dutch-roll damping, the covariances of lateral accelerations at the nose and aft of the

aircraft due to a unit covariance gaussian white noise disturbance, and the PSD plots of the lateral accelerations

at the nose and aft of the aircraft for either a white noise disturbance (analog designs) or a gust pulse

disturbance (sampled-data designs).

Ope_nLoop Aircraft

A block diagram of the airplane model is shown in Figure 5. The lateral dynamics model consists of 4 rigid

body modes (heading, spiral, dutch roll and roll) and 11 flexible modes. Actuator/power control units for the

aileron and rudder are modeled as second-order lags.

30(35) 20(25) (27)
G(s)Rudder = (s + 30)($ + 35) G(S)Ailer°n = (s + 20)(S + 25)

The lateral gust disturbances are filtered by a second-ordex Dryden gust model

17.496s + 2.1617 (28)
G(s)- 21.836s 2 + 9.3458s + 1
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Figure 5 Block Diagram of the Open Loop Airplane Model

The poles associated with the spiral and heading modes were compensated with static gain feedback before the

yaw-damper/modal suppression systems were designed, because these modes, which laid close to the origin

and were controllable with the rudder, created numerical difficulties for Sandy (the optimization program used

to design the Fourth-Order Analog compensator discussed in later in this section). The spiral mode was

compensated by feeding back roll and roll-rate to the aileron. Heading was compensated with heading to

rudder feedback. In what follows we refer to the airplane model with spiral and heading modes compensated

as the uncompemated airplane (no dutch-roll compensation).

The lateral accelerations of the uncompensated airplane are measured by Nynose and Nyaft. The PSD plots of

lateral accelerations for the uncompensated airplane are shown in Figure 6. A yaw-damper/modal suppression

system should reduce the total area under this curve (covariatr, e of lateral acceleration). In particular, it should

reduce the peak at -- 0.5 Hz (near the dutch-roll mode) and the peaks between 3 Hz and 6 Hz (low frequency

flexible modes). Values of the dutch-roll damping, and the Nynose and Nyafl covariances for the

uncompensated airplane are given in Table 1.
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Figure 6 PSD of Nynose and Nyaft for Uncompensated Airplane with Unit
Covariance Gaussian White Noise Lateral Disturbance

Table 1 Results for Analog Designs with a Unit Covariance Gaussian White Noise
I.amral Disturban_

Design

Uncomtxtx_ted
Analog Yaw-Damper Only
LQRAnaiog
Fourth-Order Analog

I Dumb-RollDamping

0.08
0.6

0.6

0.55

I I
Nynose Coy.

(ft2/sec3) I

5.1 LI
5.0
2.4

2.5 I

Nya# Coy.
(fd/sec3)

21.8
6.1
3.1

2.4

Analol Yaw-D_/Modal Sutmression System Desimas

Three analog compensators were designed: a yaw-damper only system, a full state feedback yaw-

damper/modal suppression system, and a fourth-order yaw-damper/modal suppression system. PSD plots of

Nynose and Nyafl for the analog designs are shown in Figure 8; Nynose and Nyaft covariances are

summarized m Table 1. These analog designs provide a base line for comparison with the sampled-data

designs and were used to determine appropriate values for cost weighting matrices. Following is a summary

of these designs.
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Analog Yaw-Damper Only Design The yaw-damper only design uses static feedback from _ to _r' using a

gain k,_,_ r We chose ka,_,_r such that the dutch-roll damping was 0.6 using classical root locus. While the

peak on the PSD plot associated with the dutch-roll mode (=0.5 Hz) has been reduc :xl significantly from the

uncompensated case, the peak near 3 Hz has increased (see Fig. 8). This is the probl:m with using static gain

feedback. As you "press" on one peak of the PSD another "pops" up due to the input coupling between the

dutch-roll and low frequency flexible modes.

LQR Analog Design The LQR design uses full state feedback to improve the dutch-roll damping and reduce

the covariance of Nynose and Nyafl. The compensator was designed to minimize the following cost function.

Irg + 1.6, (29)

Weighting matrices for (29) were chosen such that the covariances of Nynose and Nyaft were reduced from

the yaw-damper only case by the same percent, and the dutch-roll mode had a damping of 0.6. Figure 8

shows that the LQR design significantly reduces the dutch-roll peak as well as the peaks associated with the

flexible modes.

Fourth-Order Analog Design The Fourth-Order Analog compensator is a yaw damper/modal suppression

system designed using Sandy [11]. A block diagram of this compensator is shown in Figure 7. This design

minimizes the same cost function as the LQR design (29) with the weighting on _, adjusted to achieve close to

the desired 0.6 dutch-roll damping. An unexpected result is that the covarianee at NyaJi for the Fourth-Order

Analog design is actually better than for the LQR Analog design. This is a consequence of adjusting the cost

function weighiing matrices to achieve the desired the dutch-roll damping.

s,

J LateralDisturbance

I 14-.
_y_

Fourth-OrderAnalog
Compensator

Figure 7 Block Diagram of Airplane with Fourth-Order Analog Compensator
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Sampled-Data Yaw-Damper/Modal Suppression System Desi__ms

Three sampled-data compensators were designed: a single-rate yaw-damper only system, a fourth-order

multirate compensator and a fourth-order single-rate compensator. Both fourth-order compensators were

synthesized using our infinite-time-based multirate control law synthesis algorithm to minimize the same cost

function as the LQR Analog design.

The sampled-data compensator designs were based on a maximum sample/update rate of 50 Hz. This is 10

times the rudder actuator roll off frequency and 8 times faster than the fastest flexible mode which contributes

significantly to the PSD of the lateral acceleration. This sample rate is close to the slowest practical sample rate

which could be used.

PSD plots for the sampled-data designs were generated using a gust pulse (a rectangular pulse) at the

disturbance input, as opposed to the gaussian white noise used for the analog designs. For the analog

designs, the PSD plots were based on transfer functions from the disturbance input to Nynose and Nyaft.

Multirate compensators are periodically time varying so that transfer functions for them, in the traditional

sense, do not exist. For this reason, we used the gust pulse disturbance input to generate the PSD plots for the

sampled-data designs.

The gust pulse input PSD has a connection to the white noise input PSD. For a time invariant continuous

system, the PSD plots generated using either gaussian white noise or a continuous impulse input are exactly

the same. This is because t_e Fourier transform of the impulse response is the same as the bode plot, and the

PSD of ganssian white noise is a constant. If a continuous system, given by J_(t) = Ax(t) + Bu(t), is such that

rp
B = u le'AZBd_ (30)

where u can be selected arbitrarily and Tp is much shorter than the observation time, then a continuous impulse

can be approximated by a pulse of duration Tp and magnitude u. For the airplane problem addressed in this

project, (30) is satisfied for

Tt, = 0.02 seconds and u = 50 ft/sec. (31)

PSD plots of Nynose and Nyaft for the sampled-data designs are shown in Figure 11. Nynose and Nyaft

covariances for these designs are summarized in Table 2. Following is a summary of the sampled-data

designs.

Single-Rate Yaw.Damper Only Design The Single-Rate Yaw-Damper Only design is similar to the Analog

Yaw-Damper design except that a sampler is used at the output _/and a zero order hold is used at the input 8r.

Both the sampler and zero order hold operate at 50 Hz. The performance of the sampled-data yaw damper is

very close to that of the analog damper (Figs. 8 and 11).
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Multirate Fourth-Order Design The multirate compensator is shown in Figure 9. It was designed to

minimize the same cost function as the LQR Analog design with the weighting on _, adjusted to achieve the

desired dutch-roll damping. The compensator uses two sampling/update rates. The rudder is updated and the

lateral accelerations are sampled at 50 Hz; V is sampled at a slower rate, 12.5 Hz, because it is composed

primarily of the slow dutch-roll mode.

Two of the processor states for this muitirate compensator are updated at the fast rate, 50 I-Iz, and two are

updated at the slow rate, 12.5 Hz. Initially a compensator was designed in which all of the processor states

were updated at 50 Hz, but we found that there was no noticeable performance degradation if two of the

processor states were updated at the slower rate. Slowing the update rate of these states reduces the number of

computations required per unit time for real time implementation of the multirate compensator.

Table 2 Results for Sampled-Data Designs with a Unit Covariance Gaussian White
Noise Lateral Disturbance

Design

Uncompensated

Single-Rate Yaw-Damper Only
Multirate Fourth-Order

Single-Rate Fourth-Order

Dutch-Roll Damping

0.08
0.6

0.6
0.6

Nynose Cov.
(ft2/sec 3)

5.1

4.3

3.6
3.5

Nyaft Cov.
(ft2/sec 3)

21.8
5.4

4.7
4.7

T=0.02s

I Lateral Disturbance

UncompensatedAirplane

Mullir_ Fourth-Order !

CompensatoT i
cI,C2updatedatT=.O2s

c3,¢4 updatedat T=.OSs

Nynose

Ny_

T=0.08s/._____

T:=0.02sS

Figure 9 Block Diagram of Airplane with Multirate Fourth-Order Compemator
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Single.Rate Fourth-Order Design The Single-Rate Fourth-Order compensator is shown m Figure 10. The

sampling rate for this compensator is 28.6 Hz. That rate was chosen such that the number of multiplications

reqaired per unit time for its real time operation is the same for the multirate compensators. The cost function

used to design the single-rate compensator was the same as was used to design the Multirate Fourth-Order

compensator.

T=0.035s

I Lateral Dis_ce

Un_sated Airplane

Single-Ram Fourth-Order

Comp_sator

All sates updated at T=0.035s

_t T---0.035s f._

Nynosc T=0.035sf_____

NyO T--O.O3S,/_]

Figure 10 Block Diagram of Airplane with Single-Rate Fourth-Order Compensator
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Gain and Phase Margin_ for Sampl¢0-Data Dcsign_

Gain and phase margins at the control input (St) were evaluated for the Multirate Fourth-Order and Single-Rate

Fourth-Order compensators using the robusmess analysis methoGs of Section IV. Table 3 summarizes the

traditional gain and phase margins for the these compensators. Figure 12 shows the region of guaranteed

stability for simultaneous changes in k and 0 for both compensators.

Table 3 Traditional Gain and Phase Margins

Design Gain Margin (db) [0 = 0] Phase Margin (Deg) [k = 0rib]

Multirate Fourth-Order [-3.8, 7.1] + 32"

Single-Rate Fourth-Order [-3.3, 5.5] + 27"
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g
¢:D

o

35

30

25

20

15

10

5

0

System with Multirate Compensator is

stable fo_ Gain and Phase combinations

inside this re ion System with Single Rate Equivalent

$ _ _ Compem_r is _ble fo¢ Gain and

inside this r_ion

i i

-4 -2 0 2 4 6 8

Galnk indb

10

Figure 12 Stability Region for Simultaneous Gain and Phase Uncertainty for Fourth-
Order Sampled-Data Compensators
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Conclusi0n_

Figures 8 and 11 show that the yaw-damper/modal suppression systems significantly decrease the covariance

of the lateral acceleration at the nose and aft of the airplane while attaining the desired 0.6 dutch-roll aamping.

It should be no surprise that the analog compensators out performed the sampled-data compensator_ because

the sampled-data compensators were designed using a slow sampling rate. Still, both fourth-order sampled-

data compensators reduce the peak accelerations of Nynose and Nyaft by 175% and 50% respectively over the

yaw-damper only systems. The performance of the Single-Rate Fourth-Order compensator is marly as good

as that of the multirate compensator, but, for input gain and phase uncertainty, the multirate compensator is

more robust than the single-rate compensator.

Vll. SUMMARY AND CONCLUSIONS

In this report we have presented a methodology for designing multirate control systems. We have introduced

the Generalized Multirate Control Law Structure (GMCLS) which allows complete flexibility with regard to

the dynamic order and structure of the control law, and with regard to the sampling rates for all sensors and the

update rates for all processor states and actuators. We have presented two parameter optimization multirate

control law synthesis algorithms, one based on an infinite-time cost function and the other based on a finite-

time cost function, which can be used to find optimum values for the GMCLS parameters. We have presented

a technique for determining gain and phase margins for multirate systems. Finally, we have demonstrated our

methodology by applying it to the design of a two link robot arm control system and to the design of a

combination yaw-damper and modal suppression system for a commercial aircraft. The application to the

aircraft control problem, in particular, demonstrates that the methodology can be applied to design problems of

a scale that one might expect to encounter in practice.

Vlll. SUGGESTIONS FOR FUTURE RESEARCH

The results presented here demonstrate a methodology for multirate digital control system design that is

applicable to practical problems. Before this methodology can be routinely applied in practice, however, the

following need to be developed:

1. A means for directly synthesizing robust muldrate control laws.

. Numerical optmization algorithms incorporating auto-scaling of the independent variables and other

features that more effectively deal with the practical difficulties of parameter optimization applied to

multirate control law synthesis.

With regard to direct synthesis for robustness, there are several possibilities. One would add the multiple-

plant-condition design for robusmess ideas of Ly [10]-[11]. A second would add direct nonlinear robusmess

constraints on the control law parameters during the numerical optimization. The latter approach has been
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successfullyappliedby Mukhopadhyay[4] to synthesize robust single-rate control laws by parameter

optimizaaon.

In addition to theoretical work, a second major research effort in muitirate control needs to be directed toward

experimental research. Now that a bonafide multirate control system design methodology has been developed,

we strongly believe that further substantive progress in the field can best be made in conjunction with bonafide

hardware applications of that methodology in the laboratory.
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I. INTRODUCTION

Even in this age of fast. low-cost microprocessors there remain several important motivations

for muitirate sampling in sampled-data control systems. One need only consider large space

_tructure control problems to realize that the cost, bulk, and weight of real-time computing

hardware connnues to be an important control system design issue. Multirate sampling provides

_he opportunity to allocate sampling rates, and thus real-time computing power, more efficiently.

rn two-time-scale control problems, for example, multirate sampling allows slow sampling in

control loops associated with low-bandwidth control functions to be traded for fast sampling in

those associated with high-bandwidth control functions.

As with m_croprocessors, the costs of analog-to-digital and digital-to-anaio_ converters are atso

computation-rate dependent. Multirate sampling thus provides another opportunity, to reduce

hardware costs because the computation rates required of analog-to-digital and digital-to-analog

converters frequently depend upon their sampling rates. Multirate sampling can even be used to

reduce the total number analog-to-digital and/or digital-to-analog converters required by a system,

by sample-dependent scheduling of multiple conversion tasks to a lesser number of conversion

devices.

A third "motivation" for multirate sampling is becoming increasingly important: sometimes

multirate sampling is the only choice. This situation can arise when an apriori decision has been

made to include in a system a sensor that provides a discrete-time signal at a fixed sampling rate. A

head position control system for a computer disk drive is a good example of such a system. The

disk head, which is suspended atop the rotating disk, includes a sensor that reads the head position

directly from certain diametrically-spaced segments on the disk. The sensor's sampling rate is thus

fixed by the disk's rotation speed. To increase the control bandwidth beyond that dictated by that

sampling rate, a second, faster-rate sensor must be added.

A key point often ignored by developers of multirate control law synthesis methods is that

these motivations for multirate sampling dictate also certain flexibilifies required to meet the needs

of engineering practice. Specifically, multirate control law synthesis methods, to meet the needs of

engineering practice, must allow the sampling rates for all sensors, the update rates for all processor
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states, and the update rates for all actuators to be specified independently. The one generally

accepted restriction, with regard to these rates, is that the ratio of all combinations of sampling and

update rates must be rational, so that the complete samplingiupdate schedule will always be

periodic. (We assume that all sampling and update events are synchronized to the same clock.

The asynchronous case is treated elsewhere [113

Time lines representing such a periodic sampling schedule are shown in Fig. 1. We define the

Basic Time Period (BTP) of such a schedule as the least common multiple of all of its sampling and

update periods. The BTP is the period of repetition of the sampling/update schedule. We define

the Shortest Time Period (STP) as the greatest common divisor of all of its sampling and update

periods. We reserve the symbol P to represent the (integer) number of STP's per BTP, and we shall

_requently use a double-indexing scheme for the independent variable so that, for example, x(m,nY

represents x at start of the (n+l)th STP of the (m+l)th BTP, for m = 0,1 ..... and n = 0 ..... P - 1.

There are five well-recognized methods for synthesizing multirate sampled-data control laws:

successive loop closures, pole placement, the singular perturbation method, the LQG (linear

quadratic Gaussian) method, and parameter optimization methods. Successive loop closures [2] is

arguably the most important because it is the single one of the five that is widely used in industry.

The advantages of successive loop closures are that its one-loop-at-a-time approach requires no

new multirate synthesis techniques, and that the sampling/update rate for each control loop can be

specified independently. The problem with successive loop closures is that its one-loop-at-a-time

approach cannot fully account for all dynamic coupling between control loops.

Pole placement [3,4,5,6,7] for multirate systems has received considerable recent attention in the

wake of reports on the capacity for periodically time-varying output feedback controllers to place

closed-loop poles. In Ref. 3, for example, it is shown that given any controllable and observable

continuous-time plant with m inputs, it is always possible to construct a periodically time-varying,

pure-gain, output feedback control law that places the closed-loop poles arbitrarily, provided that

the outputs are all sampled at a suitably chosen single sampling rate 1�To, and that the inputs are

updated at the rates N1/T o..... Nrn/To, where the Nt are certain positive integers.
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Theproblemwith poleplacementfor multiratesystems is the same as with pole placement for

single-rate systems: how to determine where the closed-loop poies should be placed? It is a

particularly difficult problem in the muitirate case because muttirate syster._s are periodically time

yawing [2,8]. The periodicity oi multirate svstems implies that their eigenstructure can only be

defined based on their (time-invariant) BTP-to-BTP dynamics. Determining desirable closed-loop

poles for a muitirate system is typically difficult because the BTP of a muitirate system is typically

much longer than the characteristic times of many of its faster dynamics.

Singular perturbation control law synthesis methods [9,10,11,12,13,14,15] were first developed

for continuous-time control systems to take advantage of the multiple-time-scale dynamics that

often occur in control systems. It would seem that an extension to muttirate sampled-data systems

_hould follow naturally, given that a principal motivation/or multirate sampling has always been

to take advantage of those same multiple time scales, but that has not been the case in practice.

The problem is the singular perturbation method's inherant dependence on a coordinate

transformation to separate the full control law synthesis problem into two (or more) dynamically

decoupled control law synthesis problems of different time scales. Such a coordinate

transformation is the first step in control law synthesis by the singular perturbation method. The

state coordinates are easily decoupled because they represent only the plant's internal dynamics.

The input and ouput coordinates cannot be so manipulated because they represent the plant's

external sensor and actuator signals. Consequently, during the second control law synthesis step,

when the control laws for the different-time-scale state vector components are synthesized

separately, every control input vector element and every sensor ouput vector element remains

coupled to every state coordinate so that, just as with successive loop closures, all dynamic coupling

between control loops cannot be accounted for.

Various schemes have been developed to circumvent this difficulty. None have been

completely successful. In Ref. 13, for example, a state feedback control law is synthesized by the

singular perturbation method, and the lack of a completely decoupling transformation gives rise to

a requirement for the slow component of the plant state vector to be estimated between slow-

sampler updates, and a requirement for every control input to be updated at every

sampling/update instant.
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Theadvantageof the LQG method [2,16,17,18] for multirate sampied-data control law synthesis

is that the control laws for all control loops are synthesized simultaneously, taking into account all

dvnarruc coupling between control loops. The disadvantages are the same as with the LQG method

for continuous-time control law synthesis: that practical performance and stability, robustness

objectives are often difficult to achieve via the minimization of a quadratic performance index, and

that the resulting control laws are often unnecessarily complex. LQG control laws are even less

desirable in the multirate as compared to the single-rate case because multirate Kalman filter and

LQR state feedback gains are periodically time-varying [2]. In short, LQG multirate sampled-data

control laws can provide a useful benchmark for performance comparisions, but they are not

practical for applications.

Parameter optimization methods [2,19] for multirate sampled-data control law synthesis

combine the principal advantages of the LQG and successive loop closures synthesis methods. They

allow the synthesis of multirate sampled-data control laws of practical structure, and

simultaneously account for all dynamic coupling between control loops. The typical parameter

optimization method requires that the control law structure and its parameters to be optimized be

prescribed. A numerical search is used to determine values for those parameters such that a

performance index is minimized, possibly subject to constraints on those parameters. The

disadvantage of parameter optimization methods is that they inevitably require a numerical search

to determine the control law parameters.

A new parameter optimization method for synthesizing multirate sampled-data control laws is

described in Sec. III of this paper. It is the second generation of the method described in Refs. 2 and

20; Unlike its predecessor, which accomodates only partial state feedback control laws, this new

method accomodates a general, dynamic, multiple-input multiple-output control law structure.

This new control lawstructure is described in Sec. II of this paper. Section IV describes an

application of this new method to a design problem involving a two-link robot arm model.

Conclusions are given in Sec. V.

II. CONTROL LAW STRUCTURE
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This section describes the muitirate sampled-data control law structure in Fig. 2. In Fig. 2, _ is

the noise-free, continuous-time sensor signal, v is the discrete-time sensor noise signal, and _ is

the connnuous-time control signal. The one sampler in Fig. 2 operates at the sampling rate l/T,

where T is the STP of the systems complete sampling/update schedule. The Delav blocks are one-

STP delays. The ZOH block is a zero-order hold.

The sensor sample-and-hold dynamics are represented by

y(m,n+l) = {I - _(n)l _(m,n) + S,/(n) y(m,n) (1)

where v is the sensor signal hold state vector. The matrix Sv(n) is the sensor switching matrix for

:he (n+ 1)th STP. We define a switching matrix as a diagonal matrix with 1 or 0 at every, diagonat

position. If the ith diagonal element of Sy(n) is 1, the continuous-time signal from the ith sensor is

sampled at the start of the (n+ 1)th STP of every, BTP and that sampled value is immediately stored

as the ith element of y; otherwise, the same element of y is held at those instants. The key point is

that y always contains the most recent sampled sensor data.

The processor dynamics are represented by

z(m,n+l) = [I - Sz(n)Jz(m,n) + Sz(n) {Az(n) z(m,n)

+ Bz(n) {[I- Sy(n)_(m,n) + Sy(n) y(m,n)}} (2)

_(m,n) = Cz(n) z(m,n)

+ Dz(n) ([I- Sy(n)] y(m,n) + Sy(n) y(m,n)} (3)

where z is the processor state vector, and (1 is the processor output vector. The matrix Sz(n) is the

processor state switching matrix. If the ith diagonal element of Sz(n) is 1, the ith processor state is

updated at the start of the (n+l)th STP of every BTP; otherwise, the same element of z is held at

those instants. The matrices Az(n), Bz(n), Cz(n), and Dz(n) are the processor state model matrices,

whose determination constitutes the control law synthesis problem. Note that a nonzero Dz(n)

results in direct feedthrough of sensor data to fi(m,n).
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Thecontrolsignal update-and-hold dvamics are represented by

utrn,n+l) = [I -Su(n)l u(m,n) + Su(n) fi (re,n) (4)

where _ is the control signal hold state vector. The matrix Su(n) is the control signal switching

matrix. If the ith diagonal element of Su(n) is 1, the ith element of u is updated at the start of the

;n+ l)th STP of every BTP; otherwise the same element of _ is held at those instants.

Finally, the continuous-time control signal _ is generated by

A

5(t) = [I - Su(n)] 5(m,n) * Su(n) u(m,n) (5)

for all t on [(rap + n)T, (rap + n + I)T).

The advantage of the control law structure of (1) through (5) is that it can be used to represent

virtually any sampled-data control law structure of practical interest. Its form, however, is not

standard. Straightforward algebra, applied to (1) through (5), yields the following more standard

form:

c(m,n+l) = At(n) c(m,n) + Be(n) y(m,n) (6)

u(m,n) = Cc(n) c(m,n) + Dc(n) y(m,n) (7)

where

c(m,n) = [z(m,n) _(m,n) _(m,n)i T (8)

I [I - Sz(n)i + Sz(n) Az(n)
Ac(n ) = 0

Su(n) Cgn)

Sz(n) Bz(n) [I - Sy(n)] 0 3

Jl - S_(n) 0

Su(n) Dz(n) [I - Sy(n)] I - Su(n)

(9)
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Sz(n) Bz(n) Sy(n)_Bc(n ) = Sy(n) /
J

LSu(n) Dz(n) Sv(n)_J

(10)

Cc(n) = {Su(n) Cz(n) Su(n) Dz(r,) [I - Sv(n)i I - Su(n)l (11)

Dc(n) = lSu(n) Dz(n) Sv(n)] (12)

with

_(t) = u(m,n) (13)

for all t on [(mP + n)T, (mP + n + I)T).

III. PARAMETER OPTIMIZATION METHOD

This section describes a parameter optimization control law synthesis method for the control

law structure of Sec. II. It is a generalization of the similar method for state feedback control laws

described in Refs. 2 and 20, and incorporates also the multiple-plant-condition design for

robustness ideas of Ref. 2I. The approach involves a numerical search to determine the processor

matrices, Az(n), Bz(n), Cz(n), and Dzz(n), for n--O..... P-l, such that a quadratic performance index

is minimized. That approach has been critidzed in the past because of (1) the difficulties of

achieving practical performance and stability robustness objectives via the minimization of a

quadratic performance index, and (2) difficulties related to the convergence of the numerical search.

The proposed method addresses those criticisms in several ways. First, to enable synthesis for

robusmess to plant parameter variations, the performance index is defined over multiple plant

conditions. This simple idea has been a key to the success of the popular Sandy [21,22,23,24,25,26]

algorithm for synthesizing robust continuous-time control laws. Second, to improve the

convergence of the numerical search, the performance index and its gradients with respect to the

control law parameters are calculated exactly, at every iteration, using closed-form expressions.

Third, so that a stabilizing initial guess for the control law is not required, and to eliminate
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problems with destabilizing control laws encountered during the search, a finite-time performance

index is used. Finally, to lessen the difficulties of achieving practical performance and stability.

robustness objectives via the minimization of a quadratic performance index, linear and nonlinear

constraints can be imposed on the control law parameters.

The connnuous-time ptant dynamics at plant condition i are assumed to be represented by:

-(i)_(i).. -(i) (i" _,(i)-(i)_L_
p(i)(t)=Ap p (t)+ BFuu _(t) + OpwW _t/ (14)

_(_)(t)= (_) _(i)(t) (15)
[--

where _)(i) is the plant state vector, fi(i) is the control input vector, _(i) is the sensor output vector,

and _(i) is a stationary, zero mean, gaussian white noise input vector of known power spectral

density.

The performance index is assumed to be

N1

i=l

(16)

where Np is the number of plant conditions; E is the expected value operator; tf is the final time

and is a multiple of the BTP of the system's complete sampling/update schedule; and (_(i) and R(|)

are the state and control weighting matrices for the ith plant condition and are non-negative

definite matrices.

Based upon the description of the continuous-time plant dynamics in (14) and (15), a complete

description of the complete system's sampling/update schedule, the performance index in (16), and

the control law in (6) through (13), closed-form expressions for the performance index J and for its

gradients with respect to the processor matrices Az(n), Bz(n), Cz(n), and Dz(n), for n=O, .... P-l, are
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derived in Refs. 19 and 27. Those derivations and the resulting closed-form expressions are

lengthy, and will not be repeated here. The key points are that the resulting expressions are closed-

;0nn, and that the number of computations required for their evaluation is independent of tf. The

single restriction for those expressions to be valid is that the state transition matrix for the BTP-to-

BTP closed-loop system must be diagonalizable [19]. That is not a serious restriction because that

matrix is rarely nondiagonalizable in practice.

Thus far nothing has been said about synthesizing other than periodically time-varying control

laws. To that end, the performance index and gradient derivations in Refs. 19 and 27 assume that

the processor matrices are constrained to satisfy.

-Dz(n) Cz(n) 3 M-1 [)z(r) Cz(r)

= _ a(n,r)
L Bz(n) Az(n) J r--0 _z(r ) Xz(r )

(17)

with M E {1..... P}, and with the tz functions constrained to satisfy

1 ifp=q0_(n,p) tz(n,q) = 0 if p _ q (18)

Equations (17) and (18) constrain the number of different sets of processor matrices to M. The

function tz(r,n) determines which set of processor matrices is active at the (n+ 1)th STP. Equation

(18) guarantees that only one set of processor matrices is active per STP.

Based on the description of the continuous-time plant dynamics in (14) and (15), a complete

description of the complete system's sampling/update schedule, the performance index in (16), the

control law in (6) through (13), the constraint relations in (17) and (18), and the closed-form

expressions for the performance index J, and for its gradients with respect to the processor matrices

Az(r), Bz(r), Cz(r), and E)z(r), for r=0 .... , M-l, in Refs. 19 and 27, we have developed a computer

algorithm to numerically determine a set of processor matrices that minimizes J. A numerical

search is used to determine the processor matrices Az(r), Bz(r), Cz(r), and E)z(r), for r = 0,..., M-l,

given an initial guess for those matrices. The NPSOL nonlinear programming algorithm is used

for the numerical search. NPSOL [281 is a powerful nonlinear programming package with good

39



convergenceproperties as a result of its use of exact performance index and gradient evaluations at

every iteration. In addition, NPSOL accomodates linear and/or nonlinear constraints on the

independent variables. This means that linear and/or nonlinear constraints on the control law

parameters can be combined with the usual performance index minimization objectives to achieve

practical performance and stability robustness objectives.

.-\dditionai important features of this new synthesis algorithm include automatic discretization

of the continuous-time plant model and of the continuous-time performance index [27]. These are

important design features because they effectively decouple the sampling/update rates selection

problem irom the problem of determining a suitable performance index. This means that the

_erformance index can be determined first, based on a continuous-time design, and that this new

ai_onthm can then be used to determine a multirate sampled-data design that minimizes the same

performance index.

In summary, the inputs required to apply this new synthesis algorithm are the following:

• A state model description of the continuous-time plant dynamics at each of the Np

plant conditions.

• State and control weighting matrices for the performance index at each of the Np plant

conditions.

• The final time tf for the performance index.

• The power spectral density of the continuous-time white process noise at each of the

Np plant conditions.

• A complete description of the complete system's sampling/update schedule.

• The integer M and the a functions that constrain the periodidty of the processor

matrices via (17) and (18).
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• The desired dynamic order and structure for the processor matrices.

° The covanance matrix for the discrete-time sensor noise at each of the Np plant

conditions.

• A complete description of all linear and/or nonlinear constraints to be imposed on the

elements of the processor matrices.

° An initial guess for the processor matrices.

A disadvantage of most parameter optimization control law svnthesis methods is that they

require a stabilizing initial guess for the control law. That is not the case with this method because

of its finite-time performance index. The finite time ensures that the performance index and its

gradients w_ll be finite whether or not the closed-loop system is stable. A disadvantage of the finite

time is that a steady-state solution, i.e., for

Jssa= lira J (19)
tf -.-_ .o

cannot be obtained directly. A steady-state solution is easily obtained, in practice, however, by

choosing a finite time tf that is large compared to the characteristic times of all of the closed-loop

system's poles. Because the number of computations required to evaluate the performance index

and gradient expressions of Refs. 19 and 27 does not depend upon tf, this can be done without

penalty in terms of the computation time for the numerical search.

In practice, because digital computers cannot store arbitrarily large finite numbers, a steady-_tate

solution usually cannot be obtained by simply initially setting tf to a large value. Instead, it is

usually necessary, to complete first (i.e., when the current best guess for the control law parameters

is poor) an optimization for a small tf, and to then re-optimize, for larger and larger tf, until tf gets

to be large compared to the characteristic times of all closed-loop poles.
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The finalkey issueregardingthisnew synthesisalgorithmconcernsthe requirementthatthe

structureofthe processormatricesbe specified.The key pointisthattheimposed structureshould

guaranteethatthe freeparameters forthe numerical searchconstitutean independentsetwith

respectto thecontrollaws input-outputdynamics. When theprocessordynamics in (2)and (3)are

considered,with the constraintsin(17)and (18)ineffect,itisstraightforwardtosee thatthe

complete set of the elements of _.z(r), Bz(r), (_z(r) and E)z(r), for r = 0 ..... M-l, do not constitute

such an independent set because, for example, an arbi_arv change in one element of Bz(0) can be

compensated for by changes to the elemets of Cz(0), and to the other elements of Bz(0), such that the

processor's input-output dynamics are unchanged.

Thus, additional structure, or, equivalently, additional constraints, must be imposed on the

elements of the processor matrices to guarantee that the free parameters for the numerical search

constitute an independent set with respect to the control law's input-output dynamics. In practice,

a suitable set of such constraints can frequently be determined based on "classical" control law

structures (e.g., combinations of lead and lag compensators and notch filters).

More generally structured control law can, of course, also be accomodated. What constitutes an

optimal structure for the processor matrices for the general case is a topic of current research. We

have successfully applied the following structure (shown for the n-is-even case) for the particular

case where the constraints in (17) and (18) are applied with M = I (the time-invariant case):

I 0 ,]}_.z(0)=blockdiag { 2 2 i=1, .,n/2
--O'i -(O i -2ff i , •. (2O)

§z(0)=I b11 ''' bun 1
bnl '- b_

(21)

I 1 .-. 1 1
Cz(0)= c21 ''' c2n

Cpl • . . Cpm

(22)
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 z0[d l
dpt • , . dpm

(23)

The appendix shows that the (m+ p)n+ mp G i, t0 i, bij, cij and dij parameters of this structure

constitute an independent set with respect to the control law's input-output dynamics (for anv

non-trivial sampling/update schedule) provided that no eigenvalues oi _- jc0i of the processor

dynamics are repeated.

IV. EXAMPLES

This section describes the design of a tip position control system for a planar two-link robot

arm. The robot arm system is shown in Fig. 3. The first link is long and massive, for large-scale

slewing motions. The second is relativelv short and lightweight, so that high-bandwidth control of

the arm's tip position can be achieved using a relatively small motor at the second joint. The pin

joint, rotational spring and rotational damper at the midpoint of the first link models flexibility in

that link. The second link is assumed to be rind. The motor torques T 1 and T 2 are the control

inputs, and it is assumed that only the joint angle 0 and the tip position 6 are measured. The

linearized dynamical equations for this system for small E - 0 and small O - E are easily derived.

The spring constant (k) and damping coefficient (b) values (in Fig. 3) were chosen based on that

model to achieve I percent damping and a l0 Hz natural frequency for the open-loop vibration

mode.

Figures 4 through 6 show the closed-loop arm responses, based on the linearized arm

dynamics, to a step change in the commanded tip position with nine different control laws. The tip

position (8) responses are shown in Fig. 4. The simultaneous control torque (T 1 and T2) responses

are shown in Figs. 5 and 6. The nine different control laws are briefly described as follows:

LQR Analog: The continuous-time LQR (full-state-feedback) control law that minimizes

tf

J = lim _ [32[02 + (pS) 2] + + dt (24)
if-.+

0

43



with

_3= 32 rad -_ (25)

t

p = 14 rad / m (26)

T2max - 0.00335 N.m (27)

/Tlmax/T2max = 8 (28)

._he T2max value is the T2 torque that achieves_ = 2_ raci/sec in 1 sec with 0(t) - eft) - 0 and6(0) = 0.

The Tlmax/T2max value represents a typical ratio of peak motor torques at the respective joints. The

and 0 values were chosen by trial and error to achieve the closed-loop poles in Table 1. Note that

the ratio of the characteristic frequencies of the rigid-body closed-loop pole pairs is eight; and that

the characteristic frequency of the faster closed-loop rigid-body pole pair is a factor of five less than

the characteristic frequency of the closed-loop vibration mode.

Third.Order Analog Successive Loop Closures: The third-order, continuous-time, successive loop

closures control law in Fig. 7, which consists of a single lead compensator in the 0-to-T 1 loop and

twin, cascaded lead compensators in the 8-to-T2 loop. The dosed-loop poles for this design are in

Table 2. Note that the rigid body and vibration mode closed-loop poles match those of the LQR

Analog design.

Third-Order Multirate Tustim A multirate sampled-data approximation to the Third-Order

Analog Successive Loop Closures design obtained via Tustin's approximations of the continuous-

time transfer functions in Fig. 7. The sampling/update rates (in samples/updates per second) of the

0-to-T1 and 6-to-T 2 loops are eight times the characteristic frequencies (in cycles per second) of the

slow and fast, respectively, rigid body closed-loop pole pairs from the Third-Order Analog

Successive Loop Closures design.
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OptimizedThird-OrderMultirate Tustin: The same as the Third-Order Multirate Tustin design,

but with the lead compensator gain, zero, and pole locations optimized, by the paramether

optimization control law synthesis method of Sec. lII. to minimize the same performance index as

in the LQR Analog design. To synthesize this control law, continuous-time process noise and

discrete-time sensor noise inputs were added to the robot arm model. The former were taken to be

white noise disturbance torques w 1 and w 2, coincident with the respective control torques, with

E{ w2(t ) [wl(x) w2(z)]} = 0 1.6x10 -5 - (29)

where 6 is the Dirac delta function. The latter were taken to be stationary, purely random

sequences, v 1 and v 2, for the 0 and 6 measurements, respectively, with

E{f vt(m'n) _ [vl(m,n) v2(m,n)]} [ 8.1xlO -5 0 !v2(m'n) J = L 0 lxlO "4 (30)

Multi.rate Third-Order: The same as the Optimized Third-Order Multirate Tustin design, but using

the third-order, generalized, time-invariant structure in (20) through (23) for the processor

matrices. Just as with the Optimized Third-Order Multirate Tustin design, two of the processor

states are updated at the faster sampling/update rate, and the third is updated at the slower

sampling/update rate.

Multirate Second-Order: The same as the Muitirate Third-Order design, but using the second-

order, generalized, time-invariant structure in (20) through (23) for the processor matrices. One of

the processor states is updated at the faster sampling/update rate, and the other is updated at the

slower sampling/update rate.

Multirate First-Order: The same as the Multirate Third-Order design, but using the first-order,

generalized, time-invariant structure of (20) through (23) for the processor matrices. The one

processor state is updated at the faster sampling/update rate.
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Single-Rate Third Order:. The same as the Multirate Third-Order design, but single-rate, with the

single sampling/update rate chosen to _eld the same number of real-time computations per unit

time as the Multarate Third-Order design.

Analog Third-Order: The continuous-time equivalent to the Multirate and Single-Rate Third-

Order designs. The processor matrices have the same structure as in the Multirate and Single-Rate

Third-Order designs. The control law was synthesized using the Sandy algorithm {21] to minimize

the same performance index as in the Multirate and Single-Rate Third-Order designs.

The LQR Analog responses in Figs. 4a, 5a and 6a constitute the optimal responses for the

performance index in (24), assuming full state feedback, no process or sensor noise, and infinitely

fast sampling. The Third-Order Analog Successive Loop Closures responses in the same figures

have low tip position overshoot, but include also a relatively large contribution from the vibration

mode (see especially Figs. 5a and 6a).

The Third-Order Multirate Tustin responses in Figs. 4a, 5a and 6 are unacceptable. This is

somewhat suprising, but not totally unexpected given the flow) factor-of-eight sampling/update

rate-to-characteristic frequency ratio for this design.

The Optimized Third-Order Multirate Tustin responses in Figs. 4a, 5a and 6a are acceptable, and

demonstrate that the parameter optimization control law synthesis algorithm of Set:. lII can be used

to optimize the parameters of classically-structured control laws.

The Multirate Third-Order, Second-Order and First-Order responses in Figs. 4b, 5b and 6b

demonstrate that the same parameter optimization control law synthesis algorithm can be used to

synthesize multirate sampled-data control laws having a prescribed dynamic order and a

prescribed, but general, structure, with apriori specified sampling/update rates for all sensors,

processor states, and control inputs.

The Single-Rate Third-Order and Analog Third-Order responses in the same figures put the

multirate responses in perspective. The Single-Rate Third-Order control law is the single-rate

equivalent to the Multirate Third-Order control law because it (I) was synthesized to minimize the

46



sameperformance index, using the same process and sensor noise characteristics; and (2) requires

the same number of computations per unit time for real-time operation.

The Analog Third-Order responses in the same figures are the responses that would have been

obtained with the Multirate Third-Order control law and Singe-Rate Third-Order control laws if

sampling and update rates were not an issue, and very. fast sampling and update rates were

everywhere used.

V. CONCLUSIONS

With the possible exception of successive loop closures, the multirate sampled-data control law

_vnthesis methods available today fail to provide the designer with sufficient flexibiliW to prescribe

sensor sampling rates and processor state and control input update rates. A new parameter-

optimization-based method for synthesizing multirate sampled-data control laws of arbitrary

dynamic order that provides that flexibility is described in this paper. This new method, described

in Sec. lII, determines, by numerical optimization, the free parameters of the general purpose

multiple-input, multiple-output, sampled-data control law structure in Fig. 2, to minimize a

quadratic performance index, possibly subject to linear and/or nonlinear constraints on those

parameters. A stabilizing initial guess for the control law is not required because the performance

index is finite-time. To enable the synthesis of robust control laws, the performance index can be

defined over multiple plant conditions.

An applicationof thisnew method tothe designof a tippositioncontrolsystem fora sixth-

order, two-link robot arm was described. Multirate sampled-data control laws of various dynamic

orders synthesized by various methods were compared to confirm that the new synthesis method

can be used to synthesize multirate sampled-data control laws having a prescribed dynamic order

and structure, with apriori specified sampling/update rates for all sensors, processor states, and

control inputs.
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APPENDIX A. SUPPORTING MATHEMATICS

Consider the control law in (1) through (5). Suppose that the constraints in (17) and (18), with

M=], are in effect, so that the processor matrices are constrained to be time-invariant. Suppose that

,_he processor mamces. Az(0), Bz(0), Cz(0) and E)z(0), are further constrained to have the forms in

,20) through (23). Finally, to guarantee a nontrivial sampling/update schedule, suppose that the

_nsor, processor state, and actuator switching matrices satisfy

r P-i i
det! _sy{n) !

L n=0

0 (31)

[ P-I

det! ESz(n) !
C n=O

0 (32}

7 P-I -'

deti y_su{n) ! _ (} {33)
n=O

We will show that the (m+p}n+pm oi, ca, bij, cij and dij elements of the control law then constitute

an independent set with respect to that control law's input-output dynamics if and only if Az(O) has

no repeated eigenvalues.

We begin by noting that, with (31), (32) and (33) in effect, it is straightforward to see that the
independence in question does not depend whatsoever on the sensor, processor state, or actuator

switching matrices. Therefore we consider only the special case where Sy(n), Sz(n) and Su{n), for
n=0 .... P-I, are identity matrices. The control law then reduces to

z(m,n+l) = Az(O) z(m,n) + Bz(O) y(m,n) (34}

u(m,n) = Cz(O) z(m,n) + E)z(O) y(m,n) (35)

where u(m,n) is defined in (13).

Consider first the control law

z(k+l) = A z(k) + By(k) (36}

u(k) = C z(k) + D y(k) (310

where

Z= y= u=

P

(38}

I k I 0 0 2
A= 0 "" 0

o o x.

(39)
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and B, C and D have the forms in (21) through (23). So that the control laws impulse response will

be purely real, the Xi's and the corresponding columns of C and rows of B must be either real, or

must occur in complex-conlagate pairs, and D must be purely real.

Lemma: The (m+pm+pm k!, bii, cij, and dij parameters (counting a real element as one parameter,

and a complex conjugate pair of elements as two parameters) of the control law in (36) and (37)

constitute an independent set with respect to that control law's input-output dvnamics if and only

if ki;_k _, for i_j.

Proof: Consider the related control law

z(k+l) = A z(k) + B v(k) (40)

u(k) = C z(k) (41)

with

Cll

Cpl

- 7

Cln 1
?rn

Its input-output dynamics are represented by

_I(z)= C (z I-A) -1 B =

i=l

(42)

(43)

where Ci is the i th column of C, and Bt is the ith row of B. The Kt, bij and cij parameters of this

control law are dependent with respect the control law's input-output dynamics if and only if, for

an arbitrary, change in one, the others can be changed so that _I(z) is unchanged.

Case 1: No repeated Ki 's.

From (41), for the case of no repeated k t 's, it is straightforward to see that when one of the kt's is

changed by an arbitrary amount, it will not be possible to change the remaining ki, bij and ctj

elements so that _I(z) is unchanged. But when btj is multiplied by a nonzero but otherwise

arbitrary a, we can multiply the remaining elements of B t by a, and divide C:j by a, so that _I(z) is

unchanged. Thus, the k i, bij and cij parameters of the control law in (40) and (41) are dependent

with respect to that control law's input-output dynamics.

If, however, one element of every column of C is fixed, as is the case in the C matrix of (22), it is

similarly straightforward to see that it will not be possible to compensate for an arbitrary change in

any k i, bij or cij element by changing the remaining Xi, bij and cij elements so that _I(z) is

unchanged. Thus, for the case of no repeated _.t's, with one element of every column of C fixed,
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the_.i,bi i and cii parameters of the control law in (40) and (41) constitute an independent set with

respect to that control laws input-output dynamics.

Case 2: Repeated ki's.

Consider again the control law in (40) and (41), but this time suppose that _.!=k2. That control law's

input-output dynamics are represented bv

_I(z) = C (z I-A) -t B =
z-;_ 1 z-_q

i=3

(44)

From (42), it is straightforward to see that, with or without one element of every column of _Z fixed,

the remaining bij and cij elements of Ct, B1, C2, and B2 can be changed to compensate for an

arbitrary change in any one element of C1, B1, C2, or B2 so that H(z) is unchanged. Thus, for the

:ase of repeated _.!'s, with or without one element of everv column of C fixed, the K!, bij and cij

parameters ot the control law of (40) and (41) are dependent w_th respect to that control law's input-

output dvnamics.

General Case: We conclude that the (m+p)n Ki, bij, and cij parameters of the control law in (36) and

(37), with D= 0, constitute an independent set with respect to that control law's input-output

dynamics if and only if Ki_. j, for i_j. A nonzero D matrix simply adds pm parameters to that set.

Theorem: For the control law in (1) through (5); with the constraints in (17) and (18), with M=I, in

effect, so that the processor matrices are constrained to be time--invariant; with Az(0), Bz(O), C-.z(0)

and E)z(0) further constrained to have the forms in (20) through (23); and assuming that the sensor,

processor state, and actuator switching matrices satisfy (31) through (33); the (m+p)n+pm a 1, coi, bij,

cij and dij elements of that control law constitute an independent set with respect to that control

law's input-output dynamics if and only if Az(0) has no repeated eigenvalues.

Proof: The control law in (34) and (35) has the same number of free parameters as the control law

in (36) and (37), and the two are related by the similarity transformation x= M z, where

1 [ (11+j(O! 1 1M = block diag { 2_ l -(_l+j(0i -1 , i = 1 ..... n/2}
(45)

with _i = Re(Ki) and 0ai = lm}(Ki).

52



Rind Boctv

Rind Bodv

Vibrauon Mode

Closed-Loop
Pole

-l.10+j 1. i0

-8.81 +j 8.83

-0.649 +_j62.8

Damping
Ratio

0.71

0.7I

0.01

Characteristic',

Frequency

0.25 Hz

2.0 Hz

10 Hz

Table 1 LQR Analog Design Closed-Loop Poles

Rigid Body

Rigid Body

Vibration Mode

Compensator

Compensator

Closexi-Loop
Pole

-1.10+j 1.11

--8.88 +j 8.84

-I. 35 + j 63.9

-10.5

-33.2 +j 34.0

Damping
Ratio

0.71

0.71

0.02

Characteristic

Frequency

0.25 Hz

2.0 Hz

t0 Hz

1.7 Hz

0.70 7.6 Hz

Table 2 Third-Order Analog Successive Loop Closures Design Closed-Loop Poles
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Time Lines for S ampling/Update Activities:

T
Time (Seconds)

25T

0 4T 8T 12T 16T 20T 24T

0

??? ?Y ? ?
3T 6T 9T I2T 15T 18T 21T 24T

sre .!BTP " "

Example Multirate Sampling/Update ScheduleFig. 1

54



Fig. 2 Multirate Sampled-Data Control Law Structure
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Parameters: Mass Length

L t 0.5 kg 0.5 m
L2 0.5 kg 0.5 m
L3 0.04 kg 0.2 m

k = 37.33 N/rad
b = 0.012 N. s/m

The natural frequency of the vibration mode is 10 hz.

Inputs: Torques Tt andT2

Outputs: 0 and 5

Fig. 3 Two-Link Robot Arm
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991 ACC Reduced Order Multirate Compensator Synthesis l
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INTRODUCTION

in many cases a muitirate compensator can provide better performance man a single rate

compensator requmng me same number of computataons. Berg, for example, was able to

.-educe me steaziv state P,MS response of states and con_roisfor a simpte mass-spnng-mass

_vstem nearly 20% bv using a muiurate comt)ensator over a single rate compensator.

Numerous omer examples have been provided in the literature by Berg t31-[51, Amitt [1]-

[2], and Yang t17]. While mmtirate compensators can provide improved performance over

stogie rote compensators, they are also, m general, more complicated to desired.

The complexity of muitirate compensators stems from the fact mat they are by nature

:_me varya, rig, periodically time varying for any practical application. Not only must

,,,,tmev must also-esi_ners choose muitit)ie sampling/update rates for the compensator. ",,

_etermme me parameter values for a time varya, ng compensator.

We wiii consider three methods which can be used to design muitirate compensators:

Multirate LQG [ 1]; Generaiized Algorithm for Multirate Synthesis tGAMS) [ 17]; and our

new method presented in this paper. All three of these methods synthesize linear

compensators by minimizing a cost function quadratic in the smms and controls.

Multirate LQG is the muldrate equivalent of single rate LQG. The multirate LQG

problem is straightforward to solve because the equations governing the solution are similar

to those for the single rate case so that most methods used to solve the single ram LQG

problem can be applied to multirate LQG. The disadvantage of muitirate LQG is that it

results in a full orcier compensator which has periodically time varying gazns.

GAMS was developed by Yang to overcome many of the short comings of multiram

LQG. Yang's algorithm can synthesize reduced order muttirate compensators with or

without time varying gains by using a numerical gradient type search to find the optirmma

compensator values. His algorithm uses a finite time cost function in its problem

formulation, unlike muitiram and single rate LQG which use an infinite time cost function.

By using a finite time cost function Yang's algorithm eliminates the numerical problem tha_

arises when a destabilizing compensator is encountered during the numerical search since

the value of the cost function is infinite at infinite time when the closed loop system is

unstable. The pnrnaxy benefit is that the designer does not have to prowde the numerical

search algorithm with a initial stabilizing guess. Unfortunately, using a finite time cost

function greatty complicates the equations which govern the solution, making thorn

laborious to solve.
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We have been using Yang's algorithm to solve muitirate problems for me last two years

_ci nave found th,_t the flexibiiitv afforded bv a finite time cost funcuon is not needed to

_oive most muiUrate DroP|eros. For this reason we nave developed a third memod for

_ynthesizmg muitirate compensators.

Our new algorithm is similar to Yang's tGAMS) in that it can be used to synthesize

-e_ucea order muitirate compensators with or without nine varying gains: but unlike

Yanzs aizorimm we use an infinite time cost funcuon in the proOlem formuiation. The

advanta_,e of this new approach is that it results in a set of relatively simple governing

equations which are closely reiated to those for the single rate case.

In this paper we will present our new algonthm. In Section I we discuss the structure

of the genera2 muiurate compensator. In Section iI we develop the equations which govern

:he soiuUon of the reducexi order multi,rate comvensator. Section III contains a brief

2iscusslon of how we ,mrfiementect our aizonthm, in Section IV we t_resent a slmpie

muiurate example followed by some conciudmg remarks in Secuon V.

1. THE GENERAL MULTIRATE COMPENSATOR

Before deriving the equations governing a reduced order muitirate compensator, we

will first present the structure for a general multirate compensator. We restrict our

discussion for now to compensators with time invariant gains and sampling/update rates

whose rauos are rational numbers.

A generai muitirate compensator is shown in Figure 1. Each input (y), output (u), and

smm (2") is sampied/updatea at a rate which, m general represents me desired bandwidth of

the input or output with which it is associated. _ is the value of y currentiy available to the

digital processor from the zero order hold; while _ is the current output from the digital

processor which is held with a zero order hold to form the output u. When the

sampling/update rates have ratios which are rational numbers the sampling schedule is

periodically rime varying. The greatest common divisor of all the sampling/update periods

is the shortest time period (STP); the least common multiple of all the sampling/update

periods is the basic time perzod fBTP3 (see Fima'e 2).

The state _uations for the multirate compensator pictured in Figure I arc:

I zl i [I-sz,ki+sz.kA s z.kB--'[I-Sy.k] 0=I o o
+ Sy,k Yk (1)

k Su kDSy,k
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"991 ACC Reduced Order Muldratc Compensator Synthesis 3,

uk =! Su,kC s,_,,kDLLI-Sv,k] _I Su,k{J }"; "!Su,kDSy,k i Yk (2)

7 is a hold state usexi to model the sampler and zero order hold between ii and u. Sy,k, Sz. k,

_nd su. k are switching mamces for y, _', and u respectively that model the system's

_ampiingupdatc acuvitv at me start the k m STP. s,_ has the form:

rt 0 0 ..-

{ 0 r2 0 ,-.
i

S,,k =

0

0

0 • • • 0 rm,.l 0

0 ... 0 0 rm, __

where
1 if the j',h ,,,,, (Z, y, or u) is sampiedlupdated

at the start of the k th STP
rj = __0 otherwise

rn z : the number of states (z-)

rn v = the number of inputs (y)

m u = the number of outputs tu)

A more complete discussion of this compensator su'ucmre can be found in [17].

Equanons (I) and (2) can be written more compactly as:

Zk+ 1 = AkZ k + BkYk

uk = CkZ k + DkY k

(3)

(4)

where Zk-

Equations (3) and (4) form a single rate periodically time varyi, ng system with a

sampling rate of one STP and a period of one BTP. If N=BTF/STP, then A k = Ak+ N,

B k = Bk+N, C k = Ck+N, and D k = Dk+ N.
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! 991 ACC Reduced Order Multiraze Compensator S,vn_esis 4

Even though A k, B k, C_: and D k are periodically time varying, the muitirate

compensator has ume invariant gains. The periodicity, of the muitirat_ comvensator is due

:o muitirate sampiin_updatmg not me compensator gains, in the remamrier of this section

,,re will demonstrate now tne Ume invarlant compensator gains. A. B, C, and D can be

_eparatea from me periodic compensator rrmmces A k, B k, C k and D k.

Define me composit_ compensator matrix as

Pk-i Dk Ck ] (5)
L Bk A_ j

and factor Pk as follows:

where

Pk = SIkPS2k _"S?k

-5 i
P={

EJ

i Su,k 0 i
0 Sz,k

Slk= 1 0 0 1
Su,k 0

[ 0 I-Sy,k 0 ]Sy,k
Sok=! 0 ! 0 0 !

0 0 0 I-Su.k_

{ 0 I-Sz,k 0 0 l
S3k =_

L Sy,k 0 I-Sv,k 00 0 0 I-Su.kj

(6)

(7)

(8)

(9)

(IO)

Equation (6) is a key result. It allows us to factor the time invariant compensator gains,

the unknown parameters we will solve for in Section II, out of the time varying

compensator.
It is important to note the difference between Pk and P in (6). Pk (with a subscript) is a

periodically time varyi."ng matrix defined by (5). It includes all the information about the

compensator gains and the sampling/update schedule. P (without a subscript) is a constant

roan'ix which contains only the gains for the compensator. Pk can be written in terms of P

and S lk, S2k' and SZk, equation (6), where S lk' S2k, and S3k axe periodically time varying

roan'ices which contain a description of the ,sampling scheme.
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II. DERIVATION OF REDUCED ORDER MULTIRATE COMPENSATOR

in this secuon we wiil use me resuits of Secuon i to aenve the equanons governing the

rectucea orcter muitirate compensator. The muitirate t_roblem to be soived is as follows:

Given: the system

_+_ = _x_ + g_k ÷ _w_ (11)

._k = _xk + v.k (12)

where F. G. W and H are obtained bv discrenzing the analog plant mamces at one STP;

lnd where w k and v k are discrete-time gaussian white noise inputs.

Find: the muitirate controi law with a prescribed order and sampiing schedule, of the

orm or tl )-(2L which mmmaizes tne auaciranc cost funcuon of the form:

(13)

E is the expected value operator, and the summation from 1 to N accounts for the fact that

the closed loop system is periodically time varying. A prescribed sampling schedule implies

that the values of Sz,k, Sy,k, and Sz,k are known. Sample schedule selection is discussed in

[4] and is the subject of future research.

When we write (1)-(2) as (3)-(4) it is easy to see that this problem is essentially a time

varying feedback problem - a time invariant plant with a periodically time varying

compensator. What makes tttis problem difficult is that the time varyi. rig compensator has

an expiicit form, that of (1)-(2), in which only certain parameters, A, B, C, ana D, can pe

adjusted to minimize J.

To solve the multiratc control problem we east it into output feedback form and follow a

derivation similar to Mukhopadhyay's for the single rate case {12], [14]. Using (1)-(2)

written as (3)-(4), and (11)-(12) we write the output feedback equations:

= + 0 I wk1 1 t+ } (14)

/zkl00j/zkli°II{= +.00 Vk i
(15)
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I Bk AkZk_-lI " JlZkl

(16)

Equauons t 14_-(16) can be written more compactly as

Xk+ I= Fxk + Gu k + W_Ik (17)

Yk = I{xkt V'qk (18)

Uk = PkYk (19)

It is important to keep in mind that Pk in equation (19) corresponds to the Pk in equation

5), a penodicaJly time varying matrix which contains all the mformauon about the muhirate

comt_ensator gains anti sampling/update rates.

7"he ciosea IOOD system is

Xk+i = FckXk -r Gckqk (20)

'.vhere

Fck = F + GPkH (21)

Gck = W + GPkH (22)

The state covariance propagation for this system obeys the following equation:

where

Xk+1 = FckXkFcTk+ GckRGcl'k

Xk --E{XkX{}

R = E{llkTlT}

(23)

Equauons _20_-(22) represent a periodically time varying system with a period of N.

We can generate a single rate system by repeated application of equation (20) over one BTP

[11]. The single rate system can be written as

Xk÷N = FbkXk + Gbkrlbk (24)

wh_e

Fbk = Fc(k+N-1)Fc(k÷N.2'_Fcfk+N.3Y • • Fck

Gbk = iFc_k+N-t_Fc(k+N.2V--Fc_k+DGck t
Fc(k÷N-t)Fc(k÷N-2Y " "Fc(k÷2)Gc(k+l) [ t Gcfk+N-1)]

(25)

(26)
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! qk

_k+l
_bk =: i

"lqk+N. 1

This single rate system has exactly the same values for x as the periodically time

varvang closes loop system at each BTP. However. the values of x at the intermediate

STP's have been lost because x is incremented by N in (24) but ontv by l in (20). There

are actuailv N such single rate systems associated with ('20). They can be written as:

Xk+N+ i = Fb(k+i)Xk+ i 4- Gb(k+i)lqk+i ['or i--t ,2 .... N (27)

If F_k is stable, then the penodicaJly Ume varying system 120) is stable i9]. We can

'a2cuiate me steaav state covanance for x using me following Lyapunov eouanons:

Xk = FbkxkFTk + G,kRbGTk for k=t.2 ..... N (28)

R 0"'il

Rb_. 0R.

000

Note that the covariance of x is periodic, that is the covariance varies within one BTP,

but from BTP to BTP X k = Xk+ N. Once we have calculated the ste,ativ state covarianec for

x k at any k using (,28), we can use t23) to propagate the covariance over the BTP. This

eliminates the need to solve equation (28) N times.

Now, using _23) aria t13) and. the properties of the Trace tTr) operator we can wrim the

cost function for the st_ilized system as

N

I = Z. Tr{[QI + MPkH + {MPkH) 1"+ {PkH)TQ2PkHiXk + {PkV)TQ2PkVR}
k--I

(29)

Adjoin the constraints to the cost J using Lagrangc multipliers, Ak, tO obtain:
N

= Z Tr{!Q1 + MPkH + (MP_H) r + (PkH)TQ2PkH]Xk + {PkV)TQ2PkVR
k=-I

T T

with X_ = XN÷ i.

(30)

69



i991 ACC ReducexiOrder MultirateCom nensam¢ Svnmesis S

The necessary, conditions for minimum j are

_= O. -0, and _ = i)
bXk 6Ak+_ bP

(3I)

In addition.
6p2

must _ positive definite for a minimum J.

s ubsututmg t303 into t31) and replacing Pk with Pk=SIkPS2k.S?k from t6"t we obtain:

T
- 0 = Qt + MPkH + (MPkH) T + (PkH)rQ2PkH + FckAk+lFck - Ak

for k=l,2 ..... N with A k = :\k+N

(32)

0Ak+l
= t) = FckXkFcTk

-- r
,- (JckRGc_ - Xk+l

fork= 1,2 ..... N withX k=Xk+ N

(33)

- N

=o=2 ([Q2+GrAk+IGiPkIFIXkHT+ VRVTi
OP k=l It J _ J

+[MT+GTAk+IFiXkHT) sT k

(34)

Equanons _32)-(34) are a set of coupled equations, two sets of Lyapunov equations and

one Riccata equation, which matte up the neeessarv conditions for which P. the multirate

compensator gain matrices A, B, C, and D in equation 117-(2), will minimize the cost

function J. The values of A, B, C, and D found by solving t32_-(34) can t_e substituted

into (1)-(2), along with the definition of the sampling schedule. Sz,k, su. k, and sy_k, to form

the complete time varying muitirate compensator.

To ensure that the compensator gains satisfying (32)-(34) minimize J, we must aim

cheek that the hessian of ]" with respect to P is positive definite. In our present algorithm,

we do not calculate the hessian explicitly, but use an approximate value calculated by the

numerical search algorithm discussed m the next section.

Equations t32)-(34) were derived assuming time invariant compensator gains. We can

easily derive the equations tor periodically time varying gains, so that A, B, C, and D in

equation ¢1) are periodic. Let

A -- Aj, B = Bj, C =Cj, andD= Dj (35)
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with the resmcuon that

_o that

:7hen reoiazeP with Pi

A!*N = A ;, Bj.N = B ;, Q,,-N = C', .'and D,_-N_= D;

,-- u

p=_=il D_

ana differenuate t30) with respect to P'j to obtain

_= =S1Tk
6Pj

.-;MT+GrAk.IFiXkHT}sTk Corj = i,2 .... N

(36)

(37)

ThUS for every new set of compensator gains we add one new equation of the form of (37).

Equauons 132)-(34) are verv similar to the single rate equations. In fact. if we set N-I

and S ',k and S2k equal to the identity, matrix we obtain the exact resuits derived by derived

by Mukhopadhyay for a single rate case [ 12].

1"1I IMPLEMENTATION

In order to determine the reduced order multirate compensator which minimizes the cost

function J, we need to solve (32)-(34). A numerical gradiem-type search algorithm was

impiemented in MATLAB [16] to sotve these equations. A flow chart of the algorithm is

shown in Figure 3. The equations necessary to solve for the Lagrange multipliers, (A.3)-

(A.4), are located in the Appendix.

The algorithm automatically discretizes the analog plant, weighting matrices and

process noise covariance matrix. Refer to (3] for a discussion of the relevant diseretmation

procedures. To ensure that the solution represents a minimum J, the algorithm checks that

the hessian of J with respect to the free parameters in P is positive defmite at the solution

point.

Because t32)-(34) are not valid when the closed loop system is unstable, the numerical

algorithm 1) must be provided with an initial stabilizing compensator, and 2) must result in

a stabilizing compensator at every, iteration of the optimization. In our experience, finding

an initial stabilizing compensator is generally not a problem using successive loop closm'es

[4]. To avoid the problem of destabilizing compensators during the iteration process we

included a cheek in the algorithm which systematically reduces the step size to enstm,- the
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compensator is stabilizing. Because the m'adient of the cost funcuon with respect to the

:omt_ensator parameters becomes very large near the stability, boundarv, the algorithm is

._iwavs forced back towards a stable solution as long as it never steps over the stability.

bounaarv into an unstable re mon.

IV. TWO LINK ROBOT ARM EXAMPLE

We used a mare model of a two link robot arm tTLA] to demonstrate me capabilities of

our aigonthm. This is the same model used by Yang, and so we were able to verify, our

results by direct corrg)artson. A diagram of the TLA is shown in Figure 4.

The goal of our design was to control the rip position (8) of the arm via a multirate

compensator. We used the following analog weighting and process noise covariance

_amces from i 171.

F .21 0 0 0

QI = 0 0 0 0

t 0 018.50
0 0 0 0

0.01 0
Q2 = [ 0 0.694a2,i

EIwwT}_[0.694azt 0 ]-L 0 0.01

(38)

We assumed perfect measurement and that plant disturbances enter the system

coincident with the control torques. For the multirate compensators, O was sampled and T 1

was updated every 0.225 seconds: 8 was sampled and T, was updateci everv 0.028125

seconds.

Five different compensators were designed: an analog LQR, a muitirate lead/lead, an

opumized multirate lead/lead, an optimized multirate general 2 nd order, and an optimized

single rate general 2 nd order. We used a smooth step input to Oref and Ore f defined as

follows:

I O'O0_i I COS(_'e ] ]8tel(t) = " t _<Tc

[0.01 t >_.Tc

Oreftt)-
8ra(t)

Li + L2 ' Tc=0.125 sec

(39)
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and the servo confimu=auon shown in Figure 5 to measure the perform_ce of the different

compensators (17]. The response of the TLA for the five compensators is shown in

Figure O.

The analog LQR compensator used simple full state feed back. We provided this

compensator as an example of the response possible using the cost function weighting

mamces of (38).

The muitirate lead/lead was founa using successive ioop closures. We designed the

control loops in the discrete domain so that the eigenvaiues of the closed loop system

matched those we obtained using LQR transformed to discrete time. This compensator

consists of two simple lead loops: one from 8 to T 2 operating at the fast sampiing/ulxlate

rate, and one from 0 to T I operating at the slow sampiing/update rate.

The final three comnensators were synthesized using our new algorithm and the cost

,.vei_htm_ mamces used to design me analog LQR com oensator. The opnmized muim'ate

_ead/lead was found by optimizing the pole/zero locanons and gains of the lead/lead

compensator found by successive loop closures.

The optimized muifirate general 2 nd order compensator uses the same sampling/update

scheme as the lead/lead compensators but has the compensator structure of (40), where aij,

bij, Cij, and dij are the parameters which were optimized. This compensator has the

maximum number of independent free parametm's possible for a second order syst,_rt;

- a_1 g= bt2 C= ct_ c_2 _= dtl dr2 (40)
A-I 0 a,_2 J b21 I c21 c22 _ d21 d22

The opumized single rate general 2 nd order compensator is a single rate equivalent of

the muitizate general 2 nd order compensator. It has the same structure as the mald,-am

gener'aJL 2 ad order compensatm', (40), but uses a single sampling rate which was chosen

such that the number of computations ne_ied to implement either the muitirate or single tam

compe_ato_ are the same.

Our resultsare the same as those obtained using Yang's algorithm. They de_

how muitiratecompensators can provide betterperformance than singleratecompensators

by tradinglower bandwidth controlof the slow modes forhigherbandwidth controlof the

fastmodes. In thiscxample we were able toreduce the tipresponse over shoot 40% and

thepeak conu'ottorque25% by using a multirateconu_Uer over a singlerateconu'otler.
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V. CONCLUSION

in mis paper we have presented an algorithm that can be usea to synmesize reduced

order muitirate comt_ensators with or without periodically time varying gains. Our

._iaonthmis similar to that aeveioped bv Yang, except we use an ira-mite time cost function

:n oraer to simpiify the equations governing the somtion. One advantage to this approach

:s mat me exnression for the gadient of the cost is reiativeiy sirnpie, _g the numerical

_earch algonmm more efficient. The disadvantage of this approach is that an initial

_tabilizing comt_ensator is required. However, for most cases a stabilizing compensator

_an be easdv obtained using successive loop closures.

74



' 991 ACC Reduced Order Multirate Comt)ensator Svmhesis 13
i I i i

[11]

[13]

[14l

[15]

REFERENCES

'_ .-krmt. N.. "Optima/Controi of Multirate Digital Control Systems." Ph.D. Thesis,

Dep. Aero. Astro. Stanford Univ.. Stanford. CA. Rep. 523. 1980.

'2] Arrut. N.. and Poweil J.D.. "Optimal Controi of Multirate Systems." Proc. AIAA

Guid. Contr. Conf., Albuquerque. NM. 198l.

13] Berg.M.C.. "Design of Multirate DiwitaJ Control Systems." Ph.D. Thesis. Stanford

Univ.. Stanford. CA, 1986.

[4] Berg_, M.C., Amit N. and Powell J.D.. "Multirate Distal Control system Design,"

IEEE Trans. Auto. Contr.. Vol AC-33, Dec 1988, pp.1139-1150.

I5] Berg, M.C.. and Yang, G.S.. "A New Algorithm for Multirate Digitai Control Law

Synthesis." Proc. JEEE Conf. Decision Contr.. Dec 1988. Ausun. 2"X. pp. 1685-

! 690.

16] Bernstem. D.S.. Lawrence. D.D.. and Hvland. D.C.. ",The ODtimai Projecnon

Equauons for Reduced Order Discrete-Time Modeling, Estimauon and Controi,"

AIAA Jour. Guidance Contr. and Dynanucs, Vol 9, May-June 1986. pp. 288-293.

_7] Bryson. A. and Ho. Y., Applied Optimal Control, Hemisphere Publishing Corp.,

.N'Y', 1975.

[8] Hyland, D.C., and Bernstien, D.S., "The Optimal Projection Equations for Fixed

Order Dynamic Compensation," IEEE Trans. Auto. Contr., Vol AC-29, No. 11,

Nov. 1984, pp. 1034-1037.

[9] Kono, M., "Eigenvalue assignment in Linear Periodic Discrete-Time Systems," Int.

J. Control. Vol. 32, No. 1, 1980. pp. 149-158.

[ I0] Kwakernakk and Sivan, Linear Optimal Control systems, Wiley-intersience, NY,

1972.

Meyer. R.A.. and Burrus, C.S., "A Unified AnMvsis of Multirate and Perioditmlly

Time-Var3nng Digital Filters," IEEE Trans. Circuits in Systems. Vol. CAS-22,

No. 3, March 1975, pp. 162-168.

[12] Muldaopadhyay, V., "Digital Robust Control Law Synthesis Using Constrained

Optimization," AIAA Jour. Guid., Contr. and Dynraics, Vol. 12, March-April

1989, pp. 175-181.

Mukhopadhyay, V. and Newsom, J.R., " A Mulriloop System Stability Margin

Study Using Matrix Singular Values," AIAA Jour. GUM.. Contr. and Dymmcs,

VoL 7, Sept.-Oct. 1984, pp. 582-587.

Mukhopadhyay, V., Newsom, J.R., and Abel, I., "A Method for Obtaining

Reduced-Order Control Laws for High-Order Systems Using Optimization,"

NASA Tech. Paper 1876. August 1981.

Newsom, J.R. and Mukhopadhyay, V., "A Multiloop Robust ControLler Design

Study Using Singular Value Gradients," A/AA Jour. GUM., Contr. and Dynmies,

Vol. 4, July-Aug. 1985, pp. 514-519.

75



/99t ACC Reduced Order Multiram Compe, nsator Svnmesi s 14

Pro-Matlab Users Guide, The Mathworics Inc., 1989.

Y_g, G.S.. "A Generalized Synt'aesis Method for Multi.rate Feedback Control

Systems. _' Ph.D. Thesis. Univ. of Washington. Seattle. WA, 1988.

76



i991 ACC ReducedOrderMultiramComoensatorSvnthesis 15
I !

APPENDIX

A. Calculation of the Values of the Lagrange Multiplier

Given a Pk which stabilizes the multirate system we can calculate the steadv state values

of A k where A k is deffmed by equation 132) rewritten hem as cA. 1).

T
0 = Qt + MPkH + tMPkH) -r+ {PkH)rQ2PkH + FzkAk÷lFck - Ak

for k=l,2 .... ,:q with A k = Ak+ N

(A.1)

First simptify (A. 1_ by defining

Q3 ---_
L

and Jk =_
MT 02 j LPkH J

I is an identity, matrix

(A.2)

Then tA.1) can be written as

T
Ak = JTQ3Jk + FckAk+iFck for k=l,2 .....N with A k = Ak+ N (A.3)

Equation (A.3) represents a periodically time varyfing Lyapunov equation.

create an equivalent single rate system by repeated application of (A.3).

Ak = JTkQdJdk ÷ FTkAkF_ for k=l,2 ..... N with A k = Ak+ N

We call

(A.4)

Fdk = Fc(k+N-l)Fcfk+N-2)Fcfk+N-3_" • "Fck

Jdk = [J(k+N-I_I_cfk+N-2Fc(k+N-3V••Fck [

J(k+N-2)Fc(k÷N-3)" • "Fck [ "'"

VQ3o... o

L6 o o' J

IJk]

(A.5)

(A.6)
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Equaraon tA.4] is a time mvanant Lyapunov equauon which can be solved for A t.

Once any A k has been found, the propagataon equation CA.3] can be used to find the

remaining A k.
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Parameters: Mass

0.163 kg

Inputs: Torque T1 and T 2

Outputs: 0 and 8
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0.965 m
0.167 m

Figure 4. Two Link Robot Arm

-- Compensator

Two Link Arm
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I. INTRODUCTION

There :zre -:nanv estaDlished methods for synthesizing muitiratf, compensators {Berg,

Yang, Mason. Glasson. Attar} but surpnsmgiy few methods for analyzing the robustness

of these systems. Current robustness analysis methods reiy prmcipaily on the transfer

:'uncuon of the system. A muitirate transfer funcuon, in the traditionai sense, does not

exist, because most muttirate systems are periodically time varying. Without some

modification, established analysis methods cannot be appiied directly to muitirate systems.

[Thompson} and {Apostoiakis] have both proposed ways to extend existing robustness

_alvsis techmques to muitirate systems. Thompson used "Kranc" operators to transform a

_peciai class of muitirate systems, derived from sampled continuous systems, into MIMO

_ingle rate systems. Apostoiakis transformed the general muitirate system into a discrete

:'.me stogie rate MIMO system ann then used impulse mociulation to uroduce a continuous

:ALMO system iBoykin's]. In both cases, me inputs and outputs of the new MIMO system

were comprised of delayed samples of the inputs and outputs of the multirate system.

Thompson and Apostoiakis then used muitivariable nyquist criterion ann/or unstructured

smgumr value analysis to calculate the gain and phase margins for the muttirate system.

In this paper we will present an alternative approach for extending nyquist criterion and

singular value analysis to multirate and periodically dine varying systems. Like

Apostolakis, we transform the original system into an equivalent time invariant singi_ ram

system. However, we perform the robustness analysis in the "z" domain. By working in

the "z" domain we can establish relationships between a muitirate/periodicalIy time varying

system and its time invariant single rate equivalent. These relationships clarify the

timitanons of nyqmst aria singular value analysis using single rate equivalent systems_

The paper is divided into five section. Section I provides some back ground

information about multirate systems and discusses transfer functions for multiram and

periodmally time varying systems. Section II discusses the application of the nyquist

stability criterion to these systems: Section III discusses the application of su-ucnm_ and

unstra_ singular values analysis to these systems. Section IV contains a exampi_ of

robustness analysis using structured sIngular values for a muttirate system. Concluding

remax_ follow in Section V.

I. MULTIRATE AND PERIODICALLY TIME VARYING SYSTEMS

Before discussing robustness analysis we will fhst establish the relationship between

multixate and periodically time varyi, "ng systems. Then we will define an equivalent single
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rate system which wiil allow us to combine penodicaily time varsn, ng, multirate and time

;.nvanant systems using tmdirionai block diam'a.m techniques.

._x,_enerm muitimte comoensator ts ShOWn tn Figure i. Each input (y), oumut (u), and

_tate t,'_ is sam Died/updated at a ram which, in general represents me desired barmwidth of

the mout or output with which it is assocmted.._ is the value of v currendy avaiiable to the

d.iOtai processor from me zero order hold: while _ is the current output from the digital

processor which is held with a zero order hold to form the bUtUt u. A discussion of this

comt)ensator structure can be found in {Berg 8_ Mason, and Yang].

Associated. with this muitirate compensator is a multirate sampling schedule which

_pecufies the samplin_update rate for each input, output and state. We define the _mxatest

common divisor of all the sampiin_update periods as the shortest tzrne period (STP) and

the least common muitiple of all the sampiing4update periods as the basic time period

BTP_ _.._e integer,V is aefinea as:

N =BTP (1)
STP

When the sampling/update rates have ratios which are rational numbers, the

sampling/update schedule is periodically _ varying and the muldmm compensattr can be

modeled as a linear periodically time v .arymg system of the form (Mason & Berg]:

x(k+l) = A(k)x(k) + B(k)u(k) (2)

yk) = C(k)x(k) + Dk)ufk) (3)

where A(k) = A(k+N), B(k) = B(k+N), C(k) = C(k+N), aria D(k) = D(k+N)

The sampling period for (2)-(3) is one STP and the period of repetition is one BTP.

Any practical multirate system can be modeled as linear periodically time varying

system of the form of (2)-(3). Ther_ore, we will focus the remainder of the discussion on

linear periodically time varying systems, of which muitirate and single rate arc ,, special

case.

Given a periodically time varying system of the form of (2)-(3), we can cream an

equivalent time invariam system by repeated application of (2)-(3) over the BTP [Meyer &

Burms]. The equivalent time invariant system is

x(N(k+l )) = Ax(Nk) + B'_(Nk) (4)

"_(Nk) = CxfNk) + D'_fNk) (5)

Whe_
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,4 = A(k+N-tM(k+N-2)...A(k) (6)

B =;A(N-1)A(N-2)...A{2)B(1)IA(N-13A(N-2)...A(3)B(2) [

,- C(1)

C(2)A(1)
C=I

i

C(N-1)AfN-2_...A(1)

(7)

(8)

i

D=i

Dr1)

C(2)B(1)

C(3)A(2)Bfl)

C(N- I )A(N-2). • .A (2)Bf 1)

0

D(2)

C(3)B(2))

C(N- 1)A (N-23. ..A (3)B(2)

0 0

0 0

D(N-2) 0

CfN-t)B(N-2) D(N-1)

(9)

I y(Nk) i (u(Nk) _

y(Nk+l) I u(Nk+l)

where'y(Nk)=Ij + I and _(Nk) = i (10)
(Nk N-I) u(Nk+N-t)j

Equanons _6)-(10_ transforms me linear periodically time v .arymg system, t2)-(3), with

p inputs, q outputs and a sampling period of one STP to a Linear time invariaat system, (4)-

(5), with Np inputs. Nq oumuts and a sampling period of one BTP. We will ref: to (4)-

(5) as the equivalent single rate system (ESRS) of (2)-(3). It is important to keep m mind

that the mputs and out-puts of an £SRS are comprised of samples of the mputs and outputs

of a time varying system. A consequence of this is the relationship:

=tb,ll2 (li)

We can calculate the transfer function of (4)-(5) usmg me following definitions for the

Z Tram(ore. Let

Z(x(k) )=_ x(i)z-i (12)

i=O
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_en

Z_(x(k.)) =£ x t iN) z'"v

;=0

ytz,V,t) = Z_(y(k+t_)

z,vly(k)}
" v Z_ly(k+t)} !
ytz' )=,

_ZN{y(k+N- 1 !} J

with a stmiaar definiuons mr _tz ,v) and u_z,V,l).

The transfer function for the ESRS, (4)-(5), is

_ z'Vl = G,g_z,' l't(z 'v)

where G_(z ,v) = C(Iz N - 4)_B + D

(135

(14)

(155

(16)

(17)

The transfer function is written as GN(z 'v) to empiaasize that the sampimg period of the

ESRS is one BTP. or N times the sampling period of the time varying system t2)-(3).

So far. the ESRS has only been applied to periodically time varying systems. We

could, however, calculate the ESRS of a time invanant system - in this case N can be any

integer.

The transfer function for the ESRS of a time invariant system can be calculate using

(17). Alternatively, GN(zN) can be calculated directly in terms of the transfer function of

she time invanam system. G(z). Given

y(z) : G(z)u(z) (18)

and following [Meyers & Burrusl we can write

N-I

y(z) = _. z-_y (zU,l) (19)
/:0

N-I

Y(Zt¢'15 : _N zz _ _liY (zOi) (20)
t:O

Combine (18)-(205 to obtain

where 0 ---e"
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V-I N-1
. ,n ._H-rn) : N

;"tz'V'f) = N
i=O m=O

(21)

From t i5) ann t21_ the tr_n:-ow ann m :'_ coiumn of G_v(z 'v) is given bv

.V-1

G'v(z 'v )I._ = _!_ _,,'-m _ _"z"mG(z$' , (22)
N :=0

For aume invanant system. Gu(z:") is maae up of time and frequency shifted verstons

of G(z). A special case of f22) occurs when G(zCJ i) = G(z) for i = 0,I .... ,N-l.

f G(z) if l = m

If G(zO _) = G(z) for in0,1 .... ,N-1 then G_v(z'V)t,_ = i 0 otherwise
(23)

The simniest G(z'_ satisfying t23) is G(z) = constant. Equauon t23) is an important

:emuonsnin which wfii be used in Secnons L1anti III.

Equauons t6)-(10), (16)-(17) or t21) can be usexi to compute state space and transfer

funcuon aescnpuons for the ESRS of a penodically time varying or time mvanant system.

The advantage of the ESRS is that is it allows us to manipulate Ume invariant and

periodically time varyAng systems (e.g. muitiratel as ff they were both time invanam. The

state space or transfer functions descriptions can be used to calculate input-output retains

for systems in series or in a feedback loop just as in classical control [Khargonekar], In

addition. [Kono] has shown that if the ESRS is stable then the time varying system from

which it was derived will be stable. So, we need only worry about the stability of the

ESRS.

lI. NYQUIST STABILITY CRITERION

We can determine the stability of the periodically time varying system in Figure 2 by

applying standard multfloop nyquist [McFarlane ...] criterion to the ESRS. since the

periodically time varying system will be stable if its ESRS is stable. The ESRS rettma

difference is given by

l - GN(zN)AN(z N) (24)

and the nyqttist contour is

z N = em O< w < 2rr.

When the periodically time varying system is SISO, we can determine traditional, gain

and phase margins from the nyquist plot. Recall that when A(z$ i) = Afz), AN(z N) is a
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!iagonm transfer funcnon mamx with A(z) on the diagonal

with _mn and phase uncertainty can be written as

Thus. me ESRS for Fimn'¢ 2

G_tz )actua_ = G_(Z")nommaiJNxN _e_O (25)

Phase and gmn mar runs from the nyquist piot can be interpreted in the traaitionai sense

__ven mou=n the ESRS is MIMO because me inputs and oumuts are correiat_ in time and a

:onstant earn appties equally over mt time. [Thompsont arrived at mis same results using

Kranc o_erators.

When me time varyang system is MIMO. the standard MI2VIO nyquist resmctions apply.

7or I_LrMO time varying systems, it is best to use a norm basea approach SUCh as singular

vaiue _aivsis.

[II. STRUCTURED AND UNSTRUCTURED SINGULAR VALUES ANALYSIS

In me previous section we saw that Uae muitiloop nyquist sta0llity criterion can be

applied to an ESRS to determine the stability of a periodically time varying system. In this

section we will see that. with some limitations, both structured and unstructured singular

value anatysis can be applied to the ESRS to determine the robustness properties of a

periodicaLLy time varying system.

Given stable transfer functions G(z) and A/z) it has been shown that the closed loop

system will remain stable through out continuous changes m Atz) if

det II - G(z)A(z) ) _: 0

or g _I - G(z)A(z)) > 0

(26)

(273

is satisfied around the nyquist contour, subject to certain restriction on Gz) and A(z)

[Maciejousk'y .... ]. By direct application of (26)-(27), a periodically time varying system

will be stable ff

det (I - G_v(zN)AN(z'V) ) _: 0

or _[I - G_v(zN)AIv(zN)) > 0

(28)

(29)

is saasfied around the nyquist contour, because a periodically time varying system willbe

stable if its ESRS is stable. From t28)-(29) it follows that most singulm: value robustness

tests can be applied dixcetly to a ESRS to determine the robustness properties of a
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:enoriicailv time varying system. The resuits, though, must be mteroretext in light of the

:act mat some of the inputs and oumuts of the ESRS are time correiatext. In the following

zara_a_zns we wiil discuss the important differences between asinme rate system anti an

ZSRS ana how mese affect singuJ.ar value anaivsis.

'_3 There are aN, not q, sineuiar values associated with eaci_ point on the nyquist

_'_ntour for rne ESRS of a time varying _'stem with oniv q inputs ana outputs. The

aaditionai sin m.uar values come from the time correlated inputs ann outguts of the ESRS.

Rememt_-r mat me sampling period of the ESRS is one BTP, N times slower than the time

•,'aryang system fi'om which it was derived: but the ESRS has N times as many inputs and

out-puts as the original time varyi, ng system. The key point is that atl of these singular

'. aiues are important in determining the roDustness of a Denoriicallv time v .arymg system.

:f an ESRS is generatea from a time invanant system, tr, e smguiar values of the ESRS

anti the singular values of the on mnai singie rate system are reiateo bv the following

expression.

{-

crG_,(eJ 'v",) = [cGf(/)°eJ°_), oG(¢_ leJ°_),.., crG(#/v'l eJ°J)J (30)

In (30), singular values associated with frequencies above I/BTP in G(z) axe reflected

back to lower frequencies in G_(z'V). It follows directly from ( 30_ that

I[GN<zNNI.=iia(z311. (31)

where )tG( z )llo. =_p -_ [G( eJ°_) ]

2) The ESRS imposes a structure on any uncertain_, z_N. Any A.,v in (28)-(29) must

obey (17) or 122}; this automatically imposes a structure on A_,.. The problem is, we are

often interested in a time invariant plant uncertainty, A, that destabilizes the system and not

in A, v. _(AN) found using unstructured singutar value analysis is often overly conservative

because it accounts for not only the fictitious perturbations normally associated

unstructured sin maiar values but also for time varying and non-causal perturbations. It is

important to remember that _IAN) found using unstructured singular values can be

extremely conservative and may not reflex _){A).
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Strucmrea singular vaiues provides a mechamsm for finding A. For an ESRS with a

:ime invanant uncertmnrv. A_z), the definition of the structured smguiar vaiue. _, can be

._Tltten as

¢0 if deal - G,_(z,V)±_(z,V)) _ 0 for any a E aBD

rain (_IA(z_): aet (I - G_(z)A_(z)) =0t -_ omerwtse
! _Eam " )

(32)

A_D is me form of the pernussibte block niagonai permrt_aUons A: ann the structure of AN

must sausfvequanon (22).

Unfortunately for a generai Afz), the structure of A_(z) is often very comptex and

finding a good estimate of size of A is difficult. However, when A is a constant, as is the

:ase for many prot_iems.

A N = aiagtA, A .... ._) with N blocks (33)

and structured singuiar vaiue anaiysis can be used to determine A.

When A is a ume varying, but not a function of "z", AW becomes

AN = diag(A(1), A(2) .... A(N)) (34)

and has no repeated blocks. Equation (34) must be interpreted with care - (34) implies that

the vaiue of A(k) is constant over the sampling interval, STP, and changes instantaneously

to A(k+l) at me next sampling instant. This may not be a good mtmel of time varying

uncertainty.

3) When tA is a constant then each A block of A N can be scaled independently. Using

the block diagonal scaling property of Ix [Maeiejowski], and (33) or (34) it is

straightforward to see that

If A is a p by p matrix then IxtDG_v(zN)D'l) = _ttGN(zN))

where D =(dll p, d__p .... d vl p) and/is a p by p identity, matrix

(35)

In addition if A is block diagonal then each of sub-block of A can be scaled in a similar

tTlallIl_I'.

An interesting result of (35) is that the upper bound for _ttG_(zN)) given by

93



_Iultiram Robusmess Analysis DRAFT 3/15/91 9

,_I GN(z'V) ) < i nj(DG_(zN)Dt_ (36)

is the same whether A is penodicaily time varying or time invanant, subject to the

intemretauon of a tame v .arymg A mentioned in item 2. The upper bound for the time

!nvanant case found using t36) is of course more conservauve.

4 ! Singuiar value piots of ESRS tran,v'er function matrices should not be interpraett in

:he freauency domain. The ESRS has time correlated inputs and outputs. The response

from one input to one output represents onty part of the total simaal between the input and

output of the penodicaily time varying system.

A meaningful cauanurv for an ESRS is its infinity norm. From { 11_ ana fFrancisl we

:an wine mat

(37)

Thus, ilGN(zN_I, can be interpreted as the maximum gain of the system for all u with a

bounded two norm, just as in the single rate ease. For the single rate case the maximnm

gain occurs when u is sinusoidal - this is not neccssaniy true for the penodica21y time

varying system.

Singuiar value analysis of an ESRS, both structured and unstructured, can be used to

determine the robusmess of periodically time varying system. As we have discussed, thc_

arc limitations to this analysis because the inputs and out'puts of an ESR$ are time

correlated.

IV. TWO LINK ARM EXAMPLE

The resultsof theprevious sectionswillbe illustratedby calculatingthe gain

foraplanartwo linkrobot arm (TLA) using strucunv.dsingularvalues.Two differem cases

are considered: 1) the TLA with a 2 nd order multirate compensator and 2) the TLA with a

2'u/order single rate compensator.

The TLA is shown in Figure 3 and is described further in (Berg and Yang]. The two

compcnsators were designed to _ a costfunctionquadraticin thestatesand controls

using the opm_,'n_nn method described in [Mason & Berg|.
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The 2 na order muitirate compensator uses me compensator structure of (38/. where a_/,

b,:, cii, and d i are the oarameters which were ootirmzexi.

-- a_l _) _ --._,=, _ B=i t b_21 #=i c_ c_2i _=i d_ d_,2i (38)
. 0 a22 J b21 [ ! c21 c22 j d21 d22 ]

Yae samoiing/update rates for me compensator are listed in Table 1. In addition the

:omoensator state associated with 0 and T 1 is updated at me slow rate while the state

assoczated with 5 a.n0 T,, is updated at the fast rate. For the muitwate compensator STP =

028125. BTP = 225 andN = 8

0

6

T 1

t T2

Multimm Comtmnsator SinOe Rate Comoensator

0.225 s

0.028125 s

0.225 s

0.028125 s
I I

0.05 s

0.05 s

0.05 s

0.05 s

Table 1. Sampiing/Update Periods for the Compensators

The single rate 2 na order compensator is the single rate equivalent of the multirate

compensator. It has the same structure as the 2 nd order muttirate compensator and

minimizes the same cost funcuon, but uses a single sampling/update rate. This

sampting/update rate was chosen such that the number of computations required to

implement either the mutdmm or singie ram compensators during reai-time oberation is the

same. The sampling/update rate for the compensator is shown in Table I.

A block diagram of the TLA, compensator, and output gain uncertainty, is shown in

Figure 4, The bock diagram in Figure 4 can be cast into the standard structured tmc_ty

model shown in Figure 5 where the gains k I and _ axe allowed to vary independeatiy. An

upper bound on the structured singular values for the muttirate and the singte rate cases was

calculated using the following [Safonov].

It(Q) <-.i_DQD "t) < kt,(Q)

where kp(Q) is the Permn-Frobenius eigenvalue of Q

(39)
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For me mutrirate case, me ESRS for the piant, compensator and uncertainty was

:aicuiatea for N = _. They were comDined as shown in Figure 5 and an uDper bound for

_. as z traversed me nyquist contour, was calculated using t39). A lower t_ouna on me

:naxanum smguiar vame ot the gum mamx is _ven in Table 2.

For the single rate case an upper bound on t.t was calculated usiag two different

_.ethods. FL,-st. _ was caiculatea ddrectiv for the single rate system. N = t. An exact

vaiue for a can be calculated because mere are oniv two blocks in the uncertainw matrix

!Doyie]. Next. art ESRS was constructed for the single rate case using N = 8. An upper

bound for tt was calculated using t39). For the ESRS system, the uncertainty matrix has 8.

2 bv 2 blocks. These resuits are summarized in Table 2.

f'k_ 0q i
Design Gain Marg'in _ f) k, i = -

Multirate 2aa Order 0.535

Single Rate 2 na Order i 0.513

Single Rate 2 na Order using, ESRS 0.389
' I I I I

Table 2. Gain Margins for "fLA. with Multirate and Single Rate Compensator

The two Ix estimates for the single rate case illustrate the disativantage of using (39) to

calculate the upper bound of _t for an ESRS systems. As in the multirate case, the ESRS

single rate case accounts for penodically time varying uncertainties, resulting in a

conservative estimate of _t. See item 3. Section ILL

For the assumed tmcertamty model the mtatirate compensator was siighdy more robust.

even given the conservativeness of the estimate for _ The muitirate compensator is able to

compensate for larger gain uncertainty because it has higher bandwidth control of the

second link than does the single rate compensator.

V. SUMMARY AND CONCLUSIONS

In this paper we have shown how nyqulst cntenon and singular value analysis can be

applied to multirate and periodically time varying systems using their ESRS. For SISO

systems, traditionai gain and phase margins can be found by direct application of the

nyqulst criterion to the ESRS. For MINIO systems, structured singular values can be used

to determine the maximum size of an uncertainty. The results of singular value analysis,

though, must be interpreted in light of the fact that some of the inputs and outputs of the

ESRS are time correlated. We pointed out sevm_l important resulting limimri,',us of
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_ing'uiar vaiue anaiysis using an ESRS. Finailv we demonstratea robusmess anaJtvsis for a

:',vo i.ink arm warn a muitirate compensator using structured sinzuiar vmue.
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APPENDIX

Lemma: oGrv(eJ Nw) = _c_G(d)°e.;_), oGftb lei°_), .--dG(_'Vle;_)]

Proof: From the definition of a transfer funcuon we can write

7(z) = _(z)'_(z)

, _(z) =

N-1 ,

G(z) =

0

G(4Jlz)

0 0

0

L

L
"" 0 !

i

0 G((_N-lz) J

(A.D

(A.2)

From t 12),

N-1

y(z) = _.,_z'iy(zN,l) so that we can write _(z) = Ty(z N)
l=O

where T =

I z'II ... z4N'l)I

I (_tz)-ll (_ tz)'(N'n/

,

I (ON'tz)'Xl ... (¢'V4z)-Ov'l)l

l

(A.3)

T has the property thatTI_ = NI if z iscvaluamd on the umt circlcand I isan identity

matrix of appmprmm dimtmsons.

Then

y(z N) = T IG(z)Tu(zN) so that GN(z N) = T'IG(z)T (A.4)

Now using the fact that a2(A) equals the eigenvalues of A'A, and that the eigenvalues

of a block diagonal matrix are the eigenvalues of the individual block it follows that

o'G_e../N_ = [aG(4D°eJ°9, aG( _ lei°9, . . . ¢G(_N4ejta)] (A.5)
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ro Order Hold

?(k+l) = X_'(k) + _y(k)

_(k) = C_¢k) + _.(k)

J

_ Digital Processor

Figure 1. A General Multiram Compensator

_t)- G(t)

Figtm_ 2. PeriodicaUy Time Varying System
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Figure 3: Diagram of the Two Link Arm
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Fimare 4. TLA Feedback Loop with Output Gain Uncertainty
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AN =diag{[ kl k211, [kt k212' ""f kl k2iN }

Figu_ 5. Structured Uncertainty Model for TLA
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