-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by NASA Technical Reports Server

DETECTION OF REFLECTOR
— SURFACE FROM NEAR FIELD PHASE
MEASUREMENTS

Final Report
Grant No. - NCC-3-146

‘\

https://core.ac.uk/display/42819142?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

February 27, 1991

Final Report
Grant No. NCC-3-146

DETECTION OF REFLECTOR SURFACE FROM NEAR FIELD PHASE
MEASUREMENTS

Submitted by:

Dr. Nathan Ida
Department of Electrical Engineering
The University of Akron
Akron, OH. 44325-3904

Submitted to
NASA Lewis Research Center

DETECTION OF REFLECTOR SURFACE FROM NEAR FIELD PHASE
MEASUREMENTS

INTRODUCTION

The deviation of a reflector antenna surface from a perfect
parabolic shape causes degradation of the performance of the antenna. The
shape of the antenna is therefore desired for several applications. If the
shape of the antenna can be determined quickly during its manufacture,
localized deviations from a perfect surface might be eliminated. If an
antenna should become damaged, the location of the damage may allow
easier repair. This is particularly important since the damage is not easy

to see and is difficult to measure directly.

The problem of determining the shape of the reflector surface in a
reflector antenna using near field phase measurements in not a new one. A
recent issue of the IEEE transactions on Antennas and Propagation (June,
1988) contained numerous descriptions of the use of these measurements,
including works by Y Rhamat-Samii, et al, W. Chujo, et al., and J. J. Lee, et
al. These accounts use one of two methods: holographic reconstruction or

inverse Fourier transform.

Holographic reconstruction, used by Rahmat-Samii, makes use of

measurement of the far field (amplitude and phase) of the reflector and

then applies the Fourier transform relationship between the far field and

the current distribution on the reflector surface.

Inverse Fourier transformation uses the phase measurements to
determine the far field pattern using the method of Kerns. After the far
field pattern is established, an inverse Fourier transform is used to
determine the phases in a plane between the reflector surface and the

plane in which the near field measurements were taken.

These calculations are time consuming since they involve a
relatively large number of operations. For the holographic reconstruction
technique, the calculations are of the order of nZlog(2n) floating point
operations per phase measurement. The inverse Fourier transform method
requires n2log(2n) calculations to obtain the far field pattern, followed by

n2log(2n) operations to obtain the near filed phases again.

A much faster method can be used to determine the position of the
reflector. This method makes use of simple geometric optics to determine
the path length of the ray from the feed to the reflector and from the
reflector to the measurement point. This method takes only 57 floating
point operations per phase measurement and gives the specular reflection
point directly, rather than the phase at a plane near the reflector, as the

inverse Fourier transform method does.

For small physical objects and low frequencies, diffraction effects
have a major effect on the error, and the algorithm provides incorrect

results. It is believed (but not proven) that the effect is less noticeable

for large distortions such as antenna warping, and more noticeable for
small, localized distortions such as bumps and depressions such as might

be caused by impact damage.

Determination of the applicable distortion feature sizes is outside

the scope of this work.

THE REFLECTOR SURFACE ESTIMATION ALGORITHM

Necessary assumptions.

The Reflector Surface Estimation (RSE) algorithm developed here,
requires that there be no caustic points between the reflector surface and
the measurement plane. If this assumption is met, each point on the phase
measurement plane corresponds to either zero or one specular reflection

point on the antenna surface.

Geometry of the problem.

The geometry used in the discussions throughout this document are
shown in Figure 1. In accordance with normal conventions, the antenna
radiates in the z-direction. A feed horn is located at the apparent focus

(xf,¥1.2f). A ray emitted from the feed intersects the reflector surface at

the point (x,y,z). The ray is reflected from (x,y,z) and intersects the near
field plane at a point (xg3,¥5.22).

(4

Required data.

The RSE algorithm requires transform phase measurements in the

near field of a reflector antenna to the point on the antenna which caused

the specular reflection. Required inputs to the basic algorithm are:

Phase measurements

Frequency

Antenna feed location

Reference length

Phase measurement

Theory.

Absolute phase measuremenis or relative
phase measurements which can be
converted to absolute.

The frequency at which the phase
measurements were taken.

The location of the antenna feed in the
coordinate system in which the results are
desired.

One physical measurement which must be
made to provide relative phase length.
The distance from the origin of the
coordinate system to the plane in which the

phase measurements are made.

The electrical distance from the feed of the antenna to the phase

measurement plane can be found from:

Oref - 03
k

d= dref -

(1)

The distance consists of two components: the distance from the feed
to the reflector and the distance from the reflector to the measurement

point.

di; = N (x-x0? + (y-y)% + (2-2)? + (x-X0)2 + (y-ya)? + (z-20)? (2)

It is desired to know the location of that reflector point. Since we
know the phase at many points in the near field, we can calculate the

angle of arrival of the ray. The partial derivatives are:

9% _ Pistj - Pi-1j 003 _ Gij+1 - Bij1
ox Xitlj- Xi-1,j oy Yij+l - Yij-1 (3)
30 0 _ 1
=127 =12 m; =
i k ox My k dy | ’ ~1-m§-mj (4)

From these derivatives, we can define the path of the incoming ray:

_My, My,
X —m—z(zza)+xa’ y —I,HZ-(zzi,~)+ya (5)

We define constants representing the slopes of the lines:

=0y =
Cr=tm,, C2=m, (6)

Substituting (5) and (6) into (2)

dij =V (Ci(z-za) +xox)? + (Ca(z-20) +yuyp? + (220 + (x-%2)? + (y-y)? + (z-2)° (7)

or.

djj= '\/(-Clza +Xa-Xg + C12)2 + (-Cazy +ya-yg + sz)2 + (z-Zf)2 + w/(x-x,)z + (y-y‘,.)2 + (z-za)z(g)

Two new constants are now defined,

dy=-Cyzy + Xa-X da=-Csz, + ya-ys (9)

Substituting into equation (8)

dij =V (d1 + C12)? + (d2 + C22)? + (z-2p)? + V (x-xa)? + (y-ya)? + (z-7a)* (10)

Expanding the first term and segregating powers of z,

dij = V(@ + 2d,Cyz + C322) + (&3 + 2d;,Csz + C2?) + (22-22z¢ + 2) + ¥ (x-%)% + (y-y)? + (22,
(11)

or:

dij =V (@ + &+ 22) + QdiCy + 2doCp - 229z + (CF + GG+)22 + ¥ (x-%2) + (y-y2)? + (z-2,)°
(12)

Three additional constants are defined:

fi =d?+d}+ 2} (13)

fa =2d,C; + 2d2C; - 2z¢ (1 4)

5=C+C3+1 (15)

Substituting (13) through (15) into (8)

dij= Vi1 + foz + 2% + ¥ (x-xd* + (5-y2)° + (z-20)? (16)

Substituting (6) into equation (16) yields

dij = Vi + fz + 322 + W/C%(z-z,,)2 + 2(2-23)2 + (z-2,)* (17)
dij= Vi, + fz + 322 + v f3(z-2,)? (18)
Y, + oz + f322 = di; - N f3(z-2,)2 (9)

The second term on the right hand side of equation (19) can be either
z-z5 or z5-z. One root represents the desired solution and the other root

represents a point along the ray but in the positive z direction from the
near field plane.

Squaring both sides and selecting the proper root,

f1+fz + f322 = dfj - 2055 (z-za)djj + F3(z-20)? (20)

Separating the powers of z,

fi + foz + f322 = & - 2VT32.d;; + f3z2 + (23 djj - 2faza)z + f322 (21)

The z2 terms cancel, so

fi + £z = & - 2VF3z,d;; + f323 + VT35 - 2f3z0)z (22)

Solving for z,

, e f; - dZ'J + 2Vf3z2,d; - f3z2
Z‘H‘;dij - 2f3Za - f2 (23)

The x and y points may be found from equation (5).

To obtain these results, the floating point operations in table 1 must

be performed.

IMH

EFFECT OF NEAR FIELD GRID SIZE ON ACCURACY

An attempt was made to determine the effect of the near field grid
size on the accuracy. The accuracy should worsen with larger grid sizes
because the partial derivatives are determined from the phases of the
nearest neighbors, and, in the presence of distortion, the calculated
partial derivatives differs from the true local partial derivative for large

grid sizes.

The analysis uses as a reflector model a parabola with cosine

distortion in one of the axes. The surface is described by the equation

— x2 + y2 Ymax - Y
z= 2f * BCOS(ZTtymu = ¥min

with & ranging from 0 to 0.007 meters.

The average error as a function of number of elements in the model
antenna is plotted in figure 2 for several levels of distortion. As can be
seen from the figure, the algorithm error varies nearly linearly with input
distortion and is not greatly influenced by the element size. The
invocations of RSE, and that the RSE algorithm failed for the large values
of distortion for large grid sizes (evidenced by the curves which
terminate early on the left of the plot). The RSE algorithm determined that
some pairs of input phases were increasing or decreasing, wrote a

message to the screen, and terminated the calculations for these cases.

For successful invocation of RSE, however, the accuracy of the result is

not heavily influenced by grid size.

This is not to say that the number of grid points is not an important
parameter. If the number of grid points is small, the position of the

reflector surface will be known at only a few points.

EFFECT OF PHASE MEASUREMENT ERROR ON ACCURACY

An important performance measurement for any algorithm that uses
real measurements is the effect of errors in the measurements on the
accuracy of the results. In order to determine the output of the program to
input noise, Gaussian noise of various amplitudes was added to the input

phase measurements. The results are shown in figure 3.

The nonlinearity in the average output error as a function of input
noise is apparently because the major effect on the error at low input
noise levels is due to truncation errors in the algorithm. At higher levels,

the error due to noise is the dominant part.

10

P

APPENDIX 1
AUXILIARY PROGRAMS

This appendix contains description and listings of auxiliary

programs used in the analysis. These programs include:

vary:

rnfgp:

fixphi:

rseefr.

reffun:

A program which uses all of the subroutines and functions
below to produce error data based on variations in grid

spacing, phase accuracy, and frequency.

A subroutine which generates near field phase data on regular

grid points based on user-supplied reflector distortion.

A subroutine which accepts the near field phase data supplied
from rnfpg or from actual phase measurements and eliminates
discontinuities which normally occur either at = and at -m or
at 0 and 2r. The input range is either (-r,x) or (0.,%) and the

output range is unlimited.
A subroutine which includes the RSE algorithm and uses a
user-supplied reflector distortion function (also supplied in

rnfpg) to determine the error of the RSE algorithm.

A function which is supplied to rnfpg and rseerr which returns

the z position of a simulated reflector surface given the x and

11

y coordinates. The partial derivatives with respect to x, y, and

z are also given.

Subroutine RNFPG.
RNFGP theory.

Program rnfpg is an iterative procedure used to determine a point on
a reflector, x., y;, z,, which will reflect incident rays from a known feed
point to a known point in a near field plane. Only two of the variables are
required; the third can be determined because it is known that the point
lies on the reflector surface. The projection of the geometry in the y=0

plane is shown in figure 4.

The procedure begins with the selection of a starting value for the
solution. The assumption is made that the x and y coordinates on the
reflector are close to the x and y coordinates in the near field plane. About
this point, four rays are used to probe the location of the exact solution.
These rays originate form the feed location, intersect the reflector at four

points arranged about the assumed solution (see figure 5).

Each of the rays is bounced off the reflector, following the laws of
geometric optics. The intersection of the resulting ray and the near field
plane is then calculated. These projections and the target grid point are

shown in figure 5.

12

From these points, a new value of x, yris selected by linear

interpolation:

Yr-0+2 *8 Y (yq -Yaa) / (Ya2 - Ya4)

Yr

Up to this point, we have not discussed the selection of §. Obviously,
to converge to a solution, 8 must decrease with each iteration. The speed
of convergence to a solution is directly related to the rate at which &
decreases. If § is decreased too quickly, however, x.y, may fall outside of
the bundle of rays. This is usually not fatal, if the function is well

behaved, but if it happens too often, divergence may occur.

The parameter which will determine how quickly 8 can be reduced is
related to the linearity of the mapping from the reflector position to the
near field position. If the mapping is totally linear (e.g., no distortion),
only one iteration is necessary. The more non-linearity, the more

iterations will be needed.

One rough indication of linearity can be obtained from the points

already calculated. If the transformation were totally linear, the distance
in the x axis from x51 to x;o would be the same as the distance in the x

direction x54 to x33. Using the difference between the two distances

divided by the total distance from x5 to X33 as the measure of non-

linearity, we have:

skewy = [(Xg1 + X33 - Xg2 - Xa4) / (Xa1 - Xa3)|

13

A similar measure can be made in the y direction.
skewy = [(ya1 + Ya3 - Ya2 - Ya4) / (a1 - Ya3)!

The program uses the non-linearity as the basis for the decrease in
the spread of the packet of rays. The program starts with a § of 10% of
the largest dimension of the antenna. After the first iteration, & is

calculated from

Where

skew' = max(0.1, min(0.9,max(skewx,skewy))

The maximum value of skewy or skew is used, so long as that value is

greater than 0.1 and less than 0.9.

After the new value for & is determined, a new bundle of rays is
launched. A test is made to determine if the bundle of rays does enclose

the solution. This can be determined by examining the intersection of the
rays with the near field plane. x53 should be less than x5 and x4 should

be greater than x5, with similar requirements in the y axis. If one of these

conditions is not met, an informative message is sent to the console and

the value of & is automatically multiplied by 2. The iteration then

continues.

14

m\‘!'\'l\
Ty
L (BERN}

After each iteration, a test is made to determine if the error in the
near field plane has converged to within the maximum error used in the
program's calling argument. If it has, the value is printed out to a file and

the program continues with the next point in the near field plane.

Subroutine fixphi.

Subroutine fixphi takes as its input the results of infpg of near field
phase measurements from an antenna facility and transforms the relative
phase measurements (-t <@ <) or (0 < @ < 2n) to measurements which
can be used to determine phase length. For example, if the following line

were input into the program:

1.0 1.5 2.5 0.5 1.5
the program would convert the line to:
1.0 1.5 2.5 3.64159 4.64159

The program works by first examining the data to see if it meets one
of the conditions: (-r <@ <xn) or (0 < @ < 2n). If it meets neither
condition, an error message is displayed on the console and the program

terminates. If either condition is met, the program continues.
The program continues by rewriting the input file and reading input

while processing and printing the output. The first input value is special

in that its value is always preserved. After the first value, each

15

I

measurement is examined to determine if it appears that the data has

gone through a transition from -x tor or from 2r to O.

RNFPG performance.

There were two figures of merit of the routine which were traded
against each other to obtain maximum performance: computational speed
and accuracy. Because of the iterative nature of the algorithm, additional
accuracy can always be obtained by allowing more time for the
computations, up to the precision limits of the machine. Double precision
numbers were used as the default for the algorithm to limit the effect of

machine precision on the output.

Required accuracy is an argument in the invocation of RNFPG, and the

algorithm will execute until that accuracy is obtained.
In order to determine the effect of accuracy on expected execution

time. number of iterations was plotted as a function of required accuracy.

The results are shown in figure 6.

16

X A

REFLECTOR

SURFAC

I

(x,y,2)

Figure 1. Geometry used to develop the RSE algorithm

17

Table1. Operations and timing. Times shown are for a Motorola 68881 co-

processor operating at 40 mHz.

Time is given in microseconds.

ADD SUBTRACT | MULTIPLY | DIVIDE SQ.ROOT TOTAL
dd/9x 2 1 3.0
d¢/dx 2 1 3.0
My 1 1.0
My 1 1.0
Mz 2 2 1 1 6.0
C1 1 1.0
C2 1 1.0
d4 1 1 1 3.0
dp 1 1 1) 3.0
f1 2 3 5.0
f2 1 1 3 5.0
f3 2 2 4.0
z 1 4 9 1 2 17.0
X 1 1 1 1 4.0
Total 9.0 14.0 22.0 9.0 3.0 57.0
Cycle/oper 151 51 71 103 107
Total cycles | 458.0 714.0 1,562.0 927.0 321.0 2,100.0
Time/cycle | 0.025 0.025 0.025 0.025 0.025
Total time {11.48 17.85 0.00 23.18 0.00 52.51

18

AVERAGE ERROR AS A FUNCTION OF DISCRETZATION

3E-05 T T 1] T T T 1 T 1 T T] T T T T [
26-05 | 4
o
2
@
w
g
5
w
>
<
1E-05 - 4
DDA\
Y ™
o o
N N N AN/ /N A
KKK H—K KK —K—XK
a 5 1] | S | N I B ¥ 1 {1 %1 11 1%1111
1E+01 2E-01 ' " 4g.01’ i 12.02 ! 2E.02 48.02 1E+03

NUMBER OF ELEMENTS ON A SIDE

Figure 2. Error vs. Discretization. Curves are (from bottom) for 1, 2, 3,
4, 5, and 6mm distortion.

19

]

RSE AVG ERROR IN THE PRESENSE OF NOISE

2E-05 T T T - T T

1E-05 |- -
[7,]
a
w
-
w
-
g
C 1E-0S | -
a
w
w
Q
3
w
>
<

SE-06 |- B

) L 1 1 L 1
Q 0.001 0.002 0.003 0.004 0.005 0.006

STD DEVIATION OF INPUT, RADIANS

Figure 3 RSE error in the presence of noise. Curves are (from bottom) for
1, 2, 3, 4, 5, and 6mm distortion

20

REFLECTOR

SURFAC NEAR
FIELD
PLANE
(X,Y,Z) T
R (xa,ya,za)

(f.yt,zf)

‘V

Figure 4. Problem geometry in the plane y=0

NEAR
FIELD
PLANE

-

(vt z0)

-
4

(xa2,ya2,za2)
:///(xa,ya,za)

........................... . .\(xa1 Jyal,zal)

(xa3,ya3,za3) (xadyad,zad)

PROJECTION IN NEAR
FIELD PLANE

Figure 5.rnfpg ray tracing

21

{ TERAT 1ONS

Figure 6.

RNFPG ITERATIONS VS ACCURACY

10.00 [B B R 7 T T 7V T77 S I B N 2 1 T [T

o.oo 1 L3 [111s] L 1 g e 1 Lol 4 bl I I N
1E-06 1E-05 0.0001 0.001 0.01
ACCURACY

rnfpg iterations versus accuracy. Curves are (from bottom) for
1, 2, and 3mm distortion.

22

I

IIT\

COMPUTER PROGRAM LISTINGS

The programs used with this algorithm are listed on the following pages.

23

r

o

vary.f

vary.f compiles into a variety of programs depending on
the mode of compilation

Compilation must be done with the c preprocessor cpp.
One of the following may be defined

{none) defaults to vary number of cells
ERROR varies the allowable error of rnfpg

00000000

program vary
implicit double precision (a-h)
implicit double precision (o-z)
double precision xamp(8),yamp(8)
common /partial/ pdfdx,pdfdy,pdfdz
common /distort/ del,omega,xampl,yampl
integer type
common /phys/ f,xf,yf,zf,zp,xmin, xmax,ymin, ymax, freq, type
real maxerr(20,20),avgerr(20,20), rmserr(20,20)
integer error(20,20)
integer npts(8),nerrors(8)
#define MAX_CURVES 8
#define MAX_POINTS 50
#ifdef ERROR
character*80 filename,pltttl, xttl,yttl,zttl
real xdata(50,8)
real ydata(50,8)
real avgitr
common /perf/ avgitr
#else ERROR
real xdata(50,8)
real adata(50,8)
real rdata(50,8)
real mdata(50,8)
real sigma(50,8)
real inacc(50,8)
#endif ERROR
common /plot/ idist,igrid,
1 maxerr(20,20),avgerr(20,20),rmserr(20,20),error(20,20)
data xamp /0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.04, 0.07/
data yamp /0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00/

fmaxerr=.000001

ymax=1.1
ymin=0.1
xmax=0.5
xmin=-0.5
type = 1

#ifdef ERROR
infile1=513
#else
infile1=512
infile2=(infile1*3)/4
idiv = ifix(log(float(infile1))/log(2.0)-2.5)
ngrids =2*ifix(log(float(infilel))/log(2.0)-2.5)
infilet=zinfilel+
infile2=infile2+1
#endif ERROR

f=1.0
xf = 0.0

24

!

var

105
106

y.f
yf = 0.0
zf = 1.0
zp = 1.0

periods = 1.0
omega = 2.0 * 3.14159265 * periods / (ymax-ymin)

freq=30500000000.
Wave number
k = 2.0 * 3,141592650 / (300000000/freq)

open(7,file="results.dat")
open(99, file="contour.dat")

min_dist=1
max_dist=7

do 10 i=min_dist,max_dist

idist=i

xampl=xamp(i)

yampl=yamp(i)

write(7,105)

format('avgerr.wpg!)

write(7,106) xampl,yampl

format(* rnfpg error analysis'/

v amplitude of (x,y) distortion = ('
2 ,d18.10,',',d18.10,')')

—_

xlambda = 0.1
t = xampl
del = t * xlambda

#ifdef ERROR

do 20 ierror=1,5
ferrmax=.000001*¢10**(ierror-1))
write(6,*)"max err = " ferrmax
write(7,*)"max err = ", ferrmax
open(4, fite="phl.dat", form="UNFORMATTED')
call rnfpg(infilel,ferrmax)
close(4)
xdata(ierror,i) = ferrmax
ydata(ierror,i) = avgitr

20 continue

npts(i) = ferror-1

10 continue

#else

filename = "iter2.wpg"
pltttl = "RNFPG ITERATIONS VS ACCURACY"
Xttl = MWACCURACY"
yttl WITERATIONS"
zttl DISTORTION"
call plotwpg(filename,pltetl, xttl,yttl,zttl,

1 .000001,.01,.001,0.,10.,2.,1,0,

2 max_dist-min_dist+1,

2 npts,xdata,ydata)

W

open(4,file="pht.dat", FORM='unformatted')
call rnfpgCinfilel, fmaxerr)

close(4)

open(3,file="phl.dat", FORM='unformatted')
open(4, file="ph1f.dat",FORM="unformatted')
call fixphi¢infilel)

close(4)

close(3)

25

pm

R

[

(LAR!

vary.f

20
21

30
10

1

VIR W N — VIS WN

W =N e

open(4, file="ph2.dat", FORM='unformatted’)
call rnfpg(infile2, fmaxerr)

close(4)

open(3, file="ph2.dat", FORN='unformatted')
open(4, file="ph2f.dat", FORM='unformatted')
call fixphi(infile2)

close(4)

close(3)

igrid=0

do 20 j=1,idiv
igrid=igrid+1
xdata(igrid, i) =infilel/(2**(j-1))
open(4,file='ph1f.dat!, FORM="unformatted")
call rsegrid(infilel,1+(infilel-1)/(2**(j-1)))
adata(igrid,i)=avgerr(igrid,i)
mdata(igrid, i)=maxerr(igrid,i)
rdata(igrid,i)=rmserr(igrid,i)
if(error(igrid,i).ne.0)go to 21
close(4)
igrid=igrid+1
xdata(igrid,i)=infile2/(2**(j-1))
open(4,file='ph2f.dat', FORM='unformatted')
call rsegrid(infile2,1+(infile2-1)/(2%*(j-1)))
adata(igrid,i)=avgerr(igrid,i)
mdata(igrid,i)=maxerr(igrid,i)
rdata(igrid,i)=rmserr(igrid,i)
if(error(igrid,i).ne.0)go to 21
close(4)
continue

npts¢iy = j-1

do 30 j=1,10

nerrors(j) = 10
sigma(j,i)=((300000000./freq)/(360.*.01*5,)*float(j))

open(4, file='phif.dat’, FORM="unformatted*)
rewind(4)
call rseerr(infilel,sigma(j,i),inacc(j,i),ierrflg)
close(4)

continue

continue

call plotwpg("maxerr.upg",

"MAXIMUM ERROR AS A FUNCTION OF DISCRETIZATION",

"NUMBER OF ELEMENTS ON A SIDE", “MAXIMUM ERROR", "DISTORTION“
10.,1000.,10.,0.,.00003, 00001,1,0,

max dlst ‘min dISt+1

npts,xdata,mdata)

call plotwpg(“avgerr.wpg",

"AVERAGE ERROR AS A FUNCTION OF DISCRETIZATIONY,

"NUMBER OF ELEMENTS ON A SIDE","AVERAGE ERRORY, "DISTORTION"
,1000.,10.,0.,.00003,.00001,1,0,

max dlst m1n dmst+1

npts, xdata, adata)

call plotwpg("rmserr.wpg",

ROOT MEAN SQUARE ERROR AS A FUNCTION OF DISCRETIZATION™,

"NUMBER OF ELEMENTS ON A SIDE","RMS ERROR™,"DISTORTIONY,
»1000.,10.,0. 00003,.00001,1,0

max d1st -min dlst+1

npts,xdata, rdata)

call plotwpg("randerr.wpg",

26

vary.f

“RSE AVG ERROR IN THE PRESENSE OF NO[SE"

"'STD DEVIATION OF INPUT, RADIANS' VAVERAGE ERROR, METERS“,zttl,
0.,.006,.001,0.,.00002,.000005,0,0,

max_dist-min_dist+1,

nerrors,sigma, inace)

VT8 NN -

#endif ERROR
stop
end

27

reffun.f

c Calculate the z coordinate of the reflector surface
real*8 function reffun(x,y)

_implicit real*8 (a-h)
implicit real*8 (o-z)
real argx, sinfunx, cosfunx
real argy, sinfuny, cosfuny
integer type
real*8 x,y,f,del,omega,ymax
real*8 temp

common /partial/ pdfdx,pdfdy,pdfdz
common /distort/ del,omega
common /phys/ f,xf,yf,zf,zp,xmin,xmax,ymin,ymax, freg, type

x and y are the x and y positions of the point
del is the distortion amplitude factor

omega is the distortion wave number

ymax is the maximum y value

aaono

if(type .eq. 1) then

c This type is for an antenna with sinusoidal distortion that varies
c only with the y variable

argy = omega * (ymax-y)
sinfuny = sin(argy)
cosfuny = cos(argy)
temp = -0.5/f
pdfdx = x*temp
pdfdy = y*temp - del * omega * sinfuny
pdfdz = 1.0
reffun = (x**2+y**2) /(4 .0%f)+del*cosfuny
return
else if (type .eq. 2) then

uuun

c This type is for an antenna with sinusoidal distortion that varies
c only with the x variable

argx = omega * (xmax-x)
sinfunx = sin(argx)
cosfunx = cos(argx)
temp = -0.5/f
pdfdx = x*temp - del * omega * sinfunx
pdfdy = y*temp
pdfdz = 1.0
reffun = (x**2+y**2)/(4.0%f)+del*cosfunx
return
else if (type .eq. 3) then

nmaun

c This type is for an antenna with sinusoidal distortion that varies
c with both the x and the y variable

argx
argy

omega * (xmax-X)
omega * (ymax-y)
sinfunx = sin(argx)
cosfunx = cos(argx)
temp = -0.5/f
= x*temp - del * omega * sinfunx
pdfdy = ¥*5emp - del * omega * sinfuny

Hn

reffun = (x**2+y**2)/(4.0*f)+del*cosfunx +del*cosfuny
return

endi f

end

28

rnfpg.f

998

subroutine rnfpg(nphasegp, ferrmax)

The purpose of this program is to detect an antenna
reflector surface from the near field phase distribution.
The near field phase distribution is defined on an nxn
rectangular grid system.

Feeder location(xf,yf,zf), value of lambda, diameter of
the reflector aperture(d)

KAKARKARRRKRAK Ik hkkkdkhdhkhhhkkhdokkddkkhhkidkkhidhkkkditdkhkidbdokkkk

implicit real*8 (a-h)

implicit real*8 (o-2)

real*8 xa, ya
real avgitr

common /partial/ pdfdx,pdfdy,pdfdz

integer type

common /phys/ f,xf,yf,zf,zp,xmin, xmax,ymin,ymax, freq, type
common /perf/ avgitr

dimension phi(1026)

open(11,file='res')

pi = 3.1415926

Diameter of the region of interest on the reflector
d=1.

Near field grid spacing

delnf = d/(nphasegp-1)

k = 2*3.1415926 /(300000000. / freq)

fctrmin = 0.1
fctrmax = 0.9
nfirst=1
write(6,998)ferrmax
format("max err =",g8.3)

nloops=0

Scan through the x axis of the near field
do 10 i=1,nphasegp

call tick()
Scan through the y axis of the near field
do 20 j=1,nphasegp

Define the x,y,z coordinates in the near field

xa = xmin + delnf * (i-1)
ya = ymin + delnf * (j-1)
za = zp

set up for search in reflector plane

Xr=xa

yr=ya

del ta=dmax1(dabs(xmax-xmin),dabs(ymax-ymin))/10.

reflector plane iteration loop

continue
nloops=nloops+1

launch four rays

call gray(xr+delta,yr,xal,yal)
call gray(xr,yr+delta,xa2,ya2)
call gray(xr-delta,yr,xa3,ya3)
call gray(xr,yr-delta,xat,ya4)

29

rnfpg.f

649
648

650

652

680
681

199
200
20

555
10

997

if(xa3.gt.xa)goto &49
if(xa.gt.xal)goto 649
if(yab.gt.ya)goto 649
if(ya.gt.ya2)goto 649
go to 650

continue

write(6,648)

format(' got outside of bundle of rays')
delta=delta*2

goto 601

continue
if(xal.ne.xa3)

xr=2*delta/(xal-xa3)*(xa-xa3) + xr - delta
if(ya2.ne.yad)

yr=2*delta/(ya2-yak)*(ya-ya4) + yr - delta
continue

skewx = 0
skewy = 0
if((xal - xa3) .eq. O)goto 680

skewx = dabs(((xal+xa3)-(xa2+xab))/(xal-xa3))
if((ya2 - yab) .eq. O)goto 681

skewy = dabs(((ya2+yad)-(yal+ya3))/(ya2-ya4))
factor=2*dmax1(skewx,skewy)
factor=dmax1(fctrmin, factor)
factor=dminl1(fctrmax, factor)

delta=delta*factor

if((abs((xal-xa3)*pdfdxf)+abs((ya2-yal)*pdfdy))
.gt.ferrmax) goto 601

zr=reffun{xr,yr)

dist=dsqrt((xf-xr)**2+(yf-yr)**2+(zf-zr)**2)+

dsqri((xa-xr)**2+(ya-yr)**2+(za-zr)**2)

phi(j)=k*dist

nphi=phi(j)/(2*pi)

phi(j)=phi(j)-nphi*2*pi

if{nfirst.ne.1)goto 200

write(4)dist,phi¢j)

format(f14.8/f14.8)

nfirst=0

continue

continue
write(4)(phi(j), j=1,nphasegp)
format(1026£14.8)
continue
close(11)
avgitr = float(nloops)/float(nphasegp**2)
write(7,997)avgitr
write(6,997)avgitr
format("avg iter = "f8.,3)
return
end

subroutine gray(xr,yr,xa,ya)

implicit real*8 (a-h)

implicit real*8 (o-2z)

common /partial/ pdfdx,pdfdy,pdfdz

integer type

common /phys/ f,xf,yf,zf,zp,xmin,xmax,ymin,ymax, freq, type

30

rnfpg.f

real*8 l1x, 12x, lly, 2y, Uiz, 12z

zr = reffun(xr,yr)

lix = xf - xr

Ly = yf - yr

iz = zf - zr

absnrml = pdfdx**2 + pdfdy**2 + pdfdz**2

r = 2.0%(pdfdx * U1x + pdfdy * U1y + pdfdz * l1z)/absnrml

12x = l1x - r * pdfdx
12y = My - r * pdfdy
2z = Uz - r * pdfdz

quick = (zp-zr)/l2z
xa = quick * 12x + xr
ya = quick * 12y + yr
return

end

31

fixphi.f

subroutine fixphi(ninfile)
implicit double precision (a-h)
implicit double precision (o-z)
double precision phi(1026)

pl = 3.14159265
twopi = 2%3.14159265

read(3)dref,phiref
write(4)dref, phiref
199 format(f14.8/114.8)
ifirst = 1
irow = 0

do 10 i=1,ninfile
read(3)(phi(n),n=1,ninfile)
if(ifirst .eq. 1) phirow = phi(1)
ifirst =0
philast = phirow
if((phi¢1)-phirow) .lt. (-1*pi)) then
irow = jrow + 1
philast=phi(1)
phirow=phi(1)
else if((phi(1)-phirow) .gt. pi) then
irow = irow - 1
philast=phi(1)
phirow=phi(1)
endif
icol = irow
do 20 j=1,ninfile
if((phi¢j)-philast) .lt. (-1*pi)) then
icol = icol + 1
else if((phi(j)-phitast) .gt. pi) then
icol = icol - 1
endi f
philast=phi(]j)
phi(j) = phi(j) + icol*twopi
20 continue
write(4)(phi(n),n=1,ninfile)
10 continue
7 format(1026£14.0)
8 format(1026f14.8)
return
end

32

rsegrid.f

subroutine rsegrid(ninfile, ntouse)

the purpose of this program is to detect an antenna reflector
surface from the near field phase distribution. The near field
phase distribution is defined on an nxn rectangular grid system

o000 0n

surface detection

implicit double precision (a-h)

implicit double precision (o-2)

double precision lambda,mx,my,mz,k

double precision phi(3,1026)

double precision dummy(1026)
real*8 reffun
integer contour(1026)

common /partial/ pdfdx,pdfdy, pdfdz

common /distort/ del,omega,xampl,yampl

integer type

common /phys/ f,xf,yf,2f,zp,xmin, xmax,ymin,ymax, freq, type

real maxerr(20,20),avgerr(20,20),rmserr(20,20)

integer error(20,20)

common /plot/ idist,igrid,
maxerr(20,20),avgerr¢20,20),rmserr(20,20},error(20,20)
character*4 comment

error{igrid,idist)=0

comment = ! '
errmax = O.
sumerr = O.
sumsq = 0.

nsum = 0

if(ntouse.(t.100) write(99,801)ntouse,idist
801 format{(' e',i4.4,i2.2,'.dat')
if(ntouse.lt.100) write(99,802)ntouse,del
802 format(' ALGORITHM ERROR WITH ',I4.4,' GRIDS AND ',
1 F9.3,' MM MAX SIN DISTORTION')

if(ntouse.lt.100) write(99,803)1, 'err<.00003'
if(ntouse.lt.100) write(99,803)2, ‘err<.00002!
if(ntouse.lt.100) write(99,803)3, 'err<,00001"
if(ntouse.lt.100) write(99,803)4, 'err<.00000!
if(ntouse.lt.100) write(99,803)5,'err>.00000"
if(ntouse.lt.100) write(99,803)6, 'err>.00001"
if(ntouse.lt.100) write(99,803)7, 'err>.00002*
if(ntouse.lt.100) write(99,803)8, 'err>.00003"
803 format(* *,i3,' ',a)

if(ntouse,lt.100) write(99,804)ntouse-2
804 format(' ',i3)

za = zp

pi = 3.14159265

read(4)dref,phiref

1 ambda=300000000. /freq

k = (2*pi)/lambda

delx=(xmax-xmin)/(ntouse-1)

dely=(ymax-ymin)/(ntouse-1)

ntoskip=(ninfile/(ntouse-1))-1
write(6,*)' ntoskip = *,ntoskip

c read in two lines of input to start the process

33

rsegrid.f

if(ntoskip.eq.0) then

read(4)(phi(2,n),n=1,ntouse)

else

read(4)phi(2,1),
1 ((dummy(iskip),iskip=1,{ntoskip)),phi(2,n),n=2,ntouse)
endif

if(ntoskip.ne.0) then

do 880 iskip=1, (ntoskip)
880 read(4)dummy(1)

endi f

if(ntoskip.eq.0) then

read(4)(phi(3,n),n=1,ntouse)

else

read(4)phi(3,1),
1 ((dummy(iskip),iskip=1,(ntoskip)),phi(3,n),n=2,ntouse)
endif

if(ntoskip.ne.0) then

do 881 iskip=1,ntoskip
881 read(4)dummy(1)

endi f

do 400 n=1,ntouse
phi(2,n)=phi(2,n)-phiref

400 phi(3,n)=phi(3,n)-phiref
do 10 i=2,ntouse-1

c write(7,*)sumerr
xa=xmin+(i-1)*delx
c prepare to read in a new row

do 11 i1=1,ntouse
phi(l,i1)=phi(2,i1)
1 phi(2,i1)=phi(3,i1)

if(ntoskip.eq.0) then
read(4)(phi(3,n),n=1,ntouse)
else
read(4)phi(3,1),
1 néggummy(iskip),iskip=1,(ntoskip)),phi(3,n),n=2,ntouse)
endi

if(ntoskip.ne.0.and.i.ne.(ntouse-1)) then
do 882 iskip=1,ntoskip

882 read(4)dummy(1)
endif

do 401 n=1,ntouse
401 phi(3,n)=phi(3,n)-phiref
do 20 j=2,ntouse-1
yazymin+(j-1)*dely
d=dref+1/k*(phi(2,))
c dref and phiref are measured quantities

if(dphidx.gt.pi)dphidx=dphidx-2*pi
if(dphidx.lt.(-1*pi))dphidx=dphidx+2*pi
if((dphidx.lt.-1).or.(dphidx.gt.1))then
if(error(igrid,idist).eq.0)then
error(igrid,idist)=1
comment=*' 27 !
write(6,570)

34

g

rsegrid.f

570

991

556

20

819
10

557

558

endif
endif
format(' grid size too large*)
dphidx=dphidx/(2*delx)

dphidy=phi(2, j+1)-phi(2,]-1)

if(dphidy.gt.pi)dphidy=dphidy-2*pi

if(dphidy.lt.(-1*pi))dphidy=dphidy+2*pi

if((dphidy.lt.-1).or.(dphidy.gt.1))then

if(error(igrid,idist).eq.0)then
error(igrid,idist)=1
comment=' 27 !
write(6,570)
endif

endi f

dphidy=dphidy/(2*dely)

mx = dphidx/k

dphidy/k

dsqrt (1.0-mx**2-my**2)

mx/mz

my/mz

-cl1*za + xa - xf

-c2*za + ya - yf

di**2 + d2**2 + zf**2

2.0 * (d1*c1 + d2*c2 - zf)

cT**2 + c2**2 + 1.0

O
N
{ L I T T I L N I LI I |

znu = -f1 + (f3*za**2 - 2.0 * dsqrt(f3)*d*za
1 + d**2)
znd = (f2 + f3*2.0%za - 2.0 * dsqrt(f3)*d)
z=znu/znd
x=c1*(z-za) + xa
y=c2*(z-za) + yva
write(6,991)x,y,z
format(" x= ¥,f18.10,", y= ",f18.10, ", z= ", f18.10)
err = z - reffun(x,y)
if(err.gt.0)then
contour(j)=5
if(err.gt..0001)contour(j)=6
if(err.gt..0002)contour(j)=7
ifcCerr.gt..0003)contour(j)=8
else
contour(j)=4
if(err.lt.-.0001)contour(j)=3
if¢err.lt.-.0002)contour(j)=2
if¢err.lt.-.0003)contour(j)=1
endif
derror= dabs(err)
write(6,556)x,y,z,derror
format(5f14.8)
if(derror .gt. errmax) errmax=derror
sumerr = sumerr + derror
sumsq = sumsq + derror**2
nsum = nsum + 1
continue
if(ntouse.1t.100) write(99,819)(contour(j), j=2,ntouse-1)
format(1026i1);
continue
rms = dsqrt(sumsg/nsum)
average = sumerr/nsum
maxerr{igrid,idist)=errmax
avgerr(igrid,idist)=average
rmserr{igrid, idist)=rms
write(7,557)errmax, average, rms
format(' maxerr = ', d14.8,
1! sumerr/n = ', d14.8,
2 ' sumsq/n = ', d14.8)
write(7,558)ntouse,average
format(' ',i4,' ',f14.8)
return
end

35

rseerr.f

subroutine rseerr{ninfile, sigma, inacc,error)

(e ¢)

c surface detection

implicit double precision (a-h)
implicit double precision (o-z)
real sigma, inacc,gasdev

integer error
double precision lambda,mx,my,mz, k
double precision phi(3,1026)

real*8 reffun

common /partial/ pdfdx,pdfdy,pdfdz
common /distort/ del,omega,xampl,yampl
integer type
common /phys/ f,xf,yf,zf,zp,xmin, xmax,ymin, ymax, freq, type

logical exist,opened

integer fos,nr

integer argl,arg2,arg3,arg4,arg>

-

continue
error=0
errmax .
sumerr = 0.
sumsq = 0.
nsum = 0

za = zp

pi = 3.14159265
read(4,end=699,err=698)dref,phiref

lambda=300000000. /freq

k = (2*pi)/lambda
delx=(xmax-xmin)/(ninfile-1)
dely=(ymax-ymin)/(ninfile-1)

(2]

read in two lines of input to start the process

read(4,end=699,err=698)(phi(2,n),n=1,ninfile)
read(4,end=699,err=698)(phi(3,n),n=1,ninfile)

do 400 n=1,ninfile
perturb = sigma * gasdev()
phi¢2,n)=phi(2,n)-phiref + perturb
perturb = sigma * gasdev()
phi(3,n)=phi(3,n)-phiref + perturb
400 continue

do 10 i=2,ninfile-1
Xa=sxmint(i-1)*delx
c prepare to read in a new row
do 11 i1=1,ninfile
phi¢l,i)=phi(2,i1)
11 phi(2,i1)=phi(3,i1)

read(4,end=699,err=698)(phi(3,n),n=1,ninfile)

do 401 n=1,ninfile

perturb = sigma * gasdev()

phi(3,n)=phi(3,n)-phiref + perturb
401 continue

do 20 j=2,ninfile-1

yazymin+(j-1)*dely

36

rseerr.f

d=dref+1/k*(phi(2,j))
c dref and phiref are measured quantities

dphidx=phi(3,])-phi(1,])
if(dphidx.gt.pi)dphidx=dphidx-2*pi
if(dphidx.lt.(- 1*pi))dphidx=dphidx+2*pi
if((dphidx.lt.-1).or.(dphidx.gt.1))then
if(error.eq.0)then
error=1
write(6,510)
510 format('grid size too large')
endif
endif
dphidx=dphidx/(2*delx)

dphidy=phi(2,]+1)-phi(2,j-1)
if(dphidy.gt.pi)dphidy=dphidy-2*pi
if(dphidy.lt.(-1*pi))dphidy=dphidy+2*pi
if((dphidy.lt.-1).or.(dphidy.gt.1})then
if(error.eq.0)then

error=1

write(6,510)

endif

endif
dphidy=dphidy/(2*dely)
mx = dphidx/k
my = dphidy/k
mz = dsqrt (1.0-mx**2-my**2)
cl = mx/mz
c2 = my/mz
dl = -¢l*za + xa - xf
d2 = -c2*za + ya - yf
f1 = d1%%2 + d2**2 + z2f**2
f2 = 2.0 * (di*cl1 + d2*c2 - zf)
f3 = c1**2 + c2**2 + 1.0
znu = -f1 + (f3*za**2 - 2.0 * dsqrt(f3)*d*za
1 + d**2)

znd = (f2 + f3*2.0%za - 2.0 * dsqrt(f3)*d)
z=znu/znd

x=c1*(z-za) + xa
y=c2*(z-za) + ya
err = z - reffun(x,y)
derror= dabs(err)
if(derror .gt. errmax) errmax=derror
sumerr = sumerr + derror

sumsq = sumsq + derror**2
nsum = nsum + 1
20 continue
819 format(1026i1);
10 continue

rms = dsqrt({sumsg/nsum)
average = sumerr/nsum
inacc = average
write(7,555)sigma, inacc,errmax,average,rms
555 format(‘'sigma=',g14.8,',inacc=',g914.8,', errmax=", g14.8,
1 v,average=', d14.8,',rms= ', d14.8)
write(6,557)sigma, inacc
557 format('sigma=',g14.8,!,inacc="*,d14.8)
write(7,558)ninfile,average
558 format(' ',i4,' *,f14.8)
return
698 write(6,*)"---error---%
return
699 write(6,*)"---end---"
call ERRSNS(arg1,arg2,arg3,arg4,arg5)
write(6,*)argl,arg2,arg3,arg4,arg5
inguire(4,EXIST=exist,NEXTREC=nr,IOSTAT=ios,OPENED=opened)
write(6,*)"exist", exist,"iostat", ios, opened", opened
write(é,*)"next record = ",nr
Hl‘!te(é,*)"n:'lln'll,nsm:u'nsu“'u. iz §
call flush(é))
rewind (4)
goto 1
end

37

vetr.f

o0

5
20
10

program vctr

this program reads the coordinates of any point on the reflector
and determines the cooresponding coordinates on the near field
plane

implicit real*8 (a-h)

implicit real*8 (o-2)

dimension x(9,9),y(%,9},2(9,9),k(81),1(81),xa(9,9),ya(?9,"
real*8 lix,l1y,l1z,11,ul1x,ully,ullz

real*8 r,ul2x,ul2y,ullz 7

real*8 pdfdx,pdfdy,pdfdz,absnrml

real*8 nrmlx,nrmly,nrmlz

open(12,file='data')
open(13,file='res',status='old")
write(6,*) 'enter distortion factor t!
read(5,*)
xlambda
nperiod
f=1.0

t
0.1
1

=11
ymin = 0.1

o.

[

-

3

o

—+
[

= 0.125

del = t * xlambda

0.0

0.0

1.0

3.14159265

omega = 2.0 * pi * nperiod/(ymax-ymin)

c= 2 * pi/xlambda

zaa = zp

nrefgp = d/delref + 1

do 10 i=1,nrefgp

do 20 j=1,nrefgp . . o

read(13,3)k(i), L(j)y,x(i,), xadi,]y, y(i,)),ya(i,), 2C1,))
format(2i3,5¢11.7)
11x = xf - x(i,)

Wy = yf - w(i,)

= zf - z(i,])
11 = sqre(liIx**2 + L1y**2 + [12**2)
pdfdx = -x(i,j)/(2.0%f)

Re) ~
«=h
nwouon

pdfdy = -y(i,j)/(2.0%f) - del*omega*sin(omega*(ymax
YL,

pdfdz = 1.0

absnrml = sqrt(pdfdx**2 + pdfdy**2 + pdfdz**2)

nrmlx = pdfdx/absnrml

nrmly = pdfdy/absnrml

nrmlz = pdfdz/absnrml

ullx = L1x /7 U

ully = L1y 7 U1

ullz = L1z 7 U1

r = 2.0%(nrmlx*ulIx+nemly*ully+nrmlz*ul1z)

ul2x = ulix - r*nrmlx
ul2y = ully - r*nrmly
ul2z = uliz - r*nrmlz
in original z(i,j) was z
xaa = (zaa-z(i,]))*(ul2x/ul2z) + x(i,])
yaa = (zaa-z(i,]))*(ul2y/ul2z) + y(i,)) .
write(12,5)k(i), ¢y, xCi,]),xaa,y(i,)),yaa, z(i,]),zaa
format(2i3,6f10.5)
continue
continue

close(13)

close(12)

end

38

gasdev.f

function gasdev()

c returns a normally distributed deviate with zero mean
c and unit variance
double precision rand
data iset/0/
data gset/0.0/

if(iset.eq.0) then

1 vi=2.% rand() - 1.
v2 = 2. * rand() - 1.
ro= vIr*2 + y2k*2
if(r.ge.1)go to 1
fac = sqrt(-2.*log(r)/r)
gset = vi * fac
gasdev = v2 * fac

iset = 1
else
gasdev = gset
ifset = 0
endif
return
end

39

— varyik.f

program vary
- implicit double precision (a-h)
implicit double precision (o-2)
double precision xamp(8),yamp(8)
common /partial/ pdfdx,pdfdy,pdfdz
common /distort/ del,omega,xampl,yampl
integer type
common /phys/ f,xf,yf,2f,zp, xmin,xmax,ymin,ymax, freq, type
real maxerr(20,20),avgerr(20,20),rmserr(20,20)
integer error(20,20)
integer npts(8),nerrors(8)
#define MAX_CURVES 8
#define MAX_POINTS 50
c character*80 filename,pltttl, xttl,yttl,zttl
#ifdef ERROR
real xdata(50,8)
real ydata(50,8)
real avgitr
common /perf/ avgitr
#else ERROR
— real xdata(50,8)
real adata(50,8)
real rdata(50,8)
real mdata(50,8)
real sigma(50,8)
—_ real inacc(50,8)
#endif ERROR
common /plot/ idist,igrid,
1 maxerr(20,20),avgerr(20,20),rmserr(20,20),error(20,20)
data xamp /0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07/

B
data yamp 70.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00/

integer atime(3),iday, imonth,iyear .
500 format(i2.2,'/',i2.2,'/V,i2.2," ', i2.2,':',i2.2'.'i2.2)

call itime(atime)
call idate(iday, imonth,iyear)
write(6,500)imonth, iday, iyear,atime

B
—_ fmaxerr=.000001

ymax=1.1
ymin=0.1
xmax=0.5
—_ xmin=-0.5
type = 1

infilel=1024

idiv = ifix(log(float(infile1))/log(2.0)-2.5)
- ngrids =2*ifix(log{float{infilel))/log(2.0)-2.5)

infilel=infilel+1

f=1.0
- xf

yf
2f

—_o O
[=] (e N Y)

u
—_

- p

periods = 1.0
omega = 2.0 * 3,14159265 * periods / (ymax-ymin)

freq=30500000000.
c Wave number

40

varyik.f

k = 2.0 * 3.141592650 / (300000000/freq)

open(7,file="results.dat")
open{9?, file=""contour.dat")

min_dist=1
max_dist=7

read(5,997) i
997 format(i3)
if(i.lt.min_dist.or.i.gt.max_dist) then

write(6,999)1i
999 format(" bad distortion selector:",i4);
stop
else
write(6,998)1, xamp(i), yamp(i)
998 format("doing iteration #",i2,%; ",g10.4,",%,g10.4)
endif
c do 10 i=min_dist,max_dist
idist=i

xampl=xamp(i)
yampl=yamp(i)
write(7,105)
105 format('avgerr.wpg*)
write(7,106) xampl,yampl
106 format(' rnfpg error analysis'/

1 ¢ amplitude of (x,y) distortion = ('
2 ,d18.10,+,',d18.10,")')

xlambda = 0.1

t = xampl

del = t * xlambda

open(4,file="ph1.dat", FORM='unformatted')
call rnfpg(infilel, fmaxerr)

close(4)

open(3, file=""ph1,dat", FORM="unformatted!')
open(4,file="ph1f.dat", FORM='unformatted')
call fixphi(infile2)

close(4)
close(3)
21 npts(i) = j-1
10 continue

call itime(atime)
call idate(iday, imonth,iyear)
write(6,500)imonth, iday, 1year,atime
stop
end

41

