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1 Introduction

The flow field in a lid driven cavity is determined by integration of the incom-

pressible Navier-Stokes equations. The numerical integration is accomplished

via an operator splitting method known as the O-scheme. (see Appendix for

a description of the O scheme and a comparison with Crank-Nicolson) This

splitting separates the problem into the solution of a quasi-Stokes problem

and a nonlinear convection problem. This report describes some details of

solution methods used for the two subproblems and results obtained for the

driven cavity. The schemes developed for the quasi-Stokes problem are more
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advanced, at this stage, than those for the nonlinear problem. This report,

however, outlines the approaches used for both parts. Future reports will

concentrate on the nonlinear problem and more realistic physical examples.

As a model problem we consider a two dimensional square cavity with

sides of unit length and a lid moving with unit velocity from left to right.

The Navier-Stokes equations are discretized in space on a uniform staggered

or MAC mesh. The time discretization is accomplished via the O-scheme.

2 The Quasi-Stokes Problem

The linear subproblem encountered with this discretization is called a gen-

eralized or quasi Stokes problem and has the form,

au-#Au+Vp = f (1)

v.u = 0 (2)

where _ = 1�At, # = �3�Re, and/3 is a result of splitting the viscous operator.

In the above equation, Re is the Reynolds number, p is the pressure, u is the

velocity vector, _7 is the gradient operator, _ is the vector Laplacian and U'.



is the divergenceoperator. In matrix form we have,

(A
B T 0 p 0

where A is the discrete form of the elliptic operator aI - gA. B and B T are

the discrete gradient and negative divergence, respectively. The solution of

this linear system can be found by elimination to be,

BT A-' Bp

u" = A-if (3)

= BTu" (4)

u = u'- A-1Bp (5)

". The equation for pressure is solved by a preconditioned conjugate gradient

method in which the preconditioner involves solving a poisson problem.

It is apparent from this discussion that efficient methods for solving el-

liptic problems are required. We take advantage of the separability of the re-

sulting equations and use fast Fourier methods to solve the elliptic problems.

It is worth noting that such techniques possess ample inherent parallelism.

The solution method just described is known as the conjugate gradient

Uzawa scheme,[HaCa 86]. We have conducted some experiments with a new

scheme we call the split matrix projection scheme,[Seme 91] Using the same



definitions of A, and B above and defining a matrix splitting of A, A =

M - N, this scheme procedes as follows,

I. initialize Given u0 and p0.

2. iterate For k = 1, 2,..., n

1. Solve Mffk = f - Bpk-1 + Nuk=l

2. Project ffk onto bl(B T) (ie. BTuk = O)

3. Solve B:rBpk = Br(f - Auk)

Numerical experiments have shown this method to be superior to the

Uzawa scheme in most cases. Figure 1 shows the performance of this scheme

for the cavity problem with a Reynolds number of 500.The time step At = 0.1

and the mesh had 4096 pressure nodes (h = 1/64). The test was run on a Sun

workstation. The figure shows residual norm vs. time for several splittings.

The curves A, B, C and D represent the Jacobi, Gauss-Seidel, approximate

factorization and incomplete LU decompositions respectively. The Uzawa

scheme required 8.4 seconds to converge for this Reynolds number and time

step. The residual norm measured is

[If- At,- Bp[[2.
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The speedof the new method is greatly increasedfor smaller time step and

larger Reynoldsnumber. For At = 0.01 all splittings outperform Uzawa at

all Reynolds numbers tested. For large Reynolds numbers execution time is

reduced bv over 50 percent over the Uzawa scheme as is shown in Figure 2. In

this case the Uzawa scheme required 6.1 seconds to converge. The definition

of convergence for the Uzawa scheme was the time required to achieve,

[If- Au- Bp[]2 < 10 -9.

Future progress reports will concern the suitability of such stokes solvers on

parallel machines.

3 The Nonlinear Problem

The nonlinear problem to be solved has the form,

au + (u. V')u -/_u = g

where o = 1�St and/_ = (1 -3)�Re. discretization gives a nonlinear system

of equations

F(u) = o
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Figure 1: Convergence of Stokes Solvers
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where F is a nonlinear function of u. We solve this problem by an inexact

or truncated Newton method where the Newton equations,

J(uk)6 = -F(uk)

are solved approximately via an iterative scheme. The solution is updated

by

uk+l "- ttk "-]- 61:

The Jacobian matrix is not needed explicitly. The reason being the iterative

method chosen to solve the linear system (GMRES) needs only a matrix

This can be approximated by a difference quotient of thevector product.

form,

F(u + e_v) - F(u)
J(u)v

Or

where a is a scalar. Note that the function F(u) can be evaluated in parallel.

We have found this technique to be an adequate method of solving the non-

linear problem. Further research is underway to obtain even more efficient

and parallel schemes.



4 Conclusion

Figure 3 shows the steady state vorticity contours in the cavity for a Reynolds

number of 500. The overall Navier-Stokes solver described here has been

coded on a sequential machine (Sun fileserver). Results obtained so far in-

dicate robustness for both time-accurate and steady state solutions for the

above driven cavity problem.
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Figure 3: Vorticity Contours
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