v91-20510

MODELING OF CONNECTIONS BETWEEN SUBSTRUCTURES

Thomas G. Butler
BUTLER ANALYSES

The focus of this paper is on joints that are only partially connected such as slip joints in bridges and in ship superstructures or sliding of a grooved structure onto the rails of a mating structure as shown in the sketch.

In substructure analysis it is desireable to organize each substructure so as to be self contained for purposes of validity checking. If part of the check is to embrace a connection, then all of the elements of the interface that it sees in

MODELING OF CONNECTIONS BEIWEEN SUBSTRUCTURES

its mate should be included within its model. In the case of the groove/rail structure, shown above, it will enhance the checking if the rail points, to which the shoe points will connect, are duplicated in the substructure with the shoe. Thus a complete job of checking out the shoe substrucure can be done in Phase 1 with statics and eigenvalues and not protract the checking procedure of basic substructures into Phase 2.

To implement such a scheme, referring to the sketch, points $R 1 \& R 2$ are included in the shoe model. The connection from S3 to R1 and from S4 to R2 are made in Phase 1 and now become available for complete chekout of the shoe substructure. including its mating with the rail. To make this example general, postulate that the planes through the four points are not parallel to the coordinate planes. In erfect there are offsets. Generally, one likes to plan to avoid having out-of-plane offsets, butexigencies do crop up which forces the analyst to face up to such realities. urten such interiace connections involve MPC's or elastic ties. In any case a requirement of Substructure Analysis is that points that are to be connected in Phase 2 must be available in Phase 2: i.e. they cannot be condensed out or constrained out in Phase 1 . Therefore, if an MPC is used, the connecting points must be the independent degrees of freedom in the MPC relationship.

The needs of this joint are that there will be no relative translation in either transverse direction and no relative rotation about the long axis of the rail. In terms of the indicated coordinate system, translations in x and z directions must be constrained together and rotations about y must be constrained together. Just a pair of connecting points will be used herein to carry on the discussion. A sketch will be used to
assist in the discussion of making the connection by means of multi-point constraints.

Include rail point 243 in the Shoe Model. When Phase 2 COMBINE operation is invoked, NASTRAN will recognize that rail 243 = shoe 243. As remarked above, since point 243 is going to be commanded to connect in Phase 2, it must therefore be an active available point for joining; and must therefore be an independent point in an MPC relationship. Now following the needs of this joint, constrain point $7013(\mathrm{X}, \mathrm{Z}, \Phi)$ to $243(\mathrm{X}, \mathrm{Z}, \Phi)$. The constraint equations for translations in X and Z are:

$$
\begin{aligned}
& 7013(X)=243(X)-c \times 243(\Phi)+b \times 243(\Psi) \\
& 7013(Z)=243(Z)+a \times 243(\Phi)-b \times 243(\Theta)
\end{aligned}
$$

But $243(\Psi)$ and $243(\theta)$ are rail rotations which are not sensed by the shoe. If $243(4,6)$ are included in the shoe model they would be independent shoe rotations which will engage in the MPC relationship but would have no elastic path out to other parts of
the shoe. Thus, if nominal mass were added to these rail points to keep the eigenvalue matrix from being singular, an eigenvalue check for rigid body modes would show the shoe model to fail. One might argue, why not leave the rotations in until they are connected during COMBINE, then they are no longer disjoint. I cannot afford to leave the $243(4,6)$ rotations in the shoe model, because after connecting with the rail these rail rotations must not be transmitted back to the shoe. Moments in the shoe/rail configuration about the two transverse axes are produced only by couples of forces not by local rotational bending. This rules out the use of MPC's during Phase 1 in this case. There are other cases of connections between substructures in which MPC's in Phase 1 would work. The case in which there were no transverse offsets would work. A NASTRAN run of a simple model demonstrates these results in Appendix A.

The alternative is to make a stiff elastic connection, but not so stiff as to cause matrix ill-conditioning. If a bar instead of elastic scalars is used, it will be modeled so as to be fully connected in all 6 dearees of freedom at the shoe end. but only partially connected at the rail end. At the rail end it must allow for sliding along the rail and not transmit rotations to the shoe about the rail transverse axes. This implies that pin flags must be used at the rail and to inhibit these freedoms.

This stiff bar connection can be implemented the wrong wav or the riaht way. Une gets trapped into modeling the wrong way by forgetting that pin flags are applied to bar coordinates not to the displacement coordinates. I fell into this trap and will show you what happens. Then I will follow it up with the correct way to model it.

BAR CONNECTION

WRONG WAY

Include the rail grid points in the shoe model and apply SPC's at the GRID level in d.O.E.s $2,4,6$. Connect the shoe point to the rail point with a stiff bar. Note that the connection from shoe GP to rail GP produces bar coordinates that are skewed with respect to the displacement coordinates. Thus when bar element coordinate 2 is pinned, a component of force still develops at the rail end of the bar in the Y displacement coordinate diraction, and so the eigenvalue check for rigid body modes fails once again. The listing in Appendix B of a simple model, incorporating this wrong approach, shows the constraint forces in the rigid body modes in freedoms Tl, R1, \& R3 to be non-negligible. Then the elastic mode shows large constraint forces in these freedoms.

MODELING OF CONNECTIONS BETWEEN SUBSTRUCTURES

BAR CONNECTION
RIGHT WAY

Offset the bar at the shoe end so as to terminate the bar at the rail end so as to be perpendicular to all displacement coosdinates at the rail end. This connection passes the eigenvalue check for rigid body modes. Appendix C is a listing of a simple demonstration problem of the joint modeled the right way. Note that the constraint forces in freedoms $T 2, R 1, \& R 3$ are negligible in rigid body modes as well as in elastic modes.

MODELING OF CONNECTIONS BEIWEEN SUBSTRUCTURES

CONCLUSIONS

This paper has demonstrated that complete checkout of a basic substructure can be done under the special circumstances of a sliding connection with offsets. Stiff bar connections make this possible so long as the bar coordinates are aligned with the displacement coordinates at the sliding surface.

APPENDIX A

RUN WITH MPC CONNECTION
品
$\begin{array}{ll}\text { DIAG } & 8,21,22 \\ \text { TIME } & 10 \\ \text { CEND } & \end{array}$
OFFSET，CONNECT
ロ
n
n
日

count	．．．．1．	2								
$1-$	CBAR	1	1	71	72	\cdots	$\cdots{ }^{-}$		－．	．．．10．．
$2-$	CMASS 2	132	0.1	13	2	1.0	1.0	0.0		SHOE
$3-$	CMASS 2	142	0.1	14	2					31 Y
$4-$	CMASS 2	715	0.1	71	5					14 Y
$5-$	CMASS 2	725	0.1	72	5					71 PHI
$6-$	EIGR	3	INV	0.0	10.0	8				72 PHI
$7-$	＋ALLMODE	MAX			10.0	8	8	6	1．－3	＋ALLMODE
8 －	GRID	13	0	3.0	2.0	2.0	0			
9－	GRID	14	0	3.0	17.0	2.0	0			RAIL1PT
$10-$	GRID	71	0	0.0	0.0	0.0	0			RAIL2PT
11－	GRID	72	0	0.0	15.0	0.0	0			SHOE1PT
12－	MAT 1	1	$3 .+7$		0.28	2．4－4				SHOE 2 PT
$13-$	MPC	20	71	1	1.0	13	1			
14.	＋UP1BAR		13	5	2.0	13	6	－1．0		＋UP1BAR
$15-$	MPC	20	71	3	1.0	13	3	－1．0		＋UP3BAR
16－	$+U P 3 B A R$ $M P C$		13	4	2.0	13	5	－3．0		＋UP3BAR
18 －	MPC	20 20	71	5	1.0	13	5	－1．0		＋UP5BAR
$19-$	＋LO1BAR		14	5	1.0	14	1	－1．0		＋LOIBAR
$20-$	MPC	20	72	3	2．0	14	6	－2．0		
21－	＋LO3BAR		14	4	2.0	14	3	－1．0		＋LO3BAR
22 －	MPC	20	72	5	1.0	14	5	－3．0		
23－	PARAM	coupmass	7		1.	14	5	－1．0		＋LO5日AR
$24-$	PBAR	1	1	1.0	1.0	1.0				
25－	PEAR	2	1	100.0	100.0	100.0				
	ENDDATA					100.0	100.0			

$$
\begin{aligned}
& 0 \\
& 0 \\
& + \\
& \pm \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$00+3000000^{\circ} 0=$ 3nTYANGSIE
とT－386てをTL＊
$00+3000000^{\circ} 0$
$00+3000000^{\circ} 0$
$00+9000000^{\circ} 0$
$00+3000000^{\circ} 0$
$00+3000000^{\circ}$
$00+3000000^{\circ}$
SSENJgILS
－̇2ITVYGN39

$$
\begin{gathered}
\\
\| \\
H \\
0 \\
H \\
A \\
0 \\
Z \\
Z \\
0 \\
H \\
H
\end{gathered}
$$

$$
\begin{aligned}
& \text { FREE-BODY MODAL STUDY OF SHOE/RAIL CONNECTIONS WITH MPC'S } \\
& \text { ALIGNED WITH OFFSETS. RAIL END INDEPENDENT. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { GENERALIZED } \\
& \text { MASS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { GENERALIZED } \\
& \text { MASS }
\end{aligned}
$$

$$
\begin{aligned}
& 1.521215 \mathrm{E}-03 \\
& 4.247887 \mathrm{E}-03 \\
& 1.607912 \mathrm{E}-03 \\
& 2.451029 \mathrm{E}-03 \\
& 1.061112 \mathrm{E}-03 \\
& 1.012346 \mathrm{E}-01 \\
& 4.928215 \mathrm{E}-02 \\
& 3.912935 \mathrm{E}-03 \\
& 2.222214 \mathrm{E}-02
\end{aligned}
$$

$$
-1
$$

$$
\begin{gathered}
N \sim N \\
0 \\
0
\end{gathered} 0
$$

FREE-BODZ MODAL STUDY OF SHOE/RAIL CONNECTIONS WITh MPC'S
page
january 30, 1991 uai/mastran version 11.1a

$\stackrel{\circ}{\sim}$

APPENDIX B
RUN WITH WRONG BAR CONNECTION

* *				
*				
NASTRAN INFORMATION MESSAGE 3308, LOWEST EIGENVALUE FOUND				
* AS INDICATED BY THE STURM'S SEQUENCE OF THE DYNAMIC MATRIX				
*				
-7.963921E-08	$4.491420 \mathrm{E}-05$	2.016630E-01	$\begin{array}{r} -1.606029 E \\ 3.568360 E \end{array}$	
$2.852769 \mathrm{E}-08$	$2.688150 \mathrm{E}-05$	1.250841E-01	$3.568360 E$ $1.898093 E$	
$9.751177 \mathrm{E}-08$	4.969911E-05	1.9465651E-01	2.165920 E	
1.989545E-07	$7.098997 E-05$ $7.641507 E-05$	1.088651E-01	5.447087 E	
$2.305249 E-07$ $3.321909 E-07$	$7.641507 \mathrm{E}-05$ $9.173054 \mathrm{E}-05$	1.223466E-01	4.064244 E	
7.002442E+06	$4.211578 \mathrm{E}+02$	1.515952E-01	1.061536 E	

```
    ID OFFSET,CONNECT
    APP DISP
    SOL 3,0
    DIAG 8,21,22
    TIME 10
    CEND
```

FREE-BODY MODAL STUDY OF SHOE/RAIL CONNECTIONS WITH BARS JAN 20,1991 PAGE 2
WRONG WAY WITH CONNECTOR BAR SKEWED TO RAIL.
CASE
C ONTROL
D E C K
E C H O

TITLE = FREE-BODY MODAL STUDY OF SHOE/RAIL CONNECTIONS WITH BARS SUBTITLE = WRONG WAY WITH CONNECTOR BAR SKENED TO RAIL. WANT 3 RB MODES. OUTPUT
DISP = ALL
MPCFORCES $=$ ALL
ELFORCES = ALL
SPCFORCES = ALL
SUBCASE 1
LABEL = BARS PINNED AT RAIL END. NO OFFSETS AT SHOE END.
METHOD $=3$
BEGIN BULK
SORTED BULK DATA ECHO

CBAR	1	1	+++4 71	72	+++6 1.0		${ }^{--7}$	+++	---9	${ }^{+++10+++}$
CBAR										SHOE
CBAR	2	2	71	13	14					+TIE
+TIE UP		246								
CBAR	3	2	72	14	13					+TIE DWN
+TIE DW		246								
CMASS2	131	0.1	13	4						31 THETA
CMASS2	141	0.1	14	4						14THETA
CMASS2	711	0.1	71	4						71THETA
CMASS2	712	0.1	71	5						71 PHI
CMASS2	721	0.1	72	4						72THETA
CMASS2	722	0.1	72	5						72 PHI
EIGR	3	INV	0.0	1.0	6	6		3	1. -3	+ALLMODE
+ALLMODEMAX 0 - 1.03 CALEMCDE										
GRID	13	0	3.0	2.0	2.0	0		246		RAILIPT
GRID	14	0	3.0	17.0	2.0	0		246		RAILIPT
GRID	71	0	0.0	0.0	0.0	0				SHOEIPT
GRID	72	0	0.0	15.0	0.0	0				SHOEIPT
MATl	COUPMASS 7 2.									
PARAM										
PBAR	1	1	1.0	1.0	1.0		. 0			
PBAR	2	1	100.0	100.0	100.0		00.			

REAL EIGENVECTORNO.

			T3	R1	R2	R3
	ID. T1	0.0	5.615981E-01	0.0	$9.189782 \mathrm{E}-02$. 0
13	-6.346744E-01	0.0	-9.552183E-01	0.0	$9.189782 \mathrm{E}-02$ $6.503133 \mathrm{E}-02$	0.0 $6.436 \mathrm{E}-2$
71	$3.910763 \mathrm{E}-01$	$-5.288029 \mathrm{E}-01$	$1.000000 \mathrm{E}+00$	-1.011211E-01	02	6.436E-2
72	-5.744071E-01	-5.288029E-01	-5.168163E-01			

EIGENVALUE $=2.852769$ E-08 REAL EIGENVECTOR NO. 2

		T3	R1	R2	R3
PT ID. T1	T2	3.554041E-01	0.0	-1.205854E-01	0.0
$1{ }^{1}-1.806720 \mathrm{E}-01$	0.0 0.0	$1.000000 \mathrm{E}+00$	0.0	-1.205854E-01	0.0
71 1.403813E-01	$-1.730800 \mathrm{E}-01$	$4.690333 \mathrm{E}-02$	4.297306E-02	-8.839797E-02	015E-2
$72-4.518614 \mathrm{E}-01$	-1.730800E-01	5.914992E-			

EIGENVALUE $=9.751177 \mathrm{E}-08$ REAL EIGENVECTOR NO. 3

			T3	R1	R2	R3
	ID. Tl	T2	3720E-01	R1	-1.817658E-01	0.0
13	-7.289532E-01	0.0	$2.853720 \mathrm{E}-01$	0.0	-1.817658E-01	0.0
14	3.520157E-01	0.0	$2.345846 \mathrm{E}-01$ $-7.029006 \mathrm{E}-02$	$-3.385834 E-03$	-2.055022E-01	-7.2E-
71	-8.096893E-02	$-6.163144 \mathrm{E}-01$	-1.210776E-01	$-3.385834 \mathrm{E}-03$	-2.055022E-01	-7.2E-
72	$1.000000 \mathrm{E}+00$	$-5.163144 \mathrm{E}-191$	-1.210776E-01	3.		

EIGENVALUE $=1.989545 E-07 \quad$ REAL EIGENVECTOR NO. 4

			T3	Fl	R2	R3
PT	ID. Tl	2	1.754539E-02	0.0	-3.130502E-01	0.0
13	$3.177751 \mathrm{E}-11$	0.0	$3.764539 \mathrm{E}-02$	0.0	-3.180602E-01	0.0
14	-4.354112E-01	0.0	-9.057981E-01	$2.083326 \mathrm{E}-02$	-2.929949E-01	$5.02 \mathrm{E}-2$
71	1.000000E +00	$-9.989289 E-02$	$\begin{aligned} & -9.057981 E-01 \\ & -5.932992 \mathrm{E}-01 \end{aligned}$	2.083326E-02	-2.929949E-01	5.02E-2
72	2.468137E-01	-9.989289E-02	-5. ${ }^{\text {a }}$			

EIGENVALUE $=2.305249 \mathrm{E}-07$ REAL EIGENVECTOR NO. 5

EIGENVALUE $=3.321909 \mathrm{E}-07$ REAL EIGENVECTOR NO. 6

						R3
PT	ID. Tl	T2	T3	R1	R2 $6173 \mathrm{E}-01$	R3
13	-7.600989E-01	0.0	$1.000000 \mathrm{E}+00$	0.0	-3.662173E-01	0.0
14	-3.776701E-01	0.0	3.752712E-01	0.0 $464959 \mathrm{E}-02$	-3.932845E-01	-2.6E-
71	-1.461953E-01	$2.568173 \mathrm{E}-01$. $776728 \mathrm{E}-01$		-3.932845E-01	2.6E-
72	$2.362335 \mathrm{E}-01$	2.568173E-01	-8.02		1	

EIGENVALUE $=7.002442 \mathrm{E}+06$ REAL E IGENVECTOR NO. 7

		T2	T3	R1	R2	R3
13 13	-6.670417E-01	0.0	1.000000E+00	0.0		
14	$5.839078 \mathrm{E}-01$	0.0	-8.773038E-01	0.0	5.701413E-01	1.14E-1
71	6.416196E-01	$1.446323 \mathrm{E}-03$	-9.544380E-01	$2.011386 \mathrm{E}-10$	$5.091975 \mathrm{E}-01$	4.52E-2
72	-5.59507こE-01	7.309780E-U3	8.305104E-01	*	5.0.19.5E-01	

MODELING OF CONNECTIONS BETWEEN SUBSTRUCTURES

APPENDIX C
RUN WITH RIGHT BAR CONNECTION OUTPUT
DISP = ALL
ELFORCES = ALL
SPCFORCES = ALL
LABEL = BARS PINNED AT RAIL END. OFFSETS AT SHOE END. SUBCASE 1
LABEL $=$
METHOD $=$
BEGIN BULK
 \vdots
\vdots
\vdots
\vdots

20
FREE-BODY MODAL STUDY OF SHOE/RAIL CONNECTIONS WITH BARS
RIGHT WAY WITH CONNEGTOR BAR NORMAL TO RAIL.
PAGE
$\begin{array}{lllllllllllllll}R & E & A & L & E & I & G & E & N & V & A & L & U & E & S\end{array}$

N

$$
\begin{gathered}
\text { CYCLIC } \\
\text { FREQUENCY }
\end{gathered}
$$

$$
\begin{gathered}
1 \\
R 2 \\
-3.738998 \mathrm{E}-01 \\
-3.738998 \mathrm{E}-01 \\
-3.738998 \mathrm{E}-01 \\
-3.738998 \mathrm{E}-01
\end{gathered}
$$ 0.0

$-3.032382 \mathrm{E}-02$
$-3.032382 \mathrm{E}-02$

$$
\left.\begin{array}{rrrr}
-1 & -1 & -1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & a & 1 & 1 \\
\sigma & 0 & 0 & 0 \\
N & \infty & \infty & \infty \\
\hline
\end{array}\right)
$$ FREQUENCY $=9.692155 \mathrm{E}-05 \mathrm{HZ}$

$\varepsilon \mathbf{~}$ $\begin{array}{ll}N & N \\ 0 & 0 \\ 1 & 1 \\ \omega & 1 \\ 0 & 0 \\ 7 & 1 \\ \infty & 0 \\ n & 0 \\ 0 & 0 \\ 0 & 0 \\ m & m\end{array}$

$0^{\circ} 0$

$$
\begin{aligned}
& \text { GENERALIZED } \\
& \text { MASS } \\
& \text { 8. } 360698 \mathrm{E}-02 \\
& 7.466593 \mathrm{E}-02 \\
& 1.415073 \mathrm{E}-01 \\
& 1.495328 \mathrm{E}-01 \\
& 2.399001 \mathrm{E}-01 \\
& 1.215011 \mathrm{E}-01
\end{aligned}
$$

$$
\begin{array}{r}
\text { EIGENVALUE } \\
-8.597651 \mathrm{E}-07 \\
-3.708519 \mathrm{E}-07 \\
5.746691 \mathrm{E}-08 \\
1.050890 \mathrm{E}-07 \\
1.103310 \mathrm{E}-07 \\
3.483668 \mathrm{E}-07
\end{array}
$$

FREQUENCY $=5.159394 \mathrm{E}-05 \mathrm{HZ}$.

$$
\tau y
$$

MODE	EXTRACTION
NO.	ORDER
1	2
2	3
3	1
4	4
5	5
6	
MODE NUMBER	$=$
POTNT	

aI89	₹
3dxu	aI UNIOd

$$
\begin{aligned}
& \text { EIGENVALUE }=5.746691 \mathrm{E}-08
\end{aligned}
$$

$$
\begin{gathered}
\text { SUBCASE } 1 \\
\text { EIGENVALUE }=1.050890 \mathrm{E}-07 \\
\text { R3 } \\
2.741080 \mathrm{E}-09 \\
\text { EIGENVALUE }=1.103310 \mathrm{E}-07 \\
\text { R3 } \\
\text {-1.110387E-08 } \\
\text { EIGENVALUE }= \\
\text { R3 } \\
\text { 3.7483668E-07 } \\
\text { 34E-09 }
\end{gathered}
$$

