N91-20510

Thomas G. Butler BUTLER ANALYSES

The focus of this paper is on joints that are only partially connected such as slip joints in bridges and in ship superstructures or sliding of a grooved structure onto the rails of a mating structure as shown in the sketch.

In substructure analysis it is desireable to organize each substructure so as to be self contained for purposes of validity checking. If part of the check is to embrace a connection, then all of the elements of the interface that it sees in

its mate should be included within its model. In the case of the groove/rail structure, shown above, it will enhance the checking if the rail points, to which the shoe points will connect, are duplicated in the substructure with the shoe. Thus a complete job of checking out the shoe substructure can be done in Phase 1 with statics and eigenvalues and not protract the checking procedure of basic substructures into Phase 2.

To implement such a scheme, referring to the sketch, points R1 & R2 are included in the shoe model. The connection from S3 to R1 and from S4 to R2 are made in Phase 1 and now become available for complete chekout of the shoe substructure, To make this example including its mating with the rail. general, postulate that the planes through the four points are not parallel to the coordinate planes. In effect there are likes to plan to avoid having Generally, one offsets. out-of-plane offsets, butexigencies do crop up which forces the analyst to face up to such realities. Often such interface connections involve MPC's or elastic ties. In anv case a requirement of Substructure Analysis is that points that are to be connected in Phase 2 must be available in Phase 2; i.e. they condensed out or constrained out in Phase 1. be cannot Therefore, if an MPC is used, the connecting points must be the independent degrees of freedom in the MPC relationship.

The needs of this joint are that there will be no relative translation in either transverse direction and no relative rotation about the long axis of the rail. In terms of the indicated coordinate system, translations in x and z directions must be constrained together and rotations about y must be constrained together. Just a pair of connecting points will be used herein to carry on the discussion. A sketch will be used to

assist in the discussion of making the connection by means of multi-point constraints.

Include rail point 243 in the Shoe Model. When Phase 2 COMBINE operation is invoked, NASTRAN will recognize that rail 243 = shoe 243. As remarked above, since point 243 is going to be commanded to connect in Phase 2, it must therefore be an active available point for joining; and must therefore be an independent point in an MPC relationship. Now following the needs of this joint, constrain point $7013(X,Z,\Phi)$ to $243(X,Z,\Phi)$. The constraint equations for translations in X and Z are:

 $7013(X) = 243(X) - c \times 243(\Phi) + b \times 243(\Psi)$ $7013(Z) = 243(Z) + a \times 243(\Phi) - b \times 243(\Theta).$

But $243(\Psi)$ and $243(\Theta)$ are rail rotations which are not sensed by the shoe. If 243(4,6) are included in the shoe model they would be independent shoe rotations which will engage in the MPC relationship but would have no elastic path out to other parts of

shoe. Thus, if nominal mass were added to these rail points the to keep the eigenvalue matrix from being singular, an eigenvalue check for rigid body modes would show the shoe model to fail. One might argue, why not leave the rotations in until they are connected during COMBINE, then they are no longer disjoint. I cannot afford to leave the 243(4,6) rotations in the shoe model, because after connecting with the rail these rail rotations must not be transmitted back to the shoe. Moments in the shoe/rail configuration about the two transverse axes are produced only by couples of forces not by local rotational bending. rules This out the use of MPC's during Phase 1 in this case. There are other cases of connections between substructures in which MPC's The case in which there were no in Phase 1 would work. transverse offsets would work. A NASTRAN run of a simple model demonstrates these results in Appendix A.

The alternative is to make a stiff elastic connection, but not so stiff as to cause matrix ill-conditioning. If a bar instead of elastic scalars is used, it will be modeled so as to be fully connected in all 6 degrees of freedom at the shoe end, but only partially connected at the rail end. At the rail end it must allow for sliding along the rail and not transmit rotations to the shoe about the rail transverse axes. This implies that pin flags must be used at the rail and to inhibit these freedoms.

This stiff bar connection can be implemented the wrong way or the <u>right way</u>. One gets trapped into modeling the wrong way by forgetting that pin flags are applied to <u>bar</u> coordinates not to the <u>displacement</u> coordinates. I fell into this trap and will show you what happens. Then I will follow it up with the correct way to model it.

BAR CONNECTION WRONG WAY

Include the rail grid points in the shoe model and apply SPC's at the GRID level in d.o.f.'s 2,4,6. Connect the shoe point to the rail point with a stiff bar. Note that the connection from shoe GP to rail GP produces bar coordinates that are skewed with respect to the displacement coordinates. Thus when bar element coordinate 2 is pinned, a component of force still develops at the rail end of the bar in the Y displacement coordinate direction, and so the eigenvalue check for rigid body modes fails once again. The listing in Appendix B of a simple model, incorporating this wrong approach, shows the constraint forces in the rigid body modes in freedoms T1, R1, & R3 to be non-negligible. Then the elastic mode shows large constraint forces in these freedoms.

BAR CONNECTION RIGHT WAY

Offset the bar at the shoe end so as to terminate the bar at the rail end so as to be perpendicular to all displacement coordinates at the rail end. This connection passes the eigenvalue check for rigid body modes. Appendix C is a listing of a simple demonstration problem of the joint modeled the right way. Note that the constraint forces in freedoms T2, R1, & R3 are negligible in rigid body modes as well as in elastic modes.

CONCLUSIONS

This paper has demonstrated that complete checkout of a basic substructure can be done under the special circumstances of a sliding connection with offsets. Stiff bar connections make this possible so long as the bar coordinates are aligned with the displacement coordinates at the sliding surface.

APPENDIX A RUN WITH MPC CONNECTION

PAGE																							
11.1A					C 1	SHOE	317	14Y 71PHT	72PHI	+ALLMODE	R A T 1.1 PT	RAIL2PT	SHOEIPT	SHOE2PT	+UP1BAR	+UP3BAR		+UP5BAR 41018AB	WUGT DE	+LO3BAR	+LO5BAR		
VERSION					0	•				13													
AI/NASTRAN	c's				8	0.0				6					11.0	-1.0	0.0 	-1.0	-2.0	-1.0	-1.0 -1.0		
1991 U	E C H O			ЕСНО		1.0				ø	0	0	0 0	5	-1 v	5 m 1	տմ)	9	mυ	٦IJ		100.0
JUARY 30,	C K E T CONNECTION	IDEPENDENT		АТА	6.	1.0				œ	2.0	2.0	0.0	0.0 2.4-4	13	11:	1 1 1	- 1	14	14	14	c +	100.0
14 14 14) L P A IOE/RAIL (AIL END IN	BOTH ENDS	ם ת ר א ח	5.	72	4 0	ŝ	،	T 0 . 0	2.0	17.0	0.0 15 0	0.28	1.0 2.0	1.0	1.0	1.0	2.0	1.0	1.0	0	100.0
WITH MPC'S	ONTRO	FSETS. R	FAINED ON	E D B	4.	11	1 4 T	71	72	0.0	3.0	0.0		2	н 2	m K	rю	1	u) r	n 41	Ω.	1.0	100.0
ECT RECTIONS 1 DENT.	S E C	ALL VILL OF	DOF'S RET	L H O S		 1 C	0.1	0.1	1.1 1 . 1	A 41 T	0	ə c	0	3.+7	13	71	71	72	4 r 4 r	 	72	- H 0	1
SET, CONNI P 21, 22 21, 22 RAIL CONF INDEPENI	FREE-BOD	= ALIGNE = ALL CES = ALL ORCES = 7 1	= ALL 6 20 D = 3 LK		2.	132	142	715	(7) 1	DE MAX	13	14 71	72	ц Ч	۲ ۲	20	20	20	20	2	20 20110MA	1	7
ID OFF APP DIS SOL 3,0 DIAG 8, TIME 10 CEND CEND OF SHOE/ RAIL END	TITLE = SHRTTTE	OUTPUT DISP ELFOR \$ SPCF(SUBCASE	LABEL MPC = METHOI BEGIN BUI			CBAR CMASS2	CMASS 2	CMASS2	EIGR	+ ALLMOL	GRID	GRID	GRID	MAT1	+UPIBAR	MPC +UP3BAR	MPC	MPC	+LULBAK MPC	+LO3BAR	MPC Param	PBAR	PBAR ENDDATA
FREE-BODY MODAL STUDY ALIGNED WITH OFFSETS.				SORTED		1 1	3 -	ן קיע	ן סיו	7 -	1 ∞ σ	10-	11-	12-		15-	17-	181	20-	21-	22-23-	24-	25-

SION 11.1A PAGE		GENERALIZED STIFFNESS	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	4.713298E-13	4.546408E-11	3.472210E+05	3ENVALUE = 0.000000E+00		R3	.0 .0 .265712E-02 .265712E-02	GENVALUE = 0.000000E+00			R3 .0 .0 .905981E-02 .905981E-02	[GENVALUE = 0.000000E+00		R 3	0.0 0.0 9.076030E-02 9.076030E-02
UAL/NASTRAN VER		GENERALIZED MASS	1 5010155-03	4 74787E-03	1 KO7912E-03	2.451029E-03	1 061112E-03	1 012346E-01	4 978215E-02	3.912935E-03	2.22214E-02	EIC	1	, q	2.000755E-02 0 2.000755E-02 0 2.000755E-02 3 2.000755E-02 3 2.000755E-02 3	EI		2	R2 -1.377827E-01 0 -1.377827E-01 0 -1.377827E-01 1 -1.377827E-01 1	E3	£	Ċ œ	-2.891179E-03 -2.891179E-03 -2.891179E-03 -2.891179E-03 -2.891179E-03
UUARY 30, 1991	с З Ц	CYCLIC Requency		000005400		00000+00				2155498-05	91152E+02	E+00 HZ.	R NO.		R1 0.0 0.0 -1.084843E-01 -1.084843E-01		15+00 44.	R NO.	R1 0.0 0.0 -6.037301E-02 -6.037301E-02	0E+00 HZ.	R NO.		R1 0.0 0.0 8.875124E-02 8.875124E-02
H MPC'S JAN	IGENVAL(N NCY FJ		E+00 0.0	E+00 0.4	E+00 0.U	E+00 0.0	E+00 0.0	E+00 0.0	E-06 4.9	E+03 6.2	:NCY = 0.00000	ENVECTO		T3 1.000000E+00 -6.272650E-01 1.060023E+00 5.67283E+00		ENCY = U. UUUUU	GENVECTO	T3 1.00000E+00 9.440481E-02 5.866519E-01 -3.189434E-01	IENCY = 0.00000	GENVECTO	1	T3 -3.312686E-01 1.000000E+00 -3.399421E-01 9.913265E-01
CONNECTIONS WITH	REALE	RADIAI Frequei		0.00000.0	0.000000	0.00000.0	0 . 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00000.0	3.092556	1.0//911 3.952847	FREQUE	REAL EIG	1	T2 -3.069099E-02 -3.410552E-03 1.761184E-01	1./blig46-01	FREQU	REAL EI	T2 3.166597E-02 3.518357E-03 5.781769E-04 5.781769E-04	FREQU		, , , ,	T2 -1.069826E-02 -1.188542E-03 4.258756E-03 4.258756E-03
OF SHOE∕RAIL C RAIL END INDEP		EIGENVALUE		0.000000E+00	0.000000E+00	0.000000E+00	0.00000000000000000	0.000000E+00	0.000000E+00	9.563905E-12	1.161892E-08 1.562500E+07				T1 4.885226E-01 -1.334166E-03 4.485075E-01	-4.134927E-02			T1 -6.913960E-02 -3.550368E-01 2.064258E-01 -7.37137E-01				T1 8.612644E-01 -5.001400E-01 8.670468E-01 -4.943576E-01
DAL STUDY 1 OFFSETS.		ACTION		۴	4	· יח		۰ ۲	. 6		0 X		ı F		TYPE GRID GRID GRID	GRID	2 = 2		TYPE GRID GRID GRID		י ו ג	-	TYPE GRID GRID GRID GRID
FREE-BODY MC ALIGNED WITH		MODE EXTR/ NO OF	. ON		4 6	4 r	י ר	r ư	<i>م</i> بو) r	en (Y Wore Niimrer			POINT ID. 13 14 71	21	MODE NUMBEI		POINT ID. 13 14 71	71	MODE NUMBE		POINT ID. 13 14 71 72

FREE-BODY ALIGNED WI ALL 6 DOF'	MODAL STU TH OFFSET S RETAINE	IDY OF SHOE/RAIL 'S. RAIL END IND. D ON BOTH ENDS.	CONNECTIONS WI EPENDENT.	TH MPC'S	JANUARY 30, 1991	L UAL/NASTRAN	VERSION 11.1A SURCASE 1	PAGE	20
MODE NUMBER	4		FREQUE	NCY = 0.00000)E+00 HZ.		SIGENVALUE = 0.00	00005400	
			REALEI	GENVECTC	OR NO.	4			
POINT ID. 13 14 71 72	TYPE GRID GRID GRID GRID GRID	T1 1.00000E+00 -6.589970E-02 1.003780E+00 -6.211919E-02	T2 3.279515E-03 3.642190E-04 -1.787680E-03 -1.787680E-03	T3 -5.439819E-01 -6.497411E-01 -5.496526E-01 -6.554118E-01	R1 0.0 0.0 -7.050612E-03 -7.050612E-03	R2 -1.890255E-03 -1.8902555E-03 -1.8902555E-03 -1.8902555E-03	R3 0.0 0.0 7.105998E-02 7.105998E-02		
MODE NUMBE	R = 5		FREQU	ENCY = 0.00000)0E+00 HZ.		EIGENVALUE = 0.0	00000E+00	
			REALEI	GENVECTC) R N O .	S			
POINT ID. 13 14 71 72	TYPE GRID GRID GRID GRID	T1 -2.679756E-01 1.000000E+00 -2.614422E-01 1.006533E+00	T2 -4.753040E-03 -5.290496E-04 2.310795E-03 2.310795E-03	T3 -7.319843E-02 2.902177E-01 -8.299851E-02 2.804176E-01	R1 0.0 0.0 2.422774E-02 2.422774E-02	R2 -3.266693E-03 -3.266693E-03 -3.266693E-03 -3.266693E-03	R3 0.0 0.0 -8.453170E-02 -8.453170E-02		
MODE NUMBE	R = 6		FREQU	ENCY = 0.00000)0E+00 HZ.		EIGENVALUE = 0.0	00000E+00	
			REAL EI	GENVECTO	R NO.	6			
POINT ID. 13 14 71 72	TYPE GRID GRID GRID GRID	T1 -1.127395E-05 9.360020E-05 -9.537311E-06 9.145513E-05	T2 -1.111122E-01 1.000000E+00 -4.564906E-07 -4.564906E-07	T3 2.954264E-05 -1.109201E-05 2.693768E-05 -7.874410E-06	R1 0.0 0.0 -2.320808E-06 -2.320804E-06	R2 -8.683184E-07 1.072533E-06 -8.683184E-07 1.072533E-06	R3 0.0 0.0 -6.732830E-06 -6.732828E-06		
MODE NUMBE	R = 7		FREQU	ENCY = 4.92195	6E-07 HZ.		EIGENVALUE = 9.5	63905E-12	
			REAL EI	GENVECTC	R NO.	7			
POINT ID. 13 14 71 72	TYPE GRID GRID GRID GRID	T1.000E+00 1.000000E+00 2.864973E-01 7.927454E-01 7.924265E-02	T2 6.632150E-01 7.369055E-02 2.984467E-01 2.984467E-01	T3 7.963101E-01 -3.282914E-01 1.107192E+00 -1.740939E-02	R1 0.0 0.0 -7.497343E-02 -7.497343E-02	R2 1.036273E-01 1.036273E-01 1.036273E-01 1.036273E-01	R3 0.0 0.0 4.756685E-02 4.756685E-02		

26				_		
PAGE 1	.161892E-08			.562500E+07		
VERSION 11.1A SUBCASE	EIGENVALUE = 1		R3 0.0 0.0 -1.594912E-02 -1.594912E-02	EIGENVALUE = 1		R3 0.0 0.0 -3.188153E-07 3.147009E-07
UAL/NASTRAN		ω	R2 -1.139360E-02 -1.139360E-02 -1.139360E-02 -1.139360E-02		6	R2 -3.33327E-01 3.33327E-01 -3.333327E-01 -3.333327E-01 3.333327E-01
NUARY 30, 1991	E-05 HZ.	R NO.	R1 0.0 0.0 4.980783E-02 4.980783E-02	2E+02 HZ.	R NO.	R1 0.0 0.0 -7.029677E-07 6.817177E-07
H MPC'S JÀ	NCY = 1.715549	ENVECTO	T3 -4.699167E-01 2.772007E-01 -5.040975E-01 2.430200E-01	SNCY = 6.29115	JENVECTO	T3 1.00000E+00 -9.999965E-01 1.744123E-06 1.717579E-06
CONNECTIONS WIT PENDENT.	FREQUE	REAL EIG	T2 -1.668238E-03 -1.851357E-04 1.000000E+00 1.000000E+00	FREQUI	REAL EI	T2 7.100735E-08 -6.390596E-07 -1.626112E-10 1.631945E-10
NY OF SHOE∕RAIL S. RAIL END INDE D ON BOTH ENDS.			T1 -2.487581E-01 -9.521336E-03 -2.259709E-01 1.326586E-02			T1 -6.666663E-01 6.666647E-01 -7.944661E-07 -7.893768E-07
ODAL STUD H OFFSETS RETAINED	80		TYPE GRID GRID GRID GRID	6		TYPE GRID GRID GRID GRID
FREE-BODY M ALIGNED WIT: ALL 6 DOF'S	MODE NUMBER		POINT ID. 13 14 71	MODE NUMBER		POINT ID. 13 14 71 72

APPENDIX B RUN WITH WRONG BAR CONNECTION GRID POINT SINGULARITY TABLE SPC 0 MPC 0 POINT SINGULARITY LIST OF COORDINATE COMBINATIONS THAT WILL REMOVE SINGULARITY ID. TYPE ORDER STRONGEST COMBINATION WEAKER COMBINATION WEAKEST COMBINATIO 71 G 1 5 4 72 G 1 5 4

6 ROOTS BELOW 1.973921E+01

EIGENVALUE ANALYSIS SUMMARY (INVERSE POWER METHOD)

NUMBED OF FIGENVALUES EXTRACTED	,	•	•	7
NUMBER OF STARTING POINTS USED				1
NUMBER OF STARTING POINT MOVES		•	•	0
NUMBER OF TRIANGULAR DECOMPOSITIONS .	•	•	•	1
TOTAL NUMBER OF VECTOR ITERATIONS	•	•	•	34
REASON FOR TERMINATION	•	٠	•	7*
LARGEST OFF-DIAGONAL MODAL MASS TERM .	•	•	٠	0.13E-06
	•	•	•	Ø
MODE PAIR				٨
	•	•	•	4
NUMBER OF OFF-DIAGONAL MODAL MASS				0
TERMS FAILING CRITERION				v
(* 1 OR MORE ROOT OUTSIDE FR.RANGE.				
SEE NASTRAN U.M. SECTION 2.3.37				

REAL EIGENVALUES

MODE EIGENVA	LUE CYCLIC	GENERALIZED	GENERALIZED
	FREQUENCY	MASS	STIFFNESS

******** * * * NASTRAN INFORMATION MESSAGE 3308, LOWEST EIGENVALUE FOUND * AS INDICATED BY THE STURM'S SEQUENCE OF THE DYNAMIC MATRIX * \star \star \star (THIS MESSAGE CAN BE SUPPRESSED BY DIAG 37) × * ****** 2.016630E-01 -1.606029E-08 4.491420E-05 1 -7.963921E-08 3.568360E-09 1.250841E-01 2.688150E-05 2.852769E-08 2 1.898093E-08 1.946527E-01 4.969911E-05 9.751177E-08 3 2.165920E-08 1.088651E-01 7.098997E-05 1.989545E-07 4 5.447087E-08 2.362906E-01 7.641507E-05 2.305249E-07 5 1.223466E-01 4.064244E-08 3.321909E-07 9.173054E-05 6 1.061536E+06 1.515952E-01 7.002442E+06 4.211578E+02 7

ID OFFSET, CONNECT APP DISP SOL 3,0 DIAG 8,21,22 10 TIME CEND FREE-BODY MODAL STUDY OF SHOE/RAIL CONNECTIONS WITH BARS JAN 20,1991 PAGE 2 WRONG WAY WITH CONNECTOR BAR SKEWED TO RAIL. CASE CONTROL DECK ECHO TITLE = FREE-BODY MODAL STUDY OF SHOE/RAIL CONNECTIONS WITH BARS SUBTITLE = WRONG WAY WITH CONNECTOR BAR SKEWED TO RAIL.WANT 3 RB MODES. OUTPUT DISP = ALLMPCFORCES = ALL ELFORCES = ALLSPCFORCES = ALL SUBCASE 1 LABEL = BARS PINNED AT RAIL END. NO OFFSETS AT SHOE END. METHOD = 3BEGIN BULK SORTED BULK DATA ECHO ---1--- +++2+++ ---3--- +++4+++ ---5--- +++6+++ ---7--- +++8+++ ---9--- +++10+++
 71
 72
 1.0
 1.0
 0.0

 71
 13
 14
 14
 14
 CBAR 1 1 CBAR 2 2 SHOE +TIE UP +TIE UP 246 CBAR 3 2 72 14 13 +TIE DWN +TIE DWN 246

 0.1
 13

 0.1
 14

 0.1
 71

 0.1
 71

 0.1
 72

 0.1
 72

 INV
 0.0

 CMASS2 131 4 **31THETA** CMASS2 141 4 14THETA CMASS2 711 4 71THETA CMASS2 712 CMASS2 721 CMASS2 722 5 71PHI 4 72THETA 5 72PHI EIGR 3 6 6 1.0 3 1.-3 +ALLMODE +ALLMODEMAX
 0
 3.0
 2.0
 2.0
 0

 0
 3.0
 17.0
 2.0
 0

 0
 0.0
 0.0
 0.0
 0

 0
 0.0
 15.0
 0.0
 0

 3.+7
 0.28
 2.4-4
 0
 GRID 13 246 RAILIPT GRID 14 246 RAIL1PT 71 72 71 GRID SHOE1PT GRID SHOE1PT MAT1 PARAM COUPMASS7 PBAR 1 1
 1
 1
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 PBAR ENDDATA

EIGENVALUE = -7.963921E-08SUBCASE 1 REAL EIGENVECTOR NO. 1 R3 R2 . R1 **T**3 T2 9.189782E-02 0.0 PT ID. T1 0.0 5.615981E-01 13 3.308091E-01 0.0 9.189782E-02 0.0 -9.552183E-01 0.0 71 3.910763E-01 -5.288029E-01 1.000000E+00 -1.011211E-01 6.503133E-02 6.436E-2 14 -6.346744E-01 0.0 72 -5.744071E-01 -5.288029E-01 -5.168163E-01 -1.011211E-01 6.503133E-02 6.436E-2 REAL EIGENVECTOR NO. 2 EIGENVALUE = 2.852769E-08 **R**3 R2 Rl Т3 T2PT ID. T1 -1.205854E-01 0.0 3.554041E-01 0.0 1 -1.806720E-01 0.0 -1.205854E-01 0.0 1.000000E+00 0.0 14 -7.829153E-01 0.0 71 1.403813E-01 -1.730800E-01 4.690333E-02 4.297306E-02 -8.839797E-02 4.015E-2 72 -4.618614E-01 -1.730800E-01 6.914992E-01 4.297306E-02 -8.839797E-02 4.015E-2 REAL EIGENVECTOR NO. 3 EIGENVALUE = 9.751177E-08 **R**3 R2 R1 T3 T2 PT ID. T1 -1.817658E-01 0.0 2.853720E-01 0.0 13 -7.289532E-01 0.0 -1.817658E-01 0.0

 14
 3.520157E-01
 0.0
 2.345846E-01
 0.0
 -1.817658E-01
 0.0

 14
 3.520157E-01
 0.0
 -3.385834E-03
 -2.055022E-01
 -7.2E-1

 71
 -8.096893E-02
 -6.163144E-01
 -7.029006E-02
 -3.385834E-03
 -2.055022E-01
 -7.2E-1

 72 1.000000E+00 -6.163144E-01 -1.210776E-01 -3.385834E-03 -2.055022E-01 -7.2E-1 EIGENVALUE = 1.989545E-07 REAL EIGENVECTOR NO. 4 R3 R2 Rl Т3 T2-3.180602E-01 0.0 PT ID. T1 1.764639E-02 0.0 13 3.177751E-01 0.0 -3.180602E-01 0.0 3.301453E-01 0.0 71 1.000000E+00 -9.989289E-02 -9.057981E-01 2.083326E-02 -2.929949E-01 5.02E-2 72 2.468137E-01 -9.989289E-02 -5.932992E-01 2.083326E-02 -2.929949E-01 5.02E-2 5 EIGENVECTOR N 0 . EIGENVALUE = 2.305249E-07 REAL **R**3 R2 Rl Т3 **T**2 PT ID. Tl -1.272332E-02 0.0 1.000000E+00 0.0 13 9.812109E-01 0.0 -1.272332E-02 0.0 5.573768E-01 0.0 71 7.983168E-01 4.514050E-01 8.229362E-01 -2.950821E-02 -2.407710E-02 7.363E-3 72 6.878789E-01 4.514050E-01 3.803130E-01 -2.950821E-02 -2.407710E-02 7.363E-3 REAL EIGENVECTOR NO. 6 EIGENVALUE = 3.321909E-07 **R**3 R2 Rl T3 Т2 PT ID. T1 0.0 -3.662173E-01 1.000000E+00 0.0 -7.600989E-01 0.0 -3.662173E-01 13 0.0 3.752712E-01 0.0 -3.776701E-01 0.0 -1.461953E-01 2.568173E-01 -1.776728E-01 -4.164859E-02 -3.932845E-01 -2.6E-14 2.362335E-01 2.568173E-01 -8.024015E-01 -4.164859E-02 -3.932845E-01 -2.6E-71 72 EIGENVALUE = 7.002442E+06 REAL EIGENVECTOR 7 N 0 . R3 R2 Rl Т3 T2 PT ID. T1 -6.548009E-01 0.0 1.000000E+00 0.0 13 -6.670417E-01 0.0 5.701413E-01 0.0 -8.773038E-01 0.0 6.416196E-01 1.446323E-03 -9.644380E-01 2.011386E-01 -5.263158E-01 1.14E-1 14 72 -5.595077E-01 7.309780E-03 8.305104E-01 5.448166E-02 5.091975E-01 4.62E-2

EIGENVALUE = -7.963921E-08 FORCES OF SINGLE-POINT CONSTRAINT PT ID. T1 **T**2 **T**3 **R1** R2 R3 13 0.0 2.806213E+01 0.0 0.0 2.806213E+01 0.0 -2.590351E+01 0.0 -1.726900E+01 0.0 -1.530662E+01 0.0 -4.709728E+00 0.0 -3.139819E+00 14 EIGENVALUE = 2.852769E-08 FORCES OF SINGLE-POINT CONSTRAINT PT ID. T1 T2**T**3 R1 R2 R3 13 0.0 2.551103E+00 0.0 1.177432E+00 0.0 7.849547E-01 14 0.0 -2.551103E+00 0.0 -1.118560E+01 0.0 -7.457070E+00 EIGENVALUE = 9.751177E-08 FORCES OF SINGLE-POINT CONSTRAINT PT ID. T1 **T**2 Т3 Rl R3 R2 -1.275551E+00 0.0 1.876532E+00 0.0 13 0.0 1.251022E+00 0.0 5.102206E+00 0.0 1.103843E-01 0.0 14 7.358950E-02 EIGENVALUE = 1.989545E-07 FORCES OF SINGLE-POINT CONSTRAINT PT ID. T1T2T3R1R2R3130.09.566635E-010.03.017170E+000.02.011446E+00140.0-5.102206E+000.04.121012E+000.02.747341E+00 EIGENVALUE = 2.305249E-07 FORCES OF SINGLE-POINT CONSTRAINT PT ID. T1 T2 **T**3 R1 R2 R3 1.020441E+01 0.0 1.964840E+01 0.0 1.309893E+01 13 0.0 14 2.793968E-09 0.0 -5.077676E+00 0.0 -3.385117E+00 0.0 EIGENVALUE = 3.321909E-07 FORCES OF SINGLE-POINT CONSTRAINT PT ID. T1 **T**2 **T**3 R1 R2 R3 -2.551103E+00 0.0 -3.532296E+01 0.0 -2.354864E+01 -2.551103E+00 0.0 -1.236304E+01 0.0 -8.242024E+00 0.0 13 14 0.0 EIGENVALUE = 7.002442E+06 FORCES OF SINGLE-POINT CONSTRAINT PT ID. T1 T2Т3 R1 R2 R3

 13
 0.0
 -3.846585E+01
 0.0
 -2.479790E+04
 0.0
 -1.653193E+04

 14
 0.0
 -1.149591E+02
 0.0
 2.221343E+04
 0.0
 1.480896E+04

APPENDIX C RUN WITH RIGHT BAR CONNECTION

2 PAGE FREE-BODY MODAL STUDY OF SHOE/RAIL CONNECTIONS WITH BARS RIGHT WAY WITH CONNECTOR BAR NORMAL TO RAIL. OFFSET, CONNECT DISP 3,0 8,21,22 10 ID APP SOL DIAG TIME CEND

CASE CONTROL PACKET ECHO

TITLE = FREE-BODY MODAL STUDY OF SHOE/RAIL CONNECTIONS WITH BARS SUBTITLE = RIGHT WAY WITH CONNECTOR BAR NORMAL TO RAIL. OUTPUT DISP = ALL ELFORCES = ALL SPCFORCES = ALL SPCFORCES = ALL SUBCASE 1 LABEL = BARS PINNED AT RAIL END. OFFSETS AT SHOE END. METHOD = 3 BEGIN BULK

			S O R	 	BULK	DATA	ECHO			
SORTED										
COUNT		2		4 .		6	7	8		10
1-	CBAR	1	1	71	72	1.0	1.0	0.0		SHOE
2 –	CBAR	2	2	71	13	1.0	1.0	0.0		+TIE UP
ч	+TIE UP		246	0.0	2.0	2.0				
4 –	CBAR	٣	2	72	14	1.0	1.0	0.0		+TIE DWN
5-	+TIE DWN	7	246	0.0	2.0	2.0				
6 –	CMASS2	131	0.1	13	4					31THETA
7 –	CMASS2	141	0.1	14	4					14THETA
8 -	CMASS2	711	0.1	71	4					71THETA
-6	CMASS2	712	0.1	71	ŝ					71 PHT
10-	CMASS2	721	0.1	72	4					72THETA
11-	CMASS2	722	0.1	72	ς					72 PHI
12-	EIGR	m	INV	0.0	10.0	9	9	e	13	+ALLMODE
13-	+ ALLMODE	Z MAX)	
14-	GRID	13	0	3.0	2.0	2.0	0	246		RAILIPT
15-	GRID	14	0	3.0	17.0	2.0	0	246		RAILIPT
16-	GRID	71	0	0.0	0.0	0.0	0			SHOELPT
17-	GRID	72	0	0.0	15.0	0.0	0			SHOELPT
18-	MAT1	н г	3.+7		0.28	2.4-4				
19-	PARAM	COUPMASS	5 7							
20-	PBAR	1	1	1.0	1.0	1.0	1.0			
21-	PBAR	2	-	100.0	100.0	100.0	100.0			
	ENDDATA									

TO RAIL. DFAT FTGENVALUES	RADIAN CYCLIC GENERALIZED GENERALIZED RADIAN CYCLIC GENERALIZED GENERALIZED FREQUENCY FREQUENCY MASS STIFFNESS		9.2/2352£-04 1.4/2742-03 7.466593E-02 -2.769000E-08 6.089761E-04 9.692155E-05 7.466593E-02 -2.769000E-08	2.397226E-04 3.815303E-05 1.415073E-01 8.131985E-09	3.241743E-04 5.159394E-05 1.495328E-01 1.271424E-09	3.321611E-04 5.286507E-05 2.399001E-01 2.040041E-00 E 0003061E-04 9.393740E-05 1.215011E-01 4.232696E-08		FREQUENCY = 1.475741E-04 HZ.	з баг бідеичесток NO. ¹	T2 T2 T3	4.693623E-03 -1.234084E-01 8.545591E-04 -3./38998E-UI 2.09999E-U2 2.09996E-U2 2.09996E-U2	FREQUENCY = 9.692155E-05 HZ. EIGENVALUE = -3.708319E-07	REAL EIGENVECTOR NO. 2	T2 T2 T3 T1 R2 R3 0.0 9.888168E-02 0.0 2.797289E-01 0.0 0.0 -3.656060E-01 0.0 2.797289E-01 0.0 1.079729E-01 1.000000E+00 -3.096585E-02 2.797289E-01 3.890074E-02 1.079729E-01 5.355123E-01 -3.096585E-02 2.797289E-01 3.890074E-02	FREQUENCY = 3.815303E-05 HZ. EIGENVALUE = 5.746691E-08	REAL EIGENVECTOR NO. 3	T2 T2 T3 T3 T1 T57857E-01 0.0 0.0 5.630910E-01 0.0 1.577857E-01 0.0 0.0 5.630910E-01 0.0 1.577857E-01 0.0 -3.387907E-01 1.822414E-02 1.577857E-01 -3.032382E-02 -3.387907E-01 1.000000E+00 1.822414E-02 1.577857E-01 -3.032382E-02	FREQUENCY = 5.159394E-05 HZ. EIGENVALUE = 1.050890E-07	ведь еідеичест ов Nо. ⁴	T2 T2 T3 R1 R2 R3 0.0 -1.770641E-01 0.0 -3.227559E-02 0.0 -3.377019E-01 0.0 -3.227559E-02 0.0 -3.377019E-01 0.0 -3.227559E-02 0.0 -3.425264E-01 3.431774E-02 -3.227559E-02 3.065846E-02 -0.02 -0
			0	5	ц С	o u				1E-04	1E-04			5 E - 0 2 3 5 E - 0 2			1 14E-02 14E-02			1 74E-02 74E-02
ហ	YCLIC EQUENCY	57716-07	2155E-01	5303E-0	9394E-0	6507E-0.3740E-0.		-04 HZ.	0 N	R1 0.0 0.0 8.54559	8.54559	E-05 HZ.	S N S	R1 0.0 0.0 -3.09658 -3.09658	E-05 HZ.	к и о	R. 0.0 0.0 1.8224 1.8224	E-05 HZ	R N O	R 0.0 0.0 3.4317 3.4317
1 G E N V A L U	CY FR		-04 9.69	-04 3.81	-04 5.15	1-04 5.28		4CY = 1.475741E	ENVECTOR	T3 9.871816E-01 1.000000E+00 -1.362268E-01	-1.234084E-01	NCY = 9.692155F	ENVECTOI	T3 9.888168E-02 -3.656060E-01 1.000000E+00 5.355123E-01	NCY = 3.815303	ENVECTO	T3 2.897290E-01 5.630910E-01 7.266380E-01 1.000000E+00	ENCY = 5.159394	G E N V E C T O	T3 -1.770641E-01 3.377019E-01 -3.425264E-01 1.722396E-01
TO RAIL. B F L . F A T	RADIAN FREQUEN		4.27234 6.089761E	2.397226E	3.241743E	3.321611E	1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	FREQUEI	REAL EIG	T2 0.0 0.0 4.693623E-03	4.693623E-03	FREQUE	REAL EIG	T2 0.0 0.0 1.079729E-01 1.079729E-01	FREQUE	REAL EIG	T2 0.0 0.0 -3.387907E-01 -3.387907E-01	FREQUI	REAL EI	T2 0.0 0.0 7.083516E-01
CTOR BAR NORMAL	EIGENVALUE		-8.597651E-07	5.746691E-08	1.050890E-07	1.103310E-07	3.4850055407		I	T1 -2.433693E-04 -4.052280E-01 8.015541E-01	3.965695E-01			T1 7.450739E-02 -5.090036E-01 -4.071489E-01 -9.905599E-01			T1 2.404255E-01 6.952828E-01 -1.357936E-01 3.190636E-01	·		T1 8.741319E-01 4.142550E-01 1.000000E+00
TH CONNE	CTION DER	4	7 7	ή -	4 4	× س ،	6	=		TYPE GRID GRID GRID	GRID	= 2		TYPE GRID GRID GRID CRID	۳ 1 1 1 1 1		TYPE GRID GRID GRID GRID	2 = 4		TYPE GRID GRID GRID
IM XYM	EXTRA							NUMBER		r ID. 13	12	NUMBER		н 113. 71. 71. 72.	VIIMBER		41 ID. 13 71 72	5 NUMBER		NT TD. 13. 14. 71.
RIGHT	MODE		- - (7 7	n <	، س	9	MODE		POIN		MODE		POIN	ACDM		POII	MODI		POI

IARS PAGE

20

FREE-BODY MODAL STUDY OF SHOE/RAIL CONNECTIONS WITH BARS

FREE-BODY MC RIGHT WAY W	TTH CONN	Y OF SHOE/RAIL C ECTOR BAR NORMAI	CONNECTIONS WITH BARS . To RAIL.	PAGE 27		
BARS PINNEL Mode Number	AT RAIL = 5	END. OFFSETS A1	r shoe end. Frequency = 5.	286507E-05 HZ.		SUBCASE 1 EIGENVALUE = 1.103310E-07
			REAL EIGENVE	CTORNO.	5	
POINT ID. 13 14 71 72	TYPE GRID GRID GRID GRID GRID	T1 -9.356353E-01 9.272855E-01 -9.720924E-01 8.908284E-01	T2 T3 0.0 1.000000 0.0 -2.696967 5.534579E-01 8.513944 5.534579E-01 -4.183022	R1 1E+00 0.0 1E-01 0.0 1E-01 -8.464644E-02 1E-01 -8.464644E-02	R2 -1.059662E-01 -1.059662E-01 -1.059662E-01 -1.059662E-01	R3 0.0 0.0 -1.241947E-01 -1.241947E-01
MODE NUMBER	9		FREQUENCY = 9.	.393740E-05 HZ.		EIGENVALUE = 3.483668E-07
			REAL EIGENVE	CTOR NO.	9	
POINT ID. 13 14 71 72	TYPE GRID GRID GRID GRID	T1 7.174048E-01 8.860417E-02 1.000000E+00 3.711993E-01	T2 0.0 0.0 0.0 -4.786835E-01 -4.786835E-01 -4.777300	R1)E-01 0.0 8E-01 0.0 1E-01 -8.966749E-02 0E-01 -8.966749E-02	R2 -9.937754E-02 -9.937754E-02 -9.937754E-02 -9.937754E-02	R3 0.0 0.0 4.192004E-02 4.192004E-02
MODE NUMBER	ی = 1		FREQUENCY = 1.	.475741E-04 HZ.		EIGENVALUE = -8.597651E-07
		FORCE	S OF SINGLE-	POINT CONS	TRAINT	
POINT IC. 13	TTPE GRID	T1 0.0	T2 -4.023161E-10 0.0	R1 0.0	R2 0.0	R3 2.413897E-09
MODE NUMBEI	נ ≖ 2		FREQUENCY = 9.	.692155E-05 HZ.		EIGENVALUE = -3.708519E-07
		FORCE	S OF SINGLE-	POINT CONS	TRAINT	
POINT ID. 13	TYPE GRID	T1 0.0	T2 T3 -5.796661E-10 0.0	R1 0.0	R20.0	R3 3.477997E-09
MODE NUMBEI	3 		FREQUENCY = 3.	.815303E-05 HZ.		EIGENVALUE = 5.746691E-08
		FORCE	S OF SINGLE-	POINT CONS	TRAINT	
POINT ID. 13	TYPE GRID	T1 0.0	T2 T3 4.518601E-10 0.0	R1 0.0	R2 0.0	R3 -2.711161E-09

:

•

	SUBCASE 1 EIGENVALUE = 1.050890E-07		R3 2.741080E-09	EIGENVALUE = 1.103310E-07		R3 -1.1103876-08	EIGENVALUE = 3.483668E-07		R3 3.747944Е—09
		ONSTRAINT	R2 0.0		ONSTRAINT	L R2 0.0	·	ONSTRAINT	1 8.2 0.0
PAGE 32	5.159394E-05 HZ.	- POINT C	3 0.0 R1	5.286507E-05 HZ.	- POINT C	3 0.0 RJ	9.393740E-05 HZ	- POINT C	3 0.0 ^R
RAIL CONNECTIONS WITH BARS ORMAL TO RAIL.	TS AT SHOE END. FREQUENCY = 5	CESOF SINGLE-	T2 -4.568466E-10 0.0	FREQUENCY =	CES OF SINGLE.	T2 1.850646E-09 0.0	FREQUENCY =	RCES OF SINGLE	T2 -6.246573E-10 0.0
COF SHOE/	IND. OFFSE	F O H	T1 0.0		н С	T1 0.0		О Ц	TT 0.0
FREE-BODY MODAL STUDY RIGHT WAY WITH CONNEC	BARS PINNED AT RAIL ¹ Mode Number = 4		POINT ID. TYPE 13 GRID	MODE NUMBER = 5		POINT ID. TYPE 13 GRID	MODE NUMBER = 6		POINT ID. TYPE 13 GRID