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Abstract

For space based robots in which the base is fl'ee to move, mo-

tion planning and control is complicated by uncertainties in the

inertial properties of the manipulator and its load. This paper

presents a new adaptive control method for space based robots

which achieves globally stable trajectory tracking in the presence

of uncertainties in the inertial parameters of the system.

The paper begins with a partitioning of the fifteen degree of

freedom system dynamics into two components: a nine degree

of freedom invertible portion and a six degree of freedom non-

invertible portion. The controller is then designed to achieve

trajectory tracking of the invertible portion of the system. This

portion of the system consist of the manipulator joint positions

and the orientation of the base. The motion of the noninvertible

portion is bounded, but unpredictable. This portion of the sys-

tem consist of the position of the robot's base and the position

of the reaction wheels.

1 Introduction

In recent years the control of space based manipulators has r.

ceived increased attention. The main difference between spa(,

based robots and their terrestrial counterpart is the dynamic

coupling between the manipulator and its floating base. This

results in a similar, but uniquely different form for the kine-

matic and dynamic equations of motion.

Several researchers have focused on the forward and inverse

kinematics problem [1, 2, 3, 4]. One of the interesting parts of
these results is the formulation of the dynamic Jacobian matrix.

It is now recognized that singularities may occur in the trans-

formation from end-effector velocities to joint velocites which

are at different locations than the normal kinematic singularity

points. Another interesting result is the concept of the virtual

manipulator, [2]. If the mass properties of each link are known,

then it can be shown that a virtual manipulator can be obtained

for use in the inverse kinematics problem. The advantage of the

virtual manipulator is that algorithms developed for terrestrial

based manipulators can be applied.

The dynamics of multibody space based systems has been

researched for many years [5, 6, 7]. In many ways the control of

space based robots is similar to the problems traditionally f_,cod
in satellite control. The main difference is the articulated nal Hr,

of the robot. Free floating space based robot control has only

recently gained attention [8, 9].

In both the kinematics problem and the control problems

previous researchers have assumed either the mass properties

of the system are completely known or the momentum of the

system is zero. This paper presents a control method in which

neither of the assumptions are made.

We begin this paper with a description of the system consid-

ered and the formulation of the dynamic equations of motion.

The fifteen degree of freedom system dynamics are partitioned

into two components: a nine degree of freedom invertible por-

tion and a six degree of freedom noninvertible portion. The

invertable portion of the system consist of tile manipulator joint

positions and the orientation of the base. The motion of the

noninvertible portion is bounded, but unpredictable. This por-

tion of the system consist of the position of the robot's base and

and the velocity of the reaction wheels. An adaptive controller

is then presented to achieve trajectory tracking of the invertible

portion of the system. Finally, a summary of the main results

and conclusions of the paper are presented.

2 Equations of Motion

The system we are considering is an n degree of freedom se-

rial link manipulator, with rotational or translational joints,

mounted on a base containing tlu'ee reaction wheels. It is as-

sumed that no external forces are moments are applied to the

system. However, no assumptions have been made concerning

the initial momentum of the system.

Associated with each link is a right handed Cartesian coordi-

nate system whose position and orientation is fixed with respect

to the associated link. This is illustrated for link j in Figure 1.

The location of this coordinate frame with respect to an inertial

reference frame is denoted by the homogeneous transform Tj.

A Floating Referenced Frame is fixed at a specified position
on the Base with the same orientation as the inertial reference

frame. Its location is denoted by the homogeneous transform

To.

The Base link is numbered 3 and its coordinate frame is

located at the same location as the Floating Reference Frame,

but at a different orientation. It's location is denoted by the
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Figure 1: Illustration of Robot

homogeneous transform, T3. Between the Floating Refe,',.i.,,

Pr;_,le and tile Base frame are two fictitious links of zero ma--.

The three joints between these links represent the relative change

in orientation of the Base with respect to tile Floating Reference,

Frame.

The manipulator is attached to tile Base and the links are

numbered from 4 to n + 3. In addition three reaction wheels are

located inside the Base. The wheels are mllnbered fi'om n + 4

to n+6.

The configuration of the complete system is a tree structure

as illustrated in figure 2 for tile case of n = 6. Considering the

Floating Reference Frame to be the base of tile tree, each joint in

the system is numbered the same as the immediate descendant

in the tree. The position of the i - ttt joint is denoted by qi.

The kinetic energy of the system is given by the following

equation.
n+6 .

K = y] t-TR{_'iDi7 'T} (1)
i=3 2

wl,cre Di is the constant pseudo inertia, matrix for link i ref<-rr_ .!

:_, i=nk i coordinates. [10. 11], and 7'Rt} denotes the tra ....
erator.

[ fx2dm fxydm fxzdm fxdm
Di= jrrTdm = fxydm fy2dm fyzdm fydm

f xzdm f yzdm f z_dm f zdm

f zdm f ydm f zdm f dm

where the integration is carried out over the entire link, and

r = [x,y,z, 1] T is the position vector of the mass element with

respect to link i coordinates.
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Figure 2: Configuration of Space Based Robot

2.1 Reaction Wheels

The torque delivered to the base of the robot to control its ori-

entation is provided by a set of reaction wheels. The position

variables associated with these wheels are cyclic and therefore it

considerably simplifies the analysis by writing the kinetic energy

and the resulting equations of motion in terms of the generalized

momentum, lj, associated with these wheels.

OK

lj=_qj

The main objective of this section is to write the kinetic energy

kinetic energy in terms of these generalized momentum. To this

end, we consider the kinetic energy of the j - tl_ reaction wheel,

I(j = 1TR{:TjDjT_} (2)

We will show this can be written in the following form:

1--.17112
K.i = ITR{T3Ej _T} + 2:J -32

where Jj is the moment of inertia of the j - th reaction wheel

about it's axis of rotation and E_ is a constant matrix.

We begin with some notation. Let x be an arbitrary 6 x 1

vector, which has been partitioned into two 3 x 1 vectors, a and

b.

[°]
and define the matrix function R(x) as

R(x)= [ k(a)O00 b]0

where k 0 is a 3 x 3 matrix function such that for any two 3 x 1

vectors a and y, k(a)y = a x y, where x denotes the veclor

cross product.

With this notation, we can write the time derivative of T,

in the form:

Tj = R(vj)T3 (3)

where
3

i=1
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and,

[o]_= _o

PO = [ P--O ]1

The vector P-o is the position vector of the Floating Reference

Frame and, in general, for any joint k,

r--k × nk ] (4)

_-k = 0 if joint k is translational
rtk

where 0 is the null vector and n k is a unit vector along the

axis of rotation if the joint is rotational, or a unit vector in the

direction of translation if the joint is translational. The vector Zk

is a position vector of an arbitrary point on the axis of rotation

of the joint if rotational. The vectors nk, _k, and P-0 are defined

relative to the inertial coordinate frame.

With this notation we can write:

IQ = 1TR{R(vj)TjDjTT R(v_.j) T}

The matrix TjDiT T is the pseudo inertia matrix of the j - th

reaction wheel referred to the inertial coordinate frame. We now

partition TjDjT T into two parts:

T D ry = N; +Nj
where

N; : J;.,.y +mj  Ty

Nj = }_(X - eer - 2njny)

where Jj is the moment of inertia of the reaction wheel about

it's axis of rotation, jx is the moment of inertia about an axis
orthogonal to the rotational axis, and

With this partitioning we note that

R(_jlN; =- 0

and since,

R(vj) = R(v._) + R(_sj)0j

we get:

Kj = 1TR{R(v_3)N_ R(v_3) T} + I TR{R(v_j)NjR(v_j)T}

From equation 1:

OK
lj -

O@

= TR{R(s_j)TjDjT_'}

= g_(,_y,,,z + qj)

where w3 is the angular velocity of the Base.

3

t,_ 3 : E n.._iql

i=l

Direct expansion reveals that:

l] = JjTR{R(vj)NjR(v__j) T}

Thus, we can write:

IQ = 1TR{R(v__a)N; R(_v3) T } + 1 J_-'l_

Finally, we note that

Ej -1 x -1 T= T 3 N_ (T 3 )

is a constant matrix. We can therefore write:

1 . . T 1j:_ll 2
Kj = _TR{T3EjT 3 } + 2 3

which is the desired result.

This allows us to rewrite the total kinetic energy in terms of

the generalized momentum of the reaction wheels. We obtain,

n+3 1K = _ _-TRITi___Di +T} + 1.l-Xl2
i=3 Z j=n+4 2-2 3 (5)

where

{ Di + En+4 + E,+5 + En+6 if i = 3Di = Di if i # 3

It is of some interest to note that D___3 is the 4 x 4 counterpart of

the spatial articulated moment of inertia matrix, [12].

Note, for k _< 3,

Ol._.Z = TR{R(sj)TjDjTTR(sk) T}
OOk

= J_(,_._)

and

So that,

Oqk

d (Oli_ Olj = jji_Tn k = jj(w 3xnj)Tnk

For the manipulator joints, n + 4 > k > 3,

Olj _ OI_._L= 0

OOk Oqk

2.2 Elimination of Base Velocity

The form of the equation for the kinetic energy of the system

given in equation 5 is defined in terms of the velocities relative

to the inertial coordinate frame. Our objective in this section is

to rewrite this equation in terms of velocities relative to Floating

Reference Frame. That is, we will eliminate the term lbo found

in equation 5. This is done by rewriting this equation in terms

of the velocity of the system center of mass.

We begin by noting that:

Ti = ToAi
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where Ai is the homogeneous transform of link i coordinates

with respect to the Floating Reference Frame. Thus,

Ti = ToAi + Wo[4i

= IboeT+ hi (6)

where e -- [0001] T. Note that:

1100]0 1 0 po
To= 00 1

000

The position of the center of mass of link j is given by:

p; = T:;

where, r_ = constant, is the location of the center of mass of
link j with respect to link j coordinates. This is illustrated in

figure 1. Note that r_ is the center of mass of the combination

of the Base and the three reaction wheels. From equation 6 wo

get:

By definitionof the system centerof mass, we have:

n+3 n+3

m_p_ = E mjp_= E-_A':_
j=3 j=3

n+3 n+3

j=3 2=3

n+3

= mri% + _mjAF_
3=3

where mj is the mass of link j and mT is tile toted mass of the

system. So the linear velocity of the Floating Frame is:

n+3
mj - .

Po=-E-- _+/,c
j=3 mT A Jr3

Substituting this into equation 6 gives:

n+3

= ijceT + f4i -- E m3 f4 rCe T

j=3 ftlT 2 3

n+3

= i'°: + _2 AjC,j
j=3

where

I- mm--agrceT if i = jC0 = --_-rre_" if/¢ j
m T ,1-

Substituting this into equation 5 gives:

= TR{TiDiT } "_" ,];ll21

/=3 .l=n+,l

n+3n+3n+3 1

= E E E-_rR(aJC,jD--,c_£}
i=3 j=3 k=3

n+3 n+31 • ,,

+ _ _ -_TR{AjC,jD,e(P_) J }
i=3 j=3

n+3n+3 1 . . .... '

+ i_=a_=a72TR{p_e'D,C:IkA:}

and since,

We obtain,

where

n+3 1

n+6_ 1.17_1l?+
z_., 2-3 3

j=n+4

n+3

c_jn_:(i:) r = o
i=3

_ 1T _l " T n+6 1jTll?
K= -_ R{ jUjkAk}+ _ 2 -3 3+g

j=3 k=3 j=n+4

n+3

v_ = E C,jD,C_
i=3

{= Dj _ _--_rr;(r_)T if j = k

- mm--_Tkr_(r_)r ifj ¢ k

n+3 1

g = _ 2TRlp%TDie(P_) T}
i=3

1 cT c
= _mr(/_) lb

(7)

2.3 Lagrange's Equation

Lagrange's equation is used to obt,'fin the dynamic equations of
motion.

d OK Oh"

ri - dt Oih Oqi

where ri is the actuator torque if a rotational joint or actuator

force if a translational joint. For the reaction wheels, this equa-

tion is particularly easy to evaluate since the position variables

are cycfic. That is:
OK
--=0

Oq_

So that,
dl,

dt

where rl is the actuator torque of the i - th reaction wheel.

For the remaining variables, we note that:

OAj OAj

Ogh Oqi

Hence,

and

OK

OO_

+

+

n+3n+3EE rR{
j=3 k=3 Z O ]i

n+3 n+3 , OA
_ _-rR{a,uj_(-_ )'r}

j=3 k=3 Z (tqi

10lj
(-_, _-_o )l

j=n+4 "_ qi
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n+3 n+3 _, .

-- E ETR   jka }
j=3 k=3

n+3 1 hl .
J. t.,, 2

+ Y_ ('7"lj-z'7".)
j=n+4 JJ aql

since uTj = Ujk.

Similarly:

0K n+3 n+3 "

j=3 k=3 z aqi

n+3 n+3

+ E E
j=3 k=3 2 aqi

n+3 1 _1 •

=_n+ ( ;Jl3 ;'_
+ ----)

j 4

n+3 n+3= ___TR{ ujka T}

j=3 k=3

n+3 1 l Olj
+ >_5(Z _-gT,)

j=n+4 J qi

since uTj = Ujk.

Therefore, the equations of motion are:

where

and

n+3 n+3 _qa

EE wj
7-i = TR{"_qi U jkAk } + ui

j=3 k=3

{nTu if i _< 3ui= 0 if3<i_< n+3 (8)

n+6n+6 d

u= y_ _(njlj)= E (nJr3+w3xnjlj) (!'_
j=n+4 j=n+4

Since there is no external torque applied to the Base, the ri

are zero for i < 3. Therefore, to simplify the development of the

controller we make the following definitions. For 0 < i < n + 4

let,

Pi = 7"i -- Ui (l(})

The equations of motion then become, for 0 < i < n + 4:

n+3 n+3 OA ..

Pi = Y_ Y_ TR{T3. UjkA T} (11)
j=3 k=3

For the remainder of this paper, we will consider Pi to be the

inputs to the system• If the Pi are given, the actuator inputs rj

can be obtained from equations 8 through 10.

3 Adaptive Controller

In this section we present the control law and adaptation law so

that the system tracts onto the desired joint trajectory. Global

asymptotic stability is proven and a recursive formulation of _i

controller is provided for computational efficiency.

3.1 Method of Control

The controller is a modified version of an inverse dynamic con-

troller with adaptation. Let q be an (n + 3) × 1 vector of the

joint positions which includes the three orientation angles of the

Base and the n joint angles of the manipulator. We start by

defining the variable, g/ in terms of the position and velocity

errors, qe = q - qd. Let:

= ¢. + )tq_ (12)

where X is a positive definite diagonal matrix with positive di-

agonal components $i and qd is the desired value of q. Thinking

of g/as an input, this defines an exponentially stable and strictly

proper transfer function between _ and q_. The method of con-

trol is to select the control law and adaptation law such that

is an L 2 function. It can be shown that, [13]:

I qe E L 2 f3 L _

if q C L 2 then il_ C L _
qe is continuous

q_(t) --+ 0 as t _ oo

Thus, we have proven that the position and velocit.y tracking

errors have converged to zero if we can show that t) is an L 2

function.

A judicious choice of the norm of (} is a critical part of the

method• The following norm /_" is an appropriate choice:

n+3 n+3 1 • • T

-_TR{AjUjkA-k }_'=_k___" - " >0 v4#0

where

• _-_ OAk ._

i=1

The time derivative of/_" is:

d[( n+3 n+3 1 .. " T

dt
j=3 k=3

n+3 n +3 1 -' .z T

+ E E-2TR{AjUjkAk}
j=3 k=3

aT3 n+3 ..

j=3 k=3

3.2 The Controller

From equation 12 we get:

q = qd + "kqe

where q = q - _/. From this we get:

Defining:

• _ OAk =
Ak = ?_..--z--q_

i=1 oqi

(13)

(14)
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Then, the control law is:

n+3 n+3 OA ^ ":
= y_ y_ TR{_JUjk(Ak - 7_tk) T} (15)Pl

j=3 k=3

and the adaptation law is:

" _'T :."

Ujk = -ajkaj (ak - 7Jtk) (16)

^

where 7 and ajk are positive constants, and Ujk is current es-

timate of Ujk. Note that only q and _ are required for control

and not 0. Also, the acceleration,/_, is not required.

3.3 Stability Proof

We define the nonnegative function V(t):

n+3n+3

V(t) = /_'+ 1/2y_ _-_c_'TR{(Yjk(J_k} (17)

3=3 k=3

where the ctj_ are positive constants, and O;a = U;k - 0_,. is

the error in the estimate of Uj_.

To prove stability we first show that l)(t) _< 0. We start by

substituting equation 15 into the equations of motion, equation

11. This gives:

n+3 n+3 a--
O..qtj " T 7 T

0 = __, __,TR{--_qI(Uj_A k - (JjkA k)}
j=3 k=3

n+3 aT3 ,qA , . = T

+ 7 E ETR{_q_iUjkAa}
j=3 k=3

n+3n+3 OA .. , 7 T .. T

= Y_ Y_ TR{_(Ujk(A T - A k) + (U3k - (Jjk)_4 k)}
j=3 k=3

n+3 n_+3 . OAj _ : T

+ 7 E LTRI'_qIUjkAk }
j=3 k=3

n+3n+3 ,qA " 7' :: T

= __, _ TR{_(UJI,_4k + (Jjkak)}
j=3 k=3

,*+3.+3 OAj - : T

+ "7 _ L TR{'-_qiUjkAk }
j=3 k=3

Multiply by _i and summing over all i gives:

n+3 n+3n+3
, OAj = T _ = T

O = E E Y_TR{_qi(Uj_A k + UjkA k)qi}
i=l j=3 k=3

n+3 n+3 n+3 ,a *

T °tti " : _=

+ "TEEE R{_Uja'A_,qi}
i=1 j=3 k=3

n+3n+3 : ': T : _ :: T

= E ZTR{(AjUjkA_ " + ajujkat:)}

j=3 k=3

n+3 n+3 = ^ : T

+ V Y_ Z TR{AjUjkAk }

j:3 k=3

d_" n+3 n+3 , .. T

= ""d--7+ E E T  taf, jA2}
j=3 k=3

n+3n+3

j=3 k=3

Thus,

d/_ n+3n+3 .. T :
-- E E TR{_-]Jkf4k Aj}

dt
j=3 k=3

n+3 n+3 : T :

- "TE ETR{(JJkAkAj}

j=3 k=3

Where we have used the trace identity TR{ABC} = TR{BCA}

for any square matrices A,B, and C. Adding and subtracting

27/( gives:

dlt" n+3 n+3

d-T = - _ y_ TR{Ojk(Ak - 'TAk)TAj} - 27/_" (18)
j=3 k=3

~

Thus, if there are no errors in the parameter estimates, Ujk = O,

then /( satisfies the linear equation, df(/dt + 2'7h" = 0 and,

hence, K(t) = e-2Wt/_'(0) and the stability result immediately

follows. However, for the case in point, the parameter values

are not initially known and we must proceed further.

From equation 17 we get:

l?(t ) = d/_" n+3 n+3 _ : T- E E  ;:Tn{UjkUj }
j=3 k=3

Substituting in equation 18 gives:

n+3 n+3

(/(t) = - _ _ TR{(J jk( _4k - ?Jtk)T Aj} - 2'7f(

j=3 k=3

n+3 n+3 "T

- E E a-j:TR{fJJJ-YJk}
j=3 k=3

Substituting in the adaptation equation 16 gives:

V(t) = -'2'7h" < 0

Hence, 0 _< V(t) _< V(0) < oc, or 0 < 1/(0) - V(t) < cxz.

From the equivalence of finite dimensional vector space norms,

there exist a positive constant fl such that:

Therefore,

:T:
q q < fl/_"

o°°qT_dt < fo °_flh'dt

/5= fl--- -l?(t)dt
2"/

_[v(o)- v(_)]
< o¢

Therefore, () is an L 2 function and, hence, qe converges to zero,

which is the desired result.

3.4 Recurslve Formulation of Controller

The computational efficiency of the control law is greatly im-

proved by writing the equations in a recursive form. First we

define:

R(sk) = To _ R(ak)To
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This matrix R(sk) is simply R(sk) referred to the Floating Ref-

erence Frame• The vector sk has the same interpretation as lk

defined in equation 4 except that all the vectors are defined with

respect to the floating reference frame. Let:

J

R(vj) = Tol(R(v_k) - R(V__o))T o = _ R(si)(h
i=1

Then for Ak we have:

Ak

R(vk)
R(vo)

For -_k:

and for Ak:

For, )ik:

= R(vk)Ak

= R(Vk_l)+ R(s_)O_
= 0

_4k = R(_k)Ak

R(_0) = 0

f4k = R(i_k)Ak

R(_k) = R(__l)+ R(sk)'Ok

R(_o) = 0

Ak = (R(6k) + R(6k)R(vk))Ak

= /_(_k-1) + R(s_)_

+ (R(vk)R(sk)- R(sk)R(v_))qk
i_(_o) = o

These, equations are computed recursively from the Floating

Reference Frame to the end-effector, link n + 3.

Next we define:

Fjk = AjfJjk(_4k - 7_k) T

n+3

F i = _ Fjk

k=3

and

n+3

fi = _Fj=F,+fi+_
j=i

fn+4 = 0

This equation is computed recursively from the end-effector, link

i = n + 3 to the Floating Reference Frame.

Finally, the input is computed:

Pl = TR{R(si)f i} (19)

Note that:

cgAj _ R(si)Aj ifi_<j

--_-q/ =_, 0 ifi>j

4 Conclusion

An efficient algorithm for the adaptive control of a space based

robot has been presented• The method makes no assumptions

on the initial estimates of the inertial parameters or the initial

momentum of the system• Only the position and velocities of the

manipulator joints and the Base orientation angles are required
by the controller.

The first part of the paper develops the dynamic equations of

motion for the system• Key to the method is the use of reaction

wheels to control the orientation of the Base and the elimination

of the Base linear motion from the equations of motion• It was

shown that the effect of the reaction wheels on the dynamics

of the system can be divided into two components. The first

was the component related to the generalized momentum of the

reaction wheels. The remaining component can be effectively

included in the dynamics by modifying the inertial properties of

the Base. The linear motion of the Base was removed from the

equations of motion by using the law of conservation of linear

momentum• With these two transformations, the resulting form

of the kinetic energy was easily utilized in Lagrange's equation

to obtain the dynamic equations of motion.

The algorithm used in the implementation of the adaptive

controller is a modification of that presented for terrestrial based

manipulators [14]• The primary differences are due to the use

of homogeneous transforms in the equations of motion. For ex-

ample, inner products of vectors become inner products of ma-

trices• Another difference is the choice of the vector norm used

in the stability proof. For terrestrial based manipulators this

is directly related to the total kinetic energy of the manipula-

tor. For the space based manipulator, this was related to the

total kinetic energy minus the component due to the generalized
momentum of the reaction wheels and the translational kinetic

energy component•

A recursive form of the control algorithm was presented for

computational efficiency. The computational load is still fairly
high and increases quadratically in the number of links in the

system• Due to the coupling of the dynamics, there doe_ not

seem to be any way to avoid the quadratic complexity problem•

Since it is known that Ujk = uTj, some computational improve-

ments could be made with a slight modification of the adaptation
law such that only Ujk is estimated instead the current method

of estimating both Ujk and Ukj. However, this does not appear

to produce very significant improvements. A more promising
approach might be to avoid all of the coordinate transforma-

tions by referring the velocities, accelerations and forces to their

own link coordinates. For example, one would compute Akl_l_

instead of Ak and A-_l.Fjk(Akl)T.instead of Fjk.

A significant extension of these results would be the solu-

tion for manipulators containing closed kinematic loops, since

these are the most common types of manipulators encountered
in practice. This would also lead to methods for dual arm coor-

dinated motion control and compliant motion control. Another

extension would be an adaptive Cartesian coordinate controller•

This allow two manipulators mounted on different bases to work
in a coordinated manner.
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