
N91-2o677

The Ames-Lockheed Orbiter Processing Scheduling System

Monte Zweben

NASA Ames Research Center

M.S. 244-17

Moffett Field, California 94035

zweben@pluto.arc.nasa.gov

Robert Gargan

Lockheed AI Center

3251 Hanover St. 0/9620 B/259

Palo Alto, California 94304

gargan@laic.lockheed.com

Abstract

This paper describes a general purpose schedul-
ing system and its application to Space Shut-
tle Orbiter Processing at the Kennedy Space
Center. Orbiter processing entails all the in-
spection, testing, repair, and maintenance nec-
essary to prepare the shuttle for launch and
takes place within the Orbiter Processing Facil-
ity (OPF) at KSC, the Vehicle Assembly Build-
ing (VAB), and on the Launch Pad. The prob-
lena is extremely combinatoric in that there are
thousands of tasks, resources, and other tem-
poral conditions that must be coordinated. We
are currently building a scheduling tool that we
hope will be an integral part of automating the
planning and scheduling process at KSC. Our
scheduling engine is domain independent and is
also being applied to Space Shuttle cargo pro-
cessing problems as well as wind tunnel power
scheduling problems. The significant techni-
cal contributions of our scheduling system are
1) the ability to handle dynamic rescheduling
while considering the time it takes to resched-
ule, the optimization criteria in the domain,
and the amount of perturbation to the original
schedule; 2) the ability to represent arbitrary
state conditions that change over time and the
ability to declare the requirements and effects
that activities have in relation to these condi-

tions; and 3) the explicit representation and
use of search control knowledge so that domain
information can drive the scheduling process.
Our scheduling engine is a constraint-based sys-
tem implemented in CommonLISP that runs on

a variety of platforms. We have tested our sys-
tem with real orbiter processing data and have
found the results promising. In the near future,
we plan to deploy an early prototype of the sys-
tem which will be used to shadow the current
scheduling process at KSC.

1 Introduction

1.1 Description of Problem

Millions of people see or follow shuttle launches each

year. They are familiar with the kinds of work performed

by the shuttle crew. Most, however, are unaware of the
amount of work that's involved in preparing a shuttle for
launch. Preparing shuttles for launch requires successful
and timely completion of many operations performed by
many people.

Kennedy Space Center currently uses a three-tiered
approach to developing schedules for shuttle flights. At
the top level is the long range schedule. This sched-
ule represents multiple shuttle flights over several years.
The middle tier is developed about 60 days prior to the
beginning of the flight. At this time, the planning per-
son develops a flow that represents all of the activities
that must be performed on the specific oribiter prior to
launch. The granularity of activities developed at this
tier is generally one OMI per activity. An OMI (Orbiter
Maintenance Instruction) essentially describes a process
that must be performed. This activity generally can be
broken into about 10 primitive operations that must be
performed on the floor. The third tier represents these
primitive operations. Due to the large quantity of opera_
tions and the liklihood of change, the third tier schedule
is generated each day for the next week.

The scheduling process works as follows. Approxi-
mately 60 days before the beginning of a flight, high level
planners create the middle tier schedule. They are cur-
rently using a variant planning approach. That is, they
are starting from a pre-existing flow, removing work that
was unique to the previous flow, adding new work spe-
cific to this flow, and then rescheduling the activities.
Once finished, they perform CPM analysis to develop a
schedule. This schedule has many resource constraint
violations that must be resolved. The planner person
then uses the target start dates and resource balancing
to make the schedule to work.

Once the flow has begun, the planning and scheduling
people keep a detailed 72 hour schedule. This schedule
shows all activities that are being performed. Schedul-
ing at this level is primarily done based on past shuttle
flights and via daily scheduling meetings. During the
meetings, representativies of the various work groups
discuss their resource requirements and target comple-
tion times. The person in charge of the meeting coordi-
nates the dynamic rescheduling of the work to be per-
formed. Unfortunately, delays still occur. For instance,
on one occasion work that was scheduled could not be

performed because the necessary quality assurance peo-

290

https://ntrs.nasa.gov/search.jsp?R=19910011364 2020-03-19T19:06:08+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42819047?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

pleweren'tavailable.Othertimes,weathercouldcause
adelayincertainwork.Thesekindsof delaysarepart
of therealityof executingtheschedule.In thisdynamic
changingenvironment,it isall themoreimperativethat
thepeoplein chargebeableto seepotentialimpactof
decisions being made. KSC managers do a super job
currently, given the amount of information they have. It
is desirable to recognize a problem and be able to work
with the system to determine a solution.

1.2 Why Use A Heuristic Approach

On the surface, it appears that a good project manage-
ment tool is all that is required to manage the scheduling
of activities. KSC has been doing this at the second tier
level and beginning to do this at the third tier as well.
Unfortunately, the project management tools can only
address part of the problem. Each activity has temporal
requirements, resource requirements, and configuration
requirements. Existing project management tools can
represent most of the temporal requirements and some
of the resource requirements, however, no tool can rep-
resent the configuration requirements. Given this, the
best any conventional tool can do is give you partial in-
formation.

For instance, there are activities (hazardous opera.

tions) that require the area to be cleared. When these ac-
tivities occur, most other work can not occur. However,
there may be no requirement saying that the hazardous
operation must occur before or after other work. Con-
ventional systems have no way of expressing this kind of

temporal constraint.
Additionally, much of the work being performed on

the orbiter requires that the orbiter be in a specific con-
figuration. Again there may not be any hard temporal
requirement connecting several activities, however, one
activity may change the state of the orbiter and later
activities may require that configuration. A simple ex-
ample of this is requiring that the orbiter bay doors be
closed to do certain types of tile work.

Heuristic approaches to scheduling are not new. ISIS
[Fox83] and then OPIS [SFO86] focused on developing
a constraint based job shop scheduling system. KSC
has also had scheduling work done previously. Em-
press [HJK*85] and Phits [Gar87] both focused on dif-
ferent aspects of planning and scheduling of cargo pro-
cessing.

1.3 Our Approach

We have viewed KSC scheduling as a Constraint Satis-

faction Problem (CSP). In our system, we represent most
information using variables. Each variable can take on a
range of values. Constraints are used to filter the values
of the given variables. For example, Figure 1.3 shows
two activities and some of the variables associated with
them. We use constraints maintain the relationship be-

tween the start time, the end time, and the duration of
an activity. Additionally, using constraints we can ex-
press a requirement that one activity must start before
the other one can start (or similarly with the end time)
or that one must precede the other. During the schedul-
ing process, the list of possible values for a given variable

Task: Receiving

Start: I 1123/91 :: I 0:00

End [0 _]

Duration: [0 _}

Usage I: _

Usage2:

Effect: \ _

Tyoe:Te\.oIclan_ I

Pool: [Bldg_Techs BldggTechs ...1

Oty: 5 _

Use: Reusal_

I State: Location of Payloadl
Function: Set-to-Value

Value: Recelvlng-Dock

Task: Testing

Start [0_]

End: [0 _]

Duration: [0_]

Usage I: _

Usage2:

Type: Electrical Power

Pool: [Bus A Bus B ..]

Oty: I0

Use: Consumable

Figure 1: Task Representation and the Use of Con-
straints

is filtered based on the various constraints. The schedul-

ing system searches the space of possible schedules for a
time when all variables can be fixed and all constraints
satisfied.

The remainder of this paper describes the process in
more detail. We first introduce the knowledge represen-
tation we have utilized. This description will be of the
various types of constraints we are using. Next we de-
scribe a rule system we have recently added that allows
the user to encapsulate the search control knowledge ex-
plicitly rather than implicitly as is usually done. Finally,
we describe the process of rescheduling. Rescheduling is

especially critical to KSC since activity status is in a
constant state of flux.

2 Knowledge Representation

Scheduling knowledge is being represented via con-
straints. Constraints are applied to the various variables
that are a part of the objects of the system. For instance,
our major object in the system is the activity. Activities
contain many status slots. They also contain slots rep-
resented as variables such as the start time, end time,
and duration. Constraints can be tied between multiple
variables to maintain some consistency between various

objects. For instance, a constraint would be used to state
that a resource that is needed for a specific activity must
be available during the time of allocation. The remain-
der of this section gives a brief overview of the types of
constraints we represent.

2.1 Resource Requirements

Constraints can be used to require specific resources for
an activity. Resource classes can be represented hier-
archically. Each resource class can have one or mote
resource pools associated with it. Each resource pool
can have a capacity of 1 or more. A resource pool of
one is used to represent a specific individual or piece of

291

equipment. Alternatively, if uniqueness is not of concern
the pools could contain many values. Using this type of
resource, would result in allocating one from the pool to
the activity, however, it wouldn't matter which one.

2.2 State Requirements

An important distinction between our system and oth-
ers is our representation of state information and the
use of constraints to maintain the proper state. For in-

stance, most of the work on the shuttle requires that the
orbiter be in some particular state (for instance, the or-
biter doors being closed). As was mentioned before, cur-
rent systems cannot represent this information. In our
system, the activity representation has been extended to
support task requirements and task affects in addition to
the representation of states.

A state is an object in our system that can take on
multiple values. We will eventually support finite state
machines, although we currently support known state
changes. For instance, the orbiter contains two bay
doors. Each door can take values of opened, closed, or

half-open. Other state information is represented simi-
laxly. Activities now can require that before the activity
can start the object (in this case the shuttles bay door)
must be open. Conversly, an activity can specify that
as a result of executing the given activity the following
object state will be changed. In the above example, an
activity might specify that the pay doors are moved from
the open to closed position.

The task requirements and affects described above are
encoded as constraints on the given activity. These con-
straints must be maintained by the system in the same
manner as the other constraints. By representing this
type of information explicitly, the scheduler can take ad-
vantage of this type of knowledge when sequencing op-
erations. Scheduling systems that have been developed
previously would have represented this information im-
plicitly as precedence constraints. This would reduce the
overall flexibility of the system as well as make it more
difficult to reschedule activities when problems arise. By
using the state information to constrain the activities, it
allows a more flexable schedule.

2.3 Temporal Relationships

Even though some information should be represented via
state constraints, other information still should be repre-
sented via temporal constraints. Some of the most often
used constraints are the precedence constraints. One
type of precedence relation states that activity-1 must
be completed before activity-2 can start. All standard
off the shelf project management tools allow this form of
representation. Additionally, some tools will also allow
the user to specify that one activity must begin before
the other one can begin (or end before the second one
ends). The standard tools, however, do not generally
allow the user to place delays on all the precedence re-
lationships. In addition, they don't allow the user to
express that two activities can occur in any order, how-
ever, they can not happen at the same time. This form of

mutual exclusion is necessary for constraining hazardous
operations on the space shuttle. This type of work must

be done without other work being done in the area.

2.4 Calendars

Finally, it is necessary to represent when the work can
actually be performed. We represent this type of infor-
mation in a calendar. A calendar specifies when work

can be performed. It takes into consideration holidays
and daylight savings time. Each activity specifies a cal-
endar that should be used to determine when it should

be scheduled. This is consistent with the current way in
which work at KSC is scheduled. There are a variety of

calendars ranging from one 8-hour shift 5 days a week to
a 7 day 24 hour calendar.

2.5 Representing Control Knowledge

One of our goals in developing this system was not to tie
the scheduling process too closely to the KSC domain.
Different applications should be scheduled in different
manners. There is always domain knowledge that can be
utilized to more effectively schedule operations. There is
a basic conflict here between adding in this domain spe-
cific control knowledge and still maintaining generality.

Our desire would be to use a formal language to spec-

ify the control knowledge necessary to guide the sched-
uler through the search process. This would allow the
applications developer to add specific control knowledge
to the system to customize it for their application. Cur-
rently, most scheduling systems use LISP code to encode
the search strategy. The problem with this is that it im-
plicitly requires the search process to be the same for all
applications of the scheduling system. Even if a single
application area is all that was intended, this approach
also fails because it restricts the end-user from being able
to customize the search process at some later date should
the need arise.

As a result of these issues, we are integrating a rule
language into our scheduler. The user will encode all
search control knowledge into the rule system. The sys-
tem presently contains general knowledge encoded in
rules. For instance, one rule that plays a role in deter-
mining the task to schedule states that if there is a same
start or same end time relation between two tasks and

the second task is not scheduled, then strongly prefer
scheduling this task next.

As we continue to develop this portion of the system,
we will be adding more KSC specific rules into the sys-
tem. For example, there are certain types of work that
are prone to identifying unforseen problems, so it is use-
ful to do this work as early as possible so the problems
can be identified. This type of domain specific infor-
mation will eventually be represented as a rule to the
system.

3 Dynamic Rescheduling

One of the most critical needs of KSC is the ability to
reschedule the activities because work schedules are con-

stantly changing. There's a variety of reasons ranging
from unanticipated training schedules to bad weather.

Whenever a problem arises, it is necessary for the plan-
ning people at KSC to adjust schedules to handle the
problems proposing the appropriate work around. While

292

this is by far their worst problem, it is also one which is
extremely difficult to meet using the existing tools. Be-
cause of the lack of support for the various kinds of con-
straints described above, planning personnel have used

precedence relationships to force the schedule to take
place in a certain order. Doing this, however, reduces fu-
ture flexibility in the schedule by arbitrarily using prece-
dence relationships where they are not really necessary
Additionally, the planning personnel force the start time
for many activities in the schedule to be fixed rather
than relying on the constraints to determine new start
times. This often results in the work not being performed
when scheduled because the orbiter is not in the appro-

priate configuration or the necessary resources are not
available. The resolution of these problems are often the

subject of the daily scheduling meetings involving many
KSC and Lockheed personnel.

Our goal with our scheduling tool is to provide the
rescheduling capabilities to alleviate the above problem.
In order to be successful, we must provide a tool that
efficiently determines the new schedule. Our approach
has been to investigate the use of iterative improvement
scheduling algorithms. This approach differs from tradi-
tional "AI" scheduling approaches in that they incremen-
tally repair complete solutions to the scheduling problem
rather than systematically extending the partial solution
to the problem. Our approach has led us to develop
a framework [Zweg0] that converges on a solution by
making local repairs to the violated constraints of some
approximately correct schedule. This approach has two
advantages over the other approaches. First, our ap-
proach is significantly faster than conventional heuristic
based scheduling techniques. Second, because of the na-
ture of our algorithm, a solution can be returned at any
point in the algorithm, with the solution improving the
longer the algorithm is given to execute.

Our algorithm is implemented in two phases. The first
phase is the systematic repair of all temporal constraints.
The result is a schedule that is consistent with respect
to temporal constraints, but is likely to contain resource
and state varable constraint violations. This schedule is

the input to the second phase - constraint-based sim-

ulated annealing. During this phase, the scheduler in-
crementally repairs violated resource and state-variable
constraints. The remainder of this section describes the

two phases in more detail.

3.1 Temporal Shift

The temporal shift, which is the first phase of our

rescheduling algorithm, takes a desired change in start
and end times for a given activity and creates a schedule
without any temporal constraint violations. We orig-
inally achieved a consistent schedule by systematically
shifting all activities with temporal constraint violations
in a fashion similar to those used by OPIS [OST88]. We
later discovered that this approach by itself would not
fill our needs because of constraints tying the end time of
one activity to the end time of another (or start time to

start time constraints). These constraints, in conjunc-
tion with the more conventional constraints (end time

to start time) could lead the system back to the origi-

nal task that was moved, so the approach of taking the
earliest unscheduled task would no longer apply.

We decided to use Waltz's algorithm [Day87] to ad-
dress this anomaly. The algorithm is based on changing
the intervals for each activity when shifted. Each change
causes the interval to be filtered so that each interval con-

tinues to represent the range of times when an activity
can begin (or end). The algorithm begins by reschedul-
ing the changed task. It then collects the activities that
have temporal constraint violations. Those activities'
times are then filtered by a similar amount. This al-

gorithm has the advantage that it quickly determines
plausable schedules with minimum amounts of change
and works for the general class of constraints used by
KSC.

The algorithm is not guaranteed to be successful. If
an activity has been marked as permanent and an at-

tempt is made to move it, then the algorithm will return
unsuccessfully. This could be useful for addressing mile-
stones as well as activities dependent on some natural

event (i.e. sunrise).

3.2 Constraint Based Simulated Annealing

The second phase is based on simulated annealing
[KGV83]. It begins with the scheduling assignment re-
sulting from phase one of rescheduling and then evalu-
ates a "cost" of the assignment. The cost function for
our experiments is the number of constraints violated for
the given assignment. Then, by repairing constraints, it
suggests a new solution and evaluates its cost. If the
new cost is an improvement, it adopts the new assign-
ment and continues. If the new solution is worse, the al-

gorithm adopts it with some probability. This last step
allows the algorithm to escape local minima. We have
customized this general approach to constraint satisfac-
tion problems which is described in more detail elsewhere
[Zweg0]. The basic algorithm is as follows (where T is a
set of tasks with assignments made in phase one):

Solve(T)'[
Old = Cost(T);
Repeat until Old <= *THRESHOLD* (

Next = Find_New_Solution(T);

New = Cost(Next);
If New < Old Then _ Old = New; T = Next;)

Else (With probability P do
Old = New;

T = Next;} };

SaveBestSolutionIfNecessary;
)

3.2.1 Systematic Repairs: Finding a New
Schedule

In our previous work, we concentrated on simple local
repairs in order to investigate the utility of the simu-
lated annealing search framework. Here, we focus on
fast rescheduling, with a heuristic bias against schedules
with excessive work-in-process (WlP) time and against
schedules that require radical perturbations to the orig-
inal schedule. This bias is enforced by the repair strate-
gies themselves. First, only those tasks involved in con-

293

straint violations are modified, and second, when tasks
are moved they are not moved drastically.

Our repair strategy also exploits the knowledge that
any task move is likely to violate temporal constraints.
Thus, after any constraint repair causes a task to move,
temporal constraint violations are resolved first by ex-
ecuting the temporal shift algorithm given above. Be-
cause these repairs explicitly exploit the knowledge of
how repairs interact, they are no longer local.

The following are two of the repair strategies employed
by the rescheduler:

capacity(?start ?end ?resource):
I. Deallocate this current resource.

2. Try to find a pool that is available
from ?start to Vend.

3. If one exists, change ?resource to

be that pool and reallocate.
4. Otherwise task = the task associated

with this constraint;

new-start = ?start + random(l .. I0)

*c,d;

new-end = new-start + duration(task);

TemporalShift(?task, new-start, new-end) ;

The constant c is a small,fixed time unit (a day in the
payload processing domain) and d is a direction (1 or
-1) that is set by the change that the user makes. The
strategy attempts to substitute a new resource pool, but
if that is impossible, it moves the requesting task back or
forward in time. After the task is moved, the temporal
shift algorithm of phase one is executed - this systemat-
ically propagates the change caused by tile repair to all
temporal dependents.

temporal-equals(?tl ?t2 ?a ?v):

First strategy:

I. supporter = the first task after ?tl

that sets ?a = ?v;
2. task = the task associated with this

constraint;

3. new-end = start(task) - c;

4. new-start = new-end - duration(supporter);
8. TemporalShift(supporter, new-start, new-end);

If unsuccessful:

1. task = the task associated with

this constraint;
2. new-start = the first time of a state

transitions t,
(away from ?tl in the direction of d)
where ?a is set to ?v;

3. new-end = new-start + duration(task);
4. TemporalShift(task, new-start, new-end);

This repairisanalogous to the modal truth criterion

ofnon-linearplanning[Cha87] but without the flexibility

of adding actions. The preferredrepair is to move a

taskthat setsthe state-variableappropriately,to a time

intervalbefore the task that has the requirement (i.e.,

to use Chapman's terminology, moving a white knight).
If this is impossible, the task with the requirement is
moved to a point in time when the state variable is set
appropriately. This will move the task directly after the
closest white knight.

In either case, to perform a move, thc temporal shift
of phase one is employed which results in a temporally
consistent schedule.

4 Development Status

The project to apply the scheduler to the KSC shuttle
processing problem has been underway for about a year.
Since February, we have been working with actual data
from a completed shuttle flight. While this data did not
provide us with the data to utilize our state variable

representation, it did provide us the ability to test our
algorithms on realistic amounts of data.

Our plan is to shadow the STS-37 flight later this sum-
mer. The initial purpose of this first test is to collect the
necessary scheduling information to put into the system.
Currently, no information exists in computer form stat-
ing various configuration requirements of the orbiter for
the various activities. Additionally, the resource infor-
mation that is presently stored must be compared with
the floor supervisors for accuracy as well as adding new
resources that are not presently being stored. During the
testing period, we will add in the changes to the work
as they occur providing new schedules in a timely man-
ner. As the quality of the information being stored in
the knowledge base increases, our system will produce
better schedules. The schedules we produce will then be
compared to existing work schedule providing us some
insight into new information to add to our system. Our
hope is that even at this early phase of testing, we will be
able to provide the KSC personnel some insight into al-
ternative schedules that might not have been considered
in the past.

5 Conclusion

In this paper, we described a researdl scheduling tool
that is being applied to scheduling ground processing
activities for the space shuttle. Research in this area has
been on-going for several years and is at a state where an
application of this magnitude can be attempted. We pro-
vided a brief overview of the scheduling system provid-
ing examples of the use of the various pieces to the KSC
application. Experimentation with the repair strategies
will continue as we use the rescheduling component of the
system with the real data. It is generally felt, that there
is a tremendous potential for savings to the shuttle pro-
gram if this effort and the other phases of the scheduling
process (not described here) at KSC are automated.

References

[Cha87]

[Day87]

D. Chapman. Planning for conjunctive goals.
Artificial Intelligence, 32(4), 1987.

Ernest Davis. Constraint propagation
with interval labels. Artificial Intelligence,
32(4):281-331, 1987.

294

[Fox83]

[Gar87]

[HJK*85]

[KGV83]

[OST88]

[SFO86]

[Zwe90]

Mark S. Fox. Constraint-Directed Search: A

Case Study of Job Shop Scheduling. PhD the-
sis, Carnegie-Mellon University, 1983.

R.A. Gargan Jr. Mission planning and sim-
ulation via intelligent agents. In Proceedings
of Space Station Automation III, November
1987.

G. B. Hankins, J. W. Jordan, J. L. Katz,
A. M. Mulviehill, J. N. Dumoulin, and J.

Ragusa. Empress: expert mission planning
and replanning scheduling system. In Proceed-
ings of Expert Systems in Government Sym-
posium, 1985.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vec-
chi. Optimization by simulated annealing.
Science, 220, 1983.

P. Ow, S. Smith, and A. Thiriez. Reactive
plan revision. In Proceedings of AAAI-88,
1988.

Steven F. Smith, Mark S. Fox, and Peng Si
Ow. Construction and maintaining de-
tailed production plans: investigations into
the development of knowledge-based factory
scheduling systems. AI Magazine, 7(4), Fall
1986.

Monte Zweben. A framework for iterative

improvement search algorithms for constraint
satisfaction problems. In AAAI-90 Workshop
on Constraint-Directed Reasoning, 1990.

295

