
N91-20687

Reasoning about Real-Time Systems with

Temporal Interval Logic Constraints on Multi-State Automata*

Armen Gabrielian

Thomson-CSE Inc.

630 Hansen Way, Suite 250

Palo Alto, CA 94304

Abstract

Models of real-time systems using a single para-

digm often turn out to be inadequate, whether the

paradigm is based on states, rules, event sequences

or logic. In this paper, a model-based approach to

reasoning about real-time systems is presented in

which a temporal interval logic called TIL is

employed to define constraints on a new type of

high-level automata. The combination, called "Hi-

erarchical Multi-State (HMS) machines," can be

used to model formally a real-time system, a dy-

namic set of requirements, the environment, heuris-

tic knowledge about planning-related problem solv-

ing, and the computational states of the reasoning

mechanisms. In this framework, mathematical

techniques have been developed for (1) proving the

correctness of a representation, (2)planning of con-

current tasks to achieve goals, and (3) scheduling of

plans to satisfy complex temporal constraints.

HMS machines allow reasoning about a real-time

system from a model of how truth arises instead of

merely depending on what is true in a system.

1. Introduction

Real-time systems are characterized by unpredict-

ability of inputs and "hard deadline" requirements.

In addition, since many real-time systems are uti-

lized in life-critical situations, strict "safety proper-

ties" are usually defined for them. A safety property

is a state of affairs that must always remain true in a

system. Instead of the usual discussion of"liveness

properties," it is useful to define other requirements

of a real-time system in terms of a set of"condition-

al goals" defined in terms of(condition, goal) pairs.
A condition defines the state of affairs under which

the associated goal must be pursued. We assume

that deadlines may be associated with goals and that

requirements are dynamic so that the pursuit of an

active goal may have to be abandoned if certain oth-

er conditions become true. Thus, at the specifica-

tion stage, the main forms of reasoning about a real-

time system consists of the verification that (1) safety

properties are not violated and (2) conditional goals

are achievable. For traditional systems which oper-

ate deterministically or stochastically, this is essen-

tially sufficient even though it can be a very compli-

cated process. At the operational stage, two other

forms of reasoning arise for "intelligent systems"

which are not defined deterministically and require

a search or other forms of analysis to instantiate a

specific set of responses in a particular situation.

First, off-line reasoning can be performed to deter-

mine in advance a set of allowable actions to achieve

goals. Secondly, on-line reasoning can be

employed, where deadlines on the reasoning pro-

tess itself may have been defined. A key problem in

the specification and operation of complex real-

time systems is the choice of a representational

framework that can provide manageable ap-

proaches to specification, verification, and instanti-

ation of behavior.

While numerous formal representational schemes

have been proposed for systems in general and real-

time systems in particular, most of these are based

on one of the following paradigms: state-based

* The work reported in this paper was supported in part by the Office of Naval Research under Contract N00014-89-C-0022.

368

https://ntrs.nasa.gov/search.jsp?R=19910011374 2020-03-19T19:05:06+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42819037?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

models, rules, event sequences or logic. Two major

examples of state-based models are automata and

Petri nets. For real-time systems, traditional

automata are inadequate for at least two important

reasons: (1) explosion of the state space for non-tri-

vial systems, and (2) absence of a natural mecha-

nism for representing temporal constraints. Petri

nets reduce the state space and can represent con-

current activities adequately. However, in Petri nets

numerous dummy states are usually necessary to

maintain logical consistency and no clear separa-

tion is made between precedence and causality [7].

In addition, even timed Petri nets have a limited lan-

guage for representing temporal relationships

among states and events [6]. Specification and veri-

fication of complex real-time requirements are also

difficult for rule-based systems and event se-

quences. In particular, it is generally accepted that

while rules are appropriate for defining prototypical

behavior, they are inadequate for reasoning about

novel situations. As far as pure logical formalisms

are concerned, temporal logic provides a promising

approach, except for two shortcomings. First, cer-

tain simple regular properties cannot be expressed

in temporal logic [10]. Secondly, in a pure logic-

based language a system is represented merely in

terms of what is true. This gives a limited under-

standing of system behavior, since knowledge of

how truth arises which is common to state models is

not readily available.

The purpose of this paper is to present a brief over-

view of a comprehensive framework for specifying

real-time systems and reasoning about them, called

"Hierarchical Multi-State (HMS) machines," that

integrates high-level "multi-state" automata and

fragments of a temporal interval logic called TIL

([7], [4], [3], [5], [6]). As noted in Figure 1, an HMS

machine can be used to define formally the dynamic

behavior of a system, its requirements, a model of

the environment, heuristic knowledge about plan-

ning-related problem solving, and the state of the

computational resources used in reasoning. Given

such a specification, the system can be simulated, its

correctness can be verified formally, and it can be

used for both off-line and on-line reasoning to de-

rive operational plans and schedules to respond to

the dynamics of a real-time situation.

Section 2 presents an outline of a simple form of

HMS machines, with a brief discussion of the meth-

od for representing requirements in terms of "policy

HMS machines." Section 3 presents an overview of

the planning process, plan representation languages

and a scheduling algorithm for plans. Section 4

presents a brief set of conclusions and directions for

future work.

Environment Planning

Requirements] Heuristics
x I t tomputanonat

System Dyn Resources

Mu!ti- ral Interval Logic (TIL)

Automata

Simulation JJ' _q Schedules

Verification of Plans

Safety Properties

Figure 1. Specification, Verification and Reasoning Framework for Real-Time Systems

369

2. Automata, Temporal Logic, Machines and

Real-Time Systems

An automaton consists of a set of "states" and a set

of "transitions" that cause changes in states due to

the occurrence of certain events such as arrival of

inputs. This provides a very general architecture for

defining the dynamics of a system, except that, as in-

dicated in the Introduction, it is inadequate for
specifying complex real-time systems. Hierarchical

Multi-State (HMS) machines [4] are high-level

"multi-state automata," in which (1) multiple (hier-

archical) states can be true at one moment, (2) mul-

tiple transitions can fire simultaneously, and (3) a

temporal interval logic, called TIL, is used to define
constraints on transitions. This architecture allows

the compact definition of the dynamics of complex

real-time systems, in which interactions among

states and hard deadlines can be defined formally.
In addition, a "multi-level" combination of HMS

machines [5] provides the capability for formally

defining dynamic requirements, giving rise to a mo-

del-based reasoning framework for real-time sys-

tems. Because of limitations of space, only the non-

hierarchical version of HMS machines will be con-

sidered here. A formalization of hierarchies can be

found in [6].

An HMS machine is a triple H = (S, FD, rN), where

S is a set of "states," rv is a set of "deterministic"

H2:

(policy Machine)

HI:

transitions, and I'N is a set of "nondeterministic"

transitions. Boolean states represent properties

that may be true or false about a system. Non-bool-

ean states can represent both properties of multiple

entities in a system and properties of data objects.

Deterministic transitions denote fixed causal inter-

actions among states, while nondeterministic tran-

sitions represent possible or permissible interactions.

Nondeterminism, in fact, is the key to the specifica-

tion of choice in model-based reasoning in the HMS
framework.

The constraints or "controls" on transitions in an

I-IMS machine are defined in terms of the temporal

interval logic TIL which is obtained by adding the

following three operators to propositional logic:

O(t): At relative time t

It1, t2]: Always between times tl and t2

< tl, t2 >: Sometime between times tl and t2

The operators [tl, t2] and <tl, t2>, which allow

hard real-time constraints to be defined for HMS

machines, are generalizations of the standard tem-

poral logic operators [] and _, respectively. All

times are relative, with the current moment denoted

by 0. Figure 2 depicts a simple 2-level example of an

HMS machine specification that defines both a

nondeterministic "basic machine" HI and a specifi-

cation of requirements in terms of the "policy I-IMS

T_t Go_.igl>on j

Get in C,r * V-_ *
[-4S, 0] mins.

InCar _ Driving to Airport [_A ";_.taitnCar

O_ [__VorkFinished] to Airport i_p_ At

Climb into Helicopter _ _ v-.
Start Flying
to Airport _ [-10, 0] rains.

Figure 2. A 7,-Level HMS Machine Specification of System and Requirements

370

machine" H2. In this figure, rectangular boxes rep-

resent states, dark arrows are transitions, thin ar-

rows denote TIL controls on transitions with the

symbol 0) next to each temporal operator, and the

partially double-dashed arrow in H2 is a "policy

transition" that defines intentionality. Asterisks de-

note nondeterministic transitions so that in H1 the

choice of all actions is not completely determined.

We say that a transition is "enabled" if (1) its "pri-

mary" states from which the transition emerges are

true, and (2) its controls are true. Thus, starting at

the left side in the machine H1, from the state 'At

Office" one can go into state "In Car" or into state

"In Helicopter" as long as the control state "Work

Finished" is true. If the state "In Car" ("In Helicop-

ter") is true, then nondeterministically the transi-

tion "Start Driving to Airport" ("Start Flying to Air-

port") is fired. Nondeterminism is useful since this

machine may be part of the specification of a much

larger set of behaviors that could include going to

many other destinations. The horizontal bar from

which the transition "Start Driving to Airport"

arises is an infinite resource which is always true.

Thus, if this transition fires, both the states "In Car"

and "Driving to Airport" would be true simulta-

neously. We note that at the end of this path, if the

state "Driving to Airport" has been true continu-

ously from 45 minutes earlier to the current mo-

ment, then a deterministic transition will take one to

the state 'At Airport."

The policy transition of machine H2 in Figure 2 de-

fines the goal of reaching the state 'At Airport"

when executing H1, with the requirement that the

state "Going on Trip" must be true in the beginning

and the trip should not take more than t minutes.

Thus, depending on the value of t, different "plans"

for H I can be derived to reach the goal state. If the

execution of the plan takes more than t minutes,

then the plan can essentially be abandoned. Addi-

tional types of controls on policy transitions that are

not shown in the figure can be used to define com-

plex interactions of states and goals, including the

capability of making a goal dependent on the plan-

ning process itself. Thus, for example, an alternate

goal can be specified if the plan generation process

takes longer than a specified length of time. Heuris-

tic knowledge about plans can be captured by inter-

mediate policy machines that define midpoint

states that must be achieved during the execution of

a plan. More details about policy machines can be

found in [5].

An important benefit of the formal specification of

a real-time system is that it provides a framework

for verification of correctness and consistency be-

fore implementation. Following the procedure in 3,

given an HMS machine and any safety property de-

fined on its states, one can create a new "extended"

state that will be true if and only if the safety proper-

ty is violated. By a result of [8], such a state need

only depend on the past history of the states of the

machine, even though safety properties are usually

defined in terms of future events. Two specific veri-

fication methods can then be used to verify that the

extended state corresponding to the safety property

is not reachable. In the first method, correctness-

preserving transformations [3] are applied to

modify an HMS machine incrementally, without af-

fecting its behavior, until the safety state is isolated.

In the second method, a "model--checking" ap-

proach [6] is used to demonstrate in finite time the

correctness of infinite behavior. As in [2], this in-

volves a branching simulation process that termi-

nates paths when cycles are detected. A major ad-

vantage of using HMS machines is that orders of

magnitude reduction in the number of states can be

obtained in many applications compared to tradi-

tional automata models.

3. Planning, Plan Formalisms and Schedul-

ing of Plans for HMS Machines

A "plan" in the HMS framework consists of a se-

quence of sets of transitions to be executed in a non-

deterministic machine [5]. Conditional goals are

specified for an HMS machine in terms of policy

transitions of a policy HMS machine such as H2 in

Figure 2. The "planning" process then consists of

searching the space of eligible nondeterministic

transitions in a basic machine such as H1 to derive a

plan that causes the goal states of a policy transition

371

to be reached. The important points to note in this

framework are that (1) goals can be defined formally

in terms of histories of states that are being modi-

fied dynamically, (2) circumstances such as inability

to meet a deadline may cause a goal to be dropped

from consideration, (3) the states of the computa-

tional resources in which planning is being per-

formed may be used as controls on the policy transi-

tions that define goals, and (4) heuristic guidelines

for deriving plans can be specified in terms of inter-

mediate policy machines.

Compilation of plans in advance to meet goals with

hard deadlines has been proposed by number of au-

thors (see, e.g., [9]). Various representation

schemes for plans have also been proposed. For ex-

ample, in [1] a Petri net model is used to define con-

ditional actions that depend on facts that are true

about the environment. The HMS machine frame-

work offers a powerful capability to define complex

concurrent plans that depend not only on the cur-

rent states of the world but also on temporal histo-

ries of states. For this purpose, we say that a ma-

chine P is a "plan HMS machine" for a nondeter-

ministic machine H, if some of the states of P corre-

spond to the nondeterministic transitions of H and

some other states are "dependent" states of the

states of H. A dependent state is defined as a state

for which (1) truth only depends on a logical combi-

nation of the truth or falsehood of other states, and

(2) there are certain restrictions on transitions

emerging from it and entering it. At each moment of

time, the "execution" of P on H then is obtained by

(1) firing the transitions of P as in a standard HMS

machine, (2) firing the deterministic transitions of

H, and (3) firing those nondeterministic transitions

of H that are enabled in H and for which a corre-

sponding state in P is true. Thus, for example, the

plan machine in Figure 3 describes how the non-

deterministic transitions in the machine H1 should

be executed. The states containing asterisks are de-

pendent states which, in this case, are simply dupli-

cates of corresponding states in H1, assuming that

the state "In a Hurry" is added to HI. The states

denoted by dashed rectangles represent transitions

in H1. Thus, this machine indicates that in case the

state "In a Hurry" is true, one should execute the

transition "Climb into Helicopter" from the state

'At Office" in H 1. On the other hand, if the state "In

a Hurry" is false, the transition "Get in Car" should

be executed. Also, when the state "In Car" becomes

true in Hb the transition "Start Driving to Airport"

will be fired if its corresponding state in Figure 3 is

true. The latter situation will be true if the state

"Going on Trip" has been true sometime earlier.

Two simpler formalisms for defining HMS machine

plans can be defined in terms of the plan languages

PL0 and PL1, which can also be considered as lan-

guages for describing concurrent event sequences.

Words in the language PL0 simply consist of se-

quences of (1) symbols from the set of transitions of

the HMS machine, (2) lists of symbols, (3) words

with integer exponents. An individual symbol c_ de-

notes the firing of the corresponding transition in

the machine. A list of the form (a, 13..... 8) denotes

the simultaneous firings of the transitions cK, 13.....

8. A word of the form w n represents the n-fold rep-

etition of firing of the transitions in w. Thus, the

plan a (13, V) (8_) n denotes the execution of the fol-

rmmmmm'_''m_ Get in Car i _C_)_ Start Driving to Airport]

r-- L

_ .Cl2m2 int.°2e2ic,°p2eL J _l_P_rt £yin2 t2 Air_p°_]
......... 1 r" 1

Figure 3. A Plan Machine for the HMS Machine HI in Figure 2.

372

lowing transitions in a machine: first fire _, then

fire 13and ,/simultaneously, then fire 8 followed by'q

n times. The language PL1 extends PLo by the intro-

duction of conditional operators and the means for

defining alternative choices of actions. Plans in

such languages, combined with an underlying HMS

machine, provide the capability for both model-

based reasoning from basic principles and the abil-

ity to respond rapidly to dynamic requirements

without the need for searching.

Plan languages also offer the possibility of studying

the scheduling of plans as distinct from the planning

or plan generation process itself. For example, con-

sider the plan

"Get in Car Start Driving to Airport"

'_,rrive at Airport in Car"

in the plan language PLo for the machine H1 of Fig-

ure 2. This plan simply lists the sequences of actions

that must be performed, in which there is a key

missing element: when should the actions be per-

formed. Here, the only missing part is a delay of 45

minutes that must occur between the transitions

"Start Driving to Airport" and 'Arrive at Airport in

Car." If such required delays are incorporated into

a plan and it is verified for correctness, then the un-

derlying machine can essentially be ignored during

the execution. The important correctness criteria

for plans are: (1) no transition is attempted that is

not enabled, and (2) the plan will transform the ma-

chine from a given initial set of states to the desired

final set of goal states.

In [5] a general approach for deriving schedules for

plans was introduced that also provides a limited

method of verifying the correctness of plans. In this

scheme, given a potential plan p', a '_,ariable delay

plan" p is generated in which between each pair of

terms in p' a parametric delay 4'i is introduced,

where 4, denotes a wait or "no action." Using sym-

bolic execution techniques, then a solution for the

exponents of the 4,'s can often be found that guaran-

tees the correctness of the plan. In addition, in

many cases, misordered plans can be corrected in

the process of finding the delays.

4. Conclusions and Future Work

Hierarchical Multi-State (HMS) machines provide

a framework for specification, verification and con-

trol of complex real-time systems by integrating

multi-state automata and temporal interval logic.

The major benefits are: (1) significant reduction in

state space, (2) convenient mechanisms for specify-

ing both safety properties and conditional goals, in-

cluding hard deadlines, (3) methods of verifying cor-

rectness of specifications, and (4) model-based rea-

soning approaches for planning and scheduling in

dynamic environments.

Three directions for future work have been defined:

theory, applications and tools. Theoretical research

goals include (1) the extension and formalization of

the specification language, (2) investigation of more

powerful methods for capturing requirements, (3)

verification methods, (4) representation of uncer-

tainty relating to both incomplete knowledge about

the world and probabilistic outcome of events, (5)

introduction of learning, and (6) efficient planning

and scheduling algorithms. Various potential appli-
cation areas for HMS machine have also been iden-

tified. Currently, HMS machines are being applied

to the specification of a fragment of a future Euro-

pean command and control system. As far as tool

development plans are concerned, work is continu-

ing on the development of a prototype environment

for specification of HMS machines, along with the

capabilities for interactive simulation, limited

forms of animation, and verification.

Acknowledgments

The author would like to acknowledge the contribu-

tions of Matthew K. Franklin in the development of

the concepts discussed in this paper. Also, Rama-

chandran Iyer participated in the formalization of

the temporal logic concepts discussed here and

made helpful comments on an earlier draft.

373

References

[1] Drummond, M., 'A representation of action
and belief for automatic planning systems,"
Proc. 1986 Workshop on Reasoning About Ac-
tions and Plans, Morgan Kaufmann, 1987, pp.
189-212.

[2] Clarke, E.M., E.A. Emerson, A.R Sistla, 'Au-
tomatic verification of finite-state concurrent

s_tems using temporal logic," ACM Transac-
tions on Programming Languages and Systems,
Vol. 8, No. 2, 1986, pp. 244-263.

[3] Franklin, M.K., and A. Gabrielian, '_, trans-

formational method for ver!_ing safety P_31?-ro-
erties in real-time systems, Proc. lOth l_eal-
Time Systems Symposium, Santa Monica, CA,
Dec. 7-9, 1989, pp. 112-123.

[4] Gabrielian, A., and M.K. Franklin, "State-

based,specification of complex real-time sys-
tems, Proc. 9th Real-Time Systems Sympo-
sium, Huntsville, Dec. 10-12, 1988, pp. 2-11.

[5] Gabrielian, A., and M.K. Franklin, "Multi-lev-

el specification and verification of real-time
software, Proc. 12th International Conf. on
Software Engineering, Nice, France, March

26-30, 1990. To be reprinted in Communica-
tions of the ACM.

[6] Gabrielian, A. and R. Iyer, "Integrating au-
tomata and temporal logic: a framework for

specification of real-time systems and soft-
ware, Proc. Unified Computation Laboratory,
Institute of Mathematics and its Applications,
Stirling, Scotland, July 3--6, 1990, to appear.

[7] Gabrielian, A., and M.E. Stickney, "Hierar-
chical representation of causal knowledge,"
Proceedings of WESTEX--87 IEEE Expert Sys-

teng Conference, 1987, pp. 82-89.

[8] Manna, Z., and A. Pneuli, "The anchored ver-
sion of the temporal framework," in Proc. Lin-
ear Time, Branching Time and Partial Order in
Logics and Models for Concurrency, Lecture
Notes in Computer Science 354, Springer-Ver-
lag, 1989, pp. 201-284.

[9] Schoppers, M.J., "Representation and auto-
matic synthesis of reaction plans," Ph.D. The-
s_, Computer Science Dept., Univ. of Illinois,
Urbana-Champaign, 1989.

[10] Wolper, ,P,., "Temporal logic can be more ex-
pressive, Information and Control, Vol. 1, No.
1-2, 1983, pp. 72-99.

374

