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PREFACE

The papers presented at the Space Operations, Applications, and Research (SOAR) Symposium,
hosted by the Air Force Space Technology Center and held at Albuquerque, New Mexico, on June 26-
28, 1990, are documented in this proceeding. Over 150 technical papers were presented at the Sym-
posium which was jointly sponsored by the United States Air Force (USAF) and the NASA/Johnson
Space Center. The technical areas included were: Automation and Robotics, Environmental Inter-
actions, Human Factors, Intelligent Systems, and Life Sciences. NASA and USAF programmatic
overviews and panel sessions were also held in each technical area. The Symposium proceeding in-
cludes papers presented by experts from NASA, the USAF, universities, and industries in various
disciplines. These proceedings, along with the comments by technical area coordinators and session
chairmen, will be used by the Space Operations Technology Subcommittee (SOTS) of the Air Force
Systems Command and NASA Space Technology Interdependency Group (STIG) to assess the status
of the technology, as well as the joint projects/activities in various technical areas.
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MESSAGE FROM THE GENERAL CHAIR AND ASSISTANT
GENERAIL CHAIR

The SOAR 90 workshop will bring together Air Force and NASA project/program managers and
members of the technical community for an information exchange on space operations. The visibility
the SOAR 90 workshop will provide attendees into technology applications will give us a singular
opportunity to establish additional cooperative technology development and transition programs.

As you can see, SOAR now represents Space Operations, Applications, and Rescarch. This
change reflects the nature of the conference which includes sessions on many areas in addition to
automation and robotics. Each session will start with Air Force and NASA programmatic overviews
of present efforts which will be followed by technical papers and conclude with panel discussions of
problems/ solutions within the topic area.

With your participation, we look forward to an informative and productive workshop.

Col. Paul C. Anderson,
Air Force Space Technology Center

As you noticed, SOAR now stands for Space Operations, Applications and Research, and
encompasses the broad scope and excitement felt by the space community as our Nation’s revitalized
space program gains strength and stability. The planned civil space scenario includes Space Station
Freedom, a multitude of science and technology missions, the lunar outpost, and Mars
missions/outposts.

The consequences of these space programs will be an infrastructure of space, lunar and Mars
surface and ground operations. These operations need to be conducted effectively, efficiently, and
with utmost safety. Advanced techniques/ technology are needed to enable future space operations
to be carried out with these attributes.

SOAR 90 continues, with amplification, the theme of previous SOAR workshops in the discussion
of future techniques/technology and approaches needed for space operations. Also, life sciences was
added to the technical areas for the first time this year to reflect the broad scope of the needed
research. The benefits to NASA and the Air Force in expanding communications and identifying
cooperative programs have made SOAR an invaluable yearly event.

Dr. Kumar Krishen,
NASA Johnson Space Center
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A Human Factors Approach

to

Range Scheduling for Satellite Control
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Los Angeles AFB, CA 90009-2960

ABSTRACT

Range scheduling for satellite control presents a classical
problem: supervisory control of a large-scale dynarnic system,
with unwieldy amounts of interrelated data used as inputs to
the decision process. Increased automation of the task, with
the appropriate human-computer interface, is highly desirable.
This paper describes the development and user evaluation of
a semi-automated network range scheduling system incorpo-
rating a synergistic human-computer interface consisting of
a large screen color display, voice inputfoutput, a "sonic pen”
pointing device, a touchscreen color CRT, and a standard
keyboard. From a human factors standpoins, this develop-
ment represents the first major improvement in almost 30
years 1o the satellite control network scheduling task.

1. INTRODUCTION

To maintain today’s large number of satellites in their
various orbits, it is necessary to schedule regular contacts
with them using a global network of satellite tracking and
control facilities. During the early days of the military space
program, the complexity of the satellite control scheduling
task was low enough that a daily schedule of satellite
contacts could be easily represented with a paper chart.
Data representing satellite/ground station visibility, resource
allocation, and conflict resofution could be assimilated by
scheduling personnel in an acceptable manncr using this
method.

However, continued growth in number, size, and
complexity of both ground and space asscts, combined with
the increased dependence on these resources for national
defense, has made it necessary to search for a more
effective methodology for network scheduling. The Air
Force Satellite Control Network (AFSCN) is a large-scale
system which provides the essential command, control, and
communications (C3) support to orbital space vehicles using
internetted facilities located across the globe. The task of
scheduling these network assets effectively is a challenging
problem of supervisory control [1]. On any given day,
interrelated information depicting nearly 1600 entries of
satellite visibility and scheduled network support must be
interpreted and used to make decisions that can be critical
to the survival of valuable orbital assets [2]. Given an
environment which must account for unexpected equipment
outages, satellite anomalics, and changing mission priorities,
the scheduling task can exceed acceptable workload levels.

While recent attempts to fully automate this task have

been Iess than satisfactory, it is within the state of the art to
implemecnt a partially automated system with human-in-the-
loop decision making. This system must effectively convey
large amounts of interrelated data to the scheduler and
allow the scheduler to manipulate this data and to input
scleccted commands at will. These requirements indicate
that an optimized human-computer interface (HCI) is a
critical design aspect of such a system [3].

This paper describes the development and user evalua-
tion of a semi-automated network scheduling system
incorporaling a synergistic FICI consisting of a large screen
color display, voice input/output, a "sonic pen" pointing
device, a touchscreen color CRT, and a standard keyboard.

2. THE PROBLEM DOMAIN

Before we can examine the HCI design, we must first
understand the activities involved in satellite control
network scheduling. While there are many similarities
between scheduling support for civilian satellites [4,5] and
for military satellites [2,3], we concentrate here on the
latter. Military satellites include many low earth orbiters,
which, because of their brief "windows" of satellite/ground
statjon visibility, make the scheduling task more difficult
than with the predominantly geosynchronous civilian
satellites.

Traditionally, scheduling was performed using a paper
acquisition chart. The horizontal axis of the chart repre-
sents time, and the vertical axis shows the resources for
cach ground station of the AFSCN, commonly referred to
as Remote Tracking Stations (RTS). A single paper chart
encompassing a 24-hour period measures 36" vertically by
144" horizontally, with extremely high information density.
Three types of schedules arec maintained: a seven day
forecast, a 24-hour schedule, and a real-time schedule. The
basic scheduling activities are listed below, and a flowchart
of a typical real-time response to an RTS outage is shown
in Figure 1.

Receive new or modified request for satellite support.
Validate acquisition data and satellite/RTS visibility.
Compare new data with most recent data from
scheduling database.
Slide supports along time axis of chart to accom-
modate changes.
Assign or modify satellite support(s).
Visually scan chart for resource availability.
Enter support(s) on chart.

484



Prepare schedule.
Identify time/resource conflicts.
Scan chart for alternate support possibilitics.
Propose alternative solution 1o Mission Control
Center,
Reassign supports as approved and notify RTS.
Enter new support on chart.

Update scheduling database to reflect latest chart.

It is important to note how the scheduling chart is central
to these activities. It contains a large amount of informa-
tion relating to the various satellites, RTS resources, and
visibilities for the entire world-wide AFSCN by using
twenty-nine distinct variations of symbology and annotation
style [2]. This graphical representation enables the schedul-
er to view the "big picture” at a glance, make the necessary
RTS assignments, identify conflicts, and resolve them

Yes Change
affects other

satollites?

4 1
Scen scquisition Update acquisition
chart for possible chart to reflact

RTS: Remote Tracking Station
MCC: Misslon Control Center

Figure 1. Typical task flow for an unexpected KTS outage [3].

quickly. This is especially critical during real-time schedul-
ing, which is driven by random events (satellite anomalies,
RTS equipment outages, changing mission prioritics, etc.).
The main drawback of the paper chart is that it is a totally
manual process, which has become increasingly unmanage-
able due to the trends identified in Section 1 above.
Greater automation of the scheduling task is highly desir-
able; benefits would include a more acceptable scheduler
workload, reduced chance for human error, and greater
responsiveness to highly dynamic national security priorities.
However, any acceptable design must incorporate into the
HCI those positive aspects of the paper acquisition chart
outlined above.
3. ASTRO: A NEW APPROACIHI

The importance of a well designed HCI has been docu-

mented extensively in the literature [6-11]. Recently,
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significant progress has been mac [2-5] in investigating
optimal HClIs for various satellite control tasks. The GT-
MSOCC simulator at Georgi:- Tech, for example, has
addressed many aspects of N.ASA satellite operations.
However, the Air Force had a pressing need to address the
problem of network scheduling fo: satellite control in an
operational military environment.

Initial designs to solve this problem proposed an HCI
using standard CRTS, which were limited to displaying only
a small subset of the information contained in the paper
chart. It was thought that the use of panning, scrolling,
zooming, and windowing techniques could overcome this
limitation and provide an equivalent capability. However,
experienced scheduling personnel evaluated this approach
as unacceptable; their stated requirement was to view all
the information that the paper chart provided with at least
12 hours of data on a single display. It has been shown [3]
that human factors design considcrations support this
position in that the necessity of accessing multiple sequen-
tial displays forces excessive reliance on the short-term
memory of the schedulers, resulting in increased error rates.
In particular, the error rate increases proportionally with
the number of screen accesses required, and with the time
required 1o perform those accesscs. By taxing short-term
memory, the perceived workioad and level of stress experi-
enced by schedulers would actually increase compared (o
using the paper chart, and scheduling productivity would go
down. A new design approach for the HCI was required,
and the Automated Scheduling Tools for Range Operations
(ASTRO) project was started in October 1987. ("Range”
here denotes the networked RTSs of the AFSCN.)

In order to satisfy the core requirement of providing 12
hours of scheduling data on one display, a high resolution,
large screen color display is required.  Analysis indicatcs
that an approximate displayable resolution of 3K vertical
points and 4K horizonlal points is necessary [2]. (Note that
manufacturer specifications typically cite only addressable
resolution, which is generally two to four times greater than
displayable resolution.) For comfortable viewing of 7x9
format characters, the screen size should be roughly 25"
vertically by 42" horizontally [2]. A 12-hour section of the
paper chart was photo-reduced to validate these derived
estimates. Further requirements include at least 16 colors,
ability to mix graphic symbols with characters, imperceptible
flicker, low noise level, standard computer interface,
standard power and cooling needs, high MTBE and low
MTTR. While these requirements push state-of-the-art
display technology, the best match was found to be a
continuous projection, laser addressed system using smectic
liquid-crystal light valves, produced by Greyhawk Systems
[12]. Tt displays 4096 colors with 2.2K V by 34K H
displayable resolution on a 22" by 34" screen with excellent
clarity and detail, has a contrast ratio of 16:1, a very wide
viewing angle, and can be used in normal ambient lighting.
A 12 hour acquisition chart representation was found to be
quite readable on the Greyhawk display. While the Grey-
hawk meets the primary display requirement, an effective
HCI is a coordinated ensemble; thus we now turn our



attention to data entry and manipulation.

Observations have shown that even skilled typists can
update a paper chart faster than they can update a comput-
er display using a standard keyboard; alternatives are
required [2]. Because the Greyhawk does not produce sync
pulses, a light pen is not feasible. A mouse, while usable,
would take away too much valuable horizontal workspace.
An effective solution for a pointing device was found to be
the GP-8 Sonic Pen from Scicnce Accessories, which utilizes
audio detectors mounted on two orthogonal edges of the
Greyhawk display. The GP-8 controller computes the pen
location based on the time-of-arrival of a sonic pulse
emitted by the pen when pressed to the screcn. The pen is
used to both identify specific points on the large screcn
display, and to select items from standardized pop-up
menus via appropriate display interface software [13-15].
While the sonic pen can be used for many tasks, a keyboard
would still be required for some alphanumerical entry.
Voice-augmented keyboards have been shown to alleviate
this potential bottleneck [16]; thus, a Verbex 5060 voice I/O
system from Voice Industrics was incorporated into the
ASTRO HCI design. Using a headset and an intelligent
controller, this device supports a continuous speech gram-
mar of up to 600 words; ASTRO required only a 50 word
grammar. Initial training of the V-5060 for each speaker
required one hour, but resulted in reliable recognition rates
of better than 95% for all speakers, and a maximum
response time of 0.5 seconds [2]. In addition to the
Greyhawk display, a 19" color (VGA) CRT with an Elo-
graphics touchscreen overlay was integrated into the HCI
to allow operator access to secondary screens and mcnus,
and as a system monitor for the Compaq 386/25 computer
that runs the ASTRO software. The sonic pen was also
capablc of selecting items on the touchscrecn CRT,
allowing the operator to use the same pointing device for
both displays.

The ASTRO ICI is a synergistic combination of a
large screen display, a sonic pen, voice 1/0, an ancillary
touchscreen CRT display, and a standard keyboard, which
allows effective manipulation of the schedule data, minimiz-
es the required keyboard entry, and greatly reduces the
time required to perform scheduling_tasks. Sce Figure 2
below, and Photo 1 and 2 following the text.

Figure 2. Block diagram of ASTRO workstation.

While ASTRO certainly meets the design goal of
improving the methodology for satellite control network
scheduling, it also has potential to provide a multi-node,
simultaneous scheduling capabilit: never before possibie.
By connecting multiple units via 1..A\N, WAN, or standard
telephone lines, users at different locations could manipu-
late a shared schedule database, thus improving coordina-
tion and wartime survivability.

4. USER EVALUATION

The most effective HCIs result from the user being
involved early in the design phase. ASTRO was managed
as a prototype project, where instead of copious reports,
documentation, and formal design revicws, system dem-
onstrations were given (o representative users at frequent
intervals during the development. This allowed user
feedback to guide the design process. During the initial
development period, 40 system demos were given to 320
people with space operations and scheduling backgrounds
to solicit their suggestions. Following this, ASTRO proto-
types were installed at the two major control nodes of the
AFSCN: Falcon Air Force Base (FAFB) in Colorado
Springs, CO, and Onizuka Air Force Base (OAFB) in
Sunnyvale, CA. An extensive functional evaluation study
was conducted from August 7, 1989 to December 8, 1989,
and resulted in an extremely favorable final report [17)].
Areas and subareas evaluated on a scale of 1 (worst) to 5
(best) were: Functional Requirements (Information Display,
Operator Capabilities, Scheduling Functions), Performance
Requirements (Display, Functional), Human Factors
(Workspace, Displays, Pointing Device, Keyboard, and
Voice Input), plus an overall system rating. We concen-
tratc herc on a preliminary analysis of the Human Tactors
area, which rated the HCI. While further statistical
analyses will be conducted, Figure 3 depicts the group
average ratings given in each subarea, with the overall
system rating also shown for comparison.

ASTRO Evaluation
5 Human Factors Area

Figure 3. Average HCI evaluation ratings [17].

Note that while the evaluations are very good, the
OAFB schedulers consistently rated the ASTRO HCI and
the overall system higher than those at FAFB. We feel
that this may be due to the fact that while the satellite
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control and scheduling tasks have been performed at
OAFB for 30 years with only recent help from modern
tools, FAFB is a new facility with the latest equipment,
possibly leading to less appreciation for the advances
represented by ASTRO. Further, latent shipping damage
to the unit at FAFB resulted in somc early reliability
problems, which may have biased some of the evaluations.
Despite these caveats, ASTRO received enthusiastic
response from the schedulers at both nodes.

Following publication of the evaluation final report [17],
ASTRO was given two weeks of full operational testing,
and performed very well. As a result, Air Force Space
Command has submitted formal documents requesting
installation of ASTRO at both nodes to support operational
scheduling of the AFSCN.

5. CONCLUSIONS

It has been shown that the network scheduling task for
satellite control has grown in complexity until the traditional
method of using a paper chart representation is insufficient.
The desire of the human schedulers to retain the graphical
aspects of the paper chart for ASTRO was shown to have
a logical basis in human cognitive abilities. The enginecring
challenge of representing such a data intensive display in a
usable format, while allowing efficient supervisory control of
the scheduling task, was met by designing an optimized
HCI for ASTRO. This interface consists of a large screen
color display, a voice input/output subsystem, a sonic pen
pointing device which can be uscd both with_the large
screen display and the ancillary touchscreen CRT display,
and a standard keyboard. Extensive evaluation of the
ASTRO system indicated a high level of user satisfaction
with ASTRO overall, and its HCI in particular. As a result
of this evaluation, Air Force Space Command has recom-
mended that ASTRO be used for full-time scheduling of
operational military satellites. Further research is needed
toinvestigate integration of appropriate artificial intclligence
technology into the ASTRO design, particularly in the area
of automated conflict resolution, and to investigate imple-
mentation of networked ASTRO units.
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PHOTOS

Photo 1. Overall view of the ASTRO workstation.
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Photo 2. Closeup of the ASTRO main display screen.
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With the emergence of new technology for both human.
computer interaction and knowledge-based systems, a range of
opportunities exists to enhance the effectiveness and efficiency
of satellite ground controllers. This presentation illustrates
the use of models of operator function to represent operator
activity in the context of changing system events and cperator
functions. Although there are many models, this research used
the operator function model (OFM). Figure 1 depicts a generic
OFM; Mitchell (1987) gives details about the model structure
and the OFM modeling process.

In addition to representing operator activities, the OFM can be
used to design 'intelligent’ operator displays and, in real time
control the displayed information so that the operator has the
appropriate information, at the appropriate time, and at the
appropriate level of abstraction. The operator function model
was demonstrated in the context of a NASA Goddard Space
Flight Center satellite ground control system (Figure 2).
Figure 3 depicts a portion of the OFM for the Multisatellite
Operations Control Center (MSOCC) application.

To evaluate the effectiveness of the model-based workstation,
an experiment was conducted to compare system performance
with a conventional operator workstation versus the model-
based workstation. The conventional workstation consisted of
three monitors and showed, in alpha-numeric form, hardware
status and equipment and satellite support schedules. The
conventional display had more than 150 display pages that the
operator could query (Figure 4a).

Two monitors comprised the model-based workstation, one to
support monitoring and fault detection, the other to support fault
compensation (Figure 4b). The workstation design included
qualitative icons and model-based windows. A faucet icon
represented hardware status and data flow; the icon was
qualitative and depicted the worst case for each equipment
network supporting a satellite link. The faucet icon was
hierarchical; if the operator wanted more detailed
information, a display showing the configuration of the
network and status of each equipment was available. The
high-level mission icon supported monitoring; the more
detailed representation of the equipment network supported
fault detection. Fault compensation entailed the selective
display of hardware and satellite schedule information.
Schedule information was linked to a set of likely operator
fault compensation activities derived from the OFM. For each
activity the operator could ask for "help"” to carry out the
funection. For example, if component RUPS failed, the operator
could say "Help Replace RUP3", and the model would search
the hardware and satellite support schedules to identify a set of
possible replacement components that were currently available
and not scheduled to support another satellite for the time in
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question. For both the monitoring/fault detection task and the
fault compensation task, the model provided the intelligence to
enable the displays to adapt to changing operator and system
requirements in real-time.

The experiment comparing the conventional versus model-
based workstation demonstrated the effectiveness of the OFM-
based design. The model-based workstation enabled operators
to effectively handle real-time control with workload that
quintupled normal Goddard workload. Figure 5 summarizes
the experimental data.
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Abstract

Spacecraft analysts in the spacecraft control center for the COBE (Cosmic Background Explorer)
satellite are currently utilizing a fault-isolation expert system developed to assist them isolate and
correct faults in the communications link. This system, named CLEAR (Communications Link Expert
Assistance Resource), monitors real-time spacecraft and ground system performance parameters in
search of configuration discrepancies and communications link problems. If such a discrepancy or
problem is isolated, CLEAR alerts the analyst and provides advice on how to resolve the problem swiftly
and effectively. The CLEAR System is the first real-time expert system 1o be used in the operational
environment of a satellite control center at the NASA Goddard Space Flight Center.

CLEAR has not only demonstrated the utility and potential of an expert system in the demanding
environment of a satellite control center, it has also revealed many of the pitfalls and deficiencies of the
development of expert systems. One of the lessons learned from this and other initial expert system
projects is that prototypes can often be developed quite rapidly, but operational expert systems require
considerable effort. Development is generally a slow, tedious process that typically requires the special
skills of trained programmers.

Due to the success of CLEAR and several other systems in the control center domain, a large number of
expert systems will certainly be developed to support control center operations during the early 1990s.
To facilitate the development of these systems, a project has been initiated to develop an integrated,
domain-specific tool, named GenSAA (Generic Spacecraft Analyst Assistant), that will allow the
spacecraft analysts to rapidly create simple expert systems themselves. By providing a highly graphical,
point-and-select method of system development, GenSAA allow the analyst to utilize and/or modify
previously developed rule bases and system components, thus facilitating software reuse and reducing
development time and effort.

Introduction

The Goddard Space Flight Center is responsible for typically multiple real-time communications events

managing the operations of numerous low-earth orbit with each satellite daily. During these real-time

satellites. These scientific satellites either have a communications events, the FOAs must:

dedicated control center (e.g. LANDSAT and the - establish and maintain the

Hubble Space Telescope) or share computer telecommunications link with the spacecraft,

resources in the Multi-Satellite Operations Control -monitor the spacecraft’s health and safety,

Center (e.g. Cosmic Background Explorer and Earth - send commands or command loads to the

Radiation Budget Satellite). In either case, highly satellite for on-board execution,

trained personnel, called flight operations analysts -manage spacecraft resources (including on-board

(FOAs), are responsible for the proper command, memory, batteries, and tape recorders), and

control, health and safety of the satellite. - oversee the dumping of the scientific data from
the on-board tape recorders to ground systems

The satellite control centers operate round-the-clock for processing and analysis.

throughout the lifetime of the spacecraft. There are
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To accomplish these activities, the analyst must
combine a thorough understanding of the operation
of the spacecraft and the ground systems with the
current state of operations as indicated by numerous
telemetry parameters displayed.on the consoles.
During an event, the analyst typically monitors
hundreds of telemetry parameter values on multiple
display pages that may be updating several times per
second. The monitoring of the operation of these
satellites is a demanding, tedious task that requires
well-trained individuals who are quick-thinking and
composed under pressure,

As spacecraft become more complex, the task of
operating a satellite is becoming increasingly more
difficult. The FOAs are reaching a level of
saturation as more and more data must be monitored
and analyzed during the real-time supports. The
need to automate some of these functions is
apparent.

The CLEAR System

The Communications Link Expert Assistance
Resource (CLEAR) is the first attempt at the
Goddard Space Flight Center to utilize an expert
system to automate a spacecraft analyst’s task.
CLEAR is a fault-isolation expert system this is
supporting real-time operations in the Payload
Operations Control Center (POCC) for the Cosmic
Background Explorer (COBE) mission. This system
monitors the communications link between COBE
and the Tracking and Data Relay Satellite (TDRS),
alerts the analyst to any discrepancies or problems,
and offers advice on how to correct them. It is the
first expert system to become operational in a
satellite control center at NASA/Goddard.

CLEAR is a forward chaining, rule-based system
that operates in the COBE Mission Operations
Room (MOR). It monitors over 100 real-time
performance parameters that represent the condition
and operation of the spacecraft’s communications
with the relay satellite. With this information,
together with the knowledge of TDRS operations,
COBE’s on-board communications system and the
expected configuration of the scheduled event,
CLEAR can accurately portray the status of the
communications link. '

The CLEAR Expert System is currently supporting
the COBE flight operations analysts for fault
isolation. It is used routinely and is regarded as the
fault-isolation “expert” for the COBE/TDRS
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telecommunications link.

The user interface for CLEAR utilizes textual and
graphical output in a tiled-window format to provide
the user with information about the status of the
COBE/TDRS/ground communications links. A
graphics window displays all of the elements of the
communications network from the COBE Spacecraft
to the POCC with green lines representing healthy
links between elements. If the performance
parameters indicate that the communications link or
processing system is degrading or down, then the
associated icon will tum yellow or red, respectively.
This display enables analysts to assess the current
status of the communications event in a quick
glance.

When CLEAR isolates a problem, a short
description of the problem is displayed in the
“problems” window. If multiple problems are
found, the problem descriptions are ranked and
displayed in descending order of criticality. CLEAR
suggests actions for the analyst to take in order to
correct the problem; however, the system does not
take any corrective action itself,

To further assist the analyst and to provide support
for its advice, the CLEAR system provides an
explanation facility. When the analyst selects a
problem displayed in the problems window, CLEAR
provides a detailed explanation of why the expert
system believes that the problem exists. No
backtracking or backward chaining is conducted
since the system must continue to monitor the real
time data and fire forward chaining rules.

CLEAR maintains an event log to record histories
and allow offline analysis of problems. The event
log has proven to be quite useful for operational
support of the mission and continued enhancement
of the knowledge base.

The CLEAR System operates on any of the seven
PC/AT-type workstations that are used for console
operations in the MOR. It is written in the C
language and uses the C Language Integrated
Production System (CLIPS) and a custom-developed
graphics library. It currently has approximately 160
rules. Additional rules may be added to monitor the
tape-recorder dumps from the satellite to the
Wallops ground station.

CLEAR isolates approximately 70 different
problems. The types of problems include:
non-reception of data within the control center -
(system or communication problems, or data



reporting not activated); misconfigurations between
the COBE MOR and the TDRS ground station
(coherency/non-coherency, doppler compensation
on/off, power mode, actual TDRS in use, antennae
configurations); discrepancies in telemetry rate or
format; inactive or non-locked links; and degrading
or critical automatic gain control situations (signal
strength).

The rule-based method of knowledge representation
has proven to be quite powerful for this application.
Rules provide a direct method of encoding the
fault-isolation knowledge of a spacecraft analyst.
The development of CLEAR would have taken
much longer using conventional, non-rule-based
programming techniques. Perhaps more
importantly, the rule-based method of representation
has provided the flexibility to easily adapt the
knowledge base to unforeseen changes in the
operational behavior of the spacecraft. For example,
even though the operational nature of COBE was
fairly accurately understood by the design engineers
and flight operations team before the launch, slight
behavioral variations and complications arose once
the spacecraft was in orbit. Although the FOAs
were able to adjust to such variations rather quickly,
ground monitoring software systems required
complex modifications. However, the required
changes to CLEAR’s rule-base were relatively
straightforward and quickly implemented. After this
modification, CLEAR provided consistent
operational assistance. This situation demonstrates
one of the advantages of the separation of
knowledge and data in rule-based expert systems.

Although CLEAR has demonstrated the utility and
potential of an expert system in the demanding
environment of a satellite control center, it has also
revealed many of the pitfalls and deficiencies of the
development of expert systems. One of the lessons
learned from this and other initial expert system
projects is that prototypes can often be developed
quite rapidly, but operational expert systems require
considerable effort.

Early in CLEAR’s development, the primary
concern was the perceived difficulty of the
knowledge acquisition effort. However, the
knowledge engineering task was found to be
relatively straightforward, albeit time-consuming.
The development of the rule base was a lengthy
process due to the interactive nature of the
knowledge acquisition. Basically, the expert would
describe a specific piece of knowledge to the
“knowledge engineer” who would transcribe it into a

rule, pass it back to the expert for validation, test it,
and then, finally, release it for operational use. The
involvement of various players in this process
‘resulted in long turnaround times from the point at
which a piece of knowledge was determined to be
important until it was translated into a rule and
placed into operation. Later in the project, it was
determined that the translation of this type of
expertise into rules is quite straightforward and can
be easily performed by the expert himself.

The CLEAR development team learned that most of
the development time for the system was spent on
issues not directly related to the construction of the
expert system and its rulebase. A surprising amount
of the effort focused on the integration of the expert
system with the data source and graphics display
system. This required in-depth programming
knowledge of the interfacing systems and the ability
to trouble shoot problems within them. Tools are
needed to simplify the complicated task of
integrating expert systems with interfacing systems.

CLEAR is regarded as a successful attempt to
automate a control center function using an expert
system; several other missions have requested
systems similar to it. Although this system is
beneficial to the COBE flight operations analysts,
additional benefits can be captured through
retrospective analysis of the development process
and focused application to future systems. The
project described below represents the first steps
taken that capitalize on a number of the lessons
leamed from the development of the CLEAR Expert
System.

The GenSAA Approach

Partly due to the success of CLEAR, a considerable
number of expert systems will be developed to
support control center operations in upcoming
missions during the early 1990’s. To facilitate the
development of these systems, a project has been
initiated to develop an integrated, domain-specific
tool, named GenSAA (Generic Spacecraft Analyst
Assistant), that will allow spacecraft analysts to
rapidly create simple expert systems without having
to directly deal with the complicated details of the
systems with which the expert system would have to
interface. In addition, this tool will allow the expert
system developer to utilize and/or modify previously
developed rule bases and system components, thus
facilitating software reuse and reducing
development time and effort.
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The GenSAA tool will consist of a development
environment and system components (figure 1).
The system components comprise of:

- the inference engine,

- the display driver, and

- a process that manages the reception of data.
The development environment is composed of three
utilities:

- Data Interface Development Utility,

- Rule Base Development Utility, and

- User Interface Development Utility.
Collectively, these utilities will be used to create or
modify an instance of an expert system.

The GenSAA development utilities will utilize a
highly graphical, point-and-select method of
interaction to facilitate use. The expert system
developer will use the data interface development
utility to select the telemetry parameters to be
monitored, the rule base development utility to
define the rules which will act on the values of these
telemetry parameters, and the user interface
development utility to layout a simple graphical
representation of the subsystem or process being
monitored and where the results of the rule
executions will be displayed.

The components generated by the development
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utilities are called application-specific components.
They will be integrated with the GenSAA System
Components to create a GenSAA Application. A
GenSAA Application is an expert system that will
be executed during spacecraft contacts to monitor
the selected telemetry parameters and to notify the
flight operations analysts of faults inferred from this
data.

To demonstrate the advantage of software reuse and
to involve the user in the tool definition, the project
team decided to initially focus on a class of missions
managed by Goddard. A study of upcoming
missions was conducted to identify a series of
missions that have sufficient commonality to enable
reuse of expert system software from mission to
mission. The Small Explorer (SMEX) family of
missions was determined to be an ideal target group
due to the appropriate time frame of this program,
the low-cost nature of the missions, the emphasis on
system reuse, and the rapid tumaround between
missions. All of these factors correlate closely with
GenSAA’s objectives.

GenSAA is intended to be used by FOAs in a
POCC. In an effort to monitor the health and safety
of a satellite and its instruments, FOAs monitor real
time data looking for combinations of telemetry



parameter values, trends, and other indications that
may signify a problem or failure. The expert
systems created with GenSAA will greatly assist the
flight operations analysts with the tedious task of
data monitoring thereby allowing them to focus on
other, higher-level responsibilities during the
real-time contacts with the satellite. This, in turn,
will likely result in a more efficient and effective
system of operations.

The behavior of a satellite is quite dynamic and
often not well understood until the spacecraft is
placed in orbit. To quickly create expert systems
that can effectively monitor satellites, tools are
needed that allow the analysts to formulate the
rulebase easily without the intervention or delay of
knowledge engineers and programmers. By
eliminating these traditional developers, several
benefits are expected. The analysts will be able to
create rules quickly in response to unforeseen
changes in spacecraft behavior or operational
procedures. Also, knowledge translation errors will
be reduced or, at least, more easily corrected.
Knowledge translation errors are errors which are
inadvertently introduced during the process of
translating a piece of expert knowledge into rule
form.

In addition to assisting the FOAs with real-time
spacecraft operations, GenSAA will be useful as a
training tool in two ways. First, by utilizing the
playback utilities provided by the new control center
ground system named TPOCC (Transportable
Payload Operations Control Center), analysts will be
able to replay a previous spacecraft communications
event. Thus, a student analyst can observe how the
expert system handles a specific problem scenario.
Exercises like this will provide a realistic, hands-on
environment for training flight operations analysts in
a safe, off-line mode. Second, the development of
rules used in an expert system is a beneficial mental
training exercise for the FOA. Experience from
previous expert system projects indicate that the
actual formation of rules is a beneficial exercise in
itself. By allowing the analysts to create rules
themselves, they are forced to consider the
alternatives more closely thus promoting a deeper
understanding of the problem domain. This may
allow the optimal method of fault isolation to be
identified.

Another benefit of automating fault-isolation tasks
with rule-based systems is that the resulting rulebase
serves as accurate documentation of the
fault-isolation method. Not only can the rulebase be

studied by student analysts to learn about _
fault-isolation techniques, but, more importantly,
mission operations can be better protected against
the effects of personnel tumovers. POCC expert
systems that capture fault-isolation knowledge
preserve expertise from mission to mission and
mitigate the impact of the loss of experienced, flight
operations analysts.

Conclusion

As satellites become more complex, their operation
is becoming increasingly difficult. Flight operations
analysts who are responsible for the command,
control, health and safety of these spacecraft are
rapidly being inundated with the data coming at
them at higher and higher rates. Understandably,
they are quickly reaching a level of information
saturation.

As demonstrated by the CLEAR Expert System,
fault-isolation expert systems can help flight
operations analysts monitor the flood of data. These
systems can accurately monitor hundreds of
real-time telemetry parameters, isolating
discrepancies and anomalies the instant they can be
detected, and alerting the analysts while providing
advice on how to correct the problems swiftly and
effectively. However, although these expert systems
can be quite beneficial, the development of these
systems is usually time consuming and costly, and
the resulting system often cannot be easily reused by
another mission.

Consequently, GenSAA is being developed for use
by the flight operations analysts who work in
satellite control centers. It is designed to provide
quick and easy development of fault-isolation expert
systems without the delay or costs of knowledge
engineers and programmers. By facilitating the
reuse of expert system elements from mission to
mission, GenSAA will reduce development costs,
preserve expertise between missions and during
periods of personnel turnover, and provide a more
accurate degree of command and control of our
rapidly advancing satellites.
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Abstract

This paper explores the key characteristics of

intelligent advisory system. A central feature
is that human-machinge cooperation should be based
on a8 metaphor of human-to-human cooperation.
ALLY, computer-based operator's associate is
discussed which is based on preliminary theory
of human-to-human cooperation. ALLY assists the
in carrying out the supervisory control

for a simulated NASA ground control
system. Experimental evaluation of ALLY indicates
that operators using ALLY performed at least as
well as they did when using a human associate, and
in some cases they performed even better.

an

operator
functions

INTRODUCTION

Command and control (C2) systems have undergone
dramatic changes within the t{ast twenty years.
Operators are faced Wwith monitoring and
controlling large, complex systems which rely
heavily on the wuse of automaton. often, the
system is too Llarge and complex for a single
operator to monitor.

This paper presents the results of a research
effort to explore the issues associated with
human-machine cooperation in complex, dynamic
supervisory control situations and to develop a
theory of human-machine cooperation which can be

used design the architecture
operator’s associate.

for a computer-based
The research focused on the

development of a computer-based associate that is
cable of cooperating with a human operator in
monitoring and controlling a complex, dynamic
system.
OPERATOR'S ASSOCIATE

As systems become more automated, the human
operator performs fewer tasks on a routine basis.
In complex dynamic systems, however, safety
requires staffing at a level that can meet the
most challenging or threatening abnormal
conditions (Wickens, 1984). Normally, these

beyond the normal ,
The result is
who are rarely

worst-case conditions are well
day-to-day operational conditions.
often a team of human operators

challenged and often underutilized.

The concept of a computer-based operator's
associate has been proposed as one method to
remedy this situation and to provide intelligent
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Georgla

dynamic
Geddes, &
1988). An
system

decision aid for
systems (Chambers & Nagel,
Curry, 1987; Rubin, Jones,
operator's associate fis

operators of complex
1985; Rouse,
& HWitchell,

a computer-based

that acts as an assistant to the human operator.
Functionally, an operator's associate can offer
the operator timely advice and reminders, and at

the operator's request, assume responsibility for
portions of the supervisory control task.
The subordinate role of the operator's associate
a fundamental assumption that characterizes
this research effort. The rationale for this
assumption is that in complex dynamic systems it
is impossible to anticipate and plan for all the
contingencies. Thus, a computer system cannot act

is

as the principal or sote "expert™ in the system
control; a human decision maker will always be
present and ultimately responsible for effective
and safe system operation. Thus, it is essential
to design the system so that the operator is an
integral part of the control and decision
processes,

The intelligence and utility of the operator's
associate rests on its abilities to understand the
operator's current intentions and to provide
context-sensitive assistance in the form of
operator aids (e.g., suggestions, advice, and
reminders) or by Bassuming responsibility for
portions of the control task. To ensure

operator's associate
knowledge structure.

controlled system,
intentions must

generalizability, the
well-defined
concernfng the
operator functions, and operator
be represented (Chambers & Nagel, 1985; Rouse, etl.

requires a

Knowledge

al, 1987; Rubin et. al, 1988; carroll & McKendree,
1987; Geddes, 1989; Hollangel, 1986; Sime &
Coombs, 1983).

The understanding properties of the computer-

pon the existence of a
interaction
al,
the
must
and
maker

based associate are based u
model that prescribes the operator's
with the system (Rouse et. al, 1987; Rubin et.
1988; Geddes, 1989). Based on this model of
operator's actions, the automated associate
be able to monitor the operator's actions
mode! the current status of the decision
*gushman s now with the Training Systems
pivision, Air Force Human Resources Laboratory,
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(i.e., intent inferencing) (Hollangel, 1986).
PRINCIPLES OF COOPERATION

The final property of a computer-based associate
is that it should be based on the metaphor of
human-to-human cooperation. The computer-based
associate should interact with the human operator
in a manner simitar to the way in which humans
interact in a cooperative environment (Carroll &
McKendree, 1987; Hollangel, 1986; fischhoff, 1986;
Roth, Bennett & Woods, 1987; Woods, 1986a, 1986b;
Woods, Roth & Bennett, 1987). An extensive
empirical study was undertaken to investigate the
nature of human-to-human cooperation that could
serve 8s the basis for the architecture of an
operator's associate.

The general principles of cooperation were
derived from two sources, First, an extensive
review of the literature was undertaken on
cooperative problem solving. Second, extensive
data was collected observing a team of experienced
operators of the GT-M50CC system (a typical
cooperative supervisory control system) (Mitchell,

1987). The two operators were free to develop a
"natural"”™ style of interaction and cooperation.
Verbatl protocols Were collected of the

interactions between the operators and date
describing their performance were collected.
These protocols and data were then analyzed to
describe the nature of their cooperative behavior.

A review of the literature indicated that a key
principle of cooperstion 1{is tha® operators use
multiple mental models to represent their
knowledge of the physical system and their
functions and to represent their knowledge of the
other wmembers of the <cooperative team (Athans,
1982; Rasmussen, 19B4, 1985; Tenney & Sandell,

1981a, 1981b). These distinct models serve to
define and guide the interaction with the system
and their interaction among the other operators.

The second feature of cooperation is referred to
as cognitive balancing. This term is coined from
the cognitive engineering approach to designing
human-machine systems (Woods, 1986a, 1986b).
Hoods argues that the demands of the human and the
system need to be considered and supported during
the design of a human-machine system. With
respect to a cooperative environment, the
interacting operators must be aware of the
cognitive demands and Llimitations of the other
operators in order for efficient coordination and
interaction to occur. One of the objectives of &
cooperative team of problem solvers is to attempt
to balance the joint cognitive demands of the
team, as a whole. This balance 1is achieved
through a mix of communication and delegation.

The finat characteristic of cooperation is
flexible Llevels of interaction. Empirical
evidence supports the use of Rasmussen's levels of
abstraction and aggregation (Rasmussen, 1984,
1985, 1986) to describe the content of the various
mental models maintained by the operators and to
describe the degree of interaction among the
The appropriate level of interaction
is dynamic and is determined by the specific
cooperatfon strategy. Interaction among the
operators occurs at the levels of abstraction and
aggregation common to the operators.

operators.

ALLY: A COMPUTER-BASED ASSOCIATE

These properties of a computer based associate
and the principles of cooperation form the basis
for the development of an architecture for a
computer-based associate. The architecture is
based on the OFMspert architecture (Rubin et.al,
1988. The architecture incorporates multiple
models that represent the system knowtedge,
proceduratl knowledge, and operator intentions.
The OFMspert architecture uses the operator
function modeling (OFH) methodology as the basis
for the design of an operstor's associate. A key
component of an operator's associate is the intent
inferencing capability which provides the
understanding properties for an intelligent
operator's associate. The intent inferencing
capability uses a blackboard architecture to
understand the operator's current goals. The
OFMspert intent inferencing capability was
validated in Jones et. al (1989).

ALLY, a computer based associate, is based on an
extension of the OFMspert architecture with
caontrol capabilities. The architecture provides

an interface to the operator that allows the
operator to retain complete controt over the
computer-based associate. The operator can

delegate to the associate as many or a few of the
tasks as desired.

ALLY was developed to assist an operator in
carrying out the supervisory control function for
a2 simulated NASA ground control system, called the
Georgia TYech Multisatellite Operations Controtl
Center (GT-MSOCC) (Mitchell 19B7; Saisi, 1986).
The design was based on a model of the GT-MSOCC
operator control attempts to
duplicate the capabilities of 8 human associate.
A detailed description of ALLY can be found in
(Bushman, 1989).

The operational concept behind ALLY's design is
that ALLY is based observations of the
relationship that developed between a human
operator and a human associate controlling the GT-
MSOCC system. The human operator was in complete
control of the human associate. The human
associate, however, understood the cognitive
complexities of the operator functions actively
monitored the system for and when
necessary, would troubleshoot the system.

ALLY functions in a manner similar to the human
associate. The operator has delegate as few or as
many of the tasks to ALLY ms desired. ALLY also
actively monitors and troubleshoots the system on
its own.

ALLY was developed in Smaltitalk-BOTM on a
Macintosh 11. ALLY interacts with the GT-MSOCC
system in a distributed fashion. ALLY acts tike
another operator of GT-MSOCC system in -]
distributed fashion. ALLY acts Llike another
operator of GT-MSOCC (see Figure 1). A
distributed architecture 1is consistent with the
concept of an assistant that executes autonomously
and in its own environment,

Figure 2 provides an example of the ALLY
interface to the operator. ALLY performs both
delegated and automatic control! tasks. The

functions and

failures,

TMSmalltalk-80 is a
Systems, Inc.

trademark of ParcPlace
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operator delegates tasks to ALLY by selecting the
corresponding control button. Each controi button
represents a specific operator control function as
described in the GT-MSOCC operator function model
(OFM) (Mitchell, L987). Associated with each
control button is a series of tasks that the human
operator can delegate to ALLY.

Ally HWorkstatiion

GT-MSOCC

W

Figure 1. ALLY - QT-HS0CC Horksiation
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Figure 2. ALLY Basic Windows

The <contro!l buttons were designed with
specific principles in mind. First, and foremost,
the operator provided the greatest degree of
latitude to decide how much or hew tittle support
ALLY gives, The operator has complete control
over the tasks ALLY performs. if the operator
merely wants ALLY to determine the appropriate

and the operator wants to 1issue the
command, this level of support be
provided. On the other hand, {f the operator
wants ALLY to perform the entire function, this
level of support is aiso accommodated.

While ALLY only performs the ‘specific task
assigned to it, it also understands the nature of
the operator control functions. If ALLY
that the function is still not complete,

is

response

v .
arious can

knows
it offers

to complete the task, if it can. 1t is important
to note that this does not remove any of the
control flexibility of the operator.
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In addition to the delegated tasks, ALLY
performs two tasks automatically. ALLY
continuously monitors and troubleshoots the
equipment networks. ALLY also automatically

monitors critical events and offers reminders when

it appears the the events might have been missed.

this behavior is simitar to that observed in a
human associate working with the operator to
control the GT-MSOCC system.
AN EXPERIMENT
An experiment was conducted to evaluate the

effectiveness of ALLY as an operator's associate.

The experiment compared the performance of an
operator controlling 67-MSOCC working with ALLY as
an associate with the performance of an operator
working with a human associate.

Experimental Setup

The baseline GT-MSOCC system is a single
operator system. In order to conduct the
experiment, GT-HSOCC was modified to accommodate
two operators. One operator serves as the primary
operator and the second operator serves as an
associate.

To support the associate position, two
additional display screens were added to the
baseline configuration. These two screens are
functionally equivalent to the left and right
screen in the baseline configuration. The center
screen showing the GT-MSOCC Configuration and
status page 1is shared by the operator and
associate. Although the physical display
terminals are arranged in a different order, the
functionality of the screens remain the same.

Each position is capable of jssuing any of the
GT-MSOCC operator control and information request
command. Each position also has a dedicated
audible alarm for system alarms. Common alarms
indicating system events are sent te both

positions, while operator error messages are only
sent to the position which originated the error.

Subjects

Ten paid volunteer undergraduate Air Force ROTC
cadets from Georgia Institute of Technology
participated as subjects for the experiment. The
subjects consisted of one female and nine males.
The subjects included on junior, one sophomore,

and eight freshman cadets. The subjects were paid

six dollars per session.

Experimental Materials

Four sets of written instructions were used in
the experiment. The first set consisted of an
introduction to the baseline GT-MSOCC system and
the operator supervisory control functions. These
baseline instructions are found in Saisi (1986).
The second set of instructions briefly described
the operator-associate operations concept. The
third set described the human associate concept
and the modified GVT-MSOCC workstation for a team
of operators. fFinally, the last set of

instruction described the capabilities of ALLY and
interface.

Several questionnaires were used during the
experiment to collect subjective data. At the end
of each data collection session, the subjects were
asked complete a Cooperation Evaluation

the user

to



carrying out the GT-MSOCC supervisory control
functions. In addition, the subjects uwere asked
to complete an ALLY Exit Questionnaire and a Human
Exit Questionnaire at the end of their last data
session with respective associate. The purpose of
this these questionnaires was to elicit their
opinions about varfous aspects of the associates.
Finalty, at the end of the experiment, the
subjects were asked to complete a Subjective
Comparison Rating gquestionnaire to compare their
opinions about the two associates subjectively.

Overview of Experimental Sessions

The subjects were divided into two groups of
five subjects each to control the order in which
the subjects received the different associates.
One group worked with the human associate first
and the other group worked with ALLY first. in
addition, to control for the variability of a
human adssociate, a8 confederate was used in the
experiment. The confederate was an expert GT-

MSOCC operator and served as the human associate
for each subject. The expert was instructed to
use the same strategy for carrying out the
operator control functions consistently to control
the bias that might enter into the experiment from

repeatedly seeing the same experimental sessions.

The subjects participated in twenty-four
sessions: eight sessions of basetine GT-MSOCC
training, three sessions of human associate
training, four sessions human associate data
collection, five sessions of ALLY training, and
four sessions of ALLY data collection. A total of
240 hours of data was collected. The sessions
were approximately 45 minutes in length. The
sessions were run on consecutive days with
typically one session per day. Occasionally, the

subjects missed a day and made up the session by
running multiple sessions in a single day.

Within each session, three hardware failures and
six software failures were scheduled to
The failures were scheduled to occur at set times
(as determined by the seed of a random number
generator) on identical equipment across subjects
for a given session. However, since all subjects
did not operate the system identicatlly,
occasionally failures occurred on different pieces
of equipment. In addition, thregee requests
support of unscheduled spacecraft contacts

occur.

for
were

the sessions
were

also scheduled every session. Again,
were structured such that the requests
identical across subjects for a given session.

Dependent Measures

Eleven baseline dependent measures were
developed for GT-MSOCC (Mitchell & Safsi, 1987;
Mitchell & Forren, 1987; saisi, 19868). These
measures plus five additional measures to
determine how many of the different types of

equipment failures were corrected by the subjects

were used in the experiment. The performance
measures are grouped into four categories: fault
compensation, equipment configuration and

deconfiguration, operator and percentage
of failures corrected.

The fault compensation measures reflect the time
for each of the four types of

the subject failed to compensate for

errors,

to
failures.

compensate
If
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the failure, the measure reflects the total time
the failure was present in the system. The next
group of performance measures reflect the time to
respond to various equipment confjguration and
deconfiguration requests.

The operator error measures reflect the number
of errors committed by the operator. Two types of
errors can occur. The first type is when the
operator causes a conflict with the automated
scheduler. The second type occurs when the

operator replaces a component that has not failed.

The last group of performance measures reflect
the accuracy of the operator's fault detection
strategy. The measure reflects the percentage of
errors of a given type that the subject corrected
during the session. A separate measure is used
for each type of failure. In addition, a8 separate
measure was used to reflect the percentage of
total errors corrected.

Analysis

A mixed effect, nested factorial design was used
to analyze the data. Because some of the
dependent measures did not have 8 fixed number of
the design was unbalanced

repetitions per cell, in

some cases.

The primary factor of Jinterest 1is Condition
which reflects the type of associate, i.e., human
associate or ALLY. The experimental design was a

repeated measures design in that each subject was
exposed to both of the experimental conditions.

To controt for the variability across the
subjects, Subject was included as 8 factor in the
experimental design. The Subject effect included
10 tevels to reflect the 10 experimental subjects.

In order to account for any variability in the
order in which the subjects worked with the two
associates, Group was added as a factor in the
experimental design. The Group factor includes
two levels. The subjects in Group 1 worked with
the human associate first, and the subjects 1in
Group 2 worked wifth ALLY first. Subject,
therefore, 18 a nested factor within Group.

Finally, Session was included as a factor to
account for any variability between the sessions.

The Session effect included four ftevels to reflect
the four data collection sessions.

Analyses of variances were
determine the effect of each of the four
independent variables (Condition, Group, Session,
Subject) on each of the sixteen dependent
measures. An alpha lower-bar of .10 was used
detect significant effects.

$ince the experimental design Wwas a mixed design

performed to

and
to

with random and fixed effects, approximate F
statistics were constructed using Satterthwaite's
method (Montgomery, 1984). Statistical analyses
were performed using the General Linear Model
(GLM) procedure of the SAS statistical software
package (Spector, Goodnight, Sall, and Sartle,
198513, The GLM procedure computes the expected
mean squares which were used to compute
Satterthwaite's approximate F-statistic and the
adjusted degrees of freedom. These values were

then used te compute the significance ltevel of the

effects,
In addition to the statistical anatysis, the
results of the surveys and analysis of audit logs

activities were examined to gain
into the individual interaction

of the subjects!?
additionatl insight
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Questionnaire to capture subjectively the strategy
they used to interact with the associate in
strategies used by the subjects. These analyses,
in conjunction with the statistical analyses, were
used to evaluate the effectiveness of ALLY as an
associate and to evaluate the proposed
cooperation as it was implemented in

operator's
theory of
ALLY.

DISCUSSION

results are summarized in
3 summarizes the means
associate
measures.

The experimental
Figure 3 and [ Figure
and standard deviations for the tuwo
conditions across the 16 performance
Figure 16 provides a graphical comparison of
ALLY's performance compared with the human
associate. While these figures indicate that, on
the average, ALLY tended to perform better than
the human associate, only two of the performance
measures yjelded significant differences. These
were the time to compensate for software type 1
failures (i.e., software failure characterized by
termination of data flow) and the number of
caorrect responses to unscheduled support requests.

on atl other performance measures ALLY performed
as well as the human associate. A morTe exhaustive
discussion of the results is found 1in Bushman
(1989).
Human
Ally
Dependent Assoclate
Measure woan | 9% lwoan Std. units
Dev Dev
hardware lailures 3134 | 223 265] 193 sacords
software failure 1 1139 559 89.4 | 493 seconds
software faitura 2 219.9 | 1040 139.1 | 1006 seconds
soltware ‘failure 3 190.4 826 1027 914 8conds
schedule conflicts 339 300 156 a6 8 ‘saconds
coTract responsas 23 07 2.8 05 per sassion
SUPPON raquUasts 1721 | 156 8 106 0 | 1171 saconds
unscheduied contacts 165.3 | 1516 1205 [ 174 6 seconde
deconfigure requests 7.6 5.7 87| 118 seconds
operator error T 1.2 0.9 09 08 per session
operator error 2 1.0 0.9 1.3 1.6 par session
% hatdware Nxed 99.2 53 100.0 0g parcant
% software 1 fixed 23.7 23.7 925 18.1 parcent
% saftware 2 fixed 850 | 258 93.7| 20.2 percent
% software 3 fixed 81.2 19.2 987 78 percent
% total fixed 90.8 7.8 6.7 | 63 percent
— Figure 3. Summary Periormance Measures
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o
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Q
k3
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=
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Figure 4c. Mean Performance Measures by Condition
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Figure 4b. Mean Performance Measures by Condition
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Figure 4a. Mean Performance Measures by Condition

While in only tWo cases a significant difference
was detected between ALLY and the human associate,
in most of the performance measures a significant
condition by subject interaction was detected.
This section presents the results of an in-depth
analysis to attempt to explain these results.

Extensive audit records were recorded during
each session of the experiment recording the
behavior of the system, the behavior of ALLY, and
the subject's interaction with both. These audit
were examined to investigate the reason
significant differences among the

The following sections present a
discussion of the results in the four major
categories of performance measures: fault
compensation, equipment configuration, ~operator
errors, and percentage of errors detected.
Finally, the section concludes with a discussion
of same of the subjective evaluations of the
experiment derived from questionnaires.

records
for the
subjects.

Faulty Compensation
The first category of performance
reflects the time to detect and compensate for
failures in the system. The anatysis indicates
that the effect ALLY had on performance depended

measures



primarily on the coaperation strategy the subjects
used. Subjects that used a more active strategy
that takes advantage of ALLY's monitoring and
troubleshooting control tasks were able to perform
generally better with ALLY than with the human

associate. Subjects that wused a more passive
strategy by relying on ALLY's automatic monitoring
and troubleshooting capability, however, performed
as well as with the human associate. Overall, the
use of ALLY as an associate resulted in
performance that was at least as effective as the
human associate.

Equipment Configuration

The effectiveness of using ALLY as an associate
in response to the various configuration and
deconfiguration functions primarily is a factor of
the subject's style of interaction. In responding
to conflicts with the automated schedule, those
subjects that chose to perform these tasks
manually performed better than subjects that used
ALLY. Lack of planning (ALLY cannot foresee these
events) and the need to check ALLY's ansuwers were
the contributing factors to ALLY's slower
performance.

ALLY performed as well as the human associate in
responding to unscheduled support requests. ALLY,
however, resulted in fewer incorrect responses
than the human associate. No differences were
detected with deconfiguration requests because the
subjects performed most of these tasks menually,
even when they had ALLY as an associate.

Operator Errors

The next category of performance measures relate

to operator errors. Two types of errors were
recorded. The first type of error relates to
operator actions that cause a conflict with the
automated schedule. The other type relates to

reptacing a component that had not failed,

With respect to the first type of errors
(schedule conflicts), the analysis indicated that
the subjects that used 8 more cautious strategy
tended to generate fewer schedule conflicts. They
would regularly check ALLY's replacements and the
equipment it identified for support requests. The
subjects that gave more responsibility to ALLY to
replace components and schedule missions tended to
generate more schedule conflicts,

No significant differences were detected with
respect to the number of times the operator
replaced a component that had not failed. This
indicates that ALLY was just as effective as the
human associate in correctly identifying equipment

failures.

Percentage of Failures Detected

The anatysis indicated that the subjects that
used a more sctive fault <compensation and
detection strategy were able to detect more of the
faitures than the subjects that used a more
passive strategy. The more successful subject
consistently used ALLY to identify software
failures before ALLY's automatic processing would
detect them.

Subjective Evaluations
In addition to the above quantitative analysis,
the subjects were asked to provide subjective
evaluations of the two associates. Several

different types of questionnaires were used to
This section summarizes
from these

coltlect this information.
the significant findings
questionnaires.

In summary, the subjects felt that ALLY brought
derinite strengths to the task. ALLY's speed and
accuracy at performing the monitoring tasks were
cited as its major strengths. In addition, ALLY
could quickily search schedules for free equipment.

On the other hand, they 1indicated several
limitations to the use of ALLY. They had to build
their trust in the system. Some of the subjects
were able to build the confidence in ALLY and gave
it more responsibility. Others, however, needed
more experience wWith the asscciate before the
trust could be established.

At times, ALLY wes "resistive" in that it would
not change its mind once it found an answer, but
the subjects never felt Llike they were out of
control because they had the capability to over-
ride ALLY's choices manually.

A common *fault" found with ALLY was that it
made the job too easy. Those subjects that
actively worked with ALLY to get it to do things,
however, felt like they had more control over the
situation because they were relieved from the
mundane tasks.

Summary

Overall the performance of the subjects using
ALLY as &an associate was as effective as
performance with the human associate. Individual
strategies enabled some of the subjects to
perform better with ALLY than with the human
associate. The primary ares that was affected by
personal strategies was in detecting and
compensating for software failures. Several
subjects were able to develop a style of
interacting with ALLY that enabled them to detect
software failures before either one of them would
on their own. This enabled them to detect the
faitures faster and to correct & larger percentage
of the total failures.

Since ALLY does not have the capability to
anticipate schedule conflicts, it is not able to
plan for these events in advance,. The subjects
that relied on ALLY's capability to respond to
these schedule conflicts could not take advantage
of their planning ability. The subjects that
performed the bhest with ALLY did not rely heavily
on ALLY, but relied on their own capabilities to
anticipate and plan for these events.

An unexpected result was a side-effect
associated with the difficulty ALLY has with
planning. ALLY performed as well as the human
associate 1n responding to unscheduled support
reguests. However, because the subjects knew that
this was one area in which ALLY can make mistakes,
they regularly checked ALLY's answers. As a
result, this additional checking resulted in more
correct responses to support requests With ALLY.

Conclusions

This experiment demonstrated that a computer-
based associate based on a model of the operator's
function can perform as well as a human sssociate.
As with any cognitive system (either human or
artificial), ALLY brought with it strengths and
limitations. The subjects that performed the best

ORIGINAL PAGE IS
OF POOR QUALITY



with ALLY were able to capitalize on 1its

strengths and compensate for its Wweaknesses. The
increase in the system

result was an overall

performance.
This research has demonstrated that a computer-
based founded on the identified

principles of cooperation can
human

associate
human-machine

achieve performance compatible with a

associate. In addition, this research has
provided a ngtarting-point® from which a finer
theory of cooperation can be developed. The

significance of this research is that it has

provided empirical research concerning the nature
of human-machine cooperation.

Quantitative experimental date demonstrated the
feasibility of the architecture for a computer-
based sssociate that can perform at least as well
as & humen associate. Qualitative data, in the
form of subjective evaluations, identified some of
the varied strategies used by
interact with a computer-based associate.

These quantitative and quatitative analyses may
form the basis of a more refined theory of human-
machine cooperation. Since no theory exists, this
exploratory research is essential to develop a
more definitive theory of cooperation.

operators to
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Abstract

Cockpit Task Management involves the initiation, monitoring, prioritization, allocation of resources to, and
termination of multiple, concurrent tasks. As aircrews have more tasks to attend to, due to reduced crew
sizes and the increased complexity of aircraft and of the air transportation system, CTM will become a more
critical factor in aviation safety. It is clear that many aviation accidents and incidents can be satisfactorily
explained in terms of CTM ervors, and it is likely that more accidents induced by poor CT M practivce will
occur in the future unless the issue is properly addressed.

Our first step in understanding and facilitating CI'M behavior has been the development of a preliminary,
normative theory of CTM which identifies several important CTM functions. From this theory some
requirements for pilot-vehicle interfaces have been developed which we believe will facilitate CTM. We have
developed one prototype PVI which improves CTM performance and are currently engaged in a research
program aimed at developing a better understanding of CTM and facilitating CTM performance through
better equipment and procedures.

Introduction

Air travel is one of the safest forms of transportation, yet each year hundreds of lives and millions of dollars
are lost due to air crashes. Accident investigations reveal that over half of these accidents are attributable to
errors by the cockpit crew [Nagel, 1988].

Since crew-induced accidents are rare, the “remedy” has historically been to provide specific fixes for specific
causes of specific accidents. For example, ground proximity warning systems were developed in response to a
(small) number of controlled flight into terrain accidents. And yaw dampers were installed in response to
incidents of Dutch roll, an instability problem characteristic of swept-wing aircraft.

This may have led to what Wiener [1987] calls the "one-box-at-a time" approach to cockpit automation that
ignores the need for information and control integration in the cockpit, leaving that integration entirely to the
already overburdened aircrew. Respoanses to specific incidents and problems do not necessarily decrease the
liklihood of other incidents and problems. Uniess a more general approach to understanding cockpit
operations and problems is adopted, it is likely that the trend will continue, perhaps with catastrophic results.

A systems engineering approach to this problem is more desirable than the ad hoc methods now so
commonly used. As Sheridan points out [1988], the systems approach provides more precise methods of
problem formulation, a basis for simulation and qualitative understanding of systems, a basis for quantitative
prediction of system behavior, an accounting framework for design and evaluation, and a language for
archival description.
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Our own application of systems engineering methods to cockpit operations, has led us to a concept we call
Cockpit Task Management (CTM). CTM involves the formulation of goals, the definition of tasks to achieve
those goals, and the management and execution of those tasks in a dynamic environment until the goals are
achieved. The remainder of this paper presents some background definitions, a preliminary, informal version
of a normative theory of CTM, some guidelines for the design of pilot-vehicle interfaces to facilitate good
CTM, and a summary of our continuing efforts to improve CTM.

Definitions

A dynamic system is an eatity which may be described in terms of input, output, and state. Input is matter,
energy, or information having a net flow into the system. Output is net flow of matter, energy, or information
out of the system. State is a compact representation of the history of the system which makes possible the
prediction of future outputs and of state itself [Padulo and Arbib, 1974]. Input, output, and state may each be
decomposed into multiple components, For example, an aircraft is a system whose input components include
fuel flow, control yoke movements, and radio clearances from air traffic control (ATC). Aircraft outputs
include fuel combustion products, heat and noise, and requests for and acknowledgments of ATC clearances.
Aircraft state components include position and altitude, flap angles, and radar mode.

Two systems which are connected by inputs and outputs form a more complex system called a supersystem.
The supersystem’s inputs are the unconnected inputs of the simpler systems. Its outputs are the unconnected
outputs. The state of the supersystem is defined by the combined states of the original systems. Through
successive system connections, systems of arbitrary scope and complexity may be defined. If a system is
formed from simpler systems through input-output connections, the simpler systems are called subsystems.
For example, an aircraft system can be defined as a collection of powerplant, electrical, hydraulic, and avionic
systems, With respect to the powerplant system, the aircraft may be considered a supersystem. From the
perspective of the aircraft system, the powerplant may be considered a subsystem.

The use of the generic terms system, subsystem, and supersystem, rather than terms like equipment and
components, permits the examination of domains from many levels of abstraction. Along with this flexibility,
though, comes the potential for ambiguity and confusion. For example, a discussion in which the term
"system” was applied to that combination of people, machines, policies and procedures called the air traffic
control system as well as to a light emitting diode on an aircraft instrument panel would be problematic
without further clarification. For any frame of reference, the analyst must clearly identify the levels of
abstraction to which the terms "system," "subsystem,” and "supersystem” apply.

A system behavior is a (perhaps continuous) series of system input, state, and output values over a time
interval. For example, as an airliner flies from Eugene, Oregon to San Francisco, successive values of input
components (including the pilot’s movement of the control yoke), state components (including position) and
output components (including radio transmissions) over the time interval of the flight constitute a behavior of
that system. A system exhibits a behavior if observations of the system yield input, state, and output values
exactly matching those of the behavior.

An gvent is a set of system behaviors in which some state component changes in a significant way at the very
end of the time interval. For example, reach 10,000 feet is an event consisting of a set of aircraft behaviors.
In each behavior of this event the aircraft’s altitude increases, reaching a value of 10,000 feet at the end of
the behavior’s time interval. An event occurs if the system exhibits a behavior which is contained in the cvent
set.

A goal for a system is defined by a set of desired behaviors and a state. Each behavior begins with an
initiating event and ends with a terminating event. In any behavior of the system, if the initiating event has
not occurred, the state of the goal is latent. If the initiating event is imminent, the goal is pending, If the
initiating event has occurred but the terminating event has not occurred and the actual behavior matches the
initial portion of some desired behavior, the state of the goal is active. If the initiating event has occurred, the
terminating event has occurred, and the actual behavior through the time of the terminating event matches
one of the goal behaviors, the state of the goal is achieved. If the initating event has occurred but the actual
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behavior does not match any of the goal behaviors, the state of the goal is violated.

A goal's mmatmg ‘event dcﬁnes the condmons under which the goal is relcvant A typxcal flight path consists +
of a series of waypomts which are geographical points along the route that serve as intermediate destinations.
So a goal to arrive at waypoint 8 is relevant after an arrive at waypoint 7 event has occurred, On the other

hand, a terminating event may take on more than one mcamng, as discussed below.

Forma]fy, only one type of goal is neccssary Asa ‘practical matter however, goals may be classified as to
intent and interpretation. In an attainment goal, the terminating gvent results in some desired state of the
system and the intervening input, state, and output values are unimportant. For example a gear down and
locked goal could be defined by all possible behaviors terminated with an event resulting in the landing gear
being in the down and locked state. In this case, it does not matter how the landing gear is lowered (by

motor, grawty, or manual operalnon) Only the final state is meortant -

In a maintenance goal, if is the portion of the behavior between the initiating and terminating events that is
important. For example, a goal to maintain approach speed until toachdown might be defined by the
collection of all behaviors in which the aircraft’s speed was within five knots of the approach speed specified
in the aircraft operations manual, until touchdown occurred. Here, the immediate objective of this specific
goal is not touchdown on the runway, it is maintaining the proper airspeed until touchdown occurs. Put
another way, a maintenance goal reflects a set of constraints on system behavior which are active until some

event occurs. -

A constrained attainment goal is an attainment goal in which the intervening behaviors are important. For
example, a goal to arrive at destination area (via waypoints 1, 2, and 3) might be defined by a set of
bebaviors in which the aircraft flies from its origin to waypoint 1, to waypoint 2, to waypoint 3, and ends in
the area of the destination airport.

A subgoal of a goal is a set of behaviors consistent with those of the goal, but restricted in time and/or in
scope. A goal may be decomposed into a set of subgoals, which are goals consistent with the original goal but
restricted in some way. Serial subgoals are defined for the original system, but over distinct time subintervals.
Parallel subgoals are defined over the entire time interval, yet are defined for subsystems of the original
system. A goal may also be decomposed into a combination of serial and parallel subgoals. For example, a
goal to approach the destination airport and arrive at landing position (prior to final approach) could be
decomposed into serial cleared to approach waypoint and at approach waypoint subgoals and parallcl
approach flaps, approach power, and approach speed subgoals.

A goal and all of its subgoals form a hierarchy with the goal at the apex. The topmost goal for a flight
mission will be referred to as the mission goal. Part of a simplified goal hierarchy for a flight mission is
shown in Figure 1.

Goal priority reflects an ordering of a set of goals and/or subgoals, as determined by the relative importance
assigned to them by the aircrew. More important goals have higher priorities. For example, a goal to remain
clear of terrain and other aircraft established to maintain the safety of the aircraft and its passengers is
clearly more important than a goal to maintain + 20 degrees roll, established for passenger comfort. The
first goal should then have a higher priority than the second.

Performance is how well a system achieves a specific goal. A performance measyre is a function that maps a
goal and a system behavior to a value set. The simplest performance measure may take on just two values: -

"satisfactory” if the goal is achicved (or at least not yet violated), and "unsatisfactory” otherwise. More

complex performance measures may map to amore complex, ordered set. For example, a goal to maintain
10,000 feet may be achieved if the aircraft’s altitude stays between 9,900 and 10,100 feet. But a behavior in
which the maximum deviation was no more than 25 feet might be preferred to a behavior in which the
maximum deviation was 75 feet. In this case, we could say that the system performed better when exhibiting
the + 25 foot behavior than when exhibiting the + 75 foot behavior.

A task is a process completed to cause a system to achieve a goal. A task involves the behaviors of one or
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more secondary systems or subsystems in order to produce inputs to the primary system to achieve the goal.
For example, for the goal to arrive at waypoint 7, there must be a fly to waypoint 7 task. The pilot, the
primary flight controls, the cockpit displays, the electrical system, and the engines are just a few of the
secondary systems required to complete the fly to waypoint 7 task to achieve the goal for the primary system
(the aircraft) to arrive at waypoint 7.

Ready for takeoff

/(Alrbomc
At cruise aftitude

N A AN A

Q‘lulon complsted

Clear of terrain & other aircraft

D

D

Fusl system OK D)

Engines OK D,

Aircraft & subsystems OK (Electrical system OK D
D

@Igh( log current

o T
<

Figure 1: Part of a Simple Goal Hierarchy

Like a goal, a task has state. A task is latent if its goal is latent, pending if its goal is pending, and active if its
goal is active. A task is in progress if inputs to the primary system are being applied to achieve the goal. If
the task has been in progress but inputs to the primary system to achieve the goal have been suspended, the
task is interrupted. A task may be terminated if its goal is achieved, if the goal is not achievable, or if the
goal becomes irrelevant. In the case of an unsuccessful termination, the task is considered to be aborted.

The performance of a task is simply the performance of the system with respect to the task’s goal while the
task is being completed. A pilot keeping the aircraft within 25 feet of a sclected altitude is performing a
maintain altitude task better than one only keeping within 75 feet of the selected altitude.

As we can decompose the goal to approach the airport and arrive at landing position into cleared to
approach waypoint and at approach waypoint subgoals, an approach task could be decomposed into get
approach clearance and fly to approach waypoint subtasks.

An agenda defines an ordered set of tasks to be completed during a mission. Each task is defined to achieve
a specific goal and becomes active when the goal’s initiating event occurs. The structure of an agenda follows
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that of a goal hierarchy but carries additional task information. Figure 2 shows part of an agenda
corresponding to the goal hierarchy shown in Figure 1.

[Taxi for takeoff
for takeoft | door closed ]

[Fakeoht
arboma [attakeofl positon |

[Ciimb to_cruise aititude 1/
{atcnise aittude _[ioff =

B:Wm'"?‘d.m ‘Lda.'“unmgllé lmﬂ for waypomt |20 rend from dest__|

[Setup nav system for spprosch |
nav system set up ... |cleared for waypoint |

{Descend to approach _posttion
st approach position [100 nmé from dest

{Set fiaps for

Fy
[mission compieted_[door closad approach ]
approach flaps set .| cearsd for spproach |

Approach
[ landing posiion |20 ni from dest

S;l&ﬁame |

{Lseprosch povwer et [dsarsdfor spproach |
[‘;u.:'od T landing postion |~ Sat & makiai spprosch speed |
\ [approach speed sat [deared for approach |
Tan 10 gate 1~
L {at gate Ttouchdown 1~ I:y to waypoint 1 = J
ogend: waypoint ‘Geared Tor approach
[Tgm tatng j Wonitor_ soral & sbsystams 1~
nnror
= l — [sroaft & subst OK [doorciosed [

Figure 2: Part of a Simple Agenda

When an initiating event occurs, the corresponding task becomes activg. Since two or more tasks may share a
common initiating event and since one task may not reach completion before another task becomes active,
several tasks may be active at one time. Two or more tasks that are simultaneously active are called

concurrent {§§k§.

Resource-Limited Performance

Executing a task to achieve a system goal, such as to fly an aircraft to a destination, requires that certain
inputs be provided to that system over a time interval. These inputs must come from other systems or
subsystems, such as pilots, autopilots, and other cockpit equipment. These systems or subsystems are called
resources, and resources are required to complete a task. If the resources are not available, that is their
outputs cannot be directed to the primary system, the task cannot be completed satisfactorily and the goal
cannot be achieved.

A variety of resources are required for cockpit tasks. Equipment resources include autopilots, radios, displays
and controls, Human resources include the pilot, first officer, and flight engineer. Some resources are
specialized and can only be used for a limited set of tasks. Examples of specialized resources include the
fanding gear control lever and the altimeter. Other resources are multi-function and can be used for a variety
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of tasks. Examples of these include multi-function CRT displays and humans.

Since resources are systems, they can be decomposed into simpler subsystems. Of particular interest are the
human resources, which can be decomposed into personal sensory, motor, and cognitive resources. Sensory
resources include visual, auditory, and other sensory systems which can be used to obtain external system
state information necessary for completing a task. Motor resources include hands, feet, voice, and other body
systems that can produce inputs to external systems. Cognitive resources are mental subsystems required to
perform cognitive tasks, such as those involving pattern recognition, problem solving, and decision making.
The resources include the verbal and spatial resources identified and studied by Wickens and his colleagues
at the University of Illinois [Wickens 1984; Wickens and Liu, 1988].

Since two concurrent tasks may require the same resources, this poses a potential problem, since resource
behavior compatible with achieving one goal may be incompatible with achicving the other goal and the
performance of one or more of the tasks may be degraded. That is, task performance is limited by resource
availability. With resources like displays or hands and feet, this is obvious. But it is also true for cognitive
resources [Navon and Gopher, 1979; Wickens, 1984]. A situation in which task resource requirements exceed
resource availability is called a task conflict.

For example, given the agenda in Figure 2, if ATC clearance to an approach waypoint is obtained the sct and
maintain approach power task would become active. Assume that this task requires a multifunction CRT
resource on which an engine display format must be shown. Suppose that now a primary electrical system
failure event occurs and a subtask to diagnose and correct electrical system becomes active. Assume that this
subtask requires an electrical system display format on the same CRT resource. If the two display formats

cannot be displayed simultaneouly a resource shortage and therefore a task conflict exists.

Even if two CRTs are available to complete both of these tasks simultaneously, there still might be a task
conflict due to cognitive resource limitations. Assuming for the purpose of this illustration that no other
crewmember is available to assist the pilot in completing these two tasks, he or she may lack sufficient
cognitive resources to simultaneously attend to both of them. This might result in errors in completing one or
both of the tasks.

Task conflicts like these can be partially resolved through a process of prioritization and resource allocation.
In the case outlined above, the pilot can decide that the immediate correction of equipment failure is
absolutely essential to the safe continuation of the flight, and temporarily suspend the set and maintain
approach power task, using all necessary resources to complete the diagnosis and correction subtask.

But if this subtask takes longer than anticipated, flight safety could be endangered, for if the aircraft proceeds
at the current altitude longer than the air traffic controller anticipated, the potential exists for collisions with
other aircraft travelling at the same altitude. Focussing on one task to the exclusion of others can lead to
poor task performance at minimum and disaster at worst.

Given the complex nature of modern aircraft, the speed at which they travel, and the increasing density of air
traffic in airspaces, the existence of multiple, concurrent tasks in the cockpit is the norm rather than the
exception. Clearly, concurrent tasks must be systematically managed by the aircrew to achieve acceptable
levels of system performance.

A Preliminary, Normative Theory of Cockpit Task Management

The process by which the aircrew manages an agenda of cockpit tasks may be called Cockpit Task
Management (CTM). Given the requirement to allocate limited resources to tasks in a dynamic environment,
some essential functions of CTM are readily apparent. A brief outline of these Functions are presented below
and a generalized procedure for CTM is shown in Exhibit 1. Please note that the following theory of CTM is
a normative one and presents the functions that should be completed. It does not seek, at this point, to
explain how they are performed, nor does it explicitly account for errors, which will be discussed later.
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Procedure: CTM
create and validate initial agenda
until mission goal is achieved or unachievable
activate tasks whose initiation events have occurred
assess status of active tasks
terminate tasks with achieved or unachievable goals
assess task resource requirements
prioritize active tasks
allocate resources to tasks in order of priority:
initiate higher priority tasks not yet in progress
interrupt lower priority tasks currently in progress
resume higher priority tasks that were interrupted
update and validate agenda
endUntil
End: CTM

Exhibit 1: Cockpit Task Management Procedure

Before CTM can begin, an initial planning process must be completed. This planning process yields a set of
goals, including a primary mission goal, a hierarchy of subgoals to the mission goal, and perhaps a collection
of goals to deal with contingency situations, such as an engine fire or a hydraulic system failure.

Agenda Creation is the first step of CTM and involves the selection and specification of a suitable task to
achieve each goal and the definition of the initiating event for each task. The specification of each task
includes a list of resources necessary to complete the task, both equipment and human. The creation of the
agenda also requires the validation of the goals upon which the agenda is based. It is necessary to make sure
that all goals are compatible with the mission goal and with each other.

Once the agenda has been created and validated, true task management begins. This iterative process lasts
until the mission goal is achieved or it has been determined that the mission goal is not achievable and no
further effort need be expended towards achieving it.

Task Activation is the detection of the initiating event for a task and the recognition that the task should be
started. For the initial tasks in a mission, such as the taxi for takeofT task, this occurs immediately. For other
tasks, such as the fly to approach waypoint task, the initiating events and task activation may occur much
later in the mission. Some tasks for contingent goals, such as an extinguish engine fire task (a subtask of a
monitor aircraft and subsystems subtask), may never be activated.

Task ment or task monitoring determines the status of each task, which reflects the achievement
of the task’s goal. Not only must the current status of the task be assessed, but if the task’s goal is not yet
achieved, the status of the task must be projected into the future to determine the liklihood that the goal will
be achieved.

If the goal is achicved or if the goal has not yet been violated but current trends will likely result in the goal’s
achicvement, the status of the task is satisfactory. For example, suppose that fly to waypoint 7 is an active
task. If the aircraft is at waypoint 7 the task’s status is satisfactory. If the aircraft is not at waypoint 7, but it is
flying in that direction and there is sufficient fuel to reach the waypoint, the task’s status is also satisfactory.

If the goal is not yet achieved, not yet violated, but current trends will likely result in a violation of the goal,

the status of the task is marginal If fly to waypoint 7 is active but the aircraft’s course is 10 degrees to the
right of a heading to waypoint 7, the status of the task is marginal.
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If the goal is violated, the status of the task is critical. If the aircraft has passed waypoint 7, but has not comc
within some acceptable range of the waypoint, the fly to waypoint 7 task is critical.

The above is a minimal classification scheme for task status. These status values probably should be treated
as general categories to be further subdivided to provide more resolution in status assessment.

Task Termination removes tasks from competition for resources. Normal task termination is a result of the
achievement of the task’s goal. So when the aircraft is airborne, the takeoff task may be terminated.

A critical task, one whose goal cannot be achieve or at least probably cannot be achieved, may be aborted,
thereby terminating it. Such might be the case if dangerous wind shear conditions are detected during a land
task. When the possibility of aborting a task exists, the agenda should contain contingent tasks to replace the
aborted tasks. For example, an execute missed approach task should be included in an agenda to replace an
aborted land task.

Another reason for terminating a task is because its goal is no longer relevant. For example, if a landing gear
fails to operate properly on the first try, a diagnose/correct landing gear task might be initiated. If later,
through no direct action of the crew, the gear operates properly, the goal to diagnose and fix the landing gear
would no longer be relevant and the task could be terminated.

Task Resource Requirements Assessment must be performed to determine what resources are required to

complete the active tasks. Each task has minimum resource requirements, but in some cases, task
performance can be improved by providing additional resources. For example, the performance of a
diagnose /correct engine problem task might be improved by allocating two rather than one display resources
to it, allowing the simultanecous display of engine parameters on one display surface and an engine diagnosis
checklist on the other.

Recognizing the improved performance that additional resources can bring may be especially important in
correcting marginal or critical tasks. On the other hand, over-allocating resources to one task may interfere
with the performance of another, if those resources are limited.

Task Prioritization is an ordering of tasks by priority. Factors which can influence task priority include the
following:

the priority of the task’s goal.

the priorities of the goals of other active tasks.

the current and projected status of the task.

the current and projected statuses of other active tasks.

Ealt i el

Task prioritization can ultimately be defined in terms of a pairwise comparison of tasks based on the above
as well as other factors, which results in an ordering of active tasks. For example, suppose that both a
maintain + 20 degrees roll task and a remain clear of terrain and other aircraft task are active, If the aircrew
detects another aircraft on a collision course, they should assign a higher priority to the second task than to
the first because the goal to remain clear of terrain and other aircraft has greater importance and a higher
priority than the goal to maintain + 20 degrees roll

Resource Allocation is the assignment of resources to tasks, with preference given to high priority tasks, so
that the tasks may be executed. Resource allocation depends directly on task prioritization, and since that is a
dynamic process, resource allocation must be dynamic also.

When a newly activated task has a high enough priority, resources are allocated to it and task initiation
occurs. This means that the required resources begin exhibiting behaviors consistent with the achievement of
the task’s goal. In many cases, task initiation requires a communication of the goal to some of the resources
so that they can behave accordingly. For example, if one of the resources required for a task is a human crew
member, that crew member must be aware of the goal in order to behave in such a way as to bring about its
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achievement. This is also true for some equipment resources. For example, to fly automatically to a certain
location, the aircraft’s navigation computer must be "informed” of the goal by the input of the destination’s
geographical coordinates.

If a lower priority task is in progress and a higher priority task is initiated which requires those resources,
then the resources are allocated to the higher priority task. This is called task interruption, and the lower
priority task, while stiil active, is no longer in progress, or it may said to be suspended.

When a high priority task in progress is terminated, for whatever reason, task resumption of a lower priority,
suspended task can occur, in which case resources are reallocated back to the lower priority task and it can
continue.

Actually, resource allocation based merely on task priority may be insufficient. In some cases at least,
resource reallocation may occur due to the specific status of a task. For example, the autopilot may be
allocated to a fly to approach waypoint task, but the autopilot, due to existing conditions, may not be able to
adequately control the descent. It may then be necessary to deallocate the autopilot from the task and
allocate a human crewmember to it to achieve the goal.

Agenda Updating is necessary since some cockpit tasks may alter the agenda. If bad weather or other
contingencies make a planned route infeasible or undesirable, a planning task may be initiated to change the
original route. This will, by necessity, change the agenda. The goals and tasks created by this planning task
must be integrated into the agenda, perhaps replacing earlier components. Of course, validation of the
candidate changes to the agenda must take place to assure that the mission goal is achieved and that no goal
conflicts occur.

Cockpit Task Management Failures

The significance of CTM can best be appreciated by using the framework presented above to examine several
aviation accidents and incidents which have occurred in the last two decades. The following accounts are
summaries from National Transportation Safety Board Aviation Accident Reports.

On March 21, 1980, at 1949, Eagle Commuter Airlines, Inc. Flight 108, a Piper PA-31-350,
with a pilot, a pilot-in-command trainee, and eight passengers on board, crashed on takeoff
from runway 22 at William P. Hobby Airport, Houston, Texas. The pilot, the pilot-in-
command trainee, and five passengers were killed, and three passengers were injured
seriously. The aircraft was destroyed by the crash and the postcrash fire. The National
Transportation Safety Board determines that the probable cause of the accident was a power
loss in the right engine for undetermined reasons at a critical point in takeoff, the aircraft’s
marginal single-engine performance capability, and the captain’s incorrect emergency
response to the engine power loss when he failed to either land immediately on the
remaining runway or to configure the aircraft properly for the engine-out condition. [NTSB,
1981]

An Eastern Airlines Lockheed L-1011 crashed at 2342 castern standard time, December 29,
1972, 18.7 miles west-northwest of Miami International Airport, Miami, Florida. The aircraft

was destroyed. Of the 163 passengers and 13 crewmembers aboard, 94 passengers and 5
crewmembers received fatal injuries. Two survivors died later as a result of their injuries.
Following a missed approach because of suspected nose gear malfunction, the aircraft
climbed to 2,000 feet mean sea level and proceeded on a westerly heading. The three flight
crewmembers and a jumpseat occupant became engrossed in the malfunction. The National
Transportation Safety Board determines that the probable cause of the accident was the
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failure of the flightcrew to monitor the flight instruments during the final 4 minutes of flight,
and to detect an unexpected descent soon enough to prevent impact with the ground.
Preoccupation with a malfunction of the nose landing gear position indicating system
distracted the crew’s attention from the instruments and allowed the descent to go
unnoticed. [NTSB, 1973]

On June 13, 1984, USAir, Inc. Flight 183, a McDonnell Douglas DC9-31, N964V], with 5
crewmembers and 51 passengers aboard, encountered turbulence, hail, and heavy rain as it
was making an instrument landing system approach to runway 21R at the Detroit
Metropolitan Airport, Detroit, Michigan. The airplane landed on the runway about 2500 feet
beyond the threshold of runway 21R before the landing gear was extended fully. The
airplane skidded bout 3,800 feet before sliding into the grass on the left side of the runway.
The crew and passengers were evacuated with only minor injuries. The airplane was
damaged substantially. The National Transportation Safety Board determines that the
probable cause of the accident was inadequate cockpit coordination and management which
resulted in the captain’s inappropriate decision to continue the instrument approach into
known thunderstorm activity where the airplane encountered severe wind shear. The failure
of air traffic control personnel at the airport to provide additional available weather
information deprived the flightcrew of information which may have enhanced their
decisionmaking process. [NTSB, 1985]

Each of these accidents or incidents was thoroughly investigated by the NTSB, probable cause was assigned,
and contributing factors were identified. In the Eagle Commuter accident the captain "... failed to ... configurc
the aircraft properly for the engine-out condition." “Preoccupation with a malfunction ... distracted the
[Eastern Airlines] crew’s attention ..." The USAir captain made an "... inappropriate decision to continue the
instrument approach into known thunderstorm activity.

In each case conclusions can be and no doubt were drawn about how the accidents could have been
prevented. It is likely that these fixes, were they implemented, would have prevented similar accidents from
occurring. But specific explanations of and fixes to specific problems do not necessarily prevent accidents of
other types from occurring.

If, on the other hand, we examine these occurrences from the perspective of CTM, we can develop a more
comprehensive understanding of cockpit errors and perhaps suggest effective ways of preventing a wider
variety of accidents from occurring. With that in mind, consider the following, supplementary explanations of
the accidents and incidents, from the perspective of CTM.

Faced with multiple, possibly conflicting tasks, the Eagle Commuter captain failed to initiate an engine-out
recovery task. The Eastern Airlines crew failed to monitor the statys of the primary flight task, possibly
because they assigned too high a priority to the tasks of dealing with the malfunctions. The Eastern crew also
overallocated resources to the landing gear diagnosis task (all three crewmembers plus a jump seat occupant
became totally absorbed in the diagnosis). The USAIr captain failed to {grminate the landing task, even
though continuation of the task placed the higher priority goal of passenger, crew, and aircraft safety at
extreme risk.
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Pilot-Vehicle Interface Requirements to Facilitate

‘Cockpit Task Management

The concept of Cockpit Task Management has potential implications for aircrew training and cockpit
procedures, and these should be addressed. But our efforts in the past have focussed on cockpit automation,
especially the design and development of intelligent pilot-vehicle interfaces (PV1s). Based on the preliminary,
normative theory of CTM and the CTM-based analysis of a varicty of accidents and incidents, we believe a
PV1 should perform the followmg funcuons to facmtate CTM

1. Maintain an internal representation of the mission agenda. The PVT should possess knowledge of the

agenda for each flight. Once the aircrew has planned a mission, they must be abl¢ 1o create a
represcntatnon of the mission agenda in the PVI. They must also be able to modify the agenda
dunng the mission as plans change.

2 ispl mf rmation to (he aircrew. Tl:c PVI must prowde a dynamic agenda display that
keeps the aircrew informed about the agenda It should display information about the state of each
goal and the state and status of each task, especially those goals and tasks that are pending or active.
The aircrew may not choose to have the agenda display visible at all times, but it must be available
and easily accessible to them.

3. Monitor and display aircraft and subsvstem states. All PVIs display aircraft and subsystem
information, but to facilitate CTM these displays should be controlled by the PVI to emphasize
information relevant to pending and active tasks.

4. Monitor task states and inform the aircrew. The PVI should monitor aircraft and subsystem state,
note events, and update the agenda. Specifically, the PVI should determine when tasks become

pending, active, or terminated. This information should be provided to the aircrew through the
agenda display and perhaps through other displays as well, especially when the agenda display is not
visible.

5. Determine when tasks are being performed. The PVI must be able to determine when tasks are

being performed by the aircrew and by avionics systems. In some cases this may be done implicitly
by monitoring aircraft and subsystem states as they change under aircrew and avionics control
[Hoshstrasser and Geddes, 1989; Rouse and Hammar, 1990]. In other cases, aircrew intent must be
determined by explicit communication from the aircrew that the task is or will soon be underway.

6. Assess task status and inform the aircrew. The PVI should assess task status based on the present or

projected status of goals and inform the aircrew through appropriate displays. In the case of
marginal or critical tasks, the aircrew should be alerted and perhaps advised so that appropriate and
timely action can be taken to maximize the chances of goal achievement.

7. Prioritize tasks and inform the aircrew. Tasks should be prioritized by the PVI and the aircrew
should be informed through appropriate displays. Priorities of marginal or critical tasks should be

emphasized.

8. Help the aircrew perform specific tasks. Although the major concern here is in facilitating CTM, the

functions described above virtually necessitate a PVI architecture that could also support specific task
aids, such as planning tools, computational aids, and expert systems for diagnosis and control. The
level of support provided by these aids should be selectable by the aircrew and the aids should
always remain under aircrew authority. Decisions and control actions provided by the aids should be
subject to aircrew authorization, either in real time or by “contractual” arrangement prior to the
mission. It is likely that such aids could help improve individual task performance and indirectly
improve CTM performance by reducing the cognitive resource demands on the aircrew by the
individual tasks.
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Steps Toward Better Cockpit Task Management

We have made significant progress in our efforts to understand and facilitate CTM. Our primary
accomplishment to date is a prototype PVT and we are currently involved in both theoretical and applied
research and development efforts.

The Task Support Subsystem (TSS) is a prototype PVI developed at Oregon State University whose function,
in part, is to facilitate CTM [Funk, 1990]. It is a subsystem of an experimental avionics system that runs in a
simulated aircraft. Prior to a mission, a mission definition is created which defines the tasks to be
accomplished during the flight. During the simulated flight, software modules called Task Agents (TAs)
perform the CTM function to see that all tasks are completed satisfactorily.

For each task in the mission there is a TA assigned to it. The TA determines when the task should be started
and configures the cockpit for the task. It then monitors the pilot and aircraft subsystems to sce that the task
is completed correctly and on time. If the pilot fails to act on the task, the TA reminds him via a display and
the TA alerts the pilot to actual or anticipated deviations from the task’s goal. Most TAs also facilitate task
execution by providing procedural prompts and recommendations. Some TAs are capable of completely
automating their tasks at the pilot’s discretion.

Multiple TAs are coordinated by a high level TA that allocates resources based on priority. A mission display
serves to remind the pilot of tasks to be completed and shows the status of each active task.

The TSS, as part of the avionics system, was evaluated by a group of 16 professional pilots in a simulator
experiment [Lind et al, 1989]. Each pilot flew two equivalent, simulated missions, one in a bascline cockpit
and one with the TSS present. Performance measures involved timing, accuracy and number of errors
committed. Statistically significant results favoring the TSS-equipped cockpit were obtained from the data
analysis and pilots subjectively rated the TSS-equipped cockpit as superior in terms of situational awareness
and workload. Subsequent informal evaluation of the TSS by a variety of pilots and non-pilots have been
consistent with the positive results of the experiment.

Our ongoing research involves development of theories of CTM and development of further prototype PVIs
to facilitate CTM.

The preliminary, normative theory sketched above is being formalized in the framework of mathematical
systems theory [Mesarovic and Takahara, 1975; Funk, 1983]. A simulation model will be developed and
validated for internal consistency before finalizing a procedural description of CTM.

The normative theory will serve as the basis for a descriptive theory of CTM which identifies human
capabilities and limitations in performing CTM functions. From the descriptive theory will come an error
taxonomy, a framework for explaining CTM errors, and a model for predicting CTM performance.

Both theories will be further formalized to create analytic and evaluative methodologies which will be applied
to the examination of aviation incidents and accidents from the perspective of CTM and the rating of cockpit
equipment and procedures for how they facilitate or impair CTM. We believe that the development and
application of these methodologies will also lead to countermeasures to poor CTM, perhaps in the form of
general principles as well as specific design guidelines along the lines of those presented above.

From these principles and guidelines we will construct and evaluate further prototype PVIs. Our goal is not
just to understand CTM, but to improve it through intelligent engineering research and practice.

We are encouraged by our progress and believe that the CTM concept has significant potential for improving
the safety and effectiveness of aerospace systems.
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Introduction

With the emergence of new technology for both human-computer
interaction and knowledge-based systems, a range of
opportunities exist to enhance the effectiveness and efficiency of
controllers of high-risk engineering systems. This paper
describes the design of an architecture for an operator's
associate--a stand-alone model-based system, designed to
interact with operators of complex dynamic systems, such as
airplanes, manned space systems, and satellite ground control
systems, in ways comparable to that of a human assistant. The
presentation will have several sections. The first describes the
OFMspert architecture. The second describes the design and
empirical validation of OFMspert's understanding component.
The third describes the design and validation of OFMspert’s
interactive and control components. The paper concludes with a
description of current work in which OFMspert provides the
foundation in the development of an intelligent tutor that
evolves to an assistant as operator expertise evolves from novice
to expert.

OFMspert Architecture

OFMspert--Operator Function Model (OFM) expert system--is a
stand-alone knowledge-based system that is intended to
function as an assistant to a human expert. This philosophy is
different than many knowledge-based systems in which the
computer system replaces or operates suggestions. OFMspert is
intended to be a subordinate to an experienced operator, possibly
replacing a less skilled assistant. As a result, OFMspert
includes features such as dynamic allocation of functions
between the human and computer controllers, interruption of
OFMspert by the human user, and 'repair’ of
misunderstandings.

OFMspert (Figure 1) has two primary components that enable it
to 'understand' operator activity in the control of a complex
dynamic system. The first is the operator function model
(OFM). The OFM is a representation of operator activity in
dynamic systems that represents the interrelations between
dynamic system states and operator functions. Each function is
hierarchically decomposed down to the level of individual
operator actions. The OFM defines the knowledge base that
OFMspert uses to hypothesize expectations of operator activities
and to infer why a given action was undertaken. Figure 2
depicts a generic OFM

The second major OFMspert component is a blackboard on
which OFMspert dynamically constructs expectations of current
operator function, subfunctions, tasks and actions. The
blackboard, called ACTIN (actions interpreter), keeps track of
model-derived expectations and data-derived interpretation of
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operator actions. ACTIN's hierarchy is a dynamic
representation of the operator function model (Figure 3).

ACTIN and the OFM define OFMspert's understanding
component. OFMspert's utility and effectiveness depend on its
ability to 'understand’' accurately.

The Validation of OFMspert's Intent Inferencing
(Understanding) Component

In order to evaluate OFMspert's intent inferencing
effectiveness two experiments were conducted in the domain of
satellite ground control. The first experiment compared
OFMspert interpretations of operator activity with a domain
expert's interpretations. The second experiment involved
verbal protocols in which subjects controlling the system stated
the reasons for what they were doing; their reasons were then
compared to OFMspert's interpretations. In both cases,
OFMspert's understanding was quite impressive. Figure 4a
and 4b summarize the empirical results. Areas of mismatch
were due primarily to model errors in the OFM (correctable) or
long-term planning and browsing--operator functions that the
OFM had not represented.

We were very pleased with the intent understanding
component. Based on its understanding capabilities, OFMspert
was augmented with control properties in order to function as an
assistant.

OFMspert as an Assistant

Based on the OFM and Rasmussen's abstraction hierarchy, a
user interface to OFMspert was designed. The human operator
could request a range of assistance from OFMspert. The types of
assistance were identified based on the operator functions and
subfunctions defined in the OFM. Each OFMspert function was
further decomposed into levels of available assistance so that the
user could dynamically choose how much or how little
assistance was desired.

An extensive evaluation of OFMspert as an assistant (Figure 5)
was conducted, again in the domain of satellite ground control.
Trained subjects controlled a simulated satellite ground system
using both OFMspert and a well-trained human assistant.
Results showed that though the style of use varied, controllers
with OFMspert as an assistant controlled the system as
effectively as controllers with a human assistant (Figure 6).

This experiment provided strong evidence for the possibility of
using knowledge-based technology to augment operator control
capabilities. Subject responses indicated that they liked the
highly interactive and flexible user interface to OFMspert--and,
in fact, would prefer even more capabilities for dialogue and
repair of miscommunication. Indeed, for the design of



knowledge-based systems for complex domains, the human-
human metaphor is an intriguing avenue for further research.

OFMspert as a Tutor that Evolves to an Assistant

Current research at Georgia Tech examines the use of OFMspert
as an intelligent tutoring system (ITS) that can evolve to an
assistant as the user's skills evolve from novice to expert
(Figure 7). With the OFM, OFMspert provides the domain
knowledge (static, dynamic, and operational) needed in an
ITS. In addition, OFMspert's blackboard, ACTIN, represents
expected operator activity, interprets actual activity, and is able
to assess the differences. As such it provides the initial
definition of the teaching component of an ITS.

Finally, as a tool that is designed to function both as a teacher
and as an assistant, OFMspert may be a very viable
architecture. With two applications, the assistance function
being long term, it is easier to justify the development costs that
such systems inevitably incur. From an operations standpoint,
novice users may be more likely to spend the time interacting
and using a training system that they know will eventually
become a tool that they use operationally.
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Experiment 1: Average Percentage of Equivalent Interpretations i . .
Between ACTIN and a Human Domain Expert. Experiment 2: Average Percentage Of Equivalent Interpretations
(Ordered by Rank). Between ACTIN And Verbal Reports.

{Ordered By Rank).

Configure 100 % Configure 100 %
Deconfigure 100 Endpoint telemetry page requests 100
Answer 96.2 Deconfigure 7.1
Replace 04.8 Telemetry page requests 96.3
Equipment schedule page requests 90.3 Answer 91.4
Mission schedule page requests 85.7 Reconfigure 912
Interior telemetry page requests 843 Interior telemetry page requests 87.1
Endpoint telemetry page requesis 76.5 Replace 753
MSOCC schedule page requests 75.5 Mission schedule page requests 66.7
Telemetry page requests 70.2 MSOQCC schedule page requests 50.3
Reconfigure 60.8 Equipment schedule page requests 21.8
Events page request 53.9 Events page request 17.7
Pending page request 333 Pending page request 16.7
Figure 4a Figure 4b

250.0 +

200.0 +

150.0 1

100.0 1

Human
Associate
50.0 } B8 Ay
0.0

deconfigure hardware schedule soltware software software support unscheduded
requesis  failures conlflicts failure 1 failure 2 failure 3 requesls contacts

Comparison of Human Assoclate and Ally

Figure 6
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in Test Flight Monitoring
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Vermillion,

Enhancing the usability of Mission
Control Center (MCC) CRT displays stands
to improve the quality, productivity, and
safety of flight-test research at the
NASA Ames-Dryden Flight Research
Facility. The research reported in this
paper involves three experiments aimed at
improving the usability of the CRT
displays in the Ames-Dryden MCCs. The
results of this research suggest that
much can be done to assist the user, and
improve the quality of flight research
through the enhancement of current
displays. The research reported has
applications to a variety of flight data
monitoring displays.

Introduction

In the years since World War II, the
amount of data collected in flight-test
research has increased from a handful of
parameters to several hundred parameters
(Granaas and Rhea, 1988). Also
increasing is the amount of data
available to the flight-test researcher
in real-time (Moore, 1986). As
technology improves, there is every
reason to believe that the amount of data
available to the researcher will contlnue
to increase.

While this is generally good news
for the flight-test researcher, it does
not come without some cost. Specifical-
ly, increasing amounts of data have lead
to cluttered screens and increased mental
work load for the user. This in turn
reduces the overall effectiveness of
flight-test programs.

In order to minimize the negative
impact of increasing amounts of data on
the flight-test researcher, we have begun
a program of research intent on determin-
ing appropriate and effective design
criteria for CRT flight data displays.
This paper reports the preliminary
findings from three of these studies.
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Experiment 1

Research has shown that reducing
screen clutter and increasing information
organization can lead to improved task
performance (Ramsey and Atwood, 1979).
This experiment was done to determlne if
some of the displays in the Dryden MCC
could be reorganized to reduce screen
clutter and improve user performance.

buring the course of a test flight,
MCC users will frequently monitor a set
of flight parameters until they match a
predetermined set of values that define a
test point. Once this match occurs, the
user takes some action until the matching
ceases to occur. Often the task per-
formed involves making a record of the
time at which the aircraft reached the
test point so that the data of interest
can be retrieved at a later time. Since
an aircraft is "on point" for only a few
seconds, delays in recognizing that the
aircraft is on point can be very costly
in terms of the amount and quality of
data collected.

This task was chosen because in one
form or another, many users monitor one
or more parameters. This task should
also generalize to a number of tasks
outside of the control room setting.

The current screen layout now
requires that the user either memorize
the three to four target values that
define the test point, or scan multiple
locations on the screen to determine wha
those values are. With only three values
to monitor this is probably not too
mentally taxing for the user. However,
as the number parameters to be monitored
increases, the mental work load of the
user should increase to the point where
user performance suffers.

This research utilized a modified
display format to test the efficacy of
modified displays in the MCC. Target and
actual parameter values were placed in

-
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adjacent columns to reduce user scanning
time. This placement also allowed for
the elimination of some redundant
parameter labels which helped reduce
screen clutter,

Methods

Subijects. Sixty undergraduate
students from a small midwestern
university were recruited to act as
subjects for this study. Subjects
received class credit for their
participation.

Apparatus, The displays were
programmed in Microsoft-C on a CSS 286-A

AT compatible computer running at ten
megahertz. Displays were presented on a
NEC Multisync II monitor in EGA mode.
Reaction times were collected via a
Microsoft Mouse and software that uses
the system hardware timer to measure
times with better than millisecond
accuracy (Granaas, 1989).

Displays. Two display formats were
developed for this study. The first
replicated one of the actual alphanumeric
‘displays currently used in the Dryden
MCCs. The second was modified so that
parameters being monitored appeared in
adjacent columns of the display in the
upper left quadrant, and redundant labels
were eliminated. Each of these displays
was tested with subjects monitoring
three, five, or seven parameters.

Procedure, After receiving informed
consent, subjects were seated at.an
experimental workstation with the display
and mouse. Each subject participated in
only one of the six possible display
format by number of monitored parameters
conditions. The subject was given
instructions in both verbal and written
form for the condition in which they
participated. Subjects were given one
practice trial followed by an opportunity
to ask questions. After answering any
questions, the experimenter left the
subject to complete the experiment.

Each subject completed 20 trials as
part of the experiment. The first five
trials were later treated as practice
trials due to the large number of missing
data points in those trials.

In each trial subjects were
instructed to press the left mouse button
when the monitored parameters matched
their target values, and again when one
or more of the monitored parameters
ceased to match its target value.
Following each button press one of two
tones was presented. One tone indicated
a correct response and the other a false
alarm. Thus, subjects had feedback to
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assist them in determining if they had

‘responded correctly.

The computer recorded the reaction
times and number of false alarms for both

the matching and dematching tasks. So
each trial had four data points
associated with that trial: Reaction

time for the matching task, reaction time
for the dematching task, number of false
alarms for the matching task and number
of false alarms for the dematching task.

Results

For purposes of these preliminary
analyses, the only data analyzed was the
mean reaction time for each subject on
the matching and dematching tasks. Each
of these scores was analyzed
independently using a 2(display format)
by 3(parameters monitored) completely
between groups analysis of variance
(ANOVA) .

Matching Task. The display format

by number of parameters monitored inter-
action was significant (F(2,54) = 11.53,

p < .0001). The main effects for display
format and number of parameters were also
significant (F(1,54) = 22.02, p < .0001
and F(2,54) = 5.08, p < .01).

Table 1

Mean Reaction Times for Matching Task
for 0ld and New Display Fo;mats by
Number of Parameters Monitored

Number of Format

Parameters old New
3 1.26 (0.433) 1.21 (0.282)
5 2.87 (1.032) 1.32 (0.437)
7 3.02 (1.394) 1.75 (0.516)

An examination of the means in Table
1 indicates that there is little
difference between the two formats when
only three parameters are monitored. As
the number of parameters increases,
reaction times for the unorganized
display climbed sharply, while those for
the organized display climbed only
modestly.

Dematching Task. This analysis

found no significant effects.
pDiscussion

This study shows that display )
organization is an important component in
display design. Reorganizipg_of poorly
organized displays can significantly
improve performance. And, reorganization
can also reduce the effects of further
increases in the difficulty of the task



being performed. However, this improve-
ment in performance only occurs when that
task is sufficiently difficult that the
user cannot effectively compensate for
the increased workload.

EXPERIMENT 2

This experiment was designed to look
at the effects of different screen colors
on task performance. Current guidelines
suggest that there are no differences in
performance as a function of screen color
as long as the foreground/background
colors selected are of high contrast
(Mitchell, Stewart, Bocast, and Murphy,
1982; NASA, 1989%). However, such
research is open to the criticism that
the tasks performed are relatively simple
and of short duration (less than 20
minutes), or do not reflect real tasks.
What happens in real task settings over a
period of time seems to be unknown.

Methods

Subjects. Fifty-six subjects from
the same population as Experiment 1 were
recruited to participate in this study.
Subjects received course credit for their
participation.

Apparatus, The computer hardware
used is the same as that used in
Experiment 1. The programs from
Experiment 1 were modified to meet the
needs of this study. The modifications
are discussed below.

Displavs, The reformatted,
parameter display was taken from
Experiment 1 for use in this study.
programs were modified so that the
program would run in one of four
foreground/background display modes:
White on black, amber on black, green on
black, and black on white.

seven

The

Procedure. The procedure for this
study followed that of Experiment 1,
except that five practice trials were
given, and only 12 trials were used for
collecting data. This reduced the number
of trials from 20 to 17 total. This task
required approximately 50 minutes to
complete, and according to subjects from
experiment 1, was fairly difficult.
Subjects participated in only one of the
display mode conditions.

Results

Mean reaction times for the matching
and dematching tasks were used in a one-
way analysis of variance (ANOVA) to test
for differences between the screen color
conditions. No significant effects were
found for either the matching or
dematching tasks.
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This indicates that color

piscussion

In a relatively difficult task under
normal lighting conditions, screen
foreground/background color did not
affect task performance. Since all color
combinations were of relatively h%gh
contrast, it can be argued that high
contrast between colors is more important
than which colors are used.

Since the number of foreground/
background combinations used @n this
study were limited, some caution must be
included as part of the recommendation
that high contrast is all Fhat_is
important. The color combinations
selected for this study were those that
are typically available on commercial CRT
displays.

Blue has been suggested as a color
to avoid as a character color due to the
human eye's inability to focus precisely
on wave lengths at either end of the
visible spectrum. All of the colors
tested can be focused on with a high
degree of precision by the human eye.
Thus, these results may not be duplicated
with a high contrast blue characters on
black background display.

EXPERIMENT 3

This experiment was designed to
examine the influence of color
highlighting on the matching and
dematching tasks used in Experiments 1
and 2. To date, the results using color
highlighting have been mixed. Many
studies show that color highlighting does
little or nothing to improve performance.
However, a smaller number of studies
suggest that under some conditions color
highlighting can improve performance
(Christ, 1975).

We do know that color highlighting
that does not consistently provide useful
information does not help, and may
actually detract from, user performance
(Christ, 1975; Fisher and Ten, 1989).
use needs to be
consistent if it is to be of any value at

all (Schneiderman, 1987).

A limitation of color highlighting,
and other highlighting research has been
the task difficulty level. Fregquently
research in this area uses tasks that the
subject can already perform with relative
ease. Thus, any potential benefits of
highlighting are masked due to ceiling
effects (Christ, 1977).

In the research reported here, a
sufficiently difficult task was used so
that any positive effects of highlighting
could be detected. In addition, some
subjects received an extra task to



increase their mental workload. This was
done to insure that their mental workload
was sufficiently taxing so that the
benefits of highlighting could be
detected if they exist.

Methods

Subjects. Twenty-four subjects from
the same population used in Experiments 1
and 2 were recruited for the current
study. Subjects received class credit
for their participation.

Apparatus. The computer hardware is
the same as used in Experiments 1 and 2.
The program used in Experiment 2 was
modified to meet the needs of this study.
These modifications are described below.

Displays. The base display for this
research was the display used in
Experiment 2 with white characters on a
black background. The program for this
display was modified to include different
forms of color highlighting to assist the
user in the matching and dematching
tasks. Four highlighting conditions were
used.

The first was a no highlighting
condition. 1In this condition, subjects
had to scan the actual and target values
for all seven parameters after each
screen refresh to determine if all seven
matched. Thus the subject was required
to make seven comparisons before being
able to respond to the matched condition.

The second highlighting condition
was labeled individual highlighting. 1In
this condition, each parameter's label,
actual, and target values were
highlighted in yellow when that parameter
matched it's target value. 1In this
condition, the subject was required to
make seven yes/no decisions before being
able to respond positively to the matched
condition.

The third highlighting condition was
labeled group highlighting. In this
condition, the seven parameter's labels,
gctual and target values were highlighted
in green as a group only when all seven
parameters matched their target wvalues.
This reduced the matching task to a
simple signal detection task. The
subject needed to respond only when the
highlighting occurred.

The fourth highlighting condition
was labeled combined highlighting. This
condition combined individual and group
highlighting.

Procedure. In a fashion similar to
Experiments 1 and 2, subjects received
informed consent and general
instructions. The highlighting
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conditions were presented to subjects in
one of four presentation orders to
balance practice effects. Subjects
presented with five practice trials
to the first highlighting condition to
familiarize them the task and their first
highlighting condition. Prior to each
subsequent highlighting conditions,
subjects received two practice trials to
familiarize them with that highlighting
condition. Subjects completed a block of
ten trials in each highlighting
condition.

were
prior

In addition to the matching and
dematching tasks, half of the subjects
also performed a safety task. For the
safety task subjects were expected to
monitor two additional parameters on the
upper right portion of the display. When
both of these values exceeded predefined
limits the subject was to respond by
pressing the right mouse button. This
condition occurred twice during each
block of ten trials and reaction times
were recorded.

Results

For each of the highlighting
conditions, mean reaction times for the
matching task, the dematching task, and,
where appropriate, the safety task were
calculated for each subject. The
matching and dematching reaction times
were analyzed using independent 2 (number
of tasks) by 4(highlighting conditions)
split plot ANOVAs where the number of
tasks was a between groups factor, and
the highlighting conditions were repeated
across subjects. The reaction time data
for the safety task was analyzed with a
repeated measures ANOVA for highlighting
conditions.

Matching Task. The data for the
matching task showed a significant main
effect for highlighting condition
(F(3,66) = 49.92, p < .0001). The
difficulty main effect and the difficulty
by highlighting condition interaction
were not significant.

Table 2

Mean Reaction Times for Matching Task
by Highlighting Condition

Type of Highlighting Mean RT (SD)

none 2.10 (.675)
individual 1.26 (.284)
group 0.93 (.192)
combined 1.05 (.305)

. 'ngatching Task. There were no
significant effects for the dematching
task.



Safety Task. Highlighting condition
failed to have a significant effect on
response time for the safety task.

Discussion

These results indicate that color
highlighting can provide a display user
with information that improves
performance in some cases. Taken with
the findings for the dematching and
safety tasks, this work suggests that the
way in which highlighting is used is an
important consideration. Highlighting
needs to substantially reduce the
cognitive workload of the user in order
to provide a performance enhancement.
analysis of the matching and dematching
tasks suggest an explanation for why
highlighting works in one case but not
the other. The matching task required
confirmation on each of seven items that
a match has occurred. The dematching
task recquires only that one of the seven
items has ceased to match. We would
expect then that color highlighting would
be much more effective in assisting with
the more complex task due to the
increased mental workload involved in
that task.

An

A further analysis of the task would
suggest that group highlighting should
have provided a performance advantage
over individual highlighting. That these
were not different was somewhat ’
surprising. Two explanations for this

lack of a significant difference between
group and individual highlighting are
readily apparent. First, the reduction
in cognitive workload may not be great
enough to produce a significant
difference between these conditions.
Second, this study may have lacked the
power to reliably detect such a
difference if it did exist. These, and
other possibilities need to be explored.

That there was no difference in the
safety task due to highlighting is not so
easily explained. The design of the
study may have been flawed. The safety
task did not take place very often during
the experiment. It also never took place
at the same time as the matching task.
Thus, subjects may have divided their
attention successfully between the two
tasks. Again, further research is
required.

General Discussion

Taken as a group, these studies
indicate two things. First, that
laboratory research can be used in the
process of display design. While some of
the findings of this research are
relatively intuitive, others are not.
Experiment 2 contradicts those who
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advocate a particular
foreground/background combination for
displays under normal lighting
conditions. Using the most common
foreground/background color combinations
available, no performance differences for
a relatively involved task were detected.

The second important aspect of this
work is that it indicates that there is
still a great deal of need for additional
basic research in the area of CRT display
designs. Experiment 1 demonstrated the
usefulness of organizing displays. It
did not, however, address the issue of an
optimal organization for this or any
other display application. Experiment 3
demonstrated that color highlighting can
assist the user in task performance under
some conditions. This experiment did
not, however, explore the full range of
when such highlighting is or is not
useful.
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Abstract

An effort has been initiated at the AAMRL to investigate the
improvement of the situational awareness of a pilot with re-
spect to his aircraft’s spatial orientation. This study has as an
end product a device to alert a pilot to potentially disorienting
situations. Much like a Ground Collision Avoidance System
{GCAS) is used in fighter aircraft to alert the pilot to "pull up”
when dangerous flight paths are predicted, this device would
warn the pilot to put a higher priority on attention to the
orientation instruments. A Kalman filter has been developed
which estimates the pilot’s perceived position and orientation.
The input to the Kalman filter consists of two classes of data.
The first class of data are the result of passing the aircraft
flight trajectory through a set of models including those repre-
senting visual, vestibular, kinesthetic, and tactile senses. The
second class of data consists of noise parameters (indicating
parameter uncertainty), conflict signals (e.g. vestibular and
kinesthetic signal disagreement), and some nonlinear effects.
The Kalman filter’s perceived estimates are now the sum of
both Class I data (good information) and Class IT data (dis-
torted information). When the estimated perceived position
or orientation is significantly different from the actual position
or orientation, the pilot will be alerted.

Introduction

When Orville Wright piloted his aircraft for the first time, he
flew in a rich sensory environment. He had an excellent field
of view, could sense the vibrations, sounds, smells of flying
and could feel the wind in his face. Any altitude or attitude
changes in the Wright Flyer were sensed immediately, either
visually or through some other sensory modality. The modern
aircraft pilot flies an immensely more sophisticated machine,
but is somewhat at a disadvantage compared to the first avia-
tor. Although the flying machine has become much more agile
and responsive, the modern pilot has lost many of the sensory
inputs of flying. He or she must interpret digital displays, de-
cipher the numbers, and translate the information to its flight
meaning. The modern pilot must operate in a cockpit envi-
ronment where there are fewer discriminatory cues and there
is less time to dwell on them due to the high workload envi-
ronment (Maleolm, 1987). The pilot cannot hear or feel ti-
wind, cannot (at times) see out-the-window visual cues, aunc
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cannot perceive mechanical feedback due to fly-by-wire control
systems. Pilots may become disoriented in such environments,
lose attitude awareness, and unknowingly pilot $35M aircraft
into terrain or water. Spatial disorientation costs the Air Force
8-10 pilots a year and up to $100M a year in lost aircraft and
pilot training dollars (Freeman, 1989).

Air Force Experience

Spatial disorientation (SD) is the number one human factors
problem facing the Tactical Air Force (DeHart, 1986). SD has
been attributed as a contributing factor in 77 Class A mishaps
in the Air Force since 1980 {Freeman, 1990). A Class A mishap
has been defined as damage to the aircraft over $500,000 or
death of the pilot. As of 1990, the value definition has been
increased to $1 million (Lyons, 1990). Figure 1 depicts the
distribution of SD mishaps over years and across aircraft types.

There has been a high incidence of F-16 Class A mishaps
attributed to SD. Of 20 Class A mishaps in the F-16 between
1982 and 1988, 12 were found to have SD as a definite or
suspected contributor to the mishap. (McCarthy, 1988}

SD is a silent killer because in many instances, the pilot is
never aware that he is disoriented. In many of these Class A
mishaps, the pilot has been distracted while flying by a warn-
ing light, a missed communication, or changing radio channels.
While the pilot is distracted, the aircraft can roll at an im-
perceptible rate. When the pilot’s attention is again directed
towards piloting, he or she may discover that the aircraft in
an unexpected attitude. If this occurs in total darkness, or in
weather where there are no out-the-window visual cues, the
pilot can become disoriented. A cross check of the aircraft in-
struments can correct this situation, but if the pilot’s attention
is focused out of the cockpit, such as during formation flying
or while observing bomb damage over a range, he or she may
rely on sensory information to determine spatial orientation.

There are three types of SD recognized by the Air Force In-
spection and Safety Center (Marlowe, 1987). Type I is called
unrecognized SD. This is the “insidious” type wherein the pi-
lot loses attitude awareness unknowingly. In many cases, the
pilot is distracted by a warning light or involved with select-
ing a radio frequency. While the pilot is distracted with this
lower priority task, the aircraft may have rolled or lost altitude.
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Fi.gure 1: SPATIAL DISORIENTATION MISHAPS. The data above show Class A flight
mishaps where the investigating Flight Surgeon found spatial disorientation as a definite
or suspected contributor to the mishap. (Freeman, 1990)

At low altitudes, this can result in collision with the ground.
Type II disorientation is called classic vertigo. The pilot is
disoriented and knows it. He or she realizes there is a sensory
conflict and becomes aware that they must transition atien-
tion to the aircraft instruments. In many instances, the pilot
is able to resolve this conflict and provide adequate guidance
of the aircraft. Type III is very rare and is an incapacitating
SD. In this example, the pilot simply fails to cope with the
aircraft condition, such as a violent spin. During high levels of
angnlar acceleration vestibular inputs can cause the eyes to re-
flexively move uncontrollably, thus making instrument reading
ymy ossible.

There are three human factors problems generally associ:
ated with spatial disorientation (Marlowe, 1987). First, ther
is often a distraction source associated with the SD. The pilot
tends to focus on a low priority task that absorbs his or her
attention, as described in the previous example.

The second human factors problem is that humans are poor
time analyzers. Pilots can become distracted while flying and
ignore the instrument panel for extended periods of time. If
they are not routinely performing the “T cross check” (check-
ing the T-shaped pattern of round dials on the instrument
panel), they can miss important attitude and altitude infor-
mation.

The third human factors problem is the illusion element.
When there are no visual cues present, the human tends to
transition to somatic (tactile) and vestibular cues. These are
not always reliable and frequently may be in conflict with the
instruments.

In a 1987 survey conducted by the Air Force Inspection and
Safety Center (AFISC), questionnaires were sent to Air Force
pilots concerning their experience with spatial disorientation.
From the 1500 returned questionnaires, the pilots indicated
that they could become disoriented just as likely in daytime as
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nighttime. Most respondees noted that when they flew in for-
mation, they expected to become disoriented when flying “on
the wing”. The survey also indicated that Type II disorienta-
tion was most likely to occur when pilot attention was focused
on attitude changing maneuvers. Regarding SD and the F-16
specifically, seventy percent of the F-16 pilots’ responses in-
dicated problems with canopy reflections and human factors
problems with head down CRT's on the instrument panel.

Human factors specialists agree that the F-16 head down
displays are poorly placed and overly complex to use. In ad-
dition, HUD symbology is confusing and difficult to decipher
(Taylor, 1987). These difficulties, combined with the high for-
ward seating of the pilot, all contribute to the high incidence
of SD mishaps in the F-16 fighter aircraft.

Common Challenges

NASA Space Shuttle pilots and future National Aerospace
Plane pilots face similar orientational challenges to those of
high performance Air Force pilots. During ascent and re-entry,
sustained G forces are experienced that can result in illusions
similar to those experienced during takeoff and landing. The
important distinction is the potential for extended exposure to
zero G while in orbit. This extends the range of consideration
to include vestibular and kinesthetic illusions that are unique
to a gravity free environment. In addition, consideration must
be given to the effects of microgravity adaptation and space
motion sickness. Future protective and alarm devices must
account for the unique challenges of long term orbital flight
trajectories.



Vestibular Function

The vestibular system contains mechanoreceptors specialized
to detect changes in both the motion and position of the head.
The receptors are part of the vestibuler apparatus which is
located in the bony channels of the inner ear, one on each
side of the head. The vestibular apparatus is a membranous
sac within a bony tunnel in the temporal bone of the skull.
It forms three semicircular canals and a slight bulge for the
utricle and saccule as shown in Figure 2. (Vander, Sherman,
and Luciano, 1975) o '

The three semicircular canals on each side of the skull are
arranged approximately at right angles to each other. The
actual receptors of the semicircular canals are hair cells which
sit at the ends of the nerve cells. The sensory hairs are closely
ensheathed by a gelatinous mass which blocks the channel of
the canal at that point.

posterior
semicircular
canal

superior
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canai
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semicircular
canat cochlea
A
C
direction of
movement
\/ of head
hair cells in

gelatinous
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semicircular
canal

The receptor system in the semicircular canals works in the
following way. Whenever the head is moved, the bony tunnel
wall, its enclosed membranous semicircular canal, and the at-
tached bodies of the hair cells, of course, turn with it. The fluid
filling the membranous semicircular canal, however, is neither
attached to the skull nor necessarily pulled with it. The fluid
tends to lag behind. As the bodies of the hair cells move with
the skull, the hairs are pulled against the relatively stationary

" column of fluid and are bent. The speed and magnitude of

the movement of the head determine the degree to which the
hairs are bent and thus the hair cell stimulation. As the inertia
is overcome, the hairs slowly return to their resting position.
The hair cells are stimulated only during changes in rate of
motion, i.e. during acceleration of the head. During motion at
a constant speed, stimulation of the hair cells ceases.

—

OO O O VRV VLT O S DO S
resting activity stimulation inhibition
(depolarization) (hyperpotarization)

discharge rate of vestibular nerve

Figure 2: A. The vestibular apparatus. B. Relationship of the two sets of semicircular
canals. C. Diagram of a semicircular canal. D. Relation between position of hairs and

activity in the nerve. (Vander et. al, 1975)
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Figure 3: Response of semicircular canal and sensations of turning during and on recovery
from sustained rotation. The upper graph shows the speed of rotation; the lower graph
shows the deflection of the cupula of a semicircular canal stimulated by angular acceleration

in the plane of the canal, (Benson, 1988)

Whereas the semicircular canals signal the rate of change of
motion of the head, the otolith organs, the utricle and saccule,
contain the receptors which provide information about the po-
sition of the head relative to the direction of gravity. These
organs also have mechanoreceptors sensitive to the movement
of projecting hairs. The hairs of the hair cells protrude into a
gelatinous substance that has calcium carbonate crystals in it,
thus making it more dense than the surrounding fluid. When
the head is tipped, the heavy gelatinous material slides toward
the downward vector and pulls on the hairs. This shearing dis-
placement bends the hair cells and thus stimulates the receptor
cells. As the head is tilted further and further, the relative dis-
placement of hair cell body and hair changes. Some hairs may
be stimulated while others are inhibited depending on the di-
rection in which the resting hair was biased. This creates a
pattern of stimulation across the surface of each organ that
can be interpreted and recognized as an amount of tilt relative
to gravity.

The information from the vestibular apparatus is used pri-
marily for two purposes. The first is to control the muscles
which move the eyes such that the eyes can remain fixed on
an object in spite of the head moving. As the head is turned
to the left, the balance of input from the vestibular apparatus
on each side is altered. Impulses from the vestibular process-
ing centers activate the ocular muscles, which turn the eyes to
the right and inhibit their antagonists. Similar responses can
be seen for nodding of the head. The second important use
of vestibular information is reflex mechanisms for maintaining
upright posture and balance. People with a defective vestibu-
lar apparatus have a reduced stability while trying to stand or
walk with their eyes closed. (Howard, 1986)
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Illusions of the Vestibular System

When a pilot’s head is moving in a straight line at a constant
velocity, the fluid in the semicircular canals remains at rest.
When the head is accelerated (i.e. changes speed or direction)
the fluid in the canals lags behind the movement of the canal
walls due to its non-rigid inertia. After a period of time under
constant angular acceleration, the fluid catches up with the
walls and there is no longer any stimulus or any sensation of
turning. When the head is decelerated, the fluid’s inertia will
carry it past the walls of the canal creating deflection of the
sensing structure in the opposite direction. This causes a sense
of rotation in the opposite direction as shown in Figure 3. Upon
recovery from a prolonged spin, a pilot can feel as if he or she is
spinning in the opposite direction. Attempts to correct for this
will put the airplane into a spiral in the direction of the original
spin. This is called the somatogyral illusion. (Gillingham &
Wolfe, 1986)

Another dangerous illusion of the semicircular canals is
known as the Coriolis phenomenon which is the result of head
movement while the aircraft is in a prolonged turn. A strong
illusion of turning or accelerating in a completely different axis
may be created. The pilot may maneuver the aircraft into
an inappropriate attitude or may even progress to a onset of
dizziness and nausea.

The otolith organs can also give rise to dangerous illu-
sions, especially in the absence of overwhelming visual cues.
An abrupt forward acceleration will lead to the illusion of a
much steeper climb than is actually the case, known as the so-
matogravic illusion. This effect has been particularly noted fol-
lowing takeoff, especially when visual reference is inadequate.



The pilot will input a forward motion of the control stick to
reduce the aircraft’s pitch angle and thereby cause the aircraft
to descend. If altitude is low, such as immediately after takeoff,
this can be a grave mistake.

While pulling a prolonged coordinated turn, pilots often
must look out the cockpit to find another aircraft or survey
a target. By tilting the head while under excess gravity, the
sensation of head movement is exaggerated and the pilot can
sense the aircraft has rolled out of the turn by a few degrees.
Upon correction, the aircraft can become overbanked and lose
altitude. If the pilot continues to look outside the cockpit at
low altitude, the plane can slice downward with fatal speed.

Spatial Disorientation Detector (SDD)

To assist in the study of spatial disorientation, a special tool
is being developed at the AAMRL. It consists of a set of elec-
tronic elements that will monitor the aircraft’s accelerations
and predict the possibility that the accelerations have created
an illusion for the pilot. This tool consists of a Kalman filter
(an unbiased, linear, least squares estimator) that processes the
accelerations through a model of the human vestibular and so-
matic sensory perceptions and estimates the human’s perceived
attitude and position. If this value does not correlate with the
actual attitude and position of the aircraft, the device will ac-
tivate an audio or visual display to warn the pilot that the
potential for spatial disorientation is high. Pilots should then
increase their instrument check concentration and vigilance.

The Kalman filter model of the human sensory perception
is presently built on an analog computer at the AAMRL as de-
picted in Figure 4. The six inputs into the device are the three
linear acceleration vectors and the three angular acceleration
vectors which are the accelerations experienced at a point in
the head center coordinate system. One output of the SDD
describes the true position and orientation of the aircraft. The
second output describes the perceived position and orientation
of the pilot. When the error between these two signals becomes
large, the device will activate the alarm display to the pilot.

The crucial element of the SDD is the internal model that
is used to produce the estimate of perceived orientation. For-
tunately, the Kalman filter lends itself to an expanding design
where simple vestibular models can be used and then, as more
accurate models become available, the system can be enhanced.
Many physiological studies have provided data for these mod-
els, and there is current research in the aerospace community
that will expand the reliability and range of these models. Im-
proved methods are continuously being developed to reduce
the false positives of a Kalman filter. (Repperger, 1976, Borah
et. al., 1088)

As with any avionics warning system, pilots are concerned
about the annoyance of false positive alarms. The consen-
sus among aviators and workload experts is that such a device
would routinely be turned off if there is a significant number of
false alarms. The Kalman filter approach was selected because
of its ability to estimate in spite of signal noise and erroneous
sensor information. This rigorous approach has been demon-
strated to effectively predict hurman perception with a low oc-
currence of false positives or false negatives (Young, Curry, &
Albery, 1976, Borah, Albery, & Fiore, 1976, Borah, Young, &
Curry, 1988). The SDD would prove to be a valuable lifesaver.
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The Bottom Line
From Flying Safety, IFC Approach, April 1989:

“Thirty five seconds later, lead called as he passed
the IP starting his bomb run. Thirty two second af-
ter that, the wingman echoed the call commencing
his bomb run. Seventeen seconds later, the wing-
man impacted the ground in a right 35 to 40 degree
bank, with a 3 degree descent, and between 500 and
540 knots.”...

“Overwhelming evidence indicates that the crew
fell victim to Type I, or unrecognized spatial dis-
orientation, which resulted in this mishap. Relaxed
and unaware of their situation, the pilot was intent
on keeping the leader in sight during the spacing
maneuver, while the Weapons System Officer was
preparing for the upcoming bomb run.”

“ Having flown a completely successful first sor-
tie and almost 20 minutes comfortable at “lead’s
altitude” when directed to take spacing, the crew
expected nothing to change except the distance be-
tween aircraft. They did not have any idea the
flight environment would be so conducive to illu-
sions, spatial disorientation, or insidious weather
conditions.”

Although the predictive ability of the Spatial Disorienta-
tion Detector may not be perfect, neither is the perceptive
power of the human. In the case above, the SDD would most
likely have processed the positive acceleration occurring dur-
ing the bomb run to generate a significant error between its
estimate of pilot perception (level coordinated turn) and the
actual aircraft attitude (descending turn) and thus alerted the
pilot.
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ABSTRACT

The growth of computational power has fueled attempts to "automate” more of the human role in complex problem
solving domains, especially those where system faults have high consequences and where periods of high workload
may saturate the performance capacity of human operators. Examples of these domains include flightdecks, space
stations, air traffic control, nuclear power operation, ground satellite control rooms, and surgical operating rooms.
Automation efforts may have unanticipated effects on human performance, particularly if they increase the workload
at peak workload times or change the practitioners' strategies for coping with workload. Smooth and effective
changes in automation requires detailed understanding of the cognitive tasks confronting the user -- what has been
called user centered automation!, We have observed the introduction of a new computerized technology in a group
of hospital o%erating rooms used for heart surgery. The study has revealed how automation, especially clumsy
automation®3, effects practitioner work patterns and suggests that clumsy automation constrains users in specific and
significant ways. Users tailor both the new system and their tasks in order to accommodate the needs of process and
production. The study of this tailoring may prove a powerful tool for exposing previously hidden patterns of user
data processing, integration, and decision making which may, in tum, be useful in the design of more effective
human-machine systems.

INTRODUCTION (e.g. tracking the automated device state, separating
Increasingly sophisticated computers and a sense display elements, evaluating the automated device's
that human operators need assistance in performing performance). These demands constitute workload
monitoring and control have prompted the for the operator.

development of "automatic” devices, especially in
high consequence, semantically rich domains. The
purpose of automation in these domains is to release
the operator from repetitive control tasks in order to
reduce operator workload or to provide the operator
more precise or more extensive information about
the system under control. These domains already
exist and operators already accomplish tasks using
skills, rules, and knowledge about the domain and
current technology. New automated devices
represent a change from one way of doing things to

Virtually all automated devices are supposed to
offset the operator workload increment with some
payoff. The devices provide either better control
(e.g. automated drip rate controllers instead of hand
operated tubing clamps for intravenous solutions),
economic value (e.g. flight management systems for
commercial aircraft) or better information for
control (e.g. nuclear power plant safety parameter
displays) or later review (e.g. "automated”
anesthesia records). Sometimes these paybacks
benefit the operators by reducing their workload

another. (the automated drip rate controller) while others
Aiding operators, especially highly skilled operators benefit either the larger organization (automated
in complex, high risk process control worlds, is anesthesia records, flight management systems) or
itself a complex problem. Operators are facile and society as a whole (safety parameter displays in
sophisticated information users and subtle nuclear plants). In domains where operator
controllers, whose performance is highly optimized performance is critical to safe system function,

to achieve specific goals or system states. Often auromated devices are generally supposed to reduce
overlooked is the fact that most automated devices net work, that is, the total operator work with the
make certain demands on operators (e.g. setup, device is less than without it. But net work
device state identification, configuration control, {workload integrated over time) is only a poor
operating sequences), including cognitive demands measure of operator performance. With some
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automated devices the workload increment occurs
during the peak workload period and the payback
occurs during the workload trough, a condition
Wiener2-3 describes as clumsy automation.

We have tracked the introduction of a system which
has some characteristics of clumsy automation in
the domain of cardiac anesthesiology. The study
focused on the introduction of a new automated
monitoring system, and its immediate and longer
term effect on users. The opportunity to see the
users adaptations as they occurred provided insight
into the user task complexity and information
management strategies. These, in tum, point
towards specific consequences of certain
approaches to automation in this and other high
consequence domains.

THE SYSTEM AND THE STUDY

The new system provides monitoring and
information management for cardiac surgery. It
replaces a multiple discrete monitors with a single
device, designed to provide a single source of
information about the patient's physiologic
condition. In order to accommodate the volume of
information displayed, the device automnates data
presentation and organization. It also computes
hemodynamic values from collections of data and
keeps track of historical "trends”. The device
configuration is flexible, to permit users control
over the order in which items are displayed on the
screen. Virtually all major manufacturers of
medical monitoring equipment have developed such
devices, which represent the current state of the art
in medical monitoring technology. The new device
replaces older discrete technology with which the
operators were quite familiar. Similar devices may
be incorporated into the space station.

We were able to observe the introduction of the
device beginning on the first day of use. The
devices were purchased specifically for cardiac
surgery purposes and are installed in rooms
dedicated to thoracic surgery. Coronary artery
bypass grafting, the most common cardiac surgery,
was observed by a physician observer and the
activities of the anesthesiologists recorded. These
raw records were coded for protocol analysis and
incidents evaluated, paying particular attention to
the way the monitoring system was used, who used
it, and what the context of the use was. At least two
cases per week were recorded, and the observations
continued for several months.

RESULTS

The new system replaces discrete monitors using
fixed controls and displays with a menu oriented
device using a color display showing multiple
windows. Menus are displayed one line at a time at
the bottom of the screen, and the device automates
the recognition of various modules and the
management of display formats.
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Setup

Device setup is more complicated than with
predecessor equipment; operators traverse at least
seven major menu branches and enter between
twenty and sixty keypresses. Setup occurs as the
patient enters the operating room, a time of peak
activity for anesthesiologists. For this reason,
circulation technologists setup the monitoring
equipment and perform configuration. We
observed system crashes in mid-case, requiring
complete setup during critical periods.
Anesthesiologists rely on easily setup backup
monitors (ECG, oxygen saturation, end-tidal CO,)
during the initial instrumentation period and also
during the case. As time progressed,
anesthesiologist users began to connect some new
device sensors early (e.g. pulse oximeter) but the
reliance on the old ECG was maintained throughout
our period of observation.

Data Presentation

Data presented in the default system configuration
is highly processed. Default waveform displays, the
traditional form of data representation for
anesthesiologists, are segregated and unscaled. The
presentation segregates each data channel and
minimizes the display area occupied by each
waveform, maximizing the number of waveforms
displayed and eliminating waveform overlap. This
data packing changes the characteristics of
displayed data and reduces information available
from the waveform. Users universally and
immediately call up a blood pressure graph window
for display of blood pressure data and work to
maintain it throughout each case.

Another processed data form is the digital
representation of waveform characteristics (systolic,
diastolic, and mean pressures). Although these
representations are highly precise (three significant
digits) users relied heavily on waveform
presentations. The digital values are averaged,
rapid changes in blood pressure appear immediately
in the waveform but lag twenty to thirty seconds
behind in the digital representations. These rapid
pressure fluctuations occur relatively frequently
during cardiac procedures and anesthesiologist
users rely on waveforms for detecting them.

Determining cardiac output requires calling up a
special window. The system automatically removes
the blood pressure graph window and replaces it
with the segregated traces when the cardiac output
window is on the screen. Cognitive task analysis
shows that determination of blood pressure and
cardiac output occur in parallel during critical
periods. Because of the system design,
anesthesiologists must manage the display to
interleave cardiac output windows with the desired
scaled pressure representations. This information
management task is new; the discrete monitor
predecessors by necessity supported parallel display
since cardiac output and blood pressure monitors



were separate devices. Early in the study the
cardiac output window was left in place on the
screen for long periods after cardiac output related
activities were complete. Once they were aware of
the tradeoffs between windows, anesthesiologist
users adapted to this new task of managing serial
displays.

In addition, the determination of cardiac output in
the new system takes considerably longer than it did
in the old one. Multiple cardiac output readings
could be obtained in a short period with the old
system while the new one has a very slow
measurement cycle time.

Screen Organization

The order and color of traces on the screen is
flexible. Users may configure trace order in an
elaborate menu which specifies relative priority.
Fortuitously, when three blood pressures and
cardiac output are connected to the system,
arranged together, and the pressures placed on the
graph window, the blood pressure graph window
overlaps exactly these four areas on screen. This
means that the blood pressure traces and other
traces (end-tidal CO,, oxygen saturation) are visible
when the blood pressure graph window is on the
screen. However, when only a single pressure is
monitored (for some lung surgery cases), the
priority management system places the other traces
immediately below the single blood pressure trace.
The blood pressure graph window then hides these
traces from view. Anesthesiologist and technician
users fried various methods of arranging traces so
that none would be hidden by the blood pressure
graph window. These included complete screen
reorganization and sham modules.

In screen reorganization, the other traces were
assigned higher priority than the blood pressure
traces so they appeared above the pressure traces.
When the scaled pressure window is on screen it's
top edge begins at the level of the highest priority
pressure trace shown on the scale; gince the other
traces are literally "above™ the pressure traces, the
scale fills the lower portion of the screen and the
other traces are visible. Unfortunately, this scheme
destroys the spatial dedication of traces that
anesthesiologist and surgeon users expect and
interposes unrelated trace groups between two
related traces (blood pressure and
electrocardiogram). For these reasons, the screen
reorganization approach was abandoned.

A clever approach was the use of sham modules.
Inserting pressure transducers reserves space for
them on the screen, even if they are not connected
to the patient. By placing modules in the system,
technician users were able to "fool” the system into
the desired configuration.

These strategies represent user efforts to tailor the
device into a static, spatially dedicated device with
fixed data display. Users expend substantial effort
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to preserve the fixed relationship between data
items on the display screen.

DISCUSSION

Operators in high-risk process control settings can
and do adapt to technologic change. We observed
two broad classes of adaptation, system tailoring
and task tailoring.

System tailoring is the configuration or
modification of the new device and related devices
to support user cognitive tasks. Most initial
tailoring involves trying to make the new system
look as much like the old as possible, since this is
the easiest way to transfer knowledge about "how
things work" from the old system to the new and
because the users possess highly refined
information processing strategies which depend on
features of the old system. The use of redundant
monitors is not simply a "backup” technique, but
also represents a modification of the new system to
maintain characteristics of the old by literally
preserving components of the old system in the
new. As time goes on users appear to develop
confidence in the new components and to gradually
get weaned away from the old. System tailoring
may also involves exploiting system features in
orthodox and unorthodox ways. The orthodox
system tailoring is that supported by the device
designers, e.g. the trace priority assignment.
Unorthodox system tailoring involves approaches
not anticipated by designers, e.g. sham modules
insertion to preserve trace order. System tailoring
actions may go on at any time but are usually
heavily weighted to periods of setup.

Task tailoring is the modification or alteration of
user activities to accommodate new devices. The
goal of task tailoring is to maintain critical
functions necessary to achieve the goals of
operation. When system tailoring is limited or
unsuccessful, users are forced to tailor their tasks.
In the most simple form, they add new tasks to their
collection. Users learn how to manipulate the serial
data display of cardiac output and blood pressure
graph windows in order to preserve the flow of high
reliability data and they add this device tending task
to their activities. These data management tasks
occur during critical periods (e.g. coming off
bypass) where user cognitive workload is high, a
hallmark of clumsy automation. There may also be
a more complex task tailoring involving the way
users gather and manipulate data; with slower
cardiac output determinations and the elimination of
scaled pressure waveforms during cardiac output
determination, users have an incentive to measure
cardiac output less frequently and to develop
operating strategies which make less use of output.

System tailoring can usually be developed and
refined over a short learning period to achieve a
locally optimal arrangement. With devices which
can save configuration information, the costs of
system tailoring are borne once and, so long as the



technical cadre with configuration know how is
maintained, can be accomplished with little effort.
As time passes, the tailoring gives way to a new
routine system. Encoding this collection of details
is usually described as ‘standard operating
procedures’ or 'the way we've always done things’
and comprises a ritual, a collection of actions
compiled and performed together but separate from
the motivations and purposes which gave rise to
them. System tailoring is not limited to automated
devices. Anesthesiologists do a great deal of
system tailoring to reduce workload, for example
drawing up drugs in syringes well before the
anesthetic begins. The point is that automated
devices constrain system tailoring in specific and
complex ways.

Task tailoring, on the other hand, is a continuing
operator demand. Added tasks do not, at least in
our system, go away, although users become
progressively more efficient at accomplishing them.
Tailored tasks become permanent fixtures of the
work environment. Significantly, the task tailoring
we observed was prominent during critical hi-tempo
periods. Periods of activity and criticality coincide
in this domain, as they do in others, and this tends
to concentrate user tasks and task tailoring at these
junctions. This may be an intrinsic feature of high
consequence, high complexity domains: new
technology impacts most directly on crucial periods
with high workload which in tum provides the
motivation for system and task tailoring by users.

Introducing automation into high reliability
environments impacts the work of operators in
specific ways, ways related to the tasks of the
operators rather than to the technology per se.
Operators demonstrate sophisticated approaches to
tailoring their systems and their tasks for routine
operations. They work to accommodate technology
smoothly. Paradoxically, the operators’ work to
tailor the technology may make it appear smooth,
hiding the clumsy automation from designers.

Introducing new technology gives rise to system
and task tailoring by users. But tailoring, once
complete, may be invisible. System tailoring
becomes part of 'standard operating procedures’.
The tailored and untailored tasks may become
indistinguishable as operation of the devices
becomes skillful and interwoven with other tasks.
Observing task tailoring as it occurs can bring into
sharp focus user information processing and
cognitive strategies. It is this information which is
essential to the designers wishing to avoid clumsy
automation.
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Research and experience with artificial
intelligence (AI) systems has shown that the
interaction of the intelligent system with human
users and problem solvers is a critical element in
the success and effectiveness of Al system
development for real world applications®.
Performance breakdowns can occur, for example,
in situations where the intelligent system interface
does not support the problem solving approach of
the human operator2. Thus, there is a need to
integrate human and machine problem solvers into
an effective cooperative system3. This requires
serious consideration of the human interface to Al
systems during the design of intelligent systems.

A body of knowledge and guidance about how to
integrate intelligent computer power and human
practitioners has recently begun to accumulate.
Empirical studies of human-human cooperative
problem solving*s, empirical studies of
human-intelligent computer cooperation$, new
research concepts for intelligent support systems’8
have contributed to the growth of this body of
knowledge. In addition, systems builders and
users, who have realize how poor human-
intelligent systemn interfaces can retard cooperative
problem solving, are experimenting with new
ideas for more sophisticated interfaces to Al
systems®.

More effective Al systems can be developed if we
collect, organize, and meaningfully deliver this
knowledge to Al system designers!'®. However,
there are several obstacles to meeting this
objective. First, the state of research on effective
human-intelligent computer interaction and
cooperation is diffuse. There is a need to gather
together, integrate, and assess the research results.
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Second, there are cases of intelligent system
development where designers and users are trying
out new ideas about the human interface to Al
systems, especially within NASA. Examining
specific cases of both successful and unsuccessful
Al system development with respect to human
interface capabilities is a critical activity!l.
Collecting and assessing this experience will help
expand and clarify the research base on what is
eftective human-intelligent computer cooperation.

Once integrated, this knowledge base will prove 10
be immature. There are gaps, ambiguities, and
contradictions in the literature and practical
experience. Thus, third, there is a need to conduct
empirical studies that examine specific concepts
about human-intelligent system cooperation
related to actual cases of Al system development.

Fourth, one of the fundamental points of research
on human-machine cooperative problem solving is
that the concepts for how the machine will assist
the person can strongly constrain the architecture
and design of the machine itself2. In the typical
design paradigm, one first develops (or
independently develops) an autonomous machine
problem solver and, only then, one thinks about
how the person will use the machine to achieve
better performance. Generally, the result has been
that the design of the machine has not made
allowances for features that turn out to be critical
for people to make effective use of the system'’s
capabilitiesé. It is critical, at the design concept
stage, to consider how the person will use the
machine to achieve better performance so that the
inter-constraints between human interface design
requirements and intelligent system design
requirements can both be satisfied.

This means that a dialogue is needed between
researchers in Al (whose research question is how



to build better performing machines) and
researchers in human-intelligent computer
interaction (whose research question is how to use
machine power to assist human problem solving).
Understanding effective human-intelligent
computer interaction is incomplete if it cannot be
achieved through practical Al techniques and tools
that are available for the development of real
world systems which include Al. Consequently,
there is a need to consider the interaction between
concepts for more effective human-intelligent
computer interaction, their implications about
aspects of Al systems, and current techniques for
building real world Al systems.

Fifth, research results alone do not constitute good
advice for designers. The problem of preparing
effective guidelines for designers and delivering
that guidance in a form that can be used by
designers (aiding design) is a substantive problem
regardless of the topic of the guidance. One has
only to look at existing guideline documents in the
area of human-computer interaction to find many
examples that have proven less than
satisfactory!2.13. Thus, there is the need to
examine how Al systems are designed'® in order
to deliver the right kind of knowledge in a form
that designers can really use.

We are beginning a research effort to collect and
integrate existing research findings about how to
combine computer power and people, including
problems and pitfalls as well as desirable features.
The goal of this research project is to develop
guidance for the design of human interfaces with
intelligent systems. Fault management tasks in
NASA domains are the focus of the investigation.
Research is being conducted to support the
development of guidance for designers that will
enable them to take human interface
considerations into account during the creation of
intelligent systems.

The research will examine previous results, NASA
cases of Al system development, and conduct new
studies of human-intelligent system cooperation
focusing on issues such as: (1) how to achieve
effective advice, (2) how to create a shared
representation of the problem domain, (3) how to
provide support for problem solving in situations
requiring adaptation to unanticipated events, (4)
what are appropriate levels of supervisory control,
(5) the need for reasoning strategies consistent
with those of the human operator and (6) what
kinds and forms of explanation will support
human-intelligent system cooperation.

The body of results on what interface and Al
system capabilities support effective human-Al
system cooperation in fault management tasks will
be used to develop guidance for designers. The
goal is to help designers take human interface
considerations into account during the creation of
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intelligent systems. The results will provide
advice about what kinds of information produced
by an intelligent system should be made available
to its human partmers and advice about how to
organize and display the intelligent system’s
situation assessment and response plan as well as
information on the underlying process itself.
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ABSTRACT

Previcwing human capabilities in a computer-
aided cngincering mode has assisted greatly in
planning well-designed systems without the cost
and time involved in mockups and engineering
models. To date, the computer models have focused
on such variables as field of view, accessibility and
fit, and rcach envelopes. Program outputs have
matured from simple static pictures to animations
viewable from any eyepoint. However, while
kinematics modcls are available, there arc as yetl
few biomcchanical models available for estimating
strength and motion patterns. Those, such as Crew
Chicf, that are available arc based on strength
measurcments taken in specific positions.

Johnson Space Center is pursuing a biomechanical
model which will use strength data collected on
single joints at two or three velocities to attempt to
predict compound motions of several joints
simultancously and the resulting force at the end
effector.  Two lines of research are coming
together to produce this result,  Onc is an attempt
o usc optimal control theory to predict joimi
motion in complex motions, and another is the
devclopment of graphical representation of
human capabilitics.  This presentation describes
the progress to date in this rescarch.

COMPUTER MODELING OF HUMAN MOTION

Computer aided design (CAD) techniques are now
well established, and have become the norm in
many aspects of acrospace engineering. They
ecnable anmalytical studies, such as finite element
analysis, to be performed to measure performance
characteristics of the aircraft or spacecraft long
before a physical model is built. However, becausc
of the complexity of human performance, CAD
systems for human factors are mnot in widespread
use. The purpose of such a program would be to
analyze thc performance capability of a crew
member given a particular cnvironment and task.
This rcquires the design capabilitics to describe
the cnvironment’s geometry and to describe the
task’s requircments, which may involve motion
and strength. This in turn requires exiensive data
on human physical performance which can be
generalized to many different physical configura-
tions. PLAID is developing into such a program.
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Begun at Johnson Space Center in 1977, it started
oul to model only the geometry of the environ-
ment. Thc physical appearance of a human body
was generated, and the tool took on a new meaning
as fit, access, and rcach could be checked. Specifi-
cation of ficlds of view soon followed. This allowed
PLAID to be used to predict what the Space Shuttle
cameras or crew could see from a given point. An
illustration of this usc is shown in Figures la and
Ib. Figure la was developed well before the
mission, to show the planners where the EVA
astronaut would stand while restraining a satellite
manually, and what the IVA crewmcmber would be
able to see from the window. Figure 1b is the view
actually captured by the camera from the window.
Howecver, at this stage positioning of the human
body was a slow, difficult process as each joint
anglec had to be specified in degrees.

REACH

The next step in enhancing PLAID's usefulness
was to dcvelop a way of positioning bodies by
computcr simulation, rather than by the
engincer's inputs of joint angles. The University
of Pennsylvania was contracted to perform this
work. Korein (1985) developed an inverse
kincmatic solution for multijointed bodies. This
cnablcd the engineer to position one "root” of the
body (fect in foot restraint, or waist or hips fixed)
in a specificd location, and then specify what
object or point in the workspace was to be touched
by othcer parts of the body (such as place the right
hand on a hand controller, and the left on a
specific switch). The algorithm then attempted to
find a position which would allow this configura-
tion to be achieved. If it was impossible to achieve,
duc to shortness of arms or position of feet, a
message would be presented giving the miss
distancc.  This fcedback enabled the engineer 1o
draw conclusions about the suitability of the
proposed body position and workspace.While this
reach algorithm is extremely useful for body
position, it doecs not cnable an analyst to check an
entirc workspace for accessibility without
specifying a large number of "reach to" points.
This nced has been rccently met by a kinematic
rcach algorithm. The wuser specifies which joints
lo exercisc. The algorithm then accesses an
anthropometry data base giving joint angle limits,
positions the proximal joint at its extreme limit,



and steps the distal joint through its range of
motion in a number of small steps, generating a
contour. The proximal joint is moved an
increment, and the distal joint swung through its
range of motion again. This process continues
until the proximal joint reaches its other extreme
limit. A thrce dimensional set of colorcd contours
is thus generated which can be compared to the
workstation and conclusions can be drawn. An
example of this is shown in Figures 2a and 2b.

In Figurc 2a, a fifth percentile female is placed at
the proposed foot restraint position intended to
provide an eyepoint 20" from the workstation. In
this position, her reach envelope falls short of the
workstation. Figure 2b shows the same body and
rcach envclope positioned with a 16" eyepoint, in
which case the woman can reach the worksiation.

ANIMATION

Human performance is not static. To do useful
work, the crewmembers must move their hands at
least, and frequently their bodies, their tools, and
their equipment. While this can be captured in a
sequence of static pictures, animations are much
preferred because they show all the intecrmediate
points bctween the static views. Originally, PLAID
animations were crcated by having the analyst
enter every single step individually. This was
highly labor intensive, and prohibitive in cost for
any but the most essential conditions. However, an
animation capability was created that allowed the
user 1o input only "key frames". (A key frame is
one where the velocity or direction of motion
changes.) The software then smoothly interpo-
lates 20 or 30 intermediate frame scenes, showing
the continuous movement. This has many
applications for both the Shuttle program and for
the Space Station Freedom (SSF) program. For
cxample, in determining where interior hand-
holds were nceded, an animation was created
showing the process of moving an experiment
rack from the logistics module to the laboratory
module.  Clearances, collisions, and points of
change could be identified from the videcotape.
However, while the tape showed the locations for
the handholds, it could not give information as to
the loads the handholds would have to bear. Thus a
project to model strength was begun.

BIOMECHANICS MODELING
Upper Torso Strength

Using a Loredan, Inc. LIDO dynamomecter (Fig.3),
single joint strength data was collected for the
shoulder, elbow, and wrist of onc individual. The
data was collected in the form of (velocity,
position, strength) triplets. That is, the dynamom-
cler was sct to a sclected speed, ranging from 30
deg/sec to 240 deg/sec in 30 deg/sec increments.
For that spced, the subject moved his joint through
its entire range of motion for the specified axis
(abduction/adduction, flexion/extension). Data
was collected every five degrees and a polynomial
regression equation fit 1o the data for that
velocity. The velocity was changed, and the
procedure repeated.  This resulted in a set of
equations giving torque in foot-pounds as a
function of velocity and joint angle, for each joint
rotation direction.
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Figurc 4 shows shoulder flexion torque over a
range of ‘angles, paramcterized by velocity.
Figurc 5 shows the data points and the equation fit
for clbow flexion/extension over the range of
motion at 90 deg/sec.These regression equations
were stored in tables in PLAID. To predict total
strength exerted in a given position or during a
given motion, the body configuration for the
desircd position (or sequence of positions) is
calculated from the inverse kinematics algorithm.
For example, the task used so far in testing is
ratchet wrench push/pull. This task is assumed to
keep the body fixed, and allow movement only of
the arm. (As more strength data is obtained, the
tasks can be made more complex.) A starting
position or the wrench is established, and the
position of the body is set. The angles of the arm
joints needed to reach the wrench handle are then
calculated. A speed of motion, indicative of the
resistance of the bolt, is specified. The tables are
scarched, and the strength for each joint, for the
given velocity, at the calculated angle, is

retricved.  The direction of the force vector is
calculated from the cross producis of the segments,
giving a normal to the axis of rotation in the plane
of rotation. Once all these force vectors are
obtaincd, they are summed vectorially to calculate
the resultant cnd cffector force.  Currently the
program displays the force for each joint and the
resultant end effector force, as illustrated in
Figure ¢, The ratchet wrench model rotates
accordingly for an angular increment. This
requircs a new configuration of the body, and the
calculation is repeated for this new position. A
continuous contour line may be generated which
shows the end effector force over the entire range
of motion by color coding. The model will be
validated this summer. A ratchet wrench
attachment for a dynamometer has been obtained,
and an Ariel Motion Digitizing System will be used
to mecasure the actual joint angles at each point in
the pushing and pulling of the wrench. This will
provide checks on both the validity of the
positioning algorithms and of the force
calculations. When this simple model is validated,
more complex motions will be investigated. The
significance of this model is that it will permit
strengths to bc calculated from basic data (single
joint rotations) rather than requiring that data be
collected for each particular motion, as is donc in
Crew Chicf (Easterly, 1989). A synthesis of the
reach envelope generating algorithm and the
force calculations has been achieved. The analyst
can now gencrate reach contours which are color
coded to show the amount of force available at any
point within the reach envelope.

Effccts of Gravity-Loading on Vision

Human vision is another important parameter
being investigated in conjunction with human
reach and strength. Empirical data relating
maximum vision envelopes vs  gravity loading
have becn collected on several subjects by L.
Schafer and E. Saecnz.  This data will be tabularized
in a computer readable form for use in man-
modeling.  Preliminary software design

has begun on a vision model which will utilize this
vision data to simulate a period of Space Shutile
launch where gravity loading is a major factor.
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This model will be able to dynamically display the
vision cone of a particular individual as a function
of gravity force and project that cone onto a
workstation to determine if all the appropriate
gauges/ displays can be seen.

APPLICATIONS

The biomechanical models, combined with
geometric and dynamic modeling of the
environment, have two major applications.
first is in equipment design. Frequently the
strength or force of a crewmember is a key
parameter in design specifications. For example, a
manually operated trash compactor has recently
been built for the Shuttle for extended duration
(10-14 days) operations. This is operated by a crew
member exernting force on the handle to squeeze
the trash, and is seen as an exercise device as well
as a trash compactor. The two key specifications
necded were: how much force can a relatively
weak crewmember exert, so the right amount of
mechanical amplification can be built in; and how
much force could a very strong crewmember
exert, so the machine could be built to withstand
those forces. When the biomechanical model is
completed, questions such as these can be
answered during the design phase with a
simulation, rather than requiring extensive
testing in the laboratory. In addition, the size of
the equipment can be compared visually to the
available storage space, and the location of foot
restraints relative to the ecquipment can be
determined.  Other equipment design applications
include dectermining the specifications for
exercise equipment, determining the available
strength for opening or closing a hatch or door,
and determining the rate at which a given mass
could be moved. The second application for a
strength model is in mission planning.
Particularly during extravehicular activities
(EVA), crewmembers need to handle large masses
such as satellites or structural clements. A
complete dynamics model would enable the
mission planners to view the scenes as they would
be during actual operations, by simulating the
forces which can be exerted and the resulting
accelerations of the large mass.

FUTURE PLANS

Currently the only motion modeled is a rotational
motion of a wrench using only the arm, not the
entire body. One step in developing a useful model
is to allow the software alrcady available for
animating motion to be used to define any motion
and then permit calculation of the strength
available, taking the entire body into account.
This is a major step to accomplish, because of the
many degrees of freedom in the entire human
body. Rescarch at the University of

Pennsylvania has investigated the use of "comfort
modcls” for predicting path trajectory. Badler,
Lee, Phillips, and Otani (1989) have discussed in
some detail the effects that varying weights have
on trajectories for moving an object from one
point to another. Using the Ariel tracking system,
this hypotheses can be tested in the lab. In order
to consider the entire body in strength analysis,
empirical strength data must be collected. The
Anthropometry and Biomechanics Lab at Johnson
Space Center is beginning work on this project. To

The
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date, shoulder and arm strength measurements
have been collected on a number of subjects. This
data must be made available through the
program's data base so that 5th percentile, or
median, or 95th percentile strengths can be
examined. This will involve another layer of data
in the data base. The strength measurements for
the entire body, especially torso and legs, are
needed.  Collecting these strength data for the
individual joints at a number of angular positions
and angular velocities will be an ongoing project
for some time. However, efforts have been made to
automate data entry and reduction, which will
result in easier data collection. Finally, the most
important step is to validate the strength data. An
assembly for collecting forces and angles for a
ratchet wrench operation is available, and will be
used to validate the compound motion of the amm.
Movement of the entire body will be validated
after the original data is collected, cquations fit,
and predictions of strength made.
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ABSTRACT

An experiment was performed in the Space Station Proximity
Operations Simulator at the NASA Ames Research Center.
Five test subjects were instructed to perform twenty simulated
remote docking maneuvers of an orbital maneuvering vehicle
(OMV) to the space station in which they were located. The
OMV started from an initial range of 304.8 m (1000 ft) on the
space station's negative velocity vector (-V-bar). Anomalous
out-of-plane thruster firings of various magnitudes (simulating
a faulty thruster) occurred at one of five ranges from the target.
Initial velocity, range of anomalous burn, and magnitude of
anomalous burn were the factors varied. In addition to
whether the trial was successful, time and fuel to return to a
nominal trajectory, total mission duration, total fuel
consumption (Av), and time histories of commanded burns
were recorded.  Analyses of the results added support to the
hypothesis that slow approach velocities are not inherently
safer than their more rapid counterparts. Naive subjects were
capable of docking successfully at velocities faster than those
prescribed by the “0.1% Rule” even when a simulated faulty
thruster disturbed the nominal trajectory. Little to no
justification for slow approach velocities remains from a
human factors standpoint.

INTRODUCTION

The docking of two spacecraft is a complicated task whose
failure conld result in the loss of mission, vehicle, or crew.
Spacecraft have typically been flown at small relative velocities
in rendezvous and docking maneuvers both to increase safety
margins in the event of an incorrect burn, and to minimize
plume impingement and fuel consumption. Current astronauts
are instructed in the use of a “0.1% rule” which suggests that
the approach velocity be no greater than 0.1% of the range to
the target. (Ata range of 1000 ft, the approach velocity would
be 1 ft/s. After 100 s, the vehicle would arrive at a range of

900 ft and the rate would be reduced to 0.9 ft/s)l By
decreasing the relative velocity with which one vehicle
approaches another, demands upon reaction time are relaxed
and workload is simultaneously (and proportionately) reduced
as the number of required inputs per unit time decreases.
However, surveys of aircraft and workload literature reveal
that too low a workload may be just as dangerous as too high a
workload.2:3 Small approach velocities produce long mission
durations where inactivity may lead to reduced attention, or
sustained vigilance may lead to excessive fatigue. Long
mission durations also may prove to be inordinately expensive
in an operational space station era in terms of the time the crew
are using to dock and not performing other duties.
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(However, fuel costs may obscure any such advantage for
nominal missions.) Previous research revealed no statistically
significant increase in failure rate with increased velocity;
failure rate was more dependent upon a subject’s risk profile

tshan the velocity at which his/her docking maneuver began“"

In general, very litlle human factors research in the area of
piloting space maneuvers has been documented in the United
States space program.4‘ 16 Analytical engineering tests have
been used to generate rules of thumb and verify strategies from
a systems point of view without regard to man-in-the-loop
considerdtions, This study is part of a series seeking to rectify
that situation and is directed toward developing a unified
theory and comprehensive database for human performance
aspects of spacecraft control.

Current and future work is concerned with determining the
feasibility of expanding the operational performance envelope
to include more rapid dockings at higher average velocities
without increasing the probability of failure. The Soviets have
also expressed a desire for manual control to “operate in [a]
wider range.” 17 Quicker dockin gs are important not only for
increasing productivity but also for improving the likelihood of
a successful rescue of a stranded crewperson or spacecraft low
on consumables. In nominal missions, saving time at the
expense of fuel may not be cost effective. However,
contingencies may arise when the cost of time is extreme as in
a trescue operation. One goal of this line of research is
discovering the fastest safe docking times should rapid
docking be required.

METHODS AND APPARATUS

The Space Station Proximity Operations Simulator at NASA
Ames Research Center is a real-time flight simulator with
which researchers have been studying docking maneuvers and
other proximity operations for several years. It consists of
three windows on which computer graphics images of stars
and orbiting vehicles are presented, a 3-degree-of-freedom
(DOF) hand controller, and other assorted controls and
displays.7’ 14 The windows face the minus velocity vector (-
V-bar) of a space station in a 270 nm orbit about the Earth.
From this perspective, X is positive through the operator’s
back, Y is positive to the left, and Z is positive down.

Five test subjects (3 male, 2 female) each performed 20
simulated docking maneuvers commencing from 304.8 m
(1000 ft) on the -V-bar. The trials began at one of five initial
velocities: 0.3, 0.9, 1.9, 2.9, 3.6 m/s. A faulty thruster was



simulated during each run by an anomalous out-of-plane burn
of a preestablished magnitude at a preestablished range. The
magnitude of the anomaly was one of five Avs (0.0, 0.2, 0.5,
0.8, 1.0 m/s) and occurred at one of five ranges (20, 45, 85,
125, 150 m) from the target. A response surface methodology
arrangement was used to reduce the total number of initial
conditions from 5 x 5 x 5 = 125 t0 20.18 The subjects were
cautioned to be wary of an unexpected incident but until the
first trial containing an anomaly, did not know what form the
anomaly would take. Each subject started from the following
20 initial conditions, but in different random orders.

Initial Velocity
(m/s)

Range
(m)

85
45
85
20
85
125
45
45
85
45

Magnitude
(m/s)
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A successful docking was operationally defined as satisfying
the following range and rate conditions upon contact with the
space station. At a range of 2 m from the station’s center of
mass axial velocity must be no greater than 0.15 nmy/s, up/down
and right/left range no greater than 0.23 m, and up/down and
right/left velocity no greater 0.6 m/s.19 In addition to whether
the docking was successful, total mission duration, fuel
consumption (measured in Av), time out-of-plane
(“awaytime”), out-of-plane fuel (“y delta V”), and
temporal/spatial histories of pilot burns were recorded for each
simulated mission. Also, two derived quantities known as
“reserve time” and “radial delta V”, were obtained by

subtracting a reference time/fuel from the mission duration/fuel
consumption values.#-3

RESULTS

Figure 1 shows the burn history versus range on the x-axis for
a typical trial for one of the subjects. The initial velocity was
0.9 m/s, and an anomalous burn of 0.8 m/s occurred at an x-
range of 125 m. For this trial, total mission duration was 498
s, total velocity increment (delta V) was 7.51 m/s, awaytime
was 249 s and Y delta V was 1.88 m/s.
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Figure 1: Thruster commands, naive pilot

Figure 2 shows an expert pilot’s response to the same initial
conditions. Mission duration, delta V, awaytime, and Y delta
V quantities were all lower than the test subject’s with values
of 380 s, 4.92 m/s, 9 s, and 1.32 m/s respectively. The expert
pilot’s superior response is more likely due to several year’s
intensive experience with simulated spacecraft docking
maneuvers than any innate ability.
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Figure 2: Thruster commands, expert pilot

While both trials were successful, the expert used fuel more
effectively and efficiently as evidenced by the lower total
velocity increment and by the smoother, and less active, burn
history plots. He also recovered from the anomaly in under
4% of the test subject’s time and then focused on slowing
down the vehicle to satisfy the final docking conditions. Also,
while mission duration generally varies inversely with fuel
consumption (more fuel is required to travel faster and reduce
time), the expert managed to reduce overall time without
expending additional fuel by using every burn efficiently and

minimizing pilot-induced oscillations.

Multiple regression analyses were performed on the data to
establish the existence of any statistically significant effects.
Analyses were performed not only on the whole data but also
on the data after points outside the semiinterquartile range
(outliers) had been removed, and after data associated with
unsuccessful attempts were removed. Initial velocity, range,
magnitude and trial were the independent variables analyzed in
each case.

As in earlier studies4'5, two variables, “reserve time” and
“radial velocity increment”, were derived from the mission
duration and delta V data since increases in initial velocity
generally “force” the mission duration to decrease and the fuel
consumption to increase. Reserve time was calculated by
dividing the initial range by the initial velocity and subtracting
this value from the measured mission duration. In this way,
the effect of the initial velocity is somewhat removed from the
measurement and what is left is the time the test subject
reserved for herself to accomplish the task successfully. The
radial velocity increment values were obtained by subtracting



the starting and stopping Av and the Y delta V from the total
delta V.

Two other variables were created to evaluate the final 3-axis
range and rate parameters as something besides the binary
successful/unsuccessful. “Squared” was computed by
summing the squares of the terminal range and rate values
along the three axes. “Abs” is the sum of the absolute
differences between the actual terminal range and rate values
and those required for a successful docking.

squared = Y2 + Z2 + Xrate2 + Yrate2 + Zrate2

abs = -((abs(Y) -.23) + (abs(Z) - .23)+ (abs(Xrate) - .15) +
(abs(Yrate) - .06) + (abs(Zrate) - .06))

Since the inclusion of outlying data points greatly compressed
most of the data, these points were removed and regression
analyses were recalculated. Removing outlying data points
served to reduce the variance of the data and increased the
likelihood of statistical significance. A list of all statistically
significant effects from response surface analysis appears in
table 1.

Table 1: Significant Effects
Dependent Variable §|gm?lcant t-statistic p

Factor(s)
Total Data
Mission Duration init. vel. -5.43 < .001
Velocity Increment trial -2.78 .006
Y Vel. Inc. trial -3.18 .002
Z Vel. Inc. trial -2.77 .007
init. vel. -2.12 036
Squared init. vel. -2.08 .040
Abs. init. vel. 235 .021
Without Outliers
Mission Duration init. vel. -5.59 < .001
trial 2.55 .013
Velocity Increment init. vel. 393 < .001
magnitude 3.16 .002
Y Vel. Inc. magnitude 5.04 < .001
Reserve Time init. vel. 2.30 .024
trial 2.53 .013
Squared magnitude 2.01 .047
trial -2.43 018
Abs, trial 2.69 .009
Successful Runs
Mission Duration init. vel. -3.27 .002
Velocity Increment magnitude 2.41 .020
Y Vel. Inc. magnitude 2.15 .036
trial -2.22 .031
Z Vel. Inc. magnitude 2.49 .016
Awaytime magnitude 2.24 .029

T-Tests were performed between data collected from
successful docking missions and those collected from
unsuccessful missions. The only variable for which there was
a statistically significant difference was trial (4.20, p < .001)
whose average was 12 for the successful missions and 8 for
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the unsuccessful.

DISCUSSION

As in earlier studies without anomalies, mission duration was
inversely related to initial velocity.4-3 This relationship is not
surprising considering that the faster one travels, the less time
a trip of a given distance will take. The fact that this
relationship was preserved when the anomalous thruster
firings were included means that subjects did not slow down
from fast initial velocities in order to recover from the
“accident.” Starting off at a high velocity caused the shortest
mission durations despite the occurrence of anything unusual.
Apparently, plenty of time was available for recovery even at
an initial velocity as high as 3.6 m/s.

Removing the outliers, thereby decreasing the variance of the
data, revealed a practice effect: trial became a significant factor
determining mission duration. Some practice effect was

expected but the scatter of all the raw data points obscured it.
Removing the data associated with the unsuccessful runs
eliminated the practice effect while maintaining the velocity
effect. Since practice both increased the likelihood of success
and decreased the mission duration, removing the
unsuccessful runs also eliminated the long duration runs
thereby eliminating a perceived practice effect when the data
from the unsuccessful runs were removed.

Vehicles should pay for accelerating to, and decelerating from,
higher velocities with higher fuel consumption (Av). In the
former study, there was a direct linear relationship between
velocity increment and initial velocity as intuition would
suggest. However, in the current experiment, delta V was
solely a function of trial indicating a practice effect.
Apparently, the inclusion of the anomalies destroyed the effect
of velocity on Av.

Delta V data without outliers not only show a velocity effect,
but also indicate an effect based upon the magnitude of the
anomalous burn and omit an effect based upon experience.
Clearing out the spurious data left two expected relationships:
the velocity increment increased with initial velocity and with
magnitude of the anomaly. Removing the data collected from
the unsuccessful missions left only the magnitude effect.

Awaytime was correlated with magnitude. That is, the larger
the magnitude of the out-of-plane burn, the longer it took to
recover to the same plane as the space station. This effect
disappeared when the outliers were removed but existed when
only the unsuccessful data were removed. Since awaytime is
bounded on the bottom by 0, removing the high, outlying data
points eliminated any chance for the high awaytimes to be
associated with the high magnitudes.

Y delta V, like total delta V exhibited a practice effect when all
of the data were included and had only a magnitude effect
when the outliers were removed. However, unlike total Av, Y
delta V had an effect of trial when the data collected from the
unsuccessful missions were ignored. The trial effect is only
evident when the outliers are included in the calculation.

Squared and abs both displayed a velocity effect when all of
the data were used and neither showed any main effects when
the unsuccessful data were removed. Squared had both a
magnitude and a trial effect when the outlying data were
removed while abs had only a trial effect.

T-tests revealed only one statistically significant difference
between the data collected from successful missions and those
from the unsuccessful: subjects were more likely to have a



successful mission toward the end of their experimental
session. Although both squared and abs were derived from
the range and rate parameters on impact, neither parameter was
significantly different when calculated from a successful
mission or an unsuccessful one. While both values exhibited a
velocity effect implying that velocity had some impact on the
accuracy of the docking, this effect was not related to success
at all. Velocity played no role in the success of the mission.
In further corroboration, the t-test performed on velocity had a
statistic of 0 with a p value of 1 indicating a 0% assurance that
the populations are distinct.

CONCLUSIONS

As in earlier studies, researchers were unable to justify
utilization of the 0.1% rule or any other flight profiles
requiring an arbitrarily slow approach velocity from a human
factors point of view. Not only did faster approach velocities
fail to decrease safety during nominal operations, the presence
of an anomalous thruster firing during the mission did not alter
this result. Examination of human factors considerations
allows the operational flight envelope of a vehicle docking to a
space station, or any other object, to be expanded. This
permits more rapid and lower duration missions.

While engineering considerations, such as fuel consumption
(cost), overwhelmingly demonstrate the value of slow
missions, should fuel be made from waste water!9 or some
other source thereby decreasing its cost, a least time solution
would become a least cost solution as well. Also, for a vehicle
and/or pilot with 10 minutes worth of consumables remaining,
a 60 minute docking maneuver is not very helpful. An
understanding of the fastest safe docking technique will
always be necessary for contingencies that will inevitably
arise. Highly trained NASA pilot-astronauts with a mandatory
minimum 1000 hours jet experience should have no trouble
exceeding the performance values measured here. The safe
operating envelope of space vehicles can now be expanded
providing the ability to rescue a crewmember or vehicle low on
consumables.
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ABSTRACT

Numerous factors impact on the efficiency of tele-operative manipulative work. Generally, these are
related to the physical environment of the tele-operator and how well he interfaces with robotic
control consoles. The capabilities of the operator can be influenced by considerations such as
temperature, eye strain, body fatigue, and boredom created by repetitive work tasks. In addition, the
successful combination of man and machine will, in part, be determined by the configuration of the
visual and physical interfaces available to the tele-operator. The design and operation of system
components such as full-scale and "mini*-master manipulator controllers, servo joysticks, and video
monitors will all have a direct impact on operational efficiency. As a result, the local environment and
interaction of the operator with the robotic control console have a substantial effect on mission
productivity.

INTRODUCTION

The telerobotics field is wide ranging and encompasses work in several disciplines. Some of the
typical uses of telerobotics systems today are in underwater inspection and work operations,
inspections of nuclear power plants, the operation of remotely piloted vehicles (airborne RPVs), and
the disposal of unexploded ordnance. But of all the contemporary applications of telerobotics, the
subsea field is certainly one of the most diverse uses of telerobotics technology. As a result, the
subsea field offers one of the most varied databases of operational experience for study, regarding
all aspects of operator interfacing with robotic hardware.

Underwater telerobots must be designed specifically with the environment in mind. Both in space
and underwater, the challenges to the designer are significant if they are to provide equipment that
can accomplish the desired remote task on a cost effective basis. It is also not surprising that the
existing subsea operator interfaces look very similar to their proposed space counterparts, given the
similarities of the design drivers for both environments.

The designer of telerobotics workstation interfaces for the space environment faces much the same
problems as anyone developing equipment for the underwater environment. The consoles must be
compact, and capable of supporting remote work on a 24 hour basis. In addition, the console
interfaces must be compatible with the operator, so they can work for extended periods with minimal
fatigue. Also, consoles designed for both environments must offer the capability of positioning the
robotic work system and operating its manipulators. Consequently, an examination of the subsea
robotic field can help pinpoint areas of concern with regard to operational environments and the
interfaces between the teleoperator and the work system.
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The human factors related to remote work tasks must also be considered. Robotic work systems
are hardware designed to be operated by humai.s. As a rule, humans work more efficiently if the
local environment is comfortable and free of distractions. The same will be true of space based
teleoperations. Therefore, the human factors and lessons learned by the design and operation of
subsea telerobotic control consoles are directly applicable to space robotic operations. Most subsea
robotics workstations incorporate many of the basic functions required of both on-orbit and ground-
based space robotic control stations.

PHYSICAL AND ENVIRONMENTAL FATIGUE FACTORS

The efficiency of the human-machine interface is determined by two factors: the operator’s local
environment and the compatibility of the workstation to operator interface.

The Teleoperator Environment

The teleoperator is affected by their local environment as is any individual attempting a task
requiring high degrees of concentration. Factors such as the ambient temperature, noise levels,
seating orientation, and the mental state of the individual will take on a more important role than in
less demanding situations. In addition, the length of time that the operator is required to concentrate
his attention on remote tasks will greatly influence the onset and degree of operator fatigue.

There are several ways a teleoperator is affected by the local environment. Some of these concerns
relate to the actual physical environment, while others have to do with the nature of the remote work
being attempted. Operational stress is generally created in situations where the work task is
extremely difficult, whether it be because the robotic system is being operated outside of its
capabilities or has experienced some type of failure. Typically, even if manipulators or related
equipment are only partially operational, the job will continue because of cost or criticality concerns.
This type of situation is very trying for the operator because they are attempting a task outside of
the nominal method of operation. However even with a fully operational system, complex work tasks
can take their toll on the operator due to the required amount of concentration. Consequently, the
onset and level of operator fatigue is directly related to task complexity. Manipulator operators can
“ourn out” after only 30 minutes during difficult operations, whereas in other cases with less
demanding tasks, they can function productively for several hours.

Eye strain is another problem with extended teleoperations. Usually, the degree to which this is a
factor is related to the length of operations, and the size and quality of the video image. Fuzzy or
partially out of focus pictures can be irritating to look at for any length of time. Also, the speed with
which the camera focus motors operate can contribute to this problem by making it difficult for the
operator to get a clear picture on the video monitor. In this type of situation, considerable time is
wasted as the camera lens continually runs past the optimum focus point by either being too near
or too far. Cameras fitted with zoom lenses are notorious for this focusing problem.

As with any work environment, the ambient temperature must be comfortable and within the proper

range of humidity. This concern is not only for comfort because robotic system microprocessors (as
with most electronic equipment), only operate within definite temperature ranges. Related equipment
such as high voltage transformers can dissipate tremendous amounts of heat, sometimes in an area
located near the operator. These factors must be taken into account when specifying environmental
control units and ventilation requirements for the teleoperations area.

The fighting conditions in the operations area is also a concern. Improperly placed or excessively
intense lighting can cause glare on the video monitors making them difficult to see. All too often,
personnel not directly connected with the job can frustrate and distract the operator by switching on
nearby lights at the worst time. For example, the writer was trying to follow a lift line with a Remotely
Operated Vehicle (ROV), during a deepwater operation under low visibility conditions. An individual
opened the door to the control van (where the workstation was located), spilling bright ambient light
onto the pilot’s video monitor. The teleoperator immediately lost sight of the line and much time was
wasted surfacing the vehicle and starting all over again.
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In addition, excessive noise affects operator productivity. Occasionally, minimal consideration is
given to the type of ancillary equipment operating near the control console. A high ambient noise
environment enhances fatigue and also places unreasonable demands on the communications
system.

Physical Factors

The physical interfaces between the operator and console also influence the practicality of doing
remote work. All too often, the designers of robotic work consoles will not consider the physical
movements required by the teleoperator to control remote vehicles and manipulators. The
operations console must be looked at as the physical link between the operator and the robotic
system; i.e., the path through which all of the operator's senses must receive visual and physical
feedback from the robotic system, and the point of physical contact by which they direct the
movement of the remote work system. This link, if flawed in any way, will degrade the ability of the
teleoperator to communicate with the robotic system.

Body, joint, and hand fatigue is caused in several ways. First of all, any extended operations with
large scale master arms (over 45 minutes), can result in arm fatigue. During the use of a master
controller, the operator’s arm muscles are constantly in contraction and extension as they attempt
to position the slave arm. This, in itself, is not a serious problem. However, the level of
concentration required during the task is passed down to the operator’s arm, inducing a higher
level of muscle tenseness than would normally be present. As indicated above, this is greatly
influenced by the amount of visual concentration required to do the task. Generally, the problem
manifests itself in the form of a very tight grip on the hand grip of the master arm. Like general
operator fatigue, arm fatigue is directly driven by the difficulty of the remote task. Extended
operations with miniature joystick controllers is also a problem. Hand fatigue is quite common
during long term use of small proportional controllers (similar to the ones used in "Pong” games).

Body fatigue is created by the operator’s seating position at the control console. Unfortunately, little
thought is normally put into the design of operator’s seating configuration and the amount of leg
room available. Regardless of the type of restraint in use, for the operator to concentrate their
attention on the job at hand, they must be comfortable and have room to stretch. However,
extended zero-G operations will be a new application for teleoperator seating/restraint concepts.

Finally, long term repetitive teleoperations work, as a rule, can be somewhat boring. Once the initial
fascination of the operation wears off, operator boredom will normally speed up the onset of fatigue,
with the result that teleoperators can literally fall asleep at the console. This is particularly true during
jobs where the work involves primarily supervision and little operator interaction with the equipment.
The only way to combat the problem is to rotate operators on a frequent basis and vary their job
requirements.

HUMAN-MACHINE INTERFACES

neral Console Layout
Telerobotic workstations come in a variety of configurations, but they all have a common purpose:
to act as a two way conduit of operator inputs and robotic system feedback. Generally, the typical

teleoperations console can come in two designs: a small portable workstation that is installed and
used as needed, or a dedicated console that is permanently mounted in a specific operations area.
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Portable Consoles

Portable consoles have been in use the subsea telerobotics field for over a decade and can range
from small suitcase sized units to ones that are hand-held. The hand-held consoles normally
encompass the basic system functions and are integrated with a separate video display. The larger
portable consoles are similar, but usually contain the surface or upside system electronics. The
primary problem with these types of consoles is that they must be set up before use and are very
prone to damage if they are accidentally bumped in the process. Most of the internal electronics
associated with these units are delicate and not capable of withstanding significant abuse. In
addition, the time needed to prepare the robotic system for operation can consume valuable
operations time. The other problem is that because of the console or controller’s small size, some
compromises are usually made with regard to the configuration of the robotic system functions. In
other words, the quality of the operator interfaces can be degraded because of space or size
limitations.

Dedicated Consoles

Dedicated consoles offer more flexibility, from the operational standpoint, because they have more
console surface area onto which to mount the system functions; i.e., they can be optimized for the
most compatible operator interface. The dedicated consocle will also make it possible to install
"operator friendly" components such as larger video monitors {some dedicated to a single camera),
larger sized hand controllers, and system diagnostics. In addition, since the consales are
permanently mounted in a specific location, they are not subject to any physical abuse, and enable
the creation of a single-purpose area for teleoperations. However, the down side is that dedicated
consoles require more IVA volume for installation and sometimes eliminate the possibility of using
the area for other purposes.

Hand Controllers and Master Arms

Hand controllers are a direct physical interface point between the teleoperator and the workstation.
Consequently, their design can have a significant impact on the overall compatibility of the control
console. Large scale master controllers, as indicated earlier in this paper, contribute to operator arm
fatigue during extended use. However, that is only one potential problem. While the large scale
master does offer intuitive contral and force reflective capabilities, they do require a large IVA work
envelope for use. This can drive the interior design of the operations area in an undesirable way, in
that it increases the free-volume requirements for the location. In addition, the masters can at times
be delicate contraptions that are easily damaged, and require somewhat elaborate stowage
schemes to keep them out of the operator's way when they are not in use. While master arm
indexing can reduce the volume required for use, this feature can detract from the primary
advantage to using a large scale master in the first place; that the master kinematically represents
the current position of the slave manipulator.

“Mini" masters represent a departure from their large scale counterparts in that they offer a
kinematic replication of the scale arm, albeit on a smaller scale. Like the larger masters, they are
subject to breakage and stowage problems. Unfortunately, there are not yet any commercially
available "mini" masters with force reflection.

"Bang-bang" rate controllers are limited in capability in that they can only be used with rate
manipulators. However they are generally simple in construction, highly refiable and offer an
extremely small IVA work envelope. Another advantage to rate controllers is that they give the
operator the opportunity to do manipulative work on a part-task basis because the arm
automatically freezes when the operator removes his hands from the controller. While the same
could be said of large scale and "mini"master controllers, the rate controller offers this capability as
an inherent function of its design.
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Proportional joysticks can be used for end point control with resolved rate type manipulators.
Depending upon their physical size and design, they are comfortable or fatiguing to use. Typically,
these types of hand controllers are integrated with controls for ancillary functions such as camera
pan, tilt, focus, and zoom. While this is a desirable feature, it can sometimes get out of hand. There
are only so many functions an operator can memorize on one control stick, and while it is highly
desirable to incorporate multiple functions on one controfler, there should not be so many that the
operator has trouble memorizing the individual functions, or can accidentally actuate a function
during normal operations.

SPECIFIC RECOMMENDATIONS AND CONCLUSIONS
Environmental

There are several conclusions that can be derived from the information presented in this paper, but
one is obvious: the local environment of the teleoperator has a significant and measurable effect on
the efficiency of doing remote work tasks. As a result, steps must be taken to guarantee that the
environment of the operations location is favorable to practical work.

Some of the recommendations that will aid in the above goal are as follows: While it seems like a
logical concern, the temperature of the telerobotics operations area is a factor that is often
overlooked. The operations location must be comfortable to the teleoperators or they will have
difficulty concentrating on the job at hand. The amount of heat generated by control consoles
themselves is sometimes minor, but related support equipment can radiate large amounts of energy
(this is of particular concern if ventilation within the operations area is lacking). The designer must
consider these facts when specifying the requirements for environmental control equipment. In
addition, the expected environment of the exterior of the control area, must be considered with
respect to any external influences (direct sunlight, radiation, etc.).

High noise levels in the operations area can also cause problems, especially with regard to
communications. A high ambient noise level will drive headset needs in an undesirable manner.
Communications headsets should be able to be selected on the basis of their comfort and clarity,
not sound isolation properties. Finally, as with temperature, excessive sound levels will increase the
onset of operator fatigue. Any equipment expected to generate high noise levels should be isolated
from the teleoperations area, if possible.

Body and hand fatigue will become a significant negative influence during any extended
teleoperations. But how much of a factor it becomes will be determined in part by the design of IVA
restraints and hand interfaces. As a result, there are specific areas of concern that can be dealt with
to reduce fatigue problems. First of all, hand controllers should incorporate some form of hand or
forearm rest to help relieve operator muscle tension. For the proportional joystick, possibly some
type of padded area (similar to an arm rest on a chair) that the operator can place his arm against
would be beneficial. In the microgravity environment, it may be necessary to supply a flexible
restraint to hold the arm against the rest during operations. Obviously, a force reflective system will
demand some form of restraint if the teleoperator is to have any hope of “feeling” mechanical
feedback generated by the master arm.

Operator restraints should be highly adjustable, with regard to their orientation with the control
console, and general configuration. The restraint should be flexible enough to fit a wide range of
operations personnel (this is especially true during any operations involving force reflection, since
the operator will measure the physical feedback while using the restraint as a stop). In addition,
there should be sufficient IVA free volurme surrounding the operator restraint to allow for body
flexing (especially the legs) during extended IVA operations.
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Operational stress will be a driving force behind the onset of operator fatigue during teleoperations.
This stress can manifest itself in several ways but primarily, it will be related to task difficulty. Highly
complex manipulative operations, especially those that involve work on the borderline of system
capabilities, will be extremely fatiguing to operations personnel. For example, if a manipulator has an
end point positioning accuracy of plus or minus 1", and the arm is being used to assemble
components that have .80" clearance around them, then clearly, it is going to be a difficult time for
the arm operator (especially if the components have been designed without alignment guides).
Consequently, in these types of situations the operators should be changed out on a frequent
basis.

The number of degrees of freedom the operator is required to operate can also influence
operational stress levels. Typically, pilots of subsea robotics systems have been able to do
simultaneous operations such as combined vehicle and manipulator operations at mid-water.
However, such accomplishments were normally under good conditions using only 3 - 4 DOF arms.
This maximum DOF issue is one that requires further study.

Job stress is also related to how well the robotic system is operating. Equipment that experiences
excessive down time will frustrate teleoperations personnel because they will spend more time
repairing the equipment than operating it.

The quality and type of video monitors impact productivity by contributing to operator eye strain.
Individuals doing teleoperations do not just "look" at video monitors, but must examine and
understand the visual information on the screen. Trying to do this with a degraded video image is
difficult, at best. Some basic suggestions are that video monitors used for teleoperations should be
at least 9" in size, and incorporate standard controls for brightness, contrast, and sharpness. In
addition, the IVA work environment should offer indirect lighting of variable intensity. The distance
from the video displays to the operator’s eyes, as a general guideline, should be no less than about
3/4 arm length.

Physical Interfaces
Hand Controllers

The type of manipulative operation and design of the manipulator system should be the determining
factors with regard to the configuration of arm controllers. While large scale master arm controllers
can be very beneficial to teleoperations, they will cause arm fatigue if used for extended periods.
Steps should be taken to ensure the availability of sufficient operations personnel for an acceptable
rotation schedule during extended or complex manipulative work tasks. in addition, any full-scale
masters installed in a robotic workstation should be capable of stowage during periods of non-use.

Proportional hand controllers should be sized in relation to expected task duration. Generally, if
sufficient IVA console space is available, medium sized joysticks (that can be grasped by the entire
hand), should be employed.

The designer should strive to make the hand controllers refiect the physical configuration of the
manipulator system. In other words, the arm controllers should be referenced to the video monitor
screen as a representation of how the subsystems are physically related at the worksite. The most
important aspect is the video camera to end effector relationship. If the robotic system is configured
with the video camera in the middle of two manipulators, then the two arm controliers at the
workstation should be mounted on either side of the video monitor. The work station should
represent the remote work system as much as is practical.

Standardization of teleoperator interfaces will aid operational efficiency by reducing learning
requirements between different robotic systems. There are several ways that standardization can be
applied to physical interfaces, but the most obvious solution, such as using identical controllers for
several applications, is not necessarily the best; operator interfaces do not have te look alike to be
standardized!
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There are a multitude of telerobotic vehicles in use today in the subsea field, and outside of the
individual manufacturers, there is little or no standardization. But what has been learned in the past
decade of teleoperations is that standardization is more related to method of operation than
appearance.

Some underwater remote vehicles are controlled by two joysticks while others can be driven with
one. It all depends upon how the control subsystems are configured and the preferences of the
manufacturer (some seem to prefer a one over a two stick arrangement). Field personnel who take
over control of a vehicle with no prior experience on a particular system can usually learn the
functions fairly quickly, especially if the operator is highly experienced. However, standardization of
the operator interfaces would certainly reduce the amount of time it takes to learn a particular
robotic system.

Robotic system controls should be standardized with respect to function and mode of operation.
The key is to guarantee that identical physical movements are required of the operator to achieve a
particular result. A standard typewriter is an excellent analogy. There are many varieties of
typewriters, but in most designs, the keys (the separate letters, that is), are always in the same
location. The typist can then learn one interface pattern, then have the ability to use all typewriters.
The reason this is so important is that the teleoperator references all of their resultant actions (the
physical movements they see on the video monitor) to specific movements at the workstation. The
operator knows that if he moves a control in a certain direction, he will see a corresponding result
on the video screen. This results in a "learned relationship" between action and reaction. This
relationship is what is learned by the operator, not the shape, size, or color of the hand controller.
As a result, systems that operate outside of this database of information have to be relearned all
over again so the operator can develop a new action/reaction relationship. This process wastes
time. Hence, the relative dynamic relationship between the operator and the controller is what
should be standardized, not the physical design of the controller.

Control Consoles

Telerobotic workstations should be configured to act as the operator’s reference point to the robotic
system. First of all, if possible, there should be a dedicated video monitor for each camera. This will
enable the teleoperator to instantly view the entire visual range surrounding the telerobot, without
confusion as to what camera they are viewing. Of course, given the space limitations on-orbit, this
may be impractical. A compromise would be to use video multiplexing so that the teleoperator can
examine multiple video images on one video monitor. The goal should be to make sure the
teleoperator knows which video image is being generated by what camera.

The mechanical orientation of manipulator controls should mimic the configuration of the telerobot
as much as is feasible. For example, if the robotic system has two arms, then there should be two
separate controllers instead of one controller with a selection switch.

Camera pan and tilt controls should also follow the same practice; i.e., there should be a separate
controller for each camera. Ideally, pan and tilt controls should be incorporated into hand controllers
so the teleoperator can operate the manipulator and camera controls without diverting their
attention from the video monitor.

System functions should be unique and configured based upon their function. For example, the
switches used to turn lights off and on should be of a different design than the ones that control
system power. Ideally, the console should not need labels on all of the controls for the operator to
know their functions. Overall, a customized function layout will reduce errors and enhance
compatibility. The console should be ergometric so that the operator can easily reach all of the
system’s functions without constant body movements. This feature will reduce body fatigue.
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In general, the concept behind a telerobotic console should be to design for functionality,
compatibility, and practicality. The foremast thought that snould be behind the design of the console
is that the workstation is the teleoperator’s hands and eyes at the worksite.

Portable workstations that have to be set up or installed before use should be avoided, if it is at all
pcssible. The types of compromises made in portable designs are sufficient to render them
undesirable for extended teleoperations use. A far better arrangement is the design of a workstation
permanently installed into a "teleoperations work area”. This will enable the teleoperator to do the
job at hand in the most compatible environment possible. However, in situations where it is
absolutely impossible to create a dedicated area, such as in the Orbiter’s aft flight deck, then any
portable workstations should be highly adjustable, with regard to the installation point and mounting
angle, so the teleoperator can customize the operator to workstation interface.
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INTRODUCTION

the human-computer
interaction (HCI) field commonly advise
interface designers to "know the user".
Various approaches are currently used to get
information about the user into the hands
(and mind) of the designer. One approach is to
use design guidelines (e.g., NASA/Johnson
Space Center, 1988), which can incorporate
knowledge of human psychological strengths
and weaknesses and make it accessible to
designers. However, guidelines give only
overview information. They do not help the
designer to configure the interface for a
specific task and specific users (Gould &
Lewis, 1985).

Researchers in

Another way to know the user is to conduct
usability tests (Gould & Lewis, 1985). This
involves building prototype interfaces as
early as possible in the design process,
observing typical users as they work with the
prototype, and fixing any observed problems
during the next iteration of the design. While
effective in making the designer aware of
user needs, usability testing adds a
significant amount of time to the design of
user interfaces.

Recently, a large number of HCI researchers
have investigated another way to know the
user -- building analytical models of the
user, which are often implemented as
computer models. These models simulate the
cognitive processes and task knowledge of
the user in ways that allow a researcher or
designer to estimate various aspects of an
interface’s usability, such as when user
errors are likely to occur. This information
can lead to design improvements. Analytical
models can supplement design guidelines by
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providing designers rigorous ways of
analyzing the information-processing
requirements of specific tasks (i.e., task
analysis). These models offer the potential
of improving early designs and replacing
some of the early phases of usability testing,
thus reducing the cost of interface design.

This paper will describe some of the many
analytical models that are currently being
developed and evaluate the usefulness of
analytical models for human-computer
interface design. The paper is intended for
researchers who are interested in applying
models to design and for interface designers.
This is a summary of an extensive literature
review paper on the use of analytical models
in design that is being conducted at the
Johnson Space Center's Human-Computer
Interaction Laboratory.

The question of whether analytical models
can really help interface designers s
currently receiving much attention in the
field of human-computer interaction.
Advocates of model-based design claim that
our knowledge of cognitive psychology is
becoming sophisticated enough to allow
analytical models of the user to play a useful
role in interface design (Kieras, 1988; Butler,
Bennett, Poison, & Karat, 1989). Modeling
proponents suggest that models could be used
during interface design in two important
ways:

1. Models can help designers conduct a
rigorous task analysis, which in turn may
help generate design ideas. A number of
analytical models (e.g., the GOMS modei,

Card, Moran, & Newell, 1983) involve
specifying the goals, actions, and
information requirements of the user's



task. Research suggests that these task
analyses can help designers generate
effective design ideas.

2. After interface designs have been
generated, models can help evaluate their
effectiveness. A human-factors
psychologist or engineer could work with a
designer to build a computer model of how

a user would interact with a new
interface. This model could be run with
various input conditions to predict how

long the user will take to perform tasks
using the interface, and likely sources of
user errors.

The benefits of analytical models are by no
means universally accepted in the HCI
community. Many HC! researchers and
practitioners have questioned the usefulness
of models for interface design. Whiteside and
Wixon (1987) claim that current models are
only applicable to the specific task and
context for which they were developed and
cannot be applied to new interfaces. Others
(e.g., Curtis, Krasner, & Iscoe, 1988; Rossen,
Maas, and Kellog,1988) suggest that models
may not fit in with the needs of design

organizations or with the intuitive thinking
and informal planning that designers
sometimes use.

This paper will focus on computational

analytical models, such as the GOMS model,
rather than less formal, verbal models,
because the more exact predictions and task
descriptions of computational models may be
useful to designers. The literature review
paper that is summarized here evaluated a
number of models in detail, focusing on the
empirical evidence for the wvalidity of the
models. Empirical validation is important
because, without it, models will not have the
credibility to be accepted by design
organizations. This paper will briefly
describe two analytical models in order to
illustrate important conclusions from the
literature review. Following this, the paper
will  discuss some of the practical
requirements for using analytical models in
complex design organizations such as NASA.
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EMPIRICAL EVALUATION OF ILLUSTRATIVE
MODELS

GOMS Model

The GOMS model was developed as an
engineering model to be used by HCI
designers, and it has received much more
empirical testing than any other analytical
model of HCI tasks. Many of the issues
concerning the use of GOMS models in design
are relevant to other analytical models as
well.

GOMS models are applicable to routine
cognitive skills. They are best suited for
tasks where users make few errors. More
open-ended tasks that involve extensive
problem solving and frequent user errors (e.g.,
troubleshooting) are not good candidates for
GOMS modeling.

GOMS stands for goals, operators, methods,
and selection rules, the four elements of the
model. GOMS models are hierarchical. The
assumption is that at the highest level,
people's behavior on a routine computer task
can be described by a hierarchy of goals and
subgoals. At the most detailed level,
behavior is described by operators, which can
be physical (such as typing) or mental {(such
as comparing two words). Operators that are
often used together as a unit are built up into
methods. For example, one might have a
standard method of deleting text in a text
editor. Sometimes more than one method can
meet a goal, and selection rules are used to
choose among them.

GOMS models can help an interface designer
get a qualitative understanding of the goal
structure and information requirements of a
task (i.e., a task analysis). In addition, Kieras
and Polson (1985) developed a formal
implementation of GOMS models -- Cognitive
Complexity Theory (CCT) -- that allows
designers to make quantitative statements
about wusers' errors, learning time, and
performance time for particular interfaces.
in CCT, GOMS models are represented as
production systems. In a production system
the parts of a GOMS model are represented by
a series of if-then rules {production rules)
that can be run as a computer simulation
model. A number of quantitative metrics can
be derived from a CCT production system



that, according to proponents of CCT, can be
used to predict users' performance on a task
(Kieras, 1988; Olson & Olson, in press). For
example, task learning time, task
performance time, and the number of user
errors can be predicted.

To date, GOMS maodels have not been used to
help design a commercial interface. Most
empirical studies of GOMS models have been
evaluations of existing interfaces that were
designed without using GOMS. For example,

Bovair, Kieras, and Polson (in press)
evaluated GOMS estimates of task
performance time for existing interfaces.

Using a text editing task, they found that the
number of production-system cycles and of
certain complex operators (such as looking at
the text manuscript) could match
performance time fairly well, explaining
about 80% of the variability of users’
performance times across editing tasks.

It is important to point out that in studies
like this, data (such as errars and the time to
learn and perform tasks) are collected from
users of an interface, and statistical
techniques (such as regression) are used to
determine whether the GOMS predictions
match the data. In these studies, GOMS
models are not used to make a priori
predictions of user performance. Rather, the
models' estimates of user performance are
statistically compared to the empirical data
to see how much of the variability in users’
performance data can be explained by the
model. Although some researchers suggest
that GOMS models can be used to make a
priori predictions of user performance (Olson
& Olson, in press), this has not been done
successfully to date.

In addition to evaluations of existing
interfaces, a few studies have looked at how
GOMS models can be used to generate ideas
for redesigning interfaces. These studies
take advantage of the fact that GOMS models
provide a detailed task analysis (i.e., a
representation of the goals, subgoals, and
procedural steps) required to perform a task.
Elkerton & Palmiter (1989) used a GOMS
mode! of the knowledge required for
Hypercard authoring tasks to design a menu-
based Hypercard help system that allowed
faster information retrieval and was liked
better than the original help system.
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This study is important because it shows that
GOMS models can be used for more than post-
hoc evaluation of existing designs. In this
study, the task analyses provided by GOMS
models were used io generate computer-
related artifacts (in this case, procedural
instructions). In addition, these artifacts
were generated fairly directly from the task
analyses, without extensive interpretation or
"judgment calls".

To summarize the empirical evaluation of
GOMS models, models developed for a single,
existing interface can be used in a post-hoc,
quantitative fashion to explain performance
time, learning time, and number of errors
with that interface. No one has yet tested
whether GOMS models can make accurate
quantitative performance predictions for an
interface that is still in design. However,
encouraging progress has been made in using
the task analyses provided by a GOMS model
to help generate effective instructions that
can be incorporated in help systems and user
manuals.

Tullis" Model

The next model to be described has a much
narrower range of application than GOMS
models and focuses on general psychological
processes rather than task analysis. Perhaps
because of these differences, this model,
developed by Tullis (1984), is better than
GOMS at making a priori predictions of user
performance. Tullis' model focuses on
aspects of a display, such as display density,
that affect how well people can find
information in the display. It emphasizes
general processes, such as perceptual
grouping, that affect display perception
regardless of the content of the display. The
effects of task knowledge on display
perception (e.g., effects of user expertise)
are not considered. Tullis' model is
applicable only to alphanumeric displays that
make no use of color or highlighting. The
model has been applied to simple search
tasks involving displays for airline and motel
reservations, and for aerospace and military
applications (Tullis, 1984).

Based on a literature review, Tullis
hypothesized that five factors would affect
the usability of alphanumeric displays:
overall density, local density, the number and
size of the perceptual groups, and layout



complexity. He developed operational
definitions so that quantitative values could
be calculated for each factor, given a display
layout as input. Then, he conducted an
experiment in which subjects searched for
information in displays and rated the
usefulness of the dispiays. Regression
analyses showed that the five factors could
explain subjects' search times and subjective
ratings fairly well.

Tullis implemented his regression model in
the Display Analysis Program (Tullis, 1986).
This program accepts a display [ayout as
input. It outputs quantitative estimates of
overall density, local density, number of
perceptual groups, and average group size. It
also provides graphical output describing the
display density analysis and the perceptual
groups. Finally, it predicts average search
time and subjective ratings for the display.

Tullis (1984) then used his model to predict
search times and subjective ratings for a
second experiment, using different subjects
and displays than the experiment that was
used to develop the regression equations. The
predicted search times and subjective ratings
matched the actual times and ratings fairly
well, with a correlation of about 0.64 (r2) for
each variable. The model correctly predicted
the displays with the best search time and
rating. Tullis' model was also able to predict
search times from three previous studies in

the literature (r2 > 0.63 in each study)
(Tullis, 1984). However, when Tullis' model
was tested on tasks more complex than

simple display search, it did not predict
subjects' performance well (Schwartz, 1988).
model

To summarize, Tullis' is applicable

within a limited domain -- inexperienced
users performing simple search tasks
involving alphanumeric displays. Within this

domain, however, the model's performance is
impressive.  Tullis has taken the step that
GOMS users have neglected and used his model
to predict performance for displays and
subjects different from the ones on which the
model was developed. The model was able to
predict well in these cases. One disadvantage
of Tullis' mode! is that it neglects cognitive
factors affecting display perception, such as
the effect of a user's task knowledge.
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Conclusion: Empirical Evaluation of

Analytical Models

Earlier in the paper, it was suggested that
analytical models could be used in interface
design in two ways. The first of these
involves using models early in the design
process to conduct rigorous task analyses,
which are then used to generate ideas for
preliminary designs (e.g., menu structures)
The second potential use of models occurs
later in the design process, after preliminary
designs have been developed. In this case
models are used to evaluate designs by
making quantitative predictions about
expected user performance given a particular
design.

The empirical evidence considered in the
literature review, and summarized here,
suggests that, except for one model with a
narrow range of application, there is no
empirical evidence that analytical models can
predict user performance on a new interface.
There is some encouraging evidence that
analytic models used for task analysis can
help in the process of generating designs;
however, this conclusion is based on only a
few studies. The review of the empirical
evidence suggests, then, that future research
aimed at demonstrating model-based
improvements in interfaces should focus on
three areas:

- Replicating and extending the studies of

model-based interface redesign (e.g.,
Elkerton & Palmiter 1989).
. Demonstrating model-based interface

design for a new interface.

. Demonstrating the predictive use of
models to evaluate preliminary designs

Based on the empirical evidence to date, the
first two of these would be the most
promising avenues of research.

What are some possible reasons for the
failure of models to accurately predict
performance with a new interface? It may be
that critics such as Whiteside and Wixon
(1987) are correct in that people's
procedures, goals, and cognitive operators are
too context-specific to allow prediction in a
context as different as a new interface. A
large body of research in cognitive



psychology suggests that expert's
performance in a particular domain is largely
dependent on domain-specific knowledge, as
opposed to general-purpose cognitive skills
(Chi, Glaser, & Rees, 1982; Glaser, 1984).
And models such as GOMS focus primarily on
the task-specific knowledge of experienced
users. It is Interesting that the mode! that
was able to predict user performance on a
slightly different interface (Tullis') is not a
task analytic model. Tullis' model focuses on
general perceptual abilities. This suggests
that in order to predict performance for new
interfaces, task analytic models must include
more explicit representation of how general
purpose cognitive characteristics (such as
working memory limitations) affect user
performance.

An addition should be made to the above list
of research areas. This suggestion is based
on the fact that there are no empirically
validated models that can describe HCI tasks
involving higher-level cognitive processes
such as problem solving. However, space-
related computer systems are rapidly
becoming intelligent enough to assist people
in complex tasks such as medical diagnosis
and scientific research, which involve more
complex cognition. Models are currently
being developed with the goal of describing
these more complex tasks in a way that is
useful to interface designers. An example is
the Programmable User Models (PUMs) (Young
& Whittington, 1990). However, most of
these models have not been empirically
validated.

A fourth area of further research, then, is:

+ Developing and testing models of complex
HCl tasks involving high-level cognitive
processes.

USING MODELS IN DESIGN ORGANIZATIONS

So far, this paper has focused on whether

analytical models can improve interface
designs. However, even if models were
conclusively demonstrated to improve
interfaces, this would still not ensure their

use by design organizations such as NASA.
What is needed is evidence for the usefulness
as well as the validity of models. That is, it
must be shown that models can meet the
needs of individual designers (e.g., preferred
design methods), and of design organizations
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(e.g., cost, scheduling, and personnel

constraints).

With respect to individual designers, an
understanding of the various ways that
designers generate, develop, and evaluate
ideas is needed. Analytical models would be
provided to designers as detailed procedures
or as software tools. The principle of
considering the cognitive and motivational
processes of users applies to model
developers just as it does to the designers of
other software tools. In short, designers are
users too. Therefore, if model developers
want their models to be used in actual design
projects, they must either construct their
models to fit in with the preferred design
processes of designers or provide ways of
training designers to use the models.

But decisions regarding the commercial use
of models are made by managers, not by
individual designers. Therefore, models also
must be shown to meet the multi-faceted
needs of design organizations, for example,
cost, schedule, and personnel requirements.
This section will discuss the problems that
must be overcome before analytical models
are accepted by designers and their work
organizations.

Needs of Individual Designers

Two studies conducted by Curtis and his
colleagues showed that major difficulties in
software design are caused by a lack of
application-domain knowledge on the part of
designers.  (Curtis, et al., 1988; Guindon,
Krasner, & Curtis, 1987). The analogous
problem in the case of interface design would
be a lack of knowledge of the users task.
When Rosson, et al. (1988) interviewed
interface designers about the techniques they
used to generate design ideas, they found that
the most frequently mentioned techniques
(about 30%) were for analyzing the user’s
task. Most of this task analysis involved
informal techniques, such as interviewing
users or generating a task scenario.

These findings present both an opportunity
and an obstacle to the use of models by
interface designers.  First, since designers
often lack knowledge of the user's task and
spend a large amount of effort getting it,
they might see the usefulness of task
analytic models such as GOMS. The potential



obstacle is that designers may prefer to stick
with their informal techniques, instead of the
more rigorous task analytic models. Rosson,
et al. suggest that tools to aid in idea
generation should primarily support
designers’ informal techniques. Lewis,
Polson, Wharton, and Rieman (1990) offer an
interesting way of combining formal
modeling with a technique currently used by
software designers -- design walkthroughs.
They developed a formal model of initial
learning and problem solving in HCI tasks, and
then derived from the model a set of
structured questions ( a cognitive
walkthrough) that can be used to evaluate the
usability of an interface.

This discussion presents only an example of
the kind of issues that need to be considered
regarding the needs of individual designers.
Further research is needed on the cognitive
and motivational processes of designers and
what these processes suggest about the
design of analytic models.

Needs of Design Organizations

The Curtis, et al. (1988) study mentioned
above also considered the organizational
aspects of software design. In addition,
Grudin and Poltrock (1989) conducted an
extensive interview study of the
organizational factors affecting interface
design. Some of the findings of these studies
that relate to the use of analytical models
are discussed below.

An important characteristic of many
computer-system design organizations is
complexity. Many groups may contribute to a
final design product: interface and system
designers, human factors personnel, training
developers, technical writers, and users (e.g.,
astronauts). Curtis, et al. (1988) noted a
wide variety of communications problems
that resulted because of this organizational

complexity. One such problem arises when
groups interpret shared information
differently because of differences in

background knowledge. This could easily
cause problems, for example, if the people in
an organization who are experienced with
modeling (e.g., a designer or human factors
expert) have to communicate the results of a
modeling analysis to a project manager. A
possible solution to this problem of
misinterpretation is for model developers to
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make the structure and outputs of their
models as clear as possible.

In addition to communication problems,
another problem arising from the variety of
roles in design organizations has to do with
personnel and training. A manager
considering the use of models on a design
project faces a number of questions along
these lines. Can existing personnel do the
modeling (e.g., designers or human factors
personnel)? How much training will they
require? If new personnel must be hired,
what kinds of background must they have?
Model developers must have answers to these
questions.

One answer comes from the work of Kieras

(1988). He has developed and published a
procedure for building GOMS models. Informal
testing showed that computer science

undergraduates could use this procedure to
generate GOMS models and make usability
predictions "with reasonable facility". More
than this is necessary, however. Validation
studies must be done to test whether the
personnel that would use models in design
organizations can build models that make the
same kinds of predictions as the experts who
initially developed the model. These studies
should also document the kind of training
necessary to achieve these ends.

In addition to complexity, other
characteristics of design organizations that
affect their openness to modeling are strict
project scheduling and a concern with
monetary costs. Detailed estimates are
needed of the time and money costs of using
analytical models in commercial design.

CONCLUSION - THE USE OF ANALYTICAL
MODELS IN INTERFACE DESIGN

Can the use of analytical models be
recommended to interface designers? Based
on the empirical research summarized here,
the answer is: Not at this time. There are too
many unanswered questions concerning the
validity of models and their ability to meet
the practical needs of design organizations.
However, some of the research described here
suggests that models can be of practical use
to designers in the near future. Of special
interest is the research that used models as
task analytic tools to generate interface
design ideas (e.g., Elkerton & Palmiter, 1989).



This paper has suggested research and
development that is necessary in order for
analytical models to be accepted by complex
design organizations. These suggestions are
summarized in Table 1. It seems that the
empirical research on analytical models gives
good reason to pursue the research and
development goals outlined here.

ANALYTICAL MODELS AND SPACE-RELATED
INTERFACE DESIGN

So far, this paper has provided a general
analysis of the use of analytical models in
human-computer interface design. How much
of this analysis is applicable to the design of
space-related interfaces? The Human-
Computer Interaction Laboratory (HCIL } at
the Johnson Space Center is currently
conducting preliminary task analyses for the
tasks required on a long-duration space
mission, such as a mission to Mars (Gugerty &
Murthy, in preparation). This work suggests
that the range of tasks on such a mission is
quite broad -- ranging from reading to
controlling complex equipment to conducting
scientific research. The possible information
technologies for long-term missions are also
quite diverse, for example, workstations for
supervisory control, graphics workstations
for scientific research, computer-supported
group meetings, medical expert systems, and
virtual workstations for telerobotic control.
It seems that space-related tasks are diverse
enough to span almost the entire range of
human-computer interaction tasks.
Therefore, the general analysis of this paper
will be applicable to space-related tasks in
most cases.

One project in the JSC HCIL is focusing on the
use of analytical models in designing medical
decision support systems for space crews.
This project is following up on the work of
Elkerton and Palmiter (1989), in which GOMS
was used as a task analytic model to help
generate interface design ideas. One medical
task that space crew members will face is
learning or relearning medical procedures
from computer displays. This project will
test whether building GOMS models of
medical procedures can help interface
designers build better interfaces for
displaying this procedural information. The
GOMS approach will be compared with other
methods of task analysis, including
psychological scaling techniques such as the
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Pathfinder algorithm
Schvaneveldt, 1988).

(McDonald &

Table 1
Methods of Increasing the Use of Analytical
Models in Interface Design

Demonstrate Design Improvements:
+ Validate model-based interface redesign.
« Validate model-based interface design.

= Validate predictive use of models to

evaluate preliminary designs.

+ Develop and validate models of complex
HCI tasks involving high-level cognitive
processes.

Meet the needs of individual designers:

+ Study the design methods and cognitive
processes of individual designers.

» Change the models and/or develop
training materials to ensure that models
fit in with designers methods and
cognitive processes.

Meet the needs of design organizations:

+ Make models' structure & outputs easily
interpretable.

* Develop means of training designers to
use models. Validate that this training
works and document the costs of
training.

» Document the time and monetary costs of
using models.
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ABSTRACT

Computer Workstations will control Space
Station Freedom systems and payloads. These
microgravity workstations will use direct
manipulation as the primary interface. They
significantly reduce the number of finite
actions required to operate a computer over
that for a command-line interface, thus
reducing errors and overall task completion
times.  This research addresses direct
manipulation interface (cursor-control device)
usability in microgravity. The data discussed
are from KC-135 flights and an STS-29
(shuttle) Detailed Test Objective (DTO).
Three commercially-available devices: an
optical mouse, a trackball and a post-mouse,
were chosen to begin investigating the best
characteristics required for an optimal
microgravity device. A text editing task was
performed aboard the KC-135 flights. This
included pointing and dragging movements
over a variety of angles and distances.
Detailed error and completion time data from
this task, as well as crew comments from the
DTO, provided us with information regarding
cursor control shape, selection button
arrangement, sensitivity, selection modes, and
considerations for future research.

INTRODUCTION

The Man-Systems Division at NASA-Johnson
Space Center (JSC) has an active research
program pursuing answers to questions about
Human Computer Interaction (HCI). This
research is currently being applied to the
design of the Space Station Freedom (SSF)
Workstations, as well as for the modification
of the Space Shuttle computer interface for
compatibility with the station.  Shuttle
experience shows that in 0-g, keyboard entry
of command line input proves to be a less than
optimal means of HCI. Because each astronaut
aboard the SSF will have to spend much of
his/her day interacting with a computer
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workstation, it is mandatory that the interface
maximizes the productive use of this valuable
time. A direct manipulation interface has been
determined to be the best choice in
microgravity because it reduces the number of
finite actions required to operate a computer,
thus reducing opportunities for error and
overall time to complete a task. One-g
research in the Human-Computer Interaction
Laboratory (HCIL) has concentrated on human
performance modeling with cursor control
devices (e.g., Gillan, Holden, Adam, Rudisill
& Magee, 1990).

The current research addresses the usability of
cursor control devices in microgravity aboard
the KC-135 and as part of a DTO aboard the
STS-29 shuttle flight. Due to the limited
availability of such flights, a representative
subset of available devices had to be selected
for evaluation. Devices which require
minimum "real estate” for operation and allow
highly accurate input are desirable for use in
the space station task environment. A survey
of current research shows that touch screens
and light pens provide for faster performance
than with a trackball or mouse; however, they
are less accurate due to parallax problems,
obstruction caused by placing the hand in front
of the screen, and the large resolution required
for touch activation. Touch technology is not
recommended for use under demanding
conditions or intensive use and where high
resolution is required (Whitfield, Ball & Bird
1983; Beringer & Peterson, 1985). The
trackball and mouse allow for the greatest
accuracy, with moderate speed, of
commercially-available off-the-shelf (COTS)
products (Brown, 1989). Also, a post-mouse
device called the Felix™ was selected because
it is about the size of a standard trackball, it
allows absolute cursor positioning by
movement of its post/entry button within a one
inch square.



KC-135 EVALUATIONS

The Reduced Gravity Program at NASA-JSC
owns and operates an experimental aircraft,
the KC-135, which simulates a "weightless”
environment similar to the environment of
space flight for test and training purposes.
The specially-modified turbojet transport flies
a parabolic arc to produce short periods of 0-g
lasting an average of 23 seconds (Williams,
1987) surrounded by a 2-g pull-up and a pull-
out. A flight consists of 40 parabolas.

In designing the task to be performed aboard
the aircraft, consideration was given to
produce a short, repeatable, though realistic
task. These characteristics were especially
important because: 1) It is not possible to
sustain perfect 0-g throughout the 23 seconds;
2) The operators require a few seconds to
physiologically adjust from the 2-g pull-up to
the free-floating condition; 3) Operator
discomfort /illness is not uncommon and often
causes the loss of the data from a few
parabolas. A text editing task was considered
to be realistic because it will be necessary
aboard the space station, it requires a great
deal of cursor movement and control, and
represents a task requiring high accuracy.
Text editing incorporates the three basic
cursor control actions, pointing, dragging, and
clicking. It was also determined that the task
could be completed approximately three times
per parabola.

The common features of the two KC-135
experiments will be presented here.
Additional details will be given in the

Procedures and Results & Discussion sections
specific to each experiment.

METHOD
Subjects

Two subjects were used in each experiment.

All were employed by Lockheed Engineering -

and Sciences Company (LESC). All were
experienced Macintosh and mouse users.

Apparatus, Stimuli, and Data Recording
Both experiments were conducted using a
standard Macintosh Plus with 1.0 MB of
memory and an external disk drive. The four
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control devices evaluated were a Macintosh
mechanical mouse, an A Plus™ Optical Mouse
with a reflective pad, a Turbo Mouse™
trackball and a Felix™ post-mouse. The
computer was mounted on an aluminum stand
which provided a worksurface for the use of
the cursor control devices. The trackball,
Felix™ and mouse pads were restrained with
velcro. Foot and waist restraints were used to
secure the subject while performing the task.
In practice trials aboard the aircraft, it became
apparent that during microgravity the ball of a
Macintosh mechanical mouse floated into the
housing, making it unusable. The
control/display ratio for the optical mouse and
trackball was set to the second slowest setting
for mouse sensitivity on the Macintosh control
panel. The Felix™ required that the tablet (or
very slow) setting was used.

The Apple software product, Hypercard™, was
used for presentation of the text editing task.
The stimuli included: 1) a two-line block of
text with a portion underlined (5, 14 and 26
characters ie., 1.4, 3.0, and 5.7 cm.
respectively); 2) a Select button which varied
in location among the four corners of the
display screen; 3) a NEXT button for user
selection of the next trial screen (see Figure 1).
The text block was located to produce three
different pointing distances with respect to
each Select button. Each of the 36 conditions
(three text selection lengths x three pointing
distances x four pointing angles) was presented
in a randomized order as a block of trials.
Each flight was composed of four sets of ten
parabolas.

|
! | \ Pointing Distance

|
Iy Text Object: Dragging Distance
[ L“‘“\\\\
Hi ve known whail A
meant? She couldnt read French

E=>

Figure 1. Elements of the basic display

.




A macro-recording program, Automac I[II™
(Genesis Software), was used to record a time
stamp and cursor location every time the
cursor control device select button was
depressed and every tick (one sixtieth of a
second) while it was depressed.

KC-135 EXPERIMENT 1
Procedure

Two subjects used each device twice during
four testing sessions which were held for
pretest, flight, and posttest conditions.
Sessions (1) and (2) each consisted of one
block of 36 text selection trials using one
device. Sessions (3) and (4) were composed of
two blocks of 36 trials, each performed with a
different device. The pre- and posttest sessions
were held over three consecutive days because

session (1) & (2) were combined. The flight
sessions were held over four consecutive days,
where sessions (1) & (2) consisted of only two
parabolas rather than four.

Results & Discussion

The trials in which subjects made incorrect
selections were eliminated for the examination
of movement times. With each device pointing
times by pointing distances were similar across
all gravity conditions. Dragging times for
each of the drag distances were also similar
across gravity conditions. However, it is
apparent that learning occurred due to the
decrease in overall selection times from pretest
to postest sessions. The learning effect
appeared to continue across the flight
conditions except that for the longest drag
target, 26 characters (5.7 cm), selection times,
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Figure 2. Drag times by selection length and device for Experiment 1
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collapsed across devices, were 8.7% slower in
0-g than the average of the 1-g trials. While
there was not a significant effect for device
used, in both the pointing and dragging
portions of the tasks for pretest, flight, and
posttest conditions, the optical mouse was
fastest (see Figure 2).

The error data presented in Figure 3 shows the
percentage of trials where the subject's
selection resulted in an (1) Error: the subject
made errors resulting in an incorrect selection,
(2) Overshoot: subject moved the cursor
from the leftmost character of the underlined
area (+/-.5 character) beyond the end of the
underlined area, but then moved back to the
end of the underlined area (+/-.5 character)
before releasing the mouse button, and (3)
Perfect selection: where the subject made a
perfect selection (+/-.5 character) at each end
of the underlined area. More errors occurred
in flight than in pre- or posttest. The greater
percentage of overshoots with the trackball and
the Felix™ may contribute to the somewhat
longer pointing and dragging times.

STS-29 DTO

The cursor control device evaluation flew as a
part of an engineering evaluation of a portable
computer to be used as a Payload General
Support Computer (PGSC) aboard the shuttle.

Subjects

The participants were the astronauts on the
STS-29 Shuttle crew. Each was familiarized
with the task before flight but was otherwise
unfamiliar with the mouse or trackball.

Apparatus

The evaluation was performed using a GRiD
1536™ Personal Computer with a 10 in.
diagonal blue LCD screen. The cursor control
devices evaluated were the MSC
Technologies™ optical mouse with reflective
pad and a PC-TRAC™ trackball. Velcro was
fastened to the back of the reflective pad and
trackball so that they could be affixed to the
cabin wall or the crewmember's pant leg
(thigh).
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Procedure

The crew was instructed on how to set up the
computer and cursor control devices. The
evaluation consisted of subjective comments on
a questionnaire after attempting specific point,
click and drag movements on displays from
existing software for the Shuttle Flight Data
File. The questionnaire asked the crew to
describe: (1) their body position while using
the device, (2) ease of use for each of the
devices with the point, click and drag
movements, and (3) suggestions for
modifications to the devices.

Results & Discussion

In all test cases the crewmembers were free
floating while using the devices.

The mouse was given a rating of 1 on a scale
of 10, were 10 indicates an excellent device. Tt
was considered very difficult to use aboard the
shuttle without a specially designed work
surface. The crew described it as "requiring
three hands” to operate. The trackball was
rated a 7 on the same 10 point scale. It was
used as a restraint by the crew in that they
could keep themselves from floating away
while using the device by holding on to the
device itself. This method of use suggests that
the input or click buttons, located on the top
face of the device with the ball, should be
located above rather than below the ball. This
allows for the user to grasp the trackball with
the thumb and ring finger while using the
index and middle fingers to manipulate the ball
and buttons.

The crew also suggested the incorporation of a
toggle mode for selection. This would allow
the user to click at the beginning of the text to
be selected, thus triggering a selection mode,
then move the ball and click at the end to
complete the selection. Currently the drag
mode of selection requires the user to hold
down the selection button while using the ball
to move the cursor to the end of the selection
area. Holding down a button while moving the
ball can be difficult, even in 1-g, depending on
the relative locations of the button and ball.



KC-135 EXPERIMENT 2
Procedure

This experiment compared the use of the
toggle selection mode suggested by the STS-29
crew with the typical Macintosh drag selection
mode. The trackball and the optical mouse
were used in each mode.

Two subjects practiced with each device in
each selection mode to steady state
performance prior to pretest data collection.
Pretest and posttest data collection sessions
were held for four days. Each day each
subject completed eight blocks of trials (i.e.,
two blocks with each device in each selection
mode).

Four flight sessions were planned but one was
lost due to computer problems. The design
allowed for each subject to perform two
blocks of trials using each device in one
selection mode per flight. On day two each
subject would use the selection mode they had
not used the day before. Similarly, on day
three they switched modes again. Because
during the last day no data was collected, each
device x mode condition was performed twice
by one subject and only once by the other. A
General Linear Model (GLM) statistical
analysis showed the subject effect was not
significant.

Results & Discussion

Contrary to the expectation that the toggle
selection mode would provide faster
performance, the drag mode proved to be
significantly faster as collapsed across all other
testing conditions (p < 0.05). Selection times

were not significantly different, though the
mouse was consistently faster in both drag and
toggle modes than the trackball (see Figure 4).

CONCLUSION

Direct manipulation performance is somewhat
slower and more error prone in microgravity
than in 1-g, even with sufficient restraint
mechanisms. Longer selections, greater than 5
cm, are most affected by microgravity.
Fifteen-inch diagonal displays have been
baselined for use aboard Space Station
Freedom. This current data shows that either
the interface must be designed to minimize
large selections or cursor controllers must be
further researched to improve performance
and accuracy.

The mouse has consistently provided for faster
text selection than the trackball or post-mouse.
The European Space Agency (ESA) has also
independently arrived at this same conclusion
(Gale, 1989). However, the mouse requires
greater real estate for operation (i.e., the
footprint of the control device) and requires
more elaborate restraint than does the
trackball. However, by increasing the gain
(the control/display ratio) the footprint of the
mouse can be substantially reduced. The
trackball allows for one-handed use and serves
as its own restraint for the resolution of input
forces in microgravity. More research needs
to be conducted which considers modifications
to the trackball to improve its performance.
Incorporation of the toggle mode of selection
was such an attempt. One-g research is
planned to evaluate the placement of selection
buttons on the trackball.
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Figure 4. Drag times by selection length and device for Experiment 2

586



A DTO planned to fly aboard STS-41 in
October 1990 will compare the 1.3 in.
trackball built into a Macintosh portable with a
new version of the Felix™. The new Felix™ is
expected to be less sensitive than the original
Felix™ used in Experiment 1.

A KC-135 flight planned for November 1990,
will evaluate various restraint mechanisms for
use with each of the two cursor control devices
McDonnell Douglas Space Systems Company
(MDSSC) has tentatively baselined for the
space station workstation. These devices are a
standard type trackball as well as a 1.5 in.
joystick mounted thumb-ball/trackball. These
designs will be further refined and evaluated
aboard a DTO planned for May 1991.

Variations of the control/display ratio, variable
gain designs, as well as double-click speeds
will be further researched to define
appropriate ranges for use in 0-g. Such
controls will be user selectable aboard the
space station for whatever device is chosen.
Practice to steady state performance in 0-g is
unfortunately impossible until the station is in
place. It would be difficult and unwise to
absolutely predefine these settings for all users.
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ABSTRACT

The Human-Computer Interaction
Laboratory (HCIL) at Johnson Space
Center (JSC), Houston is tasked with
being responsible for defining the
global Human-Computer Interface
(HCI) for Space Station Freedom.
This responsibility entails the early
definition of hardware and software

capabilities to support the HCI,
definition of requirements for
display developers and the

identification of stylistic guidelines
as well. The charter of the HCIL is
uniquely defined in that it supports
the applied development work
necessary for designing the
interface as well as applied research
that is necessary for influencing
design decisions. For the past two
years, the HCIL has been heavily
involved in prototyping and
prototype reviews in support of the
definition phase of the Freedom
program. On Space Station,

crewmembers will be interacting
with  multi-monitor workstations
where interaction with several

displays at one time will be common.
The HCIL has conducted several
experiments to begin to address
design issues for this complex
system. Experiments have dealt
with the design of ON/OFF indicators,
the movement of the cursor across
multiple monitors, and the
importance of various windowing
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capabilities for users performing
multiple tasks simultaneously.

INTRODUCTION

Space Station Freedom, scheduled to
be completed in the late-1990s, will
be equipped with one of the largest
and most sophisticated computer
systems ever placed in orbit.
Freedom's network of computers will
control and monitor thousands of
automated systems as well as
provide an interface to the crew for
the command and control of many
additional functions.

The importance of the Human-
Computer Interface (HCI) for Space
Station Freedom cannot be
underestimated; astronauts will
come to depend on the HCI for all
aspects of Space Station life
including controlling the onboard
environment and life support, the
conduct of experiments,
communication with earth and
emergency procedures. In fact, the
core HCl must be in place by First
Element Launch, since the computer
system will actually guide the
assembly of Freedom.



The level of automated monitoring
onboard is consistent with a typical
process control environment such as
that found in a nuclear power plant;

however, Freedom's onboard
environment is unique in that the
computer system will provide

extensive interactive capabilities as
well.  In fact, the interface will be
primarily a direct manipulation
interface where crewmembers can
use a cursor control device to
manipulate real objects (e.g., pumps)
by pointing and clicking. A command
language will be available (User
Interface Language (UIL)), but the
majority of a crewmembers work
will be accomplished using direct
manipulation. The complexity and
flexibility of a direct manipulation
interface, in combination with the
process control aspects of the
environment, constitute an
interesting challenge for HCI
designers.

SPACE STATION FREEDOM
DATA MANAGEMENT SYSTEM

Space Station Freedom's computer
system, called the Data Management
System (DMS), is a complex
distributed system composed of
nine workstations, each having
separate processors, connected via
a state-of-the-art fiber optics
network. The architecture of the
component systems is similar to an
IBM PS/2 Model 80 workstation,
providing capabilities such as
multitasking, color and gray scale,
windowing and onscreen video.
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PHASED HC! DEVELOPMENT
PROCESS FOR FREEDOM

The process of designing an HCI for
such a large, complex system must
involve a phased plan with Human
Factors input throughout planning,
development and production. The
team of HCI specialists at the
Human-Computer Interaction
Laboratory (HCIL) at Johnson Space
Center (JSC), Houston has been
tasked with providing that Human
Factors input to ensure that Space
Station Freedom has a safe and
usable HCI.

HC| development for Space Station
has been divided into three phases:
(1) Hardware and Software
architecture and requirements
definition

(2) Interface
review

(3) Integration and testing.

development and

The bulk of the HCI work has been
completed as part of Phase 1, the
Requirements Definition phase.
Phase 1 is coming to a close and
preparations are being made to
move into formal review and
usability testing that will occur in
Phase 2. Actual development of
hardware and software for Space
Station Freedom is beginning now.

CONSISTENCY IN DESIGN

One of the primary concerns of
Space Station HCI developers is the
need for consistency throughout the
hundreds of displays that will be
available for viewing onboard. There
are two primary means for achieving



this consistency: (1) the
development of interface
requirements and standards
documents in combination with a
Review board to ensure strict
compliance, and (2) the development
and mandated use of a display
builder toolkit (software) that will
enforce standards and requirements
by making available only acceptable
display options. For example, the
display builder toolkit will provide
one standard shape for a momentary
software button. This is the only
shape that will be available to the
developer. Likewise, the palette of
colors provided will contain only
sanctioned colors.

The goal of the HCI development
team during Phase 1 has been to
ensure that all of the hardware and
software requirements necessary
for providing a safe and usable HCI
are in place and officially baselined.
To accomplish this task, it was
necessary to identify as many design
issues and problems as possible
within a limited amount of time.

The most effective technique for
quickly identifying interface issues
is rapid prototype iteration. Once
issues have been demonstrated via a
prototype, design decisions can be
made or applied research can be
performed if necessary to select a
particular design.

ROLE OF PROTOTYPING IN SPACE
STATION FREEDOM HCI DESIGN

Prototyping in the HCI domain differs
somewhat from that done in other
disciplines.  In industrial settings,
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the term “prototype" usually implies
that there is an end product that will
be built. In HCI design, often times
the end product is merely a display
concept or idea for a method of
interaction. In fact, many of the
prototypes created in the HCIL do
not necessarily reflect detailed
technical information, but
demonstrate display concepts and
methods of interaction. Often times
a display containing realistic
technical details is not necessary to
demonstrate a single concept, and
thus it is most time efficient to
prototype only to the level of
realism necessary for the particular
goal. When required, the prototypes
progress into more mature phases
to include interactive capabilities,
realistic technical details and
possibly connection to a database or
network simulating realistic data.

PROTOTYPING TOOLS

Prototyping often begins as paper
and pencil sketches of system
components and relationships. Once
enough basic information is
available, a working prototype is put
together using a tool such as
Hypercard® (Apple) or Supercard®
(Silicon Beach). These tools are
excellent for rapid, interactive
highly graphical prototyping. Much
of the prototyping can be done
without programming. When
programming is necessary, English-
like languages are available with
these tools (Hypertalk® and
Supertalk® respectively) so that HCI
designers who are not programmers,
can, without much difficulty, build an
interactive prototype. If



capabilities are needed that are
beyond those available in Hypercard
and Supercard (e.g. more speed,
flexibility and connectivity), the
prototypes are recreated on more

sophisticated tools such as
Dataviews (V.l. Software) or
Scientific Software Intercomp's
Advanced Man-Machine Interface
(SAMMI).

THE DEVELOPMENT OF

GUIDELINES, REQUIREMENTS AND
STANDARDS

Initial development work on the HCI
began approximately three years
ago, before the prime Space Station
contract had been awarded. The HCIL
was tasked with providing an HCI

guidelines document for Space
Station Freedom. In order to
accomplish this task, a set of

representative Space Station tasks
was selected for task analysis and
prototyping. Performing task
analyses for tasks and systems
whose designs had often not been
completed was quite a challenge.
Nevertheless, a set of concept
prototypes based on the task
analyses was created to address
global HCI issues. Prototyping was
accomplished on a Macintosh using
Hypercard® software. Creating
these prototypes proved to be very
beneficial in raising technical issues
and testing out design ideas. it
provided a starting point for
identifying the kinds of concerns and
issues that needed to be addressed
in an HC! guidelines document. The
final product (Space Station
Freedom Program Human-Computer
Interface Guide Ver 2.1; USE 1000)
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was completed in May, 1988 and has
been distributed throughout the
Space Station Freedom program and
world-wide for use in interface
design.

Following the award of the Space
Station prime contract to McDonnell
Douglas Space Systems Company
(MDSSC), the need arose to develop
hardware and software requirements
and HCI style standards. Once again,
a cycle of prototype generation and
review proved to be very successful
for identifying necessary hardware
and software capabilities and issues
needing more work. To ensure that

all pertinent technical and
experiential viewpoints were
represented in the HCI design

solutions for Freedom, an HCI team
was formed consisting of
representatives from the HCIL,
MDSSC, Huntington Beach, CA (prime
contractor), Mission Operations
Directorate (MOD) , JSC, Houston and
the Astronaut Space Station Support
office, JSC, Houston. MDSSC created
an interface prototype and sent it to
the team at JSC for review and
comment. The group at JSC
independently and collectively
reviewed the prototype, compiling a
list of suggested changes and issues
needing resolution. Every two weeks
a teleconference was held so that all
HCI team members could discuss the
prototype and the suggestions. HCI
team members worked together on
almost a daily basis by phone or in
person to continue refining the
requirements definition. Once again,
the wuse of prototyping for
identification of software and
hardware requirements and
identification of major design issues



was very effective and time
efficient. It became clear through
prototyping that issues such as how
a crewmember navigates within a
very large  hierarchical system
displayed on three physical monitors
are very important and are much
more complex than they appear on
the surface. As major issues were
identified, each was approached
individually as a new concept to be
prototyped. Three documents are
the products of the HCI team's Phase
1 work: (1) detailed requirements
for the DMS User Support
Environment (software
requirements), (2) HCI standards
(design/style standards) and (3)
display examples (onboard).

THE ROLE OF RESEARCH IN HCI
DESIGN

Throughout all of the various
prototyping efforts undertaken in
the HCIL, design reviews have
identified problems and issues
needing empirical resolution. The
unique charter of the HCIL is such
that facilities and personnel are
available to do on-the-spot applied
research to answer design questions.
Because the HCIL performs phased
prototyping, questions raised early
in the prototype can be resolved
prior to the completion of the
prototype. Two examples of applied
research performed for the express
purpose of design resolution are
studies dealing with (1) indicators
and (2) multiscreen Issues.
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ON/OFF Indicator Study

A fairly early prototype of the
Power System for Space Station
Freedom employed the use of many
ON/OFF indicators. These indicators
were not controls, but were status
indicators for various components of
the system. The display technique
used to denote the active state of an
indicator was reverse video, which is
a commonly used equivalent code for
a hardware light. Many direct
manipulation interfaces that employ
the use of selections or mode
indicators, use reverse video to
denote the active or selected state.
During a preliminary design review
of the interface, several reviewers
commented that the active state as
coded, was ambiguous. In other

words, it was not clear whether a
series of indicators read "ON" or
"OFF". Although the majority of

reviewers reported that the coding
was clear, the possible serious
impact of ambiguous coding led to
the decision to perform a study. The
study evaluated confusability and
response time for subjects
reporting the state of an ON/OFF
indicator within a display similar to
that in the Power system prototype.
Several proposed designs were
compared, including reverse video,
check mark, reverse video with
check mark, color (cyan) and bold
frame. Half of the trials were shown
on a black background and half were
shown on a white background. The
effects of background color and
indicator type were not significant
for the response time measure. The
effects of background color and
indicator type on response
classification (i.e. whether subjects



responded "ON" or "OFF") were not
significant.  Thus, it appears that
while a few persons may have
trouble distinguishing the active
state when coded with reverse
video, empirical tests do not
indicate that this is a general
problem. This result enabled the HCI
team to proceed ahead with using
reverse video for coding, while
remaining aware that a consistent
method of coding active states will
be necessary to help users
generalize among displays. The
results are currently being written
up as a NASA Technical Report.

Multiscreen Studies

Space Station Freedom will provide
a workstation to crewmembers that
is equipped with three physical
display devices/monitors. The
workstations will include one
keyboard, one cursor control device
and one cursor. This configuration
has raised several major issues
centering around how crewmembers
will interact with multiscreen
systems.

During the prototype review cycle,
the issue of how a crewmember
would move the one cursor among
three monitors was raised. Several
methods were proposed: (1)
continuous cursor movement (i.e.,
one virtual display surface where the
cursor flows smoothly among
monitors), (2) a direct, single action
method of moving the cursor among
the monitors, such as with fixed
function keystrokes, clicks on a
software button or the depression of
a programmable display pushbutton
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(3) a cyclic method involving the

cycling of the cursor in a
predetermined (e.g., counter-
clockwise) direction by means of

repeated fixed function keystrokes,
repeated clicks on a software
button, repeated depression of a
programmable display pushbutton or
the repeated double clicking of the
selection button on a cursor control
device. The HCIL has designed an
experiment to compare these seven
separate methods. Subjects will use
each of these methods to perform
tasks requiring keyboard entry or
tasks requiring control device entry.
Each method of cursor movement has
advantages and disadvantages. The
primary purpose of the empirical
study will be to determine which
cursor movement methods are the
least disruptive to the primary task
at hand. The study will be completed
this summer and written up as a
NASA Technical Report. Preliminary
review by several astronauts
reveals a preference for the direct
address fixed function key method
where a function key is associated
with a particular monitor.
Astronauts expressed an interest in
the continuous flow method, but
there were many concerns about
accidental movement of the cursor
and subsequent unintended clicks or
typing within the wrong monitor.

Additional work is ongoing in the
area of user multitasking. One of the
first experiments deals with the
importance of windowing
capabilities for a user performing
one, two or four simultaneous tasks.
This experiment will be conducted
on a single monitor as well as a
multi-monitor system and the



results will be formally written up at
completion.

CONCLUSIONS

Developing the HCI for Space Station
Freedom is a challenging task and
one that requires the coordinated
efforts of many organizations. The
HCIL is completing it's role as the
lead during the architecture and
requirements definition phase. As
we move toward actual design, the
HCIL will take on a new role to: (1)
ensure that completed interfaces
are compliant with the Standards
document and (2) conduct usability
testing to ensure that the interfaces
are safe, usable and technically and
operationally correct. As new issues
arise in development, the HCIL will
continue to use rapid prototyping as

a means of quickly demonstrating

several alternate design solutions
and will conduct research as
necessary to select the best design
solutions. The work ahead will take
several years to complete and there
are’ many issues yet to be solved.
The early human factors input
provided by the HCIL at JSC is
helping to ensure that crewmembers
onboard will be able to do their jobs
safely, comfortably and with ease as
they interface with the computer
system onboard Space Station
Freedom.
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ABSTRACT

Many of the tasks the crew of a spacecraft must
perform during a mission are recorded as crew
procedures - step-by-step instructions
describing how to perform the tasks.
Currently, these crew procedures are created
and carried into space in large paper notebooks.
In the future, however, these procedures will be
authored, edited, and performed using
computer-based systems. This paper describes a
research project that uses human factors and
computer systems knowledge to explore and
help guide the design and creation of an
effective Human-Computer Interface (HCI) for
spacecraft crew procedures; this HCI is an
important component in an effective computer-
based procedure system. By having a computer
system behind the user interface it is possible to
have increased procedure automation, related
system monitoring, and personalized annotation
and help facilities. The research project
includes the development of computer-based
procedure system HCI prototypes and a testbed
for experiments that measure the effectiveness
of HCI alternatives in order to make design
recommendations; the testbed will include a
system for procedure authoring, editing,
training, and execution. Progress on
developing HCI prototypes for a middeck
experiment performed on Space Shuttle mission
STS-34 and for upcoming medical experiments
are discussed. The status of the experimental
testbed is also discussed. Future implications
and issues of computer-based procedure systems
will be discussed including the effect on users’
cognitive workload, system versus user task
allocation, and system adaptability to changing
procedural environments.
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INTRODUCTION

Large volumes of paper are launched with each
Space Shuttle mission that contain step-by-step
instructions for various activities that are to be
performed by the crew during the mission.
These instructions include normal operational
procedures and malfunction or contingency
procedures and are collectively known as the
Flight Data File, or FDF. An example of
nominal procedures would be those used in the
deployment of a satellite from the Space Shuttle;
a malfunction procedure would describe actions
to be taken if a specific problem developed
during the deployment.

A new Flight Data File and associated system is
being created for Space Station Freedom. The
system will be called the Space Station Flight
Data File, or SFDF. NASA has determined that
the SFDF will be computer-based rather than
paper-based for reasons including the
following:

+ The long duration of the Space Station
program precludes one-time launch of all
crew procedures.

« Repeated launch of crew procedure

segments is not cost effective, since each

“ pound of launch weight costs
approximately $20,000.

o Large amounts of manual effort are
required to create, edit, and maintain
paper-based crew procedures.

«  Changes made after procedure printing
require annotation of each individual copy,
a time-consuming and error-prone
process.

« The time involved in implementing and
delivering approved Space Station crew



procedure changes or updates in a paper-
based system would be significant,
including scheduling of resources on a
Space Shuttle flight.

The main components of interest in a Human-
Computer Interface (HCI) include the
information available on the screen at any given
time, how to change the quantity or content of
the information present on the screen, how the
information is organized, and how the user
interacts with the displayed information.
Designing an effective HCI is an important step
in developing a viable computer-based crew
procedure system for reasons including the
following:

»  An effective HCI will allow faster, more
accurate crew interaction with spacecraft
crew procedure systems.

» The HCI will facilitate the crew's
monitoring of other spacecraft computer
systems while performing crew
procedures.

* The HCI will allow the crew to easily
verify procedure steps performed by the
computer system as procedure automation
increases.

+ A context- and user-sensitive help and
annotation system within the HCI will
allow the user to rapidly and efficiently
access this type of information while
performing the procedures.

«  The effective HCI will provide rapid, easy
access to required supporting information
such as procedure reference items.

¢ The development of a standard HCI across
all crew procedures will lessen the amount
of cross-training required for different
types of procedures and will thus lessen the
amount of errors made during procedures.

The research project described in this paper
uses human factors and computer systems
knowledge to explore and help guide the design
and creation of an effective HCI for computer-
based spacecraft crew procedure systems. The
research project includes the development of
computer-based procedure system HCI
prototypes and a testbed including a system for
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procedure authoring, editing, training, and
execution to be used for experiments that
measure the effectiveness of HCI alternatives in
order to make design recommendations.

CREW PROCEDURE
TASKS AND USERS

Many different tasks are required to create and
maintain a spacecraft crew procedure system.
Procedures must be created by personnel
familiar with the tasks in question and by
procedure authors and editors. The crew
responsible for performing the procedures must
be trained in how to use the procedures.
Training crew personnel to be familiar with
off-nominal procedures is also required so the
procedures can be used quickly and effectively
if needed during a mission. The actual
performance of the procedure during the
mission is an important task, including
assistance and adaptation to changing conditions
if necessary. If a procedure is used repeatedly
during one or more missions, changes to the
procedure may be required to correct
inefficiencies or errors, and current versions of
such procedures must be maintained and
distributed to all appropriate personnel.

Personnel groups responsible for specific crew
procedure tasks represent different user groups
of the crew procedure system. Procedure
authors create the procedures, assuring that they
correctly describe the work to be performed
and that they conform to a standard procedural
format (e.g. FDF or SFDF); they are also
involved in scheduling procedures during a
mission to create mission plans and crew
member short-term plans. Authors may also
work with individual payload specialists or
experimental scientists. Trainers review the
procedures with the crew members who will
perform the tasks; comments or problems with
procedure details or clarity are reported to
procedure authors or editors for correction.
Crew members are involved with actual
procedure performance, training, and
correction or editing if required. Mission
control personnel assist in scheduling
procedures, working with the crew during the
mission, and in monitoring the mission plan and
short-term plans. Experimental investigators
and payload specialists are involved in creation



and execution of those procedures relevant to
their experiment or payload. Procedure editors
are also responsible for updating and
distributing required procedure changes found
during training or execution.

An effective computer-based procedure system,
and an effective HCI to this system, must take
into account the full range of tasks and users of
the procedure system. In particular, a common
interface that can be created by authors and used
by trainers, crew members, and mission control
personnel will contribute to faster, more
accurate interaction with crew procedures.

PROJECT GOALS

The ultimate goal of the current research is to
create HCI design guidelines that can be used for
spacecraft crew procedures and other computer
systems that display procedural information to
procedure users. These guidelines should lead
to faster, more accurate user interaction with
procedural information on a computer.

The first step in the project is a review of
available literature on computer presentation of
procedural material and the evaluation of the
current paper-based FDF procedure system for
Space Shuttle. With this information, key issues
are identified and their role in the research
outlined. Using background information and
human factors and computer system knowledge,
alternative interfaces are created via prototypes.
These prototypes are then evaluated by the
various users of crew procedures listed above.
Experiments are then performed using different
presentation and interaction techniques; these
experiments provide specific data on the
relative speed and accuracy of procedure tasks
using different interfaces. Comments from
prototypes and results and conclusions from
interface experiments are then compiled into
human-computer interface guidelines for
presentation and interaction with spacecraft
crew procedures.

CREW PROCEDURE ISSUES

There are both advantages and disadvantages of
moving from a paper-based to a computer-
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based crew procedure system. The current
research project addresses these issues as they
relate to the human-computer interface of the
system. Advantages of using a computer will be
utilized while disadvantages will be addressed
and minimized.

Computer Advantages

Having a computer system behind the interface
to a crew procedure system offers many
advantages. By monitoring related onboard
systems, the computer system can automatically
perform many procedure steps that require
simple status verification (e.g. "Check that
switch F6 is ON™), thus reducing the time
required to perform the procedure. A training
mode is now feasible so that the crew member
can practice using the procedure in exactly its
final form with the exception that system actions
are not actually performed; training and
execution modes for the same procedure will
increase the effectiveness of training. Personal
annotation files can be attached to each
procedure, thus allowing each crew member to
create and refer to individual notes during both
training and execution of procedures; these
notes will be available whenever and wherever
the crew member uses the procedure. The
computer-based procedure system can
coordinate with other spacecraft computer
systems, providing easier transitions to and
from other systems. The computer-based help
system can adapt to both the user of the
procedure and the context in which the
procedure is being performed. The amount of
detail (i.e. the prompt level) of the procedure
can change for different users and situations.
Finally, expert systems can be integrated into
the procedure system, thus providing a more
intelligent interface to crew procedures.

Computer Disadvantages

When procedural information is presented on a
computer screen, the context of the information
presented typically seems more limited than
with a page of paper, although the actual amount
of information present on a computer screen
may or may not be smaller. There is less
context information on where the current



screen of information fits into the overall
system; in a book, the location of the page in the
overall book is an example of available context
data. This issue will be addressed in the HCI to
the computer-based system by generating and
evaluating ideas to provide additional context
information (e.g. screen number, screen
position in overall outline, etc.).

In a complex computer system such as the
onboard Data Management System (DMS) for
Space Station Freedom, many levels of
subsystems are present. The inability to rapidly
navigate among the systems and subsystems can
be a serious detriment to overall performance.
This issue will be addressed in the HCI to the
computer-based system by generating and
evaluating ideas to provide information on
current position within the system hierarchy
and to provide tools to rapidly and directly
move between subsystems either during or after
a computer task.

RESEARCH FOUNDATIONS

Initially, a review of NASA literature on
computer presentation of procedural
information was completed. Information on
work performed at MITRE for the Procedure
Formatting System (PFS) project was reviewed
and prototypes were viewed (Johns 1987 and
1988, Kelly 1988). Previous research in the
Human-Computer Interaction Laboratory
(HCIL) of the NASA Johnson Space Center was
reviewed, and results from experiments on
procedure context and format (Desaulniers,
Gillan, and Rudisill 1988 and 1989) will be
incorporated into the current research project.
Coordination is in progress with the Mission
Operations Directorate (MOD) at the NASA
Johnson Space Center, as described below.

PROJECT STATUS
Current Project Prototypes

Prototype development is in progress for two
Space Shuttle experiments. The procedures
were selected for prototyping due to their
similarity to typical research that will be
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conducted on Space Station Freedom since
Space Station procedures are not yet available.
The two prototypes will also use different HCI
approaches.

The first system is a computer-based prototype
of a middeck experiment, Polymer Morphology
(PM), that was performed on Space Shuttle
mission STS-34. The PM experiment consists
of four procedures (setup, sequence initiation,
sample check, and stowage) and six procedure
reference items (interconnection overview,
keystroke definitions, window definitions,
notebook, sequences, and worksheets). The
prototype is created within the framework of
the Space Station basic screen layout being
developed by the NASA/McDonnell Douglas
HCI development team. Included in this
prototype is an initial version of an Interface
Navigation Tool developed at the HCIL that is
currently being reviewed by the HCI team.
Initial versions of the six reference items have
been created. Development of the interface for
the four procedures is in progress.

The second system is a computer-based
prototype of an expert system for medical
experiments to be performed on two upcoming
Space Shuttle missions. The system, Principal
Investigator in a Box, or [PI], will include an
expert system. The motivation for this medical
expert system is to provide the capability to
perform medical experiments with minimum
ground control or support. A separate HCIL
research project is in progress to study the
interface as it relates to the expert system, and
this research will be coordinated with the
current research which examines the same
interface from the viewpoint of presentation of
the procedures. The [PI] interface is being
modified for the Space Station basic screen
layout and will be evaluated as an alternative
HCI design for crew procedures.

Current Project Experiments

As discussed above, the current procedures
research will include the performance of
experiments to gather specific data to support
HCI guidelines for computer presentation of
procedures. These experiments will begin as
specific questions arise from the creation and
analysis of HCI prototypes. The experiments



will use subjective comments and speed and
accuracy measurements to provide data for
comparing different HCI alternatives. The
experimental testbed will include a system for
procedure authoring, editing, training, and
execution that will allow HCI alternatives to be
easily generated and compared.

COOPERATIVE WORK

In addition to continuing work with the MITRE
PFS system, two cooperative projects with the
NASA Johnson Space Center Mission
Operations Directorate (MOD) are in the
planning stages. Research will be performed in
the HCIL to assist MOD in creating procedure
standards for SFDF. Studies and experiments
will be performed to provide human factors
input into the standards created. Also,
procedure authoring and execution software
being developed within MOD will be evaluated
from a human factors and HCI perspective.

FUTURE RESEARCH ISSUES

The current research project will continue to
explore human factors issues relevant to the
interface to electronic spacecraft crew
procedures. The effect on the cognitive
workload of the procedure users will be
examined, with the goal of reducing this
workload through automation. The allocation
of procedure tasks between the user and the
computer system will also be examined.
Creating an interface that is adaptable to
changing environments will be explored,
including the method and user aids available
during interruption and resumption of
procedures. Research will also be performed
on the use of the same computer interface
during both training and execution of
procedures.

CONCLUSION

Spacecraft crew procedures are increasingly
being computerized, as in NASA's Space Station
Freedom program. The human interface to
these computer-based crew procedure systems
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is an important component, and research into
improving the interface will provide faster and
more accurate human interaction with the
computer. The current research project uses
prototypes and experiments to explore and help
guide the design and creation of the human-
computer interface for spacecraft crew
procedure systems such as the Space Station.
Prototype and experiment development is
currently in progress. Issues relevant to human
interaction with procedures will continue to be
researched within the HCIL and in cooperation
with other crew procedures researchers and
developers.

LIST OF ACRONYMS

DMS  Data Management System onboard
Space Station Freedom

FDF Flight Data File (Space Shuttle)

HC Human-Computer Interface

HCIL  Human-Computer Interaction
Laboratory

MOD  Mission Operations Directorate

PES Procedure Formatting System from
MITRE

PM Polymer Morphology experiment of
STS-34

SFDF  Space Station Flight Data File
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ABSTRACT

Both NASA and DoD have had a long standing
interest in teamwork, distributed decision making
and automation. While research on these topics
has often been pursued independently, it is
becoming increasingly clear that the integration of
social, cognitive and human engineering principles
will be necessary to meet the challenges of highly
sophisticated scientific and military programs of the
future. Images of human/intelligent-machine
electronic collaboration were drawn from NASA
and Air Force reports as well as from other sources.
Areas of common concem were highlighted. The
report ends with a description of the author's
research program testing a "psychological
distancing” mode! of electronic media effects

and human/expert system collaboration.

INTRODUCTION

Corporate as well as military decision makers have
become increasingly dependent upon electronic
media for information gathering and transmission.
Groups whose members are separated by
geographic barriers would find it difficult to function
effectively without using telecommunication networks
to coordinate their activities. Likewise, decision
makers have also bacome increasingly dependent
upon electronic machine aides for integrating and
displaying complex data. Without the use of
computers, many military, industrial and scientific
projects would simply come to a halt.

Concern for the speedy integration of electronic
media, remote sensing and computing led the
National Science Foundation (NSF) to recently
initiate a program dealing with "coordination
theory and technology.” According to one NSF
report calling for the establishment of a "National
Collaboratory,” {Lederberg & Uncapher,1989),
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some of the most pressing challenges facing the
United States and the world can only be met through
remote interaction with instruments, colleagues and
data. The term "electronic collaboration” used in the
title of the present report was chosen to reflect this
general idea. Specifically, electronic collaboration
involves linking two or more intelligent entities via
electronic media to facilitate coordination and
cooperation in performing a joint task. The
"intelligent entities” included in this definition can

be humans, intelligent machines, or a combination
of the two.

The relevance of "electronic collaboration” to the
Air Force/NASA Space Operations, Applications
and Research (S.0.A.R.) conference will be made
evident by pursuing three primary themes:

1. NASA and the Air Force have areas
of common concern regarding
human-intelligent machine interaction

2. Communication between humans over
electronic media can be used as a
model for studying human-intelligent
machine interactions.

3. The social psychological study of
human-to-human and
human-machine interactions can
contribute to the development of
future NASA and Air Force systems.

AREAS OF COMMON CONCERN

Interacting with Intelligent Machines. During
the summer of 1983, NASA sponsored a summer
workshop, managed by Ames Research Center,
entitied "Autonomy and the Human Element in
Space.” The workshop brought together a group
of 18 university professors from institutions
throughout the United States, representing such
fields as physics, psychology, chemical and



industrial engineering, urban ecology and

environmental planning, business and management,

anthropology, and computer sciences. The purpose
of the 10 week workshop was to study "autonomy” in
space and it's role in an evolving, permanent extra-
terrestrial human presence. The Office of
Aeronautics and Space Technology (OAST) wanted

to collect ideas about the relationship of humans and

intelligent machines within the context of a future
space station. The ambiguity in the title of the
workshop, however, lead to more ideas than had
originally been anticipated. For the engineers in
the group, autonomy clearly meant "automation”;
the social scientists in the group interpreted
autonomy in terms of the relative "freedom” of the
crew; the management professors saw autonomy
in terms of the location of organizational "control".
in their final report (Johnson, Bershader & Leifer,
1985), the group settled on a three dimensional
model of autonomy that incorporated all of these
ideas. Thus, the group reviewed the literature
regarding the partioning of tasks between humans
and machines (automation). They looked at
situations involving humans managing machines
and machines directing human activity (locus of
control). They also looked at the relative merits
of ground-based versus station-based control

of operations (locale of control) and the
communication systems needed to support both.

Jumping ahead five years, a recent international
conference, co-sponsored by the U.S. Air Force,
entitled, "The Human-Electronic Crew: Can They
Work Together?" reflects current thinking regarding
the cockpit of the future. A sampling of topics
discussed at the conference (Emerson, Reising,
Taylor & Reinecke, 1989) included:

1. Implications for the design process of
the human electronic crew concept

2. Trust and awareness in human-electronic
crew teamwork

3. Pilot vehicle interface management

4. Getting ready to team with an
electronic copilot

5. Levels of autonomy in a tactical
electronic crewmember

6. The pilots associate: Today tomorrow

As these conference topics suggest, many
of the issues studied by the NASA group regarding

the collaboration of intelligent machines with humans

in a space station context are now being address by
the Air Force within the context of highly automated
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aircraft. How should tasks be allocated between
humans and machines? When should an intelligent
machine be allowed to “take over” the controls of an
aircraft? How can trust be established between
humans and intelligent machines?

Coping with the Information Glut. On yet
another front, a recent article in Science magazine
(Waldrop, 1990), was entitled, "Learning to Drink
from a Fire Hose." The analogy of drinking from a
fire hose has been used by human factors specialists
describing the condition of a fighter pilot attempting
to monitor all the displays that have been provided
within sophisticated fighter aircraft. The phrase aiso
appears appropriate for describing the condition of
command post personnel who must monitor and
integrate vast amounts of intelligence and sensor
data or for describing mission control console
operators who must similarly monitor multiple system
functions in order to insure a safe and successful
space flight mission. Interestingly, the Science
article dealt with none of these situations, but
described instead the plight of earth bound scientists
attempting to cope with the ever increasing amounts
of data from large interdisciplinary projects such as
global change, biomedical research and astronomy.
As the complexity of our machines and organizations
increases we are faced with an increasing glut

of information that often needs to be processed

in real time. How can this be accomplished?

THE TEAM APPROACH: ELECTRONIC
COLLABORATION BETWEEN PEOPLE
AND MACHINES

When task demands exceed the capabilities of a
single individual, one approach to getting the job
done has been to divide the task among several
individuals to form a team. This is the basic idea
behind the multiperson airline crew, shuttle crew or
command post team. Each person specializes In a
particular subtask, attends to information relevant to
that subtask and communicates with other team
members as needed to maintain coordination. The
performance of the team would be expected to vary
as a function of the individual team members'
capabilities, the quality of the information they
receive and the degree of coordination among team
members. Coordination and cooperation is
facilitated by appropriate communication between
team members.



There has been an extensive body of research
developed dealing with groups and teams (Steiner,
1972; Dyer, 1984; McGrath, 1984). Howavaer, this
research has traditionally studied groups in face-to-
face settings. There has been relatively little work
done on groups whose members are gecgraphically
dispersed and must depend upon electronic media
to function effectively (Short, Williams & Christie,
1976; Johansen, Vallee & Spangler, 1979). Virtually
unstudied are groups whose members include one
or more intelligent machines that can automatically
respond to events without human intervention
(Wellens & McNeese, 1987).

Electronic Media. In order to provide a framework
within which to study the effects of electronic
telecommunication media upon group processes,
Wellens (1986) reviewed the telecommunications
literature and proposed a "psychological distancing”
model of telecommunication effects. The model
predicts increased feelings of psychological
closeness (and thus, increased liking, cohesion and
cooperation) between individuals as the
communication bandwidth (defined in terms of the
amount and kind of information exchanged) linking
them increases. Thus, an information lean medium
like electronic mail would engender more feelings of
remoteness between tele-interactants than would an
information rich medium like two-way television.

Electronic Partners. The concept of an intelligent
machine partner has recently come into vogue both
within the military and civilian communities. An early
example was the robot A2D2 from the Star Wars
film series who projected a friendly image of an
intelligent machine assistant. Interestingly, the
image of this fictional robot was used as an unofficial
mascot within both the NASA and Air Force-
sponsored workshops previously cited. In

a more recent promotional video, Apple Computer
Company introduced the idea of the "Knowledge
Navigator" (see Brower, 1988). In the video a
professor interacted with an artificially intelligent
humanold that appeared on a computer screen.

This "user agent” helped the professor with phone
messages, lecture notes and communication with

a colleague over a video telephone. Within a few
months of the video's release, an enterprising
software company introduced an animated "alking
head" that looked like the bow-tied character
depicted in the Apple video (see 31 Jan 1989
MacWeek). Similar fictionalized characters have
appeared for public consumption in popular
television programs (e.g., Max Headroom ).
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The appeal of an intelligent machine assistant
appears to center upon the desired ability to quickly
assemble information and respond autonomously
when needed while remaining subservient and self-
sacrificing toward humans. While reality has not
quite caught up with fiction, several projects are
attempting to close the gap. For example, the idea
of "knowbots" (autonomous software modules) that
inhabit computer networks to aid human users has
been seriously proposed and is in the early stages
of development (Waldrop, 1990). Similarly, the
"pilot's associate” research and development
program (Small, Lizza & Zenyuh, 1989), funded

in part by DARPA, is an ongoing project with a
projected completion date of 1992. The objective
of both programs is to develop one or more

collect and integrate farge amounts of information
in real time. The "knowbots" will fuse and present
data in interpretable formats for human users while
the pilot's associate will go one step further by
potentially taking over certain aspects of mission
planning and flight control in future fighter aircraft.

With these and other projects expanding the
boundaries of artificial intelligence, Wellens and
McNeese (1987) recently called for research into
the "social psychology” of intelligent machines.
The interaction of humans with artificially intelligent
machines was seen as a new form of dynamic
social interaction. These authors recommended
an interdisciplinary approach for understanding
the impact of machine intelligence upon human
cognitive, emotional and behavioral functioning
that would take a social psychological perspective.

AN INTEGRATIVE RESEARCH APPROACH

In an attempt to assess the utility of applying social
psychological principles to the study of human-
intelligent machine interactions, the present author
availed himself of a unique opportunity to pursue

a collaborative research project as an AFOSR/URRP
Visiting Scientist at the Armstrong Aerospace
Medical Research Laboratory (AAMRL), Wright-
Patterson Air Force Base, Ohio. The results of this
two-year effort are contained within a recently
released report entitled "Assessing Multi-Person
and Person-Machine Distributed Decision Making
Using an Extended Psychological Distancing Model”
(Wellens, 1990). The report relates findings
associated with human-to-human tele-interaction
with human-machine interaction. This was
accomplished within a research paradigm that



capitalized upon the natural filtering that occurs
when humans communicate with each other

over telecommunication devices. Within a
telecommunications context messages can be
digitized, quantified and potentially duplicated by
computer. As the bandwidth used to connect
humans decreases and the data processing
capabilities of machines increases, the distinction
between human and machine messaging becomes
increasingly blurred. (See Brody, 1983, for
advances in teleconferencing bandwidth
compression techniques and Bolt, 1980, for
advances in expanding human-machine interfacing.)
By extending the "psychological distancing” model
described earlier in this report to include both
human-to-human and human-machine interactions,
predictions were made regarding the effects of
bandwidth expansion or compression upon group
functioning. Thus, as the communication bandwidth
between intelligent entities was increased it was
anticipated that information would flow more easily,
increased trust and liking would develop and
collaborative performance would increase. These
ideas were empirically tested within a specially
designed media laboratory developed within the C3
Operator Performance Engineering (COPE) project
at AAMRL.

Two experiments were conducted that systematically
varied the kind of telecommunication channels used
to link human or machine "analysts™ engaged in a
situation assessment and resource allocation task
(see Wellens & Ergener, 1988, for a complete
description of the task). The workstation used by
subjects who participated in the experiments
consisted of a color television monitor equipped
with a touch screen and placed adjacent to a table-
top communication console. The console contained
a two-way television monitor connected to an
adjacent control room that allowed either (1) full
motion color television images accompanied by
voice communication (2) voice only communication
or (3) electronic mail messages to be passed
between pairs of collaborating team membaers.

Within the first experiment 40 pairs of human
subjects were randomly assigned to one of the
three communication situations described above
or to a no communication control condition.
Records were kept of all messages exchanged
between partners as well as their overall
performance on the task. Post experimental
questionnaires were used to measure subjects’
impressions of their parnners, their level of situation
awareness during the task and their satisfaction
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with the communication channels provided. Results
generally supported the psychological distancing
model in that the number of words exchanged
between individuals significantly increased with
communication bandwidth as did subjects’
impressions of felt teamness, trust and liking.
Unexpectedly, situation assessment information
increased only slightly as communication bandwidth
increased and actually decreased for some subjects
as the communication demands of the task
competed for attention. While subjects’ satisfaction
with the communication link increased with
manipulated bandwidth, their overall performance
on the task increased only slightly.

Within the second experiment the same workstation
arrangement was used to connect human analysts
with an "electronic partner." The electronic partner
was an expert system equipped with a messaging
system that displayed either a "talking head" capable
of delivering self-initiated voice messages that were
accompanied by an animated computer-generated
face or sent written messages via an electronic mail
system. Eighteen subjects were exposed to each of
the two messaging conditions described as well as
a no communication control condition while
participating in a variation of the situation
assessment and resource allocation problem used
in the first experiment. Results showed increased
ratings of trust, liking and teamness between the no
communication control condition and the two
messaging conditions. However, no significant
differences were found between the two messaging
conditions. This same pattern of results was found
for the performance and situation awareness
measures. Apparently, the content of the expert
system's messages, which did not vary between
the talking head and electronic mail conditions,
was sufficient for subjects to coordinate thelr actions
relative to their resource allocation responsibilities.
Subjects reported liking the voice aspect of the
tatking head condition In that they could listen to
messages without having to look away from their
primary task monitors. Conversely, the written
messages were seen as more easily understood,
but required looking away from their primary task
monitors to read.

The results of these two experiments suggest that
providing even a minimal communication link
between humans or between humans and intelligent
machines will tend to increase felt teamness,
cooperation and performance. A present, however,
increasing the bandwidth beyond that which is
minimally necessary for task accomplishment



increases performance only marginally. When

there is some "depth" to the intelligent entities being
connected (as is the case with most human subjects),
increasing bandwidth generally leads to increased
communication activity which may in turn lead to
increased trust and cohesion. However, the time
taken away from primary duties to engage in
conversation may temporarily reduce attention
toward other task responsibilities.

Contrasting human-to-human interactions with
human-machine collaboration painted a somewhat
different picture. The expert system used in the
present experiment mechanically issued messages
when they were required by the task, but was
otherwise a "dull" partner. Until intelligent machines
acquire more "depth” and improve their "social skills,
it is unlikely that humans will take the time to "chat”
with them, especially when they are under pressure
to perform well on other aspects of a task. For now it
would appear that having task information presented
in an easily understood fashion is more important
than having it delivered by a humanoid persona.

SUMMARY AND CONCLUSIONS

This report began by pointing out that the Air
Force and NASA have both had interests in
human-intelligent machine interaction, decision
making and team performance. Images of
"electronic partners” who could work collaboratively
with humans to reduce information overload and
improve task performance were drawn from science
fiction themes as well as from ongoing research
programs. A research approach was described
that used a telecommunications context to study
both human-to-human and human-machine
interaction, Predictions based on a psychological
distancing mode! of telecommunications effects
were supported when humans were linked
electronically to other humans. Reported feelings
of teamness, liking and trust increased as the
bandwidth of communication increased. Howaever,
predictions regarding improved group situation
awareness and team performance received only
partial support. For humans linked electronically
to a message generating expert system, it was
found that increasing the bandwidth of
communication beyond that minimally needed for
successful task accomplishment had little effect.
However, feelings of teamnass, liking and trust,

as well as task performance were all significantly
higher in the two communication conditions
examined than when no messages were sent by
the expert system.
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By taking a social psychological perspective when
studying human-machine interaction, investigators
must not only view the interactive role of intelligent
machines in a new light, but also rethink assumptions
regarding human-to-human collaboration. When
attempting to optimize human-to-human collaboration
via telecommunication interfacing one quickly
discovers what is essential for successful task
accomplishment and what additional factors influence
group cohesiveness. As computer power increases
and advances are made in providing expert systems
with more "social skills," informed decisions will need
to be made regarding the degree of bonding desired
between humans and their electronic partners. It is
hoped that the ideas presented in this report will be
useful in making these decisions.

ACKNOWLEDGMENTS

The author wishes to thank the Air Force Office of
Scientific Research, University Resident Research
Program, for sponsoring the research described in
this report. Thanks are also extended to the
Armstrong Aerospace Medical Research Laboratory,
Human Engineering Division, for hosting the project
over its two year duration. The author would also
like to acknowledge the help of Mr. Mike McNeese
in locating reports dealing with the Pilot's Associate
program and sharing his insights into collaborative
problem solving processes.

REFERENCES

Bolt, R. {1980). Put-that-there: Voice and gesture
at the graphics interface. Proceedings of the
SIGGRAPH '80 Conference, Computer Graphics,
14 (3), 262-270.

Brody, H. (1983). Reach out and see someone.
High Technology, 3 (8), 53-59.

Brower, E. (1988). Knowledge navigator draws
fire: Viewers react to Apple video. MacWeek, 6
December, p. 3.

Dyer, J. (1984). Team research and team training:
A state-of-the-art review. In F.A. Muckler (Ed.),
Human Factors Review. Santa Monica, CA: The
Human Factors Society, Inc.

Emerson, J., Reising, J., Taylor, R. M., & Reinecke, M.
(1989). The human-electronic crew: Can they work
together? WRDC-TR-89-7008, Conference
Proceedings, Ingolstadt, Federal Republic of
Germany, 18-22 September, 1988.



Johansen, R., Vailee, J., & Spangler, K. (1979).
Electronic meetings: Technical alternatives and
social choices. Reading, Mass.: Addison-Wesley
Publishing.

Johnson, R. D., Bershader, D., & Leifer, L. (1985).
Autonomy and the human element in space. Final
Report of the 1983 NASA/ASEE Summer Faculty
Workshop, Stanford University, 20 June - 26 August,
1983.

Lederberg, J. & Uncapher, K. (1989). Towards
a national collaboratory: Report of an Invitational

Workshop. Rockefeller University, 13-15 March, 1989.

McGrath, J. E. (1984). Groups: Interaction and
performance. Englewood Cliffs, N.J.: Prentice-Hall,
Inc.

Shon, J., Williams, E., & Christie, B. (1976). The
social psychology of telecommunications. New
York: John Wiley & Sons.

Small, R. L., Lizza, C. S., & Zenyuh, J. P. (1989).
The pilot's associate: Today and tomorrow. In J.
Emerson, et al. (Eds.). The human-electronic crew:
Can they work together? WRDC-TR-89-7008,
Conference Proceedings, Ingolstadt, Federal
Republic of Germany, 18-22 September, 1988,

pp. 133-138.

Steiner, |. D. (1972). Group process and productivity.
New York: Academic Press.

Waldrop, M. M. (1990). Learning to drink from a fire
hose. Science, 248, 674-675.

Wellens, A. R. (1990). Assessing multi-person and
person-machine distributed decision making using
an extended psychological distancing model.
AAMRL-TR-90-006, Final Report, AFOSR University
Residence Research Program, Wright-Patterson Air
Force Base, Ohio, 16 July 1987 - 15 July 1989.

Wellens, A. R. (1986). Use of a psychological
distancing model to assess differences in
telecommunication media. In L. Parker & C. Olgren
(eds.) Teleconferencing and electronic media, Vol.
V, pp. 347-361. Madison, Wisconsin: Center for
Interactive Programs.

Wellens, A. R. & Ergener (1988). The C.I.T.LE.S.
game: A computer-based situation assessment task
for studying distributed decision making. Simulation
and Games, 19, 304-327.

611

Wellens, A. R. & McNeese, M. D. (1987). A research
agenda for the social psychology of intelligent
machines. Proceedings of the IEEE National
Aerospace and Electronic Conference, 4, 944-950.

BRIEF BIOGRAPHICAL SKETCH

Dr. A. Rodney Wellens received his Ph.D. degree
from Vanderbilt University in Experimental Social
Psychology in 1972. Dr. Wellens is currently
Professor of Psychology and Communications and
Associate Chairman of the Department of
Psychology at the University of Miami, Coral Gables,
Florida. Dr. Wellens directs the Interactive Television
Laboratory for the Study of Social Interaction at the
University of Miami where he has co-developed
several video and computer based devices for
studying interpersonal and human-machine
interaction.

Dr. Wellens recently completed a two year
appointment as a Visiting Scientist at the Armstrong
Aerospace Medical Research Laboratory, Human
Engineering Division, Wright-Patterson Air Force
Base, Ohio. Dr. Wellens was also one of 18 Faculty
Fellows who participated in a NASA sponsored
workshop held at Stanford University that dealt with
space station issues. Dr. Wellens' presentation at
the 1990 S.0.A.R Conference drew upon his
experiences with the Air Force and NASA,



N91-20721 "

ISSUES ON COMBINING HUMAN AND NON-HUMAN INTELLIGENCE

Irving C. Statler

NASA Ames Research Center
N239-1

Moffett Field, CA 94035

Introduction

For the foresceable future, there will be very few
activities or missions that will be accomplished
entirely by non-human, totally autonomous systems.
Human intelligence and the ability it confers to
exercise judgment and, thus, deal with unexpected
situations will warrant the services of human
members in future systems. The number of
autonomous systems working in conjunction with,
or in support of, human crews has been growing
rapidly and can be expected to grow at an even
faster rate in the future. We are faced with the
problem of designing systems in which a machine
intelligence and a human intelligence can work
together as partners. This may be more difficult
than designing a fully automatic, unmanned system.
Unfortunately, we have little appreciation of either
the potential or the limitations of close working
and

relationships between humans intelligent

machines, or of how these interactions affect
relations with other crew members or total crew

performance,.

The purpose of this paper is to call atiention to some
of the issues confronting the designer of a system
that

combines human and non-human intelligence.

We do not know how to design a non-human

intelligence in such a way that it will fit naturally
into a human organization. Our concern is that,
without adequate understanding and consideration
of the behavioral and psychological limitations and

requirements of the human member(s) of the
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system, the introduction of artificial intelligence
(AI) subsystems can exacerbate operational
problems. We have seen that, when these
technologies are not properly applied, an overall
degradation of performance at the system level can
occur.  Only by understanding how human and
automated systems work together can “we be sure
that the problems introduced by automation are not

more serious than the problems solved.

Background

Our experience with automation in space is still
quite limited. However, there are examples from
aircraft operations to illustrate the point that the
implementation of engineering “solutions" may
prove inadequate when human behavior is

involved. A number of incidents (Connors 1989,

Wiener & Nagel 1988) have raised questions about
our ability to combine humans and automation into
effective teams. Although we will be referring here
primarily to examples from aircraft cockpits, the

problems of man-machine

integration in complex

systems arc ubiquitous. It is easy to strike out
"cockpit" and fill in "air traffic control center",
"submarine”, "nuclear power plant”, "launch
control center”, "space station", or "Mars vehicle".
For many years, we have been able to rely on the
adaptability of the human to take maximum
advantage of each new technology. 1In the current
environments of data-display that missions have
required and computers have enabled, our man-
machine systems arc capable of saturating the

human component with the sheer number of



displays to be read, controls to be engaged, and
decisions to be made. Nevertheless, we continue to
depend on the human pilot to assess the situation
instantaneously, to make the "right” decision, and to
initiate the appropriate action. Many of us believe
that, in the realm of both military aircraft and space
systems, we are close to the practical limitations of

human sensory and cognitive capabilities.

For example, over the years, electro-mechanical

instruments, switches, and buttons have propagated
wildly in the cockpit, filling all the available space.
When the designer of the modern fighter aircraft
cockpit was faced with the dilemma of reduced
display space in the smaller cockpits along with the
need for still more information to be displayed to the
pilot, his solution was to replace task-specific
displays and controls with multi-purpose displays
and multi-function controls.  Although this solution
addresses the narrowly-defined display problem, it
does not solve the operational problem, since
modern computers that are brought aboard to drive
these displays are capable of presenting far more
data than a human can possibly access and

assimilate in real time.

The F-18 aircraft has one of the more advanced

cockpits and is a good example of the problem of data
overload. This cockpit has three cathode-ray tubes
and a head-up display. There are 675 acronyms and
177 symbols that can appear in four different sizes
There are 73
59

lights, and 6 wamning tones (no messages, just

on any of the three cathode ray tubes.

threat, waming, and caution indicators, indicator

tones), 10 multi-function switches on the throttle, 7
on the stick, 19 controls on the panel underneath
the head-up display, and 20 controls around the
periphery of each of the three cathode-ray tubes,
Most of
the data displayed requires that the pilot's foveal

each of which has a multi-switch capability.

vision be engaged (while peripheral vision, utilized
in earlier displays, is largely ignored.) Every piece
of information that is available to the pilot for

multi-purpose display requires an additional control
to access that information. This imposes a memory
load on the crew who must remember how to access

the desired information and how to perform the
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required control function. Often, these controls
must be found and actuated by touch while the pilot
is visually engaged elsewhere, sometimes during
moments of extreme physical and mental stress.
Since not all of the information about his aircraft
can be displayed to the pilot at all times, there has
evolved a proliferation of wamning and alerting
systems. These systems remind pilots to take actions,
call attention to deviations from expected ranges,
suggest or demand an action, warn of unacceptable

configurations, and even take action on their own.

One of our favorite examples of where the
engineering solution to a problem seems to
disregard basic human-factors principles is the
helmet-mounted display for the US Army's attack
helicopter called the Apache. When a military
helicopter  is operating nap of the earth at night or
in adverse weather, the pilot desperately needs help.
He must be able to see something of the outside
world. There is an infrared sensor, called a FLIR, in
the nose of the helicopter that provides a display in
the cockpit. There is also a computer on board that
generates symbologies both for flight-control
information and for weapons-control information.
There are 19 such symbols in three different
formats, depending on the flight phase. For the
pilot of this aircraft, all of this (the FLIR image with
superimposed flight- control symbologies and
weapon-control symbologies) is presented on a two
and a half centimeter monocle over his right eye.
At the same time, his left eye is expected to take care

of the contextual scene and the instrument panel.

We must also keep in mind that equipment intended
to enhance human capability can actually
encumber it by exacting a physiological toll that, in
turi, compromises performance. The tendency to
attach devices to the head is of particular concern,
often leading to a loss of head mobility and fatigue.
We have found some equipment of this type to cause
in

both physiological and psychological problems

our military pilots. For example, some current
helmet-mounted displays provide different and
potentially disorienting visual images to the two

eyes.



The typical military or civil pilot today must

integrate enormous amounts of data from many
dissimilar sources, sometimes under great time
pressure. In our attempts to maximize the number

of physical channels available for transferring

these data, we have introduced voice and other aural

displays. However, the addition of secondary
modalities does not double the human's information

processing capability; indeed it may even impede it

by distracting the operator at a critical time. In
fact, the operator may not even be aware of
additional information because humans, under

certain conditions, tend 1o narrow their attention.
The problem may be further exacerbated by the
human tendency in stressful situations to see what
he expects to see and to hear what he expects to
hear. Both the civil and the military sectors provide
examples of where warning signals have been
ignored due to the human tendency, when under
stress, to selective attention.

The main point we wish to make is that humans,
although highly adaptable, are not unlimited in
their ability to accommodate to demanding task
environments. In some of our more complex
cockpits, the human may no longer be able to "take
up the slack”. In addition, the electronic systems we
are now providing to aid the pilot may not be
helping at all, and may actually be complicating his
job. He is confronted with too much data and in
formats that may not be conducive to rapid
interpretation. It is useless to continue providing
more data if the operator is unable to use it, since it
is relevant information, not data, that is needed if

the operator is to make good decisions.

In the past, when similar situations have been
encountered, we have typically solved the problem
by putting more men on the job. There are many
situations in which this solution is impractical, and
so it is tempting to look to artificial intelligence (AI)
as a way of augmenting human capabilities.
Presumably, with AI, one could fuse sensor outputs,
integrate data, present only what was needed when
it was needed, and assist the pilot in making

decisions.
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In keeping with this view, there have been
proposals for military aircraft with one human pilot
and several electronic crew members. Anificial

intelligence, decision-support systems, knowledge-
based systems, and. expert systems became the buzz
words of the eighties. However, although there has
been a great deal of casual talk about the role that
machine intelligence might play, the problem of
developing the essential symbiotic relation between
human and non-human intelligence has been
cxamined only cursorily. We really do not
understand what it takes to satisfy human needs, and
it appears that even if we did, we do not yet know

how to build it.
The Problem

Knowledge-based and expert systems have found
some limited application in the control of physical

plants, manufacturing processes, and quality

control. However, they have yet to find a role in
circumstances that cannot be described with
But,

mathematical algorithms or logical rules. not

all knowledge is susceptible to logic.
There exist many potential applications for

knowledge-based systems.  Unfortunately, there are
several fundamental things that we still do not know
how to do. Following are just a few:

1. how to develop the complete knowledge
base (or even know when or if it is complete,)
particularly if it does not lend itself to logical rules;

2. how to have an expert system leam from
experience by changing its rules;

3. how to enable the system to make complex
decisions in real time during unexpected situations;
4. how to assure compatibility with the
human operator's perceptions of the situation and

acceptability by the operator of recommended
solutions; and

5. how to validate the "sanity" of the system.

As Al grows and progresses, we can expect some
advances in knowledge and understanding of these

areas. However, automated systems will remain



limited by the assumptions that created them, i.e.,

they will always to "blind" to conditions that were

not explicitly or implicitly included in their design
(Winograd and Flores, 1987).

Also, while computers can, after a fashion, think
and learn, they do not think or learn as humans do.
Consequently, if computational systems should take
over decision-making chores, the human operator
may find himself at odds either with what the
computer is doing or the way in which it is doing it
The rationale behind the introduction of automation
has been the desire to enhance total system
capabilities while maintaining operator workload at
acceptable levels, thereby minimizing the

possibility of human error. However, as more and
more physical control activities have been
successfully automated, they have been replaced by
mental activities on the part of the human operator.
Our experience with automation indicates that its
introduction usually relocates and changes the
nature and consequences of human error, rather

than removing it.

The negative reactions and incident reports that
NASA is beginning to receive regarding the
electronic crew member in the glass cockpit of our
modern civil transports support our concern. The
glass cockpit has been criticized for its failure to
reduce mental workload. Pilots believe that
automatic devices demand constant attention and
each device creates its own demands on the pilot's
time. Automation tends to isolate the flight crew
from the state of the aircraft and the modern pilot
can feel not only left out of the loop, but externally
controlled. Recent accidents suggest that excessive
automation tends to lower the level of vigilance of
Moreover,

human operators. automation frequently

subsystem solutions, rather
For

is often inadequate feedback and interaction with

addresses short-term,

than total system performance. instance, there

the human controller (Norman 1990). Consider, for
example, the system that corrects for a fault without
notifying its human partner. In one incident, a
race car equipped with the latest automatic

compensation for brake failures suffered a failure
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in one brake. The system automatically

compensated, just as it was designed to do. Shortly
after, a second brake failed, and, due to the
increased the

loading, third-brake failure quickly

followed the second. But, the automatic
compensation system had done its job so well that it
was not until the fourth brake failed that the driver
realized he had a problem. This is an example of a
faulty design philosophy that has as its goal to show
the operator only what he needs to know when

(someone else determines) he needs to know it.

In an analogy with the artificial heart program, the
introduction of Al in a given system can fail (and
has failed) because we do not understand the

An Al

subsystem must be designed to sing and dance

reaction mechanisms of the human.

gracefully with the human crew as well as with the
energy sources that power it and the environment

in which it must operate.

Therefore, the total system design must take into
account the capabilities, limitations, and needs of
the human component. We do this already with

respect to human physiological constraints, but now
we must take into account cognitive, motivational,

and other psychological needs. We will continue to
rely on the human in the vehicle for creativity and

innovation in coping with the unexpected. In our

future space systems, these humans will be better
trained and more knowledgeable than ever before;
but they remain humans whose tolerance for
vibration, heat, hypoxia, and G-forces has not
changed; whose visual perception and "information-
processing capacity are still limited; and whose
decision-making ability remains susceptible to

fatigue, illusions, biases and stress.

The design of the equipment intended to improve
total system performance must consider the full
impact it has on human behavior and on the
human's ability to perform the role expected of him.
This requires consideration of such things as the
cffects on humans of being "in the loop” or "out of
the loop", the nature of trust between humans and
machines, the ability of the machine to

communicate the reasons for its actions to the



satisfaction of the human operator, the ability of the
machine to respond to the human's "what if I did it
this way?" queries (Galdes and Smith, 1990) and the
fact that the human needs to feel that he or she is
ultimately in control. How can we be certain that
any data display will be clear and unambiguous in
all situations, so as to ensure the correct
interpretation by the human for fast and accurate
reaction in the rare critical situation? How do we
keep the human well informed without annoying
him?

tasks, how is the human 10 be kept in a state of

If the machine carries out all the routine

alertness in which he or she is capable of
performing adequately if the machine should fail?
Many decisions regarding whether or not to
manually override an automatic system will need to
be made during critical phases of missions. Given
the demands of these phases, does the automated
system provide a net benefit to the crew? Can the
workload required of the human crew during these
periods be kept within acceptable limits?

Involving the human in the decision-making
process provides a essential layer of checks and
balances to make up for the shortcomings of the
non-human intelligence.  However, there is no
point in extolling and relying on the real or
imagined virtues of human creativity and
innovation if the human doesn't know when to take
control, or if the system design is such that the
human is unable to be creative or innovative in the

actions which the system allows him to initiate.

Often the problem of the human-machine
interaction is considered to bec merely one of
interface design. This viewpoint is a dangerous
oversimplification. It is like suggesting that human
communication can be explained on the basis of
word recognition.  System functionality depends on
characteristics of the communicating systems that
extend well beyond issucs of the operator interface.
Al is going to be used to support dynamic interactive
tasks in which the human mind is an important and
active component of the total system. Designing
tools for this kind of complex cognitive-

psychological activity goes well beyond the issue of
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display and control interfaces. It can no longer be
viewed as a process of designing a machine to do
something, and then designing the information
displays and controls which enable the operator 10
guide the machine. A system’s usability is
determined by the details of a given design and not
just by its interface style.

Approach: The Crew System

The introduction of the concept of arificial
intelligence to work with the human requires that
we begin to think, not in terms of a human
operating a machine as we have in the past, but in
terms of communication between intelligent agents.
The problem of designing a system that produces a
symbiotic integration of the powers of the human
brain and computers is incredibly complex and
difficult,

allocation of functions between man and machine,

It is not simply a question of the proper

nor should the human and the machines be
considered in competition for duties. Rather it is
essential that the human and the machine are
explicitly considered as paris of a larger
functioning system. The human may no longer be
the sole supplier, as in the past, of the initiative, the
For

instance, it may be that the safest and most efficient

direction, the integration, and the standards.

system will be one that incorporates considerable
duplication or interchangeability of functions
among its human and non-human crew members
and thus benefits from the strengths of both, A
joint cognitive system implies a productive
relationship between the knowledge of the machine
and that of the human in which the different points
of view are integrated in the decision process.

In a previous paper, one of us used the term "crew
system” to describe all active, intelligent flight

Dr.
Malin at JSC has proposed the idea of making

The
implication of these terms is that the human(s) and

participants, whether human or artificial.
humans and computers "team players”.

the machine(s) must be considered as forming a
,partnership, sharing all the responsibilities and
authorities in a concept of cooperation rather than

one of human or machine control. The close



coupling of humans and machines requires us to
view their interactions as a total system design
problem; i.e., a crew that is composed of both

human and non-human intelligence.

One requirement of this integrated-design concept
is for training and support to help humans cope
with the new clectronic environment. A second,
and more pressing requirement, is to learn to design
machine components for compatibility with real
human behavior and with full recognition that
human beings experience fluctuating motivation

and attention and also make errors.

System design geared to blending human and )
automated systems must take into account all levels
of human activity from the most basic perceptual
response, through man-machine interface, and up
to and including full integration into the relevant
environment. For a human to perform a particular
task, he must be able to translate his psychological
representations of the system state, his goals, and
his intentions into physical actions. To interpret
the outcome of his actions, the human must be able
to perceive the resulting system state and relate
those perceptions to his psychological
representations. We must understand how people
add their

own previous knowledge and value structure and

recognize patterns, integrate information,

come up with intelligent, appropriate decisions
under difficult circumstances. A problem will ensue
if

interferes with any part of this fundamental

the non-human intelligence negatively

process (Norman 1987),

The need for considering design from the aspect of a
crew system also introduces concerns related to
small group and organizational science. We need to
expand our view of system requirements to include
information processing and motivation of multiple
agents in organizations. When we introduce a non-
human intelligence into the crew, the entire

At

these higher levels of integration, the results of

interactional structure of the crew changes.

NASA's extensive research in group dynamics
pertaining to flight crews of long-haul civil air

transports are particularly relevant.  For example,
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in human groups it has been found that junior
members are often reluctant to question the actions
of the senior member even in critical situations.
Similarly, automated systems that are perceived as
highly reliable or having a high level of authority
have produced an unwillingness on the part of the
human to question and override. The quality of

interpersonal interactions and coordination among
the members of a crew in terms of their behavior
and communications has been shown to be a
fundamental factor in the performance of that crew
and its susceptibility to errors. For human crews,
this problem is a matter of selection, training, and
organizational management; for the non-human
member, it is a matter of design; for the entire
system, all these factors, along with integrating

procedures, must be included.

As yet, the human factors community has been

unable to consolidate its empirical data into design
methods and principles to guide the design process.
The

human/automation systems

demands for performance-enhancing
exceced our present
understanding of the science. There are too many
uncertainties in what principles are relevant to
what tasks; empirical emphasis tends to be placed
upon isolated properties of individual processes; and
even well-established phenomena developed in
laboratory settings often have very different levels

of influence when imbedded in more complex tasks.

Since comprehensive design guidelines have been
unavailable, system developers have attempted to
assess the qualities of systems composed of AT and
human components in a post facto manner.
Thusfar, the index of acceptability has tended to be
that the AI system has reached operational status.
This is an unacceptable validation procedure and
New
indices of quality and acceptability are needed and

begs the question of total system capability.
even basis assumptions should to be re-examined.

In considering what might happen in combining

human intelligence and ariificial intelligence,

(¢9)]

terms of effectiveness,

one
might postulate four major outcomes:
performance (in efficiency,

cost, etc.) is equal to that of the human crew alone;



(2) performance is equal to that of the automated Without an understanding of how to combine

system; (3) performance is less than that of the human and non-human intelligence effectively, we

human crew or of the automated system alone, and shall be unable to implement rational designs for

(4) performance is better than either system alone. our future space systems. The issues we have raised

In general, only the fourth outcome (improved here, and others, need to be examined when

the investment
The task then

methods and appropriate

system performance) justifies
required for combined systems.
becomes finding practical
metrics for assessing the level of performance and
the facility with which the human and the machine
This task

represents a substantial challenge to both the Al

cooperate to solve unexpected problems.
and the human factors communities.
A paper presently in preparation by one of the

1990) outlines

research issues that are likely to be important in

authors (Connors and Harrison,

combining human and non-human intelligence. As
this paper points out, one way to begin to

understand the possibilities of integrated systems is
to fully understand the failures that occur in
present systems. A useful approach is to analyze the
specifics of how human error changes (if at all) in
the presence of automated systems. It is not enough,
however, to examine error events in terms of
number, severity, point in the mission, and the like.
Critical information may be lost if one fails to
examine error (or other measurable change) in
terms of the human functions impacted (i.e.,
perception, recognition, attention, memory,
information processing, coordination, and the like.)

All opportunities, whether in simulation, field

studies, or actual operations need to be utilized to
begin to appreciate the dynamics of human
in human/automated

behavior settings.

Cumulatively, this experience base could help focus

future research and, eventually, to establish
selection, training, procedural and design criteria.
Conclusion

Currently, systems are being planned based on
exceedingly generous estimates of the human's
capabilities for processing information and of the
artificial

intelligence capabilities for making sound

decisions that are accepted by the human. In other
words, we are busy building solutions when we do

not yet fully understand the problem,
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considering the potential of these systems.

The need
for an effective marriage of human and non-human
intelligence will increase greatly with the advent of
Space Station Freedom and with the subsequent,
more distant, missions. Life in these space vehicles
is likely to mimic life in other isolated and confined
settings, i.e., marked by fatigue, moodiness,
disturbed sleep, sensory deprivation, reduced
motivation, Harrison and
Akins, 1985; Harrison and Connors, 1984). All of

these will tend to exacerbate the physical problems

and loneliness (Connors,

that the space crews will endure. Yet, the crew must
not only survive, but display a high level of
In the

missions of the future, the use of automation and the

productivity. longer-durations space

discharge of responsibilities by human and non-
the

conduct of the mission as well as to the health and

human crewmembers will be essential to

welfare of the crew.

While we stress, as we do here, the problem of data
and activity overload, we should keep in mind that,
during some phases of long-duration spaceflight,
the opposite problem may occur. Boredom during
long and uneventful phases of flight could lead to
loss of productivity and it may be necessary to
design into thesc system a level of crew workload
that is not only sufficiently restricted to be
manageable, but also sufficiently large and
engaging to offset boredom and ennui (Statler and
Billings, 1989).

One day, some believe, the intelligence of a

One

day, we may learn how to couple human brains and

computer may rival that of the human brain.

computing machines in new and productive

partnerships. For now, however, we must rely

predominantly on human intelligence, judgement,

flexibility, creativity and imagination in dealing

with unexpected events; while relying heavily on
machine intelligence for the logic, speed,
consistency and exactitude

persistence, it possesses.



Our task for the near future is to begin the process
of building towards symbiosis and improved system
performance, avoiding on the way, the pitfalls that

could lead to precipitous system failure.
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ANALYSIS OF THE INDIVIDUAL RISK OF ALTITUDE

DECOMPRESSION SICKNESS UNDER REPEATED EXPOSURES
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David J. Horrigan, M.S.
National Research Councilk/

Institute, Environmental
Code SD5, NASA Johnson

Texas, 77058.

ABSTRACT: In a case-control
study, we examined the risk of
Decompression Sickness (DCS) in
individual subjects with higher
number of exposures. Of 126
subjects (mean [SD]) of age 31.2
(7.2) years, body mass index
16.0 (4.2) and 2.7 (2.5) expo-
sures each, 42 (33%) showed one
or more episode of DCS.
Examination of exposure-DCS
relationship by odds ratio (OR)
showed a 1linear relationship
(r=0.98). The risk of DCS, when
number of exposures >3, was 3.7
times (95% confidence interval
1.8,8.7) greater than <3 expo-
sures in the individual. Strati-
fication analyses showed that
sex, tissue ratio (360-min half-
time) and presence of Doppler
microbubbles were confounders of
this risk. Higher number of
exposures increased the risk of
DCS in our analysis.
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James M. Waligora, M.S.
John H. Gilbert, Ph.D.
Space Biomedical Research

Physiology Group, Mail
Space Center, Houston,

BNTRODUCTION : Decompression
Sickness (DCS) is the result of
a series of pathophysiological
processes to acute changes in
ambient pressure. There is
considerable evidence that some
individuals are more susceptible
than others ("resistant") to
DCS. Further, some authors
believe that there is adaptation
to DCS stress with repeated
exposures.

The problem is twofold: First,
what is the risk of DCS in
individuals who are exposed many
number of times compared to
individuals with one or two
exposures? Second, what 1is the
risk of DCS in individuals on
subsequent exposures? The latter
is the question of adaptation or
acclimatization and has been
investigated by many.

In this paper, we analyze the
risk of DCS in individuals with
higher number of exposures in
the various experiments
conducted at NASA Johnson Space
Center, Houston, TX, involving
simulated extravehicular activi-
ties (EVA).

METHODS AND RESULTS :

Information on 126 healthy,
individuals (101 males, 25
females), who participated in a
total of 345 exposures to



reduced pressure were collected.
The exposures involved both
direct and staged decompression
profiles. The individuals exer-
cised at altitude simulating
extravehicular activities (6 ).
They were also monitored for the
presence of circulating micro-
bubbles (CMB) by a precordial
Doppler monitor. The exposure
pressure and pre-breathe times
were expressed as a 360-minute
half-time tissue ratio (TR} (2 ).
All exposures were for a period
of 3 to 6 h at altitude.
Further details on these
profiles may be obtained
elsewhere (2,6 ).Subjects were
also required to rate their
activities on a scale of 1-10,
for assessment of fitness
levels. Individual baseline
characteristics were as below
(mean{SD]):

Age 31.2 (7.2) yrs
Body mass index 16.0 (4.2)

No. of exposures 2.7 (2.5)
Tissue Ratio

(360-minute) 1.5 (0.2)

Symptoms occurred in 56/345
(16%) of these exposures, of
which only 4% (2/56) were severe
or Type II DCS, the rest being
pain-only bends. Forty-two
individuals presented the 56
episodes of symptoms as below:

Oonce = 30 (71%)
Twice = 10 (24%)
Thrice = 2 ( 5%)

Distribution of cases (mean({SD])
with and without any symptom
occurrence is given in Table TI.

The number of exposures in
individuals with and without
symptoms was significantly diff-
erent (Table 1I). Hence, we
divided the entire group based

on <3 and >3 exposures (Table II}.
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Table I. Distribution of cases

No symptoms Symptoms
(n=84) (n=42)

Age-years 30.5 (0.8) 32.5 (1.1)

BMI 15.7 (0.5) 16.5 (0.6)
TR 1.5 (0.1 1.6 (0.1)*
No. of

exposures 2.3 (0.3) 3.6 (0.4)*
No. runs

with ¢CMB 0.6 (0.1) 2.1 (0.2)*
Sex

Male 61 40 *

Female 23 2
Fitness

scores

<5 48 19

>5 36 23

BMI=body mass index; * p<0.05

Table II. Subgroup on Exposure

<3 exp >3 exp

(n=100) (n=26)
Age-yrs 31.3 (0.7) 30.6 (1.3)
BMI 15.7 (0.4) 17.0 (0.6)
TR 1.5 (0.1) 1.5 (0.1)
No. of

exposures 1.7 (0.8)
No. of runs

with CMB 0.8 (0.0) 2.5 (0.4)%*
Sex

6.9 (2.7)*

Male 75 26 *
Female 25 0
Fitness

scores

<5 51 16

>5 49 10
* p<0,05

We calculated the odds ratio
(OR) or cross-product ratio as a
measure of relative risk of
symptoms with higher exposure
numbers in individuals (3). The
results are given in Fig. 1.



Compared to occurrence of sym-—
ptons in individuals with single
hypobaric exposure, there was
greater risk of DCS in indivi-
duals with higher number of
exposures. This increase in risk
was linear (r=0.98). However,
these findings were limited by
the sample size, hence the wide
confidence intervals (CI).

45 1
40 -
g t Compared to symptoms
=) 35 ] under single exposure
B 30 - (n=51;0dds ratio=1.0)
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n 25 1 -
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Fig. 1. Risk of symptoms with
increased exposures

The overall OR for symptoms when
the number of exposures were >3,
compared to <3 in the individual
is given in Table III.

Table III. Individual risk with
higher exposures.

No DCS DCS OR

&3 exposures 73 27 1.0

>3 exposures 11 15 3.7
(1.8,8.7)

OR=o0dds ratio; 95% confidence
intervals in parentheses.

We also examined the baseline
differences . (Table II) on the
individual exposure information
(s and >3 exposures) by strati-
fication analyses and Mantel-
Haenszel statistics ( 3 ). The
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results are in Table IV.

Table IV. Stratification Analysis

No DCS DCs OR OR-MH

1. Sex
Male :
£3 exp 50 25 1.0
>3 exp 11 15 2.7
Female:
<3 exp 23 2 1.0
>3 exp 0 0 - 2.7 *
(0.9,7.5)
2. No. of runs
with CMB
once :
<3 exp 68 11 1.0
>3 exp 7 2 1.8
> once: N
<3 exp 5 16 1.0
>3 exp 4 13 1.0 1.3,
(0.01,137.5)
3. TR
<1l.5
L3 exp 43 4 1.0
>3 exp 8 5 6.7
>1.5 H
£3 exp 30 23 1.0
>3 exp 3 10 4.4 5.2 *
(1.8,14.7)

OR=o0dds ratio; OR-MH=odds ratio
by Mantel-Haenszel statistic:
95% confidence intervals in par-
entheses; TR=360-minute half-
time tissue ratio; * chi-square
p<0.05.

DISCUSSION:

The results of the analyses
showed that individuals with >3
exposures were 3.7 times more at
risk for DCS, compared to
individuals with <3 exposures.

Bason et al. observed increased
incidence (up to 12-fold) of DCS
in the inside observers,
compared to hypobaric chanmber



trainees ( 1). They attributed

that this greater risk resulted
from the higher number of
exposures in the observers.
Similar examination by Piwinski
et al. on USAF data showed that
the inside technicians showed a
4.6 times increased risk of DCS
(maximum of 41 exposures),
compared to students (5 ). They
observed that in addition to the
lower number of exposures,
trainees were younger in age.

In repeated exposures, Malconian
et al. observed that the period
of exposure to altitude was also
an important factor increasing
the risk of DCS in observers
(4). All the above studies,
however examined only the
overall risk and not the
individual risk with increased
exposures.

In our analysis, we 1looked at
the risk of DCS in a group of
healthy individuals who partici-
pated in the simulated EvVA
profiles. Although sex and TR
showed higher risk of DCS in
individuals with >3 exposures
(Table 1IV), 95% confidence
intervals of the crude OR were
wide and sample size limited.
However, we did not 1look into
the possible effects of interval
between exposures and no
multivariate analyses were
undertaken. More data is being
accumulated to include these
analyses.

SUMMARY:

Individuals with >3 exposures
were at 3.7 times greater risk
of DCS in our analysis. Sex, TR
and number of runs with Doppler
detectable microbbubbles were
confounders of this risk. Number
of exposures in the individual
appears to be an independent
risk factor for DCS.
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LARGE SPACE STRUCTURES
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ABSTRACT

Electromagnetic waves called "sheath waves” can pro-
pagate with low attenuation in the ion sheath, a region of
low electron density that separates any conducting surface
from an ionized-gas plasma in which it is immersed.
Cold-plasma theory predicts propagation in a passband
from zero frequency up to 1/yZ times the electron plasma
frequency for isotropic plasmas and up to 1/4Z times the
upper hybrid frequency for anisotropic plasmas permeated
by a magnetic field in the direction of propagation. A
recent space experiment has confirmed sheath-wave propa-
gation on a kilometer-long insulated wire in the ionosphere,
oriented parallel to the earth’s magnetic field. This space-
tether experiment, OEDIPUS-A, showed a sheath-wave
passband up to about 2 MHz and a phase velocity some-
what slower than the velocity of light in a vacuum, and also
demonstrated both ease of wave excitation and low
attenuation. The evidence suggests that, on any large struc-
ture in low earth orbit, transient or continuous-wave elec-
tromagnetic interference, once generated, could propagate
over the structure via sheath waves, producing unwanted
signal levels much higher than in the absence of the
ambient plasma medium. Consequently there is a need for
a review of both EMI/EMC standards and ground test pro-
cedures as they apply to large structures in low earth orbit.

INTRODUCTION

An ionized gas plasma in contact with a solid surface is not
homogeneous near the surface. Rather, it is inhomogene-
ous, forming a thin layer which contains ions from the
plasma but very few electrons, so it is known as the "ion
sheath". At the frequencies of interest, the ions are massive
enough to be almost immobile, so it is the electrons that
govern sheath behavior. Because the sheath is electron-
depleted, to a first approximation it may be regarded as a
vacuum gap. If the solid surface in question is a metal,
then the picture that emerges is that of a vacuum gap
separating a good conductor from a plasma which is also a
conductor, albeit a very complex one. It is plausible that a
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vacuum gap between these two conductors can act as a
guiding channel for an electromagnetic wave, and indeed
this is known to be the case, the waves being called "sheath
waves".

Early theoretical studies of sheath waves on a cylindrical
conductor were done by Seshadri [1965], and by Miller
[1968] who analyzed the case with a static magnetic field
parallel to the conductor axis. Experimental studies were
included in the papers by Ishizone et al. [1969, 1970a,
1970b], Lassudrie-Duchesne et al. [1973], Meyer et al.
[1974), Marec [1970, 19741 and Marec and Mourier [1970,
1972]. Recently, Laurin et al. [1989] analyzed sheath-
wave propagation over a planar surface, propagating in a
direction parallel to the ambient static magnetic field, and
they compared their analysis with laboratory experimental
results for a thin wire in a magnetized plasma. Their con-
clusion was that sheath waves propagate in a frequency
range from zero to 1/4/2 times the upper hybrid frequency,
at least for the special case of wave propagation parallel to
the magnetic field. Moreover they concluded that the
waves propagate with a phase velocity that is slower than
the velocity of light in a vacuum and approaches a nearly
constant value at low frequencies (i.e. it is nearly disper-
sionless). Propagation in isotropic (unmagnetized) plasma
is similar, with the plasma frequency f, replacing the
upper-hybrid frequency f, , where f,2=f,2+f2 and f.
is the electron cyclotron frequency.

THE "OEDIPUS-A" ROCKET EXPERIMENT

This project involved an ionospheric rocket which was
faunched in January 1989 from Andoya, Norway. It was
separated into two parts early in its flight, the two parts
remaining connected by a thin, insulated wire (or "tether”)
that unreeled from a spool in the rocket nose section, reach-
ing a maximum wire length of 985 m near apogee. During
the flight, the tether orientation stayed within 5° of being
parallel with the earth’s magnetic field. A stepped-
frequency transmitter with an output level of 50 Vrms and
covering the range 50 kHz - 5 MHz was located in the nose
section and a synchronized receiver was located in the tail



section. There were several experiments on board, the one
of primary interest in this paper having the configuration
shown in Figure 1, the purpose being to measure the
ransmission of signals end-to-end along the tether. The
particulars of the tether are shown in Figure 2, in which it
can be seen that the tether unreeled steadily, reaching max-
imum extension midway during the flight.

Figure 3 is a gray-scale representation of received signal
strength as a function of both frequency and elapsed time
during the flight. The dominant feature is a strong
passband from zero frequency up to a sharp cutoff fre-
quency between about 1.7 and 2.3 MHz. Above the cutoff
frequency is a strong stopband extending upward to a fre-
quency between 3 and 4 MHz where there is a return to
fairly strong signal levels. As an aid to interpretation, Fig-
ure 3 includes a graph of plasma frequency f, (taken from
delayed-pulse measurement data supplied by one of the
authors, H.G.J.) along with a graph of cyclotron frequency
fo . Also included are graphs of upper-hybrid frequency
f. and sheath-wave cutoff frequency f;=1-2f, , as
well as harmonics of the cyclotron frequency.

The theoretical sheath-wave cutoff frequency f. is about
30% higher than the measured cutoff frequency. This may
be due to the expected high attenuation of sheath waves
just below the cutoff frequency. Above the cutoff fre-
quency is the stopband which extends upward to the
upper-hybrid frequency f, , as predicted by cold-plasma
theory.

Within the low-frequency passband and for the earlier part
of the flight, some very faint curved lines can be seen.
These are enhanced by adjusting the gray-scale and are
shown much more clearly in Figure 4. Tt is postulated that
they are resonances occurring whenever the tether length is
a multiple of a sheath-wave half-wavelength. Based on
this postulate, contours for different sheath-wave phase
velocities (refractive indices or wavenumbers) were drawn
until a reasonable fit was obtained as shown, which is for a
constant refractive index of 1.7 : this indicates that a rela-
tively non-dispersive slow wave exists on the tether, in
agreement with the sheath-wave postulate. The resonances
are clearly visible at all frequencies up to the cyclotron fre-
quency f. , above which only faint indications of reso-
nances can be seen artl only up to an elapsed time of about
260 seconds. It will require further study to determine
whether or not the rapidly rising attenuation (with increas-
ing frequency) as predicted by Laurin et al. [1989] is
sufficient to explain_the disappearance of the resonances at
or just above f. for the greater part of the flight duration.

As an aside, it is interesting to note that dipole-to-dipole
transmission experiments (with one dipole on the nose sec-
tion and one on the tail section) produced gray-scale plots
similar to Figures 3 and 4. In particular, the tether-length
resonances were clearly visible even though the tether was
not connected either to the wransmitter or the receiver. This
indicates that there was strong excitation of sheath waves
in a situation where it was not intended.
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Figure 5 shows received amplitude plotted against fre-
quency at four different times during the flight. The
features already discussed are evident, but most prominent
is the high level of the low-frequency passband and the
depth of the stopband, the difference in levels being of the
order of 70 dB.

A particularly interesting feature visible in Figs. 3, 4 and 5
is the association of gray-scale boundaries with the har-
monics of the cyclotron frequency. This suggests that
cyclotron-harmonic waves which propagate across the
magnetic field play a part in sheath-wave attenuation, say
by carrying energy away from the tether (a suggestion
made by one of the authors, H.G.J.). There are two impli-
cations, the first that this is a "leaky wave" phenomenon
(and that the tether has become a leaky-wave antenna), and
the second that kinetic theory will be required to explain
fully the phenomenon of sheath waves.

Highly simplified theory may still be helpful, however,
especially in view of the scarcity of theoretical develop-
ments adequate for the computation of fields due to given
sources in finite-temperature anisotropic plasmas. Con-
sider isotropic, cold plasma : existing thin-wire computer
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programs for lossy media can be adapted readily to cover
this case, for example the program developed by Richmond
[1974] and improved by Tilston and Balmain {1990]. This
program can model isotropic cold plasma and a vacuum-
gap sheath surrounding any interconnected network of thin
wires. Its utility in application to anisotropic plasma will
always be limited but, for the case of a wire parallel to the
magnetic field, the strong radial electric field is always per-
pendicular to the magnetic field. This means that the per-
pendicular permittivity will predominate, with its zero at
the upper-hybrid frequency rather than at the plasma fre-
quency as would be the case with no magnetic field. This
suggests that isotropic cold-plasma theory could be useful
as a rough first approximation provided that the numerical
value of the upper-hybrid frequency is substituted for the
plasma frequency. The result of doing this is shown in Fig-
ure 6 in which the sheath-wave refractive indices deduced
from measured resonances (ranging from 1.20 to 1.75) are
bracketed by theoretical values computed by selecting two
isotropic plasma frequencies spanning the range of upper
hybrid frequencies in the experiment.
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The use of gridded end-plates to represent the rocket nose
and tail in this cold-plasma numerical calculation enables a
calculation of typical transmitted signal level along with a
free-space comparison as shown in Figure 7. The low-
frequency passband and the transition to a deep stopband
around 70 dB lower are clearly evident, along with tether-
length resonances. The calculated cutoff frequency f; at
2.6 MHz is clearly too high (compared with the measured
value of 1.8 MHz at an elapsed time of 590 sec.).
Nevertheless, the calculations up to 1 MHz or somewhat

higher still are the best available theoretical results that
include approximate representations of the rocket nose and
tail sections. In particular, the comparative plasma-with-
sheath and free-space calculations deserve attention. With
the sheath, the signal level in the plasma is 30 dB to 60 dB
higher than in free space, at frequencies below 1 MHz. It is
this strong coupling that has implications for EMI/EMC on
large structures such as the Space Station. Without the
sheath, Figure 7 shows essentially no coupling, as
expected.
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Figure 7. Moment-method calculation of coupling from one end of the tether to the

other, for both free space and plasma environments, the latter for two condi-
tions, with no sheath and with a 2.5 cm diameter sheath. The tether length is

300 m.
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The coupling factor is potentially important because
EMI/EMC standards and test methods are based on the
assumption of a free-space environment. Therefore a
source of interference at one point on the Space Station
will couple to a susceptible instrument at a distant point
much more strongly than might be anticipated, implying
that tighter standards would be needed either for emission
or immunity, for interference with significant spectral
content below about 1.5 MHz. The above computations
using a computer program valid for isotropic dielectric
media suggest that such programs could be useful in get-
ting a first estimate of interference levels.

Another relevant aspect of EMI/JEMC is ground test pro-
cedure for emission or susceptibility. Putting a large part
of the Space Station in a plasma chamber is clearly out of
the question when it comes to deciding whether a given
unit emits excessive unwanted radiation. Because at low
frequencies the plasma can be regarded as a conductor and
because it is separated from any surface by the sheath
region which is a few centimeters thick, it is postulated that
a first-order laboratory equivalent model would consist of a
wire mesh completely surrounding the part of the Space
Station under test and separated from it by a few centime-
ters. To represent the cutoff frequency and the stopband, it
is postulated that the wire mesh could be segmented and
the segments separated by appropriately synthesized
lumped-element networks, as shown in Figure 8. If the
equivalence of this wire-mesh configuration could be esta-
blished, then relevant emission and susceptibility test
methods and standards could be derived.

CONCLUSIONS

The OEDIPUS-A ionospheric rocket flight involving radio
transmission along a conducting tether parallel to the
earth’s magnetic field has established the existence in the
ionosphere of sheath waves on the wire and revealed some
of their properties, including passbands, stopbands and
phase velocities. The existence of tether-length-dependent
resonances shows that the sheath waves can propagate with
little attenuation, especially at frequencies below the elec-
tron cyclotron frequency. Existing cold-plasma theory
explains in part the properties of the sheath waves but
kinetic theory analysis ultimately will be needed for in-
depth understanding.

The ease of coupling between widely separated parts of a
long structure in the ionospheric plasma has implications
for EMI/EMC standards applicable to systems on the Space
Station. Some EMI/EMC calculations probably can be
done with sufficient accuracy using existing computer pro-
grams valid for isotropic, lossy dielectrics. Ground test for
EMI/EMC compliance may be possible using a modified
wire mesh envelope to represent the sheath-plasma boun-
dary.
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Figure 8.

Proposed ground-test configuration with a wire mesh representing the sheath
edge and the plasma beyond it. The lower part of the figure shows how syn-
thesized impedance loading of the mesh might be employed to improve
simulation in the vicinity of the primary stopband.
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ABSTRACT

The SAMPIE flight experiment, tentatively scheduled to fly on the OAET-1 shuttle mission
in mid 1992, will investigate plasma interactions of high voltage space power systems. Solar
cells representing a number of technologies will be biased to high voltage to study both
negative potential arcing and positive potential current collection characteristics. Additional-
ly, several idealized metal/insulator mockups will be flown to study the basic nature of these
interactions. Originally proposed as a collaboration with the European Space Agency
(ESA), SAMPIE is now primarily a NASA effort with the possibility of limited involvement
by ESA. This paper briefly describes the rationale for a space experiment as well as the
measurements to be made and the significance of the expected results. The current design
status of flight hardware is presented.

INTRODUCTION

Traditionally, space power systems have operated at low voltages and have not suffered
from the effects of plasma interactions. High power systems now being developed for space
applications will operate at high end-to-end voltages in order to minimize array current. The
emergence of such systems is motivated primarily by a desire to save weight. Since the
resistance of the necessary cabling is a strongly decreasing function of mass per unit length
and since cable losses are proportional to current squared, it is desirable to operate at high
voltages and low currents. A further consideration is the reduced effect of magnetic
interactions (torque and drag) that will follow from low current operation.

While high voltage systems are obviously desirable from the standpoint of the power system
designer, they suffer the drawback of interacting with the ionospheric plasma (Grier and
Stevens, 1978 and Grier, 1983) in two different ways. Conducting surfaces which are at a
high negative bias with respect to the plasma undergo arcing which causes current
disruptions, significant electromagnetic interference (EMI), and large discontinuous changes
in the array potential. For arrays using traditional silver-coated interconnects, a threshold
potential for arcing of about -230 volts relative to the plasma is believed (Ferguson, 1986)
to exist. There are theoretical reasons (Jongeward et. al., 1985) and limited ground test
results (Snyder, 1986) to believe that different metals will arc at different thresholds. Since
new solar cell designs are emerging using copper traces, it is important to determine arcing
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thresholds, arc rates, and arc strengths for a variety of materials exposed to space plasma.

For solar arrays or other surfaces which are biased positive with respect to the plasma, a
second effect occurs. Such surfaces collect electron current from the plasma resulting in a
parasitic loss to the power system. Since the mass of electrons is much less than ions, the
magnitude of current collection is much greater for surfaces with positive bias. At bias
potentials greater than about 200 volts, sheath formation causes the entire surrounding
surface, normally an insulator, to behave as if it were a conductor. This effect, called
"snapover”, results in large current collection even from a very small exposed area. In
addition to producing a power loss, this current will significantly effect the potentials at
which different parts of the array will "float”. Depending on the way the power system is
grounded, this in turn will effect the equilibrium potentials of various spacecraft surfaces
with respect to the plasma.

Two previous flight experiments involving standard silicon arrays, PIX I and PIX II (Grier
and Stevens, 1978 and Grier, 1983), have shown many differences between ground tests and
behavior in space. For arcing, arc rates in space were quite different and generally larger
than in ground tests. For parasitic current collection, the current versus bias voltage curves
obtained in space not only differed radically from the ground tests but differed depending
on whether the data was taken with the array exposed to spacecraft ram or wake. It is
necessary, therefore, that the behavior of various solar cell technologies be established with
a suitable in-space test.

In this paper, we have only briefly reviewed the background and justification for SAMPIE
since this has been presented previously (Ferguson, to be published). We will present the
current status of the design and a discussion of the selected experiments to be done.
OBJECTIVES

There are six basic objectives of the SAMPIE experiment:

1. For a selected number of solar cell technologies, determine the arcing
threshold as well as arc rates and strengths.

2. For these solar cells, determine the plasma current collection characteristics.
3. Propose, demonstrate in ground tests, and fly an arc mitigation strategy, i.e.

modifications to standard interconnect design which may significantly improve
the arcing threshold.

4, Design simple metal/insulator mockups to allow the dependance of current
collection on exposed area to be studied with all other relevant parameters
controlled.

5. Design a simple arcing experiment to test the dependance of arcing threshold,

arc rates, and arc strengths on the choice of metal.

6. Measure a basic set of plasma parameters to permit data reduction and
analysis.
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APPROACH

SAMPIE will consist of a metal box with an experiment plate fixed to the top surface. It
will mount directly to the Hitchhiker-M carrier and will have a suitable adapter to permit
either top or side mounting. A power supply will bias the solar cell samples and other
experiments to DC voltages as high as +700 volts and -700 volts with respect to shuttle
ground. When biased negative, suitable instruments will detect the occurrence of arcing and
measure the arc rate as a function of bias voltage. For both polarities of applied bias,
measurements will be made of parasitic current collection versus voltage. Other instruments
will measure the degree of solar insolation, plasma electron density and temperature, and
monitor the potential of the shuttle with respect to the plasma. Shuttle operations logs will
be relied upon for detailed information about the orientation of the experiment with respect
to the vehicle’s velocity vector as well as times and conditions of thruster firings.

A simplified description of the experiment is to bias one solar cell sample to a particular
voltage for a preset time while measuring arcing and current collection data. A set of
plasma diagnostics is then taken and the procedure is repeated at the other bias voltages
until all measurements have been made. Vehicle orientation is critical since ram and wake
effects are known to be significant. SAMPIE will request control of the orbiter orientation
such that one entire set of measurements is made with the payload bay held in the ram
direction and a second set with the bay in the wake.

DESIGN STATUS

Since SAMPIE was originally designed to be deployed on a 15 meter collapsible tube mast
of ESA design (Ferguson, to be published), it has been severely constrained in mass. Asa
result, although the current baseline is for direct mounting to the Hitchhiker carrier, the
package remains quite compact. Figure 1 shows several views of the basic package. The
top mounted experiment plate overhangs the box on three sides, allowing the langmuir
probe to be attached on the back.

Figure 2 shows the proposed layout of the experiment plate. For solar cells, a baseline for
comparison is provided by including a small 9-cell coupon of standard technology silicon 2
cm by 2 cm cells. This is the technology that has been used exclusively in the U.S. space
program to date. It was flown on PIX I and PIX II as well as being the subject of extensive
ground based testing and will provide a basis for continuity with past results. A 4-cell
coupon of 8 cm by 8 cm space station cells, having copper interconnects in the back will
allow a test of this technology. A 12-cell coupon of 2 cm by 4 cm APSA cells will test the
behavior of this relatively new, very thin (60 micron) technology.

A breakdown test will explore the hypothesis that negative potential arcing is a special case
of the classical vacuum arc (Hillard, to be published). With geometry and test conditions
controlled, only the composition of the metal varies. To study snapover, we include 6 1 cm
diameter copper disks covered with 5 mil kapton. Each has a pinhole in the center with
hole sizes tentatively chosen as .1 mm, .3 mm, .5 mm, .7 mm. 1 mm, and 1.5 mm. The
resulting family of current versus applied bias curves will be compared with predictions of
NASCAP/LEO and other theoretical treatments.

A number of arc suppression techniques are under investigation as part of our ground based
testing. These all follow from the work of Katz et. al. on the SPEAR program which showed
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that inbound ions striking the junction of insulator, metal, and plasma, sometimes called the
triple point, resulted in secondary emission and arcing. A bushing employing a set of guard
rings (Katz and Cooper) to collect inbound ions was able to prevent arcing in the SPEAR
tests. Figure 3 shows three possible ways to exploit this finding.

Figure 3a shows the basic model of a solar cell biased to a high negative potential in a
plasma environment. Inbound ions are free to strike the triple points, producing secondary
electron emission which leads to breakdown. Figure 3b shows a straightforward attempt to
collect inbound ions before they reach the triple points by using a small conducting rod
which protrudes from each interconnect. In figure 3c, a conducting dielectric, possibly ITO,
covers the critical junctions. Figure 3d shows that simply extending the coverslides to the
maximum consistent with mechanical constraints may be sufficient to control the flow on
inbound ions.

All of these techniques will be pursued in the ground based phase of the project. If
successful, one or more of them will be flown.

SUMMARY

The SAMPIE flight experiment is the first space power system - plasma interaction
experiment since PIX II and is by far the most ambitious to date. In addition to testing two
emerging solar cell technologies, it will explore the viability of several arc suppression
techniques. Using controlled experiments, it will provide basic data on arcing and current
collection which can be compared to existing theories. SAMPIE will be designed and built
in a highly modular way that will have easy reflight capability in mind. To this end, it can
serve as a test-bed for future solar cell technologies.

REFERENCES

Ferguson, D.C. 1986, "The Voltage Threshold for Arcing for Solar cells in LEO - Flight and
Ground Test Results”, NASA TM-87259.

Ferguson, D.C. "SAMPIE - A Shuttle-bases Solar Array Arcing Experiment", to be
published in the proceedings of "Spacecraft Charging Technology Conference,
Montery CA, 31 October - 3 November 1989

Grier, N.T. 1983, "Plasma Interaction Experiment II (PIX II): Laboratory and Flight
Results", Spacecraft Environmental Interactions Technology 1983, NASA CP-2359,
pp. 333-347

Grier, N.T. and Stevens, N.J. 1978, "Plasma Interaction Experiment (PIX) Flight Results",
Spacecraft Charging Technology 1978, NASA CP-2071, pp. 295-314

Hillard, G.B., "Negative Potential Arcing: Current and Planned Research at LeRC", to be
published in the proceedings of "Spacecraft Charging Technology Conference,
Montery CA, 31 October - 3 November 1989

Jongeward, G.A. et. al. 1985, "The Role of Unneutralized Surface Ions in Negative Potential
Arcing”, IEEE Trans. Nucl. Sci.,, vol. N§-32, no. 6, Dec., pp 4087-4091

658



Katz and Cooper, U.S. patent 4835841

Snyder, D.B. 1986, Private Communication

659



Experiment Plate
18x18in

I

Enclosure; 14.0L,12.75W,95H

Circuit boards Power Control
unit

- Microcomputer
- Memory

- Electrometer
- Transient Current Detector
- Diagnostics
- Unassigned

HVPS

Signal Conditioning

Langmuir Probe

unit Pressure Gauge

Figure 1 - Current design of experiment package

660



A

18 in

Y

A
Space Station
8x 8 (4)
g Standard
00 APSA silicon
— 2x2(9)
2x4(12)
Ar
Breakdown Test supp,e:sion
2x2(9)
o000 modified
Cu Ag Au Al Mo
Arc
© Suppression
2x2(9)
Snapover modified
V Experiment

Reserved
for
ESA

Langmuir Probe A

attach point

Figure 2 - layout of experiment plate

(solar cell dimensions in cm)

661



UONEIIPOW ,SSE[SI0A00 PIPUIIXD,
arqrssod Jo uonejussordal snewaYds - pg 2ISLY

0>A

\ I01oNpucy

TOOIS — o .“M“MQO«O«

uonesyIpowr ,pox Juruy3n,
aqrssod Jo uonejuasaador snewoyds - q¢ amSLy

0>A

w\ 101npuco

uoonTs “’n‘o‘¢.¢.. RS

Relelelede

e

UONEIJIPOW , SUNE0D JLI0INP,
opqissod jo uoneussaidar onewayds - o¢ oIy

0>A
7 10190pUod
4

!C‘.“’Q’Ar;x
RSRR

[POu [[99 Fe[0S
pIepue)s Jo uoneyuasaIdol onewDyos - B¢ M3y

0>A

\ J010npuody

L XXX K

AN Y
RRXXRS

662



SPACE PLASMA INTERACTIONSII
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ELECTROSTATIC DISCHARGES ON SPACECRAFT

D. Allred
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S-Cubed Division of Maxwell Laboratories, Inc.
J. C. Roche
NASA/Lewis Research Center
David L. Cooke
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ENVIRONET: AN ONLINE ENVIRONMENTAL INTERACTIONS RESOURCE

Michael Lauriente

NASA Goddard Space Flight Center, Greenbelt, MD 20771

ABSTRACT

EnviroNET is a centralized depository for technical in-
formation on environmentally induced interactions likely to be
encountered by spacecraftin both low-altitude and high-altitude
(including geosynchronous) orbits. It provides a user-friendly,
menu-driven format on networks that are connected globally
andisavailable twenty-four hours aday - every day. The service
pools space data collected over the years by NASA, USAF,
other government research facilities, industry, universities, and
the European Space Agency. This information, updated regu-
larly, contains text, tables, and over one hundred high resolution
figures and graphs based on empirical data. These graphicscan
be accessed whilc still in the chapters, making it easy toflip from
textto graphicsand back. Interactive graphics programsarealso
available on space debris, the neutral atmosphere, magnetic
ficld, and ionosphere. EnviroNET can help designers meet
tough environmental flight criteria before committing to flight
hardware built for experiments, instrumentation, or payloads to
the launch site. A test bed for developing an expert system for
diagnosing environmentally induced anomaties for spacecraft
has been in progress in cooperation with the USAF.  An
agreement hasalsobeen made with the USAF 1o use EnviroNET
as a test bed for proposed standard atmosphere models by the
AIAA Atmospheric Standards Committee.

BACKGROUND

EnviroNET was initiated at the request of NASA head-
quarters to provide acentralized depository of design guidelines
for use by the space community with access capability. This
action was prompted by the need foradetailed description of the
environmental interactions with Shuttle and its payloads. The
extreme complexity and size of the Shuttle made itvery difficult
10 characterize these environments by direct computation

In the fall of 1982, NASA conducied its first Shuttle
Environment Workshop to determine what had been learned
from these measurements'. This led to environmental concems
voiced and a need for up-to-date information, on a continuing
basis. To address the issucs, NASA's Office of Space Science
and Applications (OSSA) requested that a focal point be estab-
lished for this environmental information, and that the activity
be coordinated with other NASA centers, government agencies,
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and the user community. Goddard Space Flight Center (GSFC)
was asked to lead this Agency-wideeffort. Italso suggesied that
the data obtained from this activity be put into an electronic
database which could be accessed by any interested user from
its work place. A second workshop was held where the concept
for the current EnviroNETinformation resource wasorganized™

What has evolved is a user-friendly; menu-driven space
environment information service®. Utilizing the global network
of the Space Physics Analysis Network (SPAN)* this service
is available to the space community, nationwide, as well as
internationally. Itis also useful to designers of equipment for
low and high altitude satellites—including geosynchronous
spacecraft. It is available twenty-four hours a day..every day.
The system incorporates a combination of expository text and
numerical tables amounting to about 2 million characters (bytes),
plus Fortran programs that model several natural environments.

BROWSE

The main-menu system, which controls the EnviroNET
activity on the MicroVAX T, allows one to run BROWSE, the
principal retrieval program. With BROWSE, data files can be
accessed, graphics and text downloaded, mail sent to the system
manager, bulletin board notices read, the models run, or the
system exited. Simple command choices allow one 1o page
through the EnviroNET database sequentially, or jump to points
ofinterest. BROWSE docsrequirea VT100-compatible terminal
or emulation. Three menus are available: Main Topics, Data
and Table of Contents/Index. One can move among the three
menus to any part of the database, or back to the EnviroNET
main menu with asingle keystroke. As you BROWSE about the
database and change menus, the information on the terminal
screen will change, but the basic layout of the screen will remain
the same. The text is under continuous review by technical
subpanels (each corresponding to the subject areas of the
database) of experts who comect and augment the database 10
keep it accurate and current.



Apartial list of the current topics contained in EnviroNET
is shown in Fig. 1. The topics of primary interest to this session
are the chapters on the Natural Environment and Surface Inter-
actions, and the interactive graphics facility. The chairman of the
subpanel on Surface Interactions Henry Garrett gave two papers
at the SOAR ’89. They were on the environmental interactions
on space robotics and the Space Station®~.

(

\

Introduction

Thermal and Humidity

Vibration and Acoustics
Electromagnetic Interference
Loads and Low Frequency Dynamics
Microblal and Toxic Contaminants
Molecular Contamination

Natural Environment

Orbiter Motion

Particulate Environment

Surface Interactions

Interactive Graphlcs Faclility

Fig. 1 Current Topics

ENYIRONET’S INTERACTIVE GRAPHICS AND
MODELING

Use of models have been simplified by to providing
tabular outputs to the screen or o files and for plotting the
resultant models. Orbit dosage programs are designed to allow
the user to analyze the radiation dosage for a given orbital
configuration or to predict densities and temperatures encoun-
tered along a given orbit. Computer models are being expanded
beyond the current models (thermosphere, ionosphere, energetic
particles, magnetic field) to include gravity, radiation, meteor-
oids, the increasingly important space debris, and spacecraft
anomalies.

The scope of the interactive modelsis shown inFig. 2. The
models include neutral atmosphere density and temperature,
ionosphere, electron temperature and density, the magnetic field
vector, and cnergetic particle or radiation flux. These models are
based on data from satellites which orbit the earth in the thermo-
spheric and exospheric regions of the atmosphere.

The implementation of on-line simplified computational
models in the EnviroNET database has been strongly recom-
mended by many EnviroNET users. A review of published
prediction models indicates that selective computational models
can be sufficiently simplified to meet the user-friendly require-
ment of the EnviroNET databasc user. Environet models provide
a readily accessible method to do quick accurate calculations.
These models encompass many imporiant environments for

engineers. A user-friendly informative interface is standard on
ali models. All models have a pop-up help window which give
- agore information on inputs, outputs and caveats. Fig. 3 isan
e example ofamodel help window for the International Geomag-
netic Reference Field model”.

Mass Spractrometer Jncoherent Scatter (MSIS)*
Marshall Engineering Thermosphere (MET)*
International Reference lonosphere (IRI)*

Cosmic Ray Effects on Microelectronics (CREME)
Energatic Particles*

Radlatlon Belts

Solat Fiux

International Geomagne‘ﬂc Reference Field (IGRF)*
Orbital Debris* M

Marsgram*

*Suitable for orbit integration

J

Fig. 2 Scope of Interactive Models

o2t g
Thess output flles e named "IGHF." and say De vievad or dove-
! using the optione available. Thess files TAI3 be taleted aftar
axiting the 1axP wodal, 10 plesse dovalsed viatersr data you vieh b
ave befare do

Peforsnces:

médla, ¥. ¥.. Intersatlo] Goomnetic Aelarance Pleidi the thivd
gonaration, 7. Geosesn. 882

Cecaloctr. 34, INI-3I6,

-360.0 to )66.
£.0 to J0800.0
1940 to

o or

0 dograes
ilcasters

1008

1

]
7] Alt! tnn

(B]ack Help [Zxit Walp

{ [A]head Help

=

Fig. 3 Help window from the IRI model

The orbital debris model provides essential data needed for
risk assessment. The model is a widely used one of the current
and future debrs environment. The model permits order-of-
magnitude estimates of collision probabilities. Fig. 4 is an
example of a user friendly model for space debris’. The input
parameters are on the left and input ranges on the right. After the
cornputer is asked to run the model with keyed in values, the
output then appears on the split screen on the bottom.
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ORBITAL DEBRIS NOUEL
by Donald Kesslar, Ji€ {713] d03-3113, with
PIMp D. Mnz-Hasdor, Darrell . Rabertson, Lockhaed

lackneed, and
2k (7] for halp st any time s4d

n Input Ra
1) Debris Dismeter ©.001 to 10000.0 ca
1) Altitude

9.0 to 100.3 dagrees

- P —
DX = 2.6020802-04 m BQUANE NETER
PR SQUAREZ

PER TEAR
FIXX = 7.1311783-07 SQUARZ NETER FEN DAY

b0 you vank to [Riun the modal ulth the currant maluss, [F]ery 3 parsuater,
change [4]11 values or soms of the values {1} - (7], oFf [l]xll ?

Fig. 4 Uscr-friendly space debris model

The interactive graphics system permits plotting from
common graphics terminals and emulators (Tekironics). The
sysiem allows plotting of output versus any input parameier.
Graphs are generated using interactive data language (IDL), a
commonly used commercial packageas shown inFig. 5. The real
time graphing can do “What if....” scenarios.

FILE: DEGRIS*FILE®0082.DAT.2 DATA SET: I

Flux per xquare metar pe- yeor

Inclination (deg)

Fig. 5 Plot from the output of space debris model

Fig. 6isan cxample of a user-friendly model for the 1986
Mass Spectrometer Incoherent Scatter (MSIS)-86 ModeP. Itis
a standard empirical neutral atmosphere model. User-friendly
outputof temperaturcs and densities of atmospherc components
including atomic oxygen arc possible. As shown bclow,
calculations of mission fluences of atmospheric specics when
integrated over an orbit model are easy. Such information
would be valuable for drag calculations or calculating oxygen
crosion.

Input Rarges
1 to 365 (days}

Qurveat 18.7 o flux, 732
4] EagMtic index Ap.... 2

orbit hnnun
Aiad ot pari

Nt ivode ot thoea:
arbital Loclihatl
Long of ascanding

Plep from wac node

Dley pari fr asc mods. ..
i

!Ancther run (1/)7

goyog=~

i
i
i

Fig. 6 MSIS model output showing orbital fluence of
species

Environmental scientists may now map space atmospheres
in spatial dimensions. Affordable tools now make it feasible o
gain access to the scientific data which we have expressed in
FORTRAN-compiled information. The CISC and VMS combi-
nation of ¢ programming are used to deliver solutions to
computational intense graphical applications.  Fig. 7 is an
cxample of a surface plot superimposed over a topographic plot
from the output of the MSIS-86 model. The F 107=90, F 107
average=90. Day of the year is along the x-axis, latitude along the
y-axis, and density along the z-axis.

J

Fig. 7 Sample output plot produced from MSIS-86 model
Altitude=900km; Local time =12:00; Longitude=15%;
F107=90; Mean F107=90; x axis is day of ycar(1-365);
Y-axis is Latitude(-90-90); z-axis is density of atomic
oxygen;

ORIGINAL PAGE Is
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SPACECRAFT ANOMALIES EXPERT SYSTEM

Through the years, a host of information related to space-
craft anomalies have been accumulated. This information is
principally Iocated in the chapters on the natural cnvironmentand
surface intcractions. We are coordinating with all the agencies
working in this area to help us develop an online facility to
diagnose anomalies. In this category, Koons and Gomey, who
have been working on an expert system to address anomalies due
to surface charging, bulk charging, single event effects and total
radiation dosage have agreed to share their experience with us.
We also have the assistance of NASA which publishes an annual
anomalics report on its satellites. Lastly there is NOAA with its
onlinc reporting system. Expert systems provide an effective
method of saving corporate knowledge. They also allow com-
puters tosiftthrough large amountsof dataand pinpoint significant
parts. Fig. 8 shows the expert system interface. Heuristics are
uscd for predictions instead of algorithms. Approximate reason-
ing and infercnce are used to attack problems not rigidly defined.

( Real Time Dala \
Spacecraft Space

Spacecraft
Anomaly Environment Knowledge

Atibutes
Database Database Database Base

Forecastars (AFGWC, NOAA
Expartsd (Abiospace, AFGL, NOAR)
Operators [Space Cmd., Commercial)
Program Ofices

Conkractors

Fig. 8 Expert system interface

The Spacecraft Anomalics Expert System is a tool to
diagnose causes of environmentally induced anomalics. Itisalso
effective as a learning tool on environments. Modular systems
allows expansion of satellite, technology, and past environmen-
tal conditions databases. The prototype program was developed
by Acrospace Corp.

SPACE ENVIRONMENT STANDARDS

This continuing effort is ideally suitable to link the
scicntific community with users. By presenting our develop-
ments at national meetings and participating in committee
meetings on standards it is anticipated that a contribution 10
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development of space environment standards will be achieved.
At the invitation of Dr. Al Rubin, chaimman of the AIAA
Amospheric Standards, a presentation was made on January 8,
1990. It was suggested that EnviroNET be used asa mechanism
for proposed standards because of the linkage to the space
community through the Space Physics Analysis Network.

TELESCIENCE TESTBED

EnviroNET is ideally suited for investigators to cooperate
from their “remote” home laboratories and computers with their
collcagues by computer networking. This is an expansion of the
concept started with the Atmosphere Explorer and Dynamics
Explorer programs when many scientists were connected over
dedicated phone lines to a central “remole” compuier site con-
taining their data and computer programs. With the advent of
SPAN, the remote Dynamics Explorer scientists can communi-
cate with one another directly and offload calculations and data
analysis to their home systems, thereby improving productivity
with simultancous analysis on remote, distributed computer
systems. EnviroNET is being upgraded to permit the users o
conduct teleanalysis, i.e., perform analyses using Space Shuttle/
Space Station environment data and the models on computers at
remote institutions. EnviroNET has always drawn on the NASA
centers, other government laboratories, industry, and universities
for help. The academic community is especially involved
because it provides important opportunitics for testing and evalu-
ating new idcas, techniques and concepts before they have
reached the state of maturity considered by contractors and
project mangers suitable forimplementation. A icstbed program
like EnviroNET provides a valuable way of training graduate
students who represent the future scicntists and engineers of the
nation, and who need (0 be at the cutting edge of technology to
ensure our economic survival.

UPDATING ENVIRONET

EnviroNET isaliving document. One of the driving forces
for having an “electronic handbook™ was to compress the time for
communicating important information. Although the National
Security Council’s Intcragency Report On Orbital Debris™ was
issued a few wecks before the NASA/DOD Orbital Debris
Conference'’, we were able to have the complete report online
in time for the meeting. Robinson’s Spacecraft Environmental
Anomalies Handbook sponsored by the Air Force'? will soon be
online.

Workshops conducted periodically are issued as informal
documents for the purpose of feedback of information essential
to the improvement of the services lousers. Asanexample, atthe
mini-workshop held by the Natural Environment Panel, recom-



mendations were made to add models that will generate energetic
electron and proton environment values for a point in space,
calculate orbital integrations of particle fluence, provide mag-
netic field races and calculate ionospheric parameters. Now
featuring interactive graphics software, the system willeventually
simplify space environment mission analysis.

Last year a mini-workshop was held on environmentally
induced spacecraft anomalics. InadditiontoNASA, the meeting
was supported by the National Oceanic and Atmospheric Ad-
ministration, TRW Inc., U.S. Air Force Systems Command,
Global Weather Central Environmental Technical Applications
Center, and Air Weather Service. Koons and Gomey described
a spacecraft anomaly expert system, Elsen reported on Goddard
spacecraft anomalies, Robinson presented material on single-
event upsets, Heckman and Allen reported NOAA spacecraft
anomaly data, and Wilson and Scro reported on the Air Force
spacecraft anomnalies database. This meeting was followed by a
special session on environmentally induced spacecraft anoma-
fies chaired jointly by the Air Force and NASA at the AIAA
January meeting in Reno'. The session was expanded toinclude
a description of the Goddard’s trapped radiation facility and a
paper by Garrett and Whittlesey on Anomalies on TDRSS.

CONCLUSION

EnviroNET is an operational system available to the
scicnlists, engineers, satellite operators and users concerned with
spaceenvironments whohave access toaterminal or dial-up port.
It is a tail node on SPAN accessible directly or through the
national networks via NPSS. The EnviroNET staff welcomes
comments and suggestions for how to improve this service. To
summarize, the benefits to using EnviroNET include:

1) Validated NASA environmental
information and interactive space models

2) Facilitating analysis of the natural space
environment for missions
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ABSTRACT

A photometric-photogrammetric analysis of intensified-
video images from AMOS and onboard Shuttle Orbiter
"Discovery” of a sunlit venting of supply water has shown
that the 1%2 mm-diameter liquid stream breaks up within ~1
m to form ice/snow particles of two characteristic sizes,
much as was observed in earlier space-tank simulations.
Discrete droplets produced by the flash evaporation are the
principal feature in the photographs of the wake trail taken
from the bay and crew cabin; these particles have an
"average” diameter comparable with that of the initial
continuous flow.  Unresolved submicron ice droplets
formed by recondensation when the evaporated water gas
overexpands dominate the images of the ~2% km of trail
detectable by the groundbased tracking telescope-camera;
these particles sublimate at rates that we modeled from the
decrease in visible radiance of the trail by applying energy
balance arguments for spherical Rayleigh-Mie scatterers/
radiators in low earth orbit that undergo the (small) surface
roughening seen in laboratory experiments. The angular
spreads of the two types of ice particle are the same within
observational error, and the kinetic energy imparted by the
boiling-explosion of the superheated (in vacuum) quasi-
cylindrical water stream is about an order of magnitude less
than the injection energy.

INTRODUCTION

We present here a preliminary interpretation of a recent
experiment conducted on Space Shuttle Discovery (mission
STS 29-orbit 49, 16 Mar 1989) in which a stream of liquid
supply water (1) was vented into space at twilight. The data
consist of video images of the sunlight-scattering water/ice-
particle cloud that formed, taken by visible light-sensitive
intensified cameras both onboard the spacecraft and at the
AMOS ground station near the trajectory's nadir. This
experiment was undertaken to study the phenomenology of
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water columns injected into the low earth-orbital environ-
ment, and to provide information about the lifetime of ice
particles that may recontact Space Shuttle several orbits
later (2). The findings about the composition of the cloud
have relevance to ionospheric plasma depletion experiments
(3) and to the dynamics of the interaction of orbiting
spacecraft with the environment (1).

EXPERIMENTAL

Pure and largely gas-free liquid water produced in the
vehicle's fuel cells was forced out through a 0.14-cm
diameter nozzle, which was heated to ~70° C to prevent its
blockage by icing; 19.4 g/s was vented within a few degrees
of the wake direction. The experiment was planned so that
the spacecraft would be directly solar illuminated just before
dawn, while the atmosphere below ~100 km altitude
remained in the hard earth's shadow. Discovery was in a
southwest-to-northeast circular orbit at 329 km that passed
almost directly over AMOS (the Air Force Maui Optical
Station), which is atop 3.0 km high Mt. Haleakala, HI (21°
N - 204°E). The radiance distributions of the water trail
were measured for about 2 min in three projections: to a
closed circuit zoom television camera in the open bay just
forward of the spacecraft's tail, 18 m from the nozzle; to a
similar camera handheld to point out of a crew cabin
window a few m forward of and above the nozzle; and to
the ground station, where an ISIT low-light-level video
camera with 55 cm-diameter objective lens, 0.4° by 0.3°
field of view, and S-20 spectral response (FWHM 0.4-0.65
um) precisely tracked the spacecraft. Examples of the
imagery from the three intensified electronic cameras are in
Figure 1.

Discovery came into direct sunlight at 62° elevation
southwest of the ground station, and the water trail
remained above background until it moved to about 5° in
the northeast. The solar scatter angles, aspect angles to the



Figure 1. Views of the sunlit water/ice particle trail from
onboard Discovery (a and b) and from AMOS
with a 0.37°-wide field (c). a) is a projection to
crew cabin window W1 and b) is a view from
the zoom camera mounted just forward of the
vertical stabilizer. In c) the solar-scatter angle is
48°, and the equivalent stellar magritude of
Orbiter (whose bloomed image is at the head of
the water trail) is + 3.6.
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trail's symmetry axis, zenith angles, and slant range to
AMOS are in Figure 2. Both onboard cameras could view
the essentially-backlit water cloud (the rising sun being
toward the northeast) beyond about 5§ m from the ejection
nozzle. The bay camera, whose maximum field of view
encompassed most of the detectable length of the trail, was
at times pointed in azimuth to include its vanishing point.
The groundbased camera's projected field varied between
about 1% times (at culmination) and 5 times (near the
horizon) the maximum above-threshold longitudinal extent
of the optically thin sunlight-scattering volume.

DATA

The video images represent a series of illumination/viewing
conditions of a time-stationary physical phenomenon. We
analyzed radiometrically the AMOS scene at zenith angle
61° and azimuth 70° (Figure Ic), in which the high
differential cross-section for forward scattering of sunlight
(scattering angle 48°) and moderately elongated sight path
(angle to long axis of cloud 334 °) resulted in the best video
signal/noise ratios. Discovery, whose visual magnitude at
this range (640 km) is about +3'%4, appears as a strongly
bloomed, photocurrent-saturated feature at the head of the
quasiconical extended water-containing volume. Figure 3
plots the relative brightnesses along the long axis of this
trail (the instrumental baseline is subtracted, and a linear
dependence of photocurrent on cathode irradiance
characteristic of is its assumed), and these brightnesses
summed over pixels along lines transverse to this direction.
(This latter, rapidly decreasing quantity is the sterance per
unit longitudinal path.)

The two onboard cameras show principally a flow of
densely-packed discrete particles, with a relatively broad
size distribution indicated by the variability of the video
photocurrents from particles at sensibly the same range.
This cloud diverges at about the same angle as the trail in
the AMOS images (see Figure 1), and its "edge" projects
back to an apex within a meter from the nozzle. We
measured the longitudinal velocity as 23 m/s +30% by
following individual strong sunlight-scatterers in successive
video frames, finding the variation among particles to be
less than the precision of this measurement. The mean
cross-track speed in the essentially-perpendicular view
directions to the two onboard cameras can be seen to be
about % this axial speed, which indicates that the transverse
momentum imparted to these particles is small compared
with their wake-directed momentum. Many of these
particles flicker, with characteristic periods near 4 s, and
are therefore more likely tumbling ice/snow crystallites than
spheres; indeed, erratic droplet shapes as well as a broad
"size" distribution have been observed in a laboratory
simulation of the venting of water into near-space (4).
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Figure 2. Solar scatter angle (»,), aspect angle to the trail
axis (n,), zenith angle of Discovery and the trail
(n;), and slant range to Discovery from AMOS
(solid line) during the water venting.

Approximately 100 of these large particles per m path can
be resolved in the video frames from Discovery's camera.
This number would be expected from the laboratory finding
(4-7) that the mean diameters of the explosion-product ice
particles are comparable with the diameter of the ejection
nozzle.

INTERPRETATION

We interpret the discrete sunlight scatterers seen by
Discovery’s onboard cameras to be the product of the
cavitational bursting of initially-coherent water streams in
vacuum, which results from the rapid formation of bubbles
("steam”) in the superheated liquid (4-8). A cloud of much
smaller (tenths-micron diameter) particles that has also been
identified in laboratory tank experiments is not
unambiguously detectable against these bloomed images of
the close-lying large droplets. This second component of
the flow is formed by recondensation of water molecules
that had been evaporated from the original and flash-
exploded stream after this gas becomes overexpanded. On
the basis of the following observations, we judge these
much smaller particles to be responsible for the major
fraction of the radiances of the trail that were measured by
the groundbased camera (Figure Ic).

[1] Thermodynamic arguments (3) show that most (~70%)
of the water mass remains in the large ice particles, while a

laboratory simulation (6) indicated that the small
recondensate particles contain less than 2%. We applied
standard light scattering theory for 0.2 um and

0.7 mm radius ice, finding that despite the great differences
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in both the fraction of initial water in and the absolute
scattering amplitudes of the two populations, the much
larger number of small particles results in considerably
more visible radiance over the length of water trail
detectable by the AMOS camera. (That is, the particles
whose circumference is comparable with the photon
wavelength have higher scattering "efficiency”.)

[2] The surface brightnesses of the trail measured from the
ground exhibit a very weak dependence on the solar-scatter
angle, which is a behavior characteristic of Rayleigh rather
than geometric scattering (particle large compared with the
photon wavelength). Specifically, the fractional increase in
the axial brightnesses beyond about 1 km from the nozzle,
corrected for sight path length, remains small as the sunlight
scattering angle decreases from 107° (when the trail was at
AMOS zenith) to 48° (to which Figure 3 refers). This
small change is consistent with the differential cross-
sections of submicron particles, while in contrast scattering
of visible light per unit solid angle from mm spherical ice
drops would increase by about a factor 50 over this range of
angles.

[3] The dependence of axial and crosswise-integrated
radiance of the optically thin trail on distance from
Discovery (Figure 3) is consistent with a simple model of’
the energy balance of the smaller ice particles. We applied
standard Mie radiation theory with the known dependence
of the real and imaginary components of the index of
refraction of ice on wavelength to calculate the sublimation
rate of smooth spheres in vacuum, taking into account the
energy they absorb from earthshine and the incident solar
flux and the energy they lose by thermal emission and
sublimation. (Collisional heating and recondensation can be
readily shown to be negligible.) The equilibrium 166K
temperature is reached within less than a second after the
particles form.

Since the emissivity of weakly-absorbing spheres is
proportional to their radius r when r is less than ~1 um,
their radiance decreases exponentially with time, or distance
x from the spacecraft. That is, r of submicron particles
with axial velocity v (which we took as the velocity of the
large particles, in view of the similar cone angles) varies as
exp [-ax/v], where a (= 0.004 s! for smooth spheres) is
the fractional loss rate due to sublimation. Thus the
scattering in the "geometric” particle size range, which we
take to be where the cross-section at fixed angle varies with
r2, would exhibit an exp [-2ax/v] dependence. In contrast
scattering in the Rayleigh size range, where the cross-
section varies as r2-r4 ¥, would vary as
exp[-6ax/v]. The "break” near x=1400 m in Figure 3 is
due to the transitioning of the radius of the subliming
particles from the geometric to the Rayleigh-scatter regime.
(The familiar Mie oscillations in this transition region are
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by

Figure 3 indicates that the radiances measured from AMOS
can be described by geometric scattering over the first
~1400 m and by Rayleigh scattering over the remaining
~1000 m (beyond which the trail's brightnesses fall below
the camera's threshold), when a small correction for the
progressive roughening of the particles is included in the
calculation. The correction assumes a linear increase in
sublimation rate with time, so that the radius decreases
about as exp [-ax/v-bx2/vZ], That somewhat-larger ice
droplets in vacuum indeed develop irregular surfaces that
lead to more rapid sublimation was observed in laboratory
experiments in which the chamber walls were held at low
temperatures (3). The roughening required to achieve the
fit of the data shown to an energy-balance model that
includes this effect increases the rate of decay of mean
radius by sublimation from the submicron particles by up to
only a factor 2, which is in general agreement with the
laboratory findings. The small downward curvature of the
radiances in the two scattering regimes is also predicted by
the progressively-increasing surface roughness that we
assumed.
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These calculations also showed that sublimation would
result in a virtually negligible decrease in the sunlight-
scattering cross-sections of one-mm ice droplets over the
~100-sec length (2% km/23 ms! in the spacecraft's frame
of reference) of the visible trail. The substantial measured
decrease in total sterance per unit longitudinal path shown
in Figure 3 and a calculation of the absolute mean radiances
from solar scatter with the observed 100 such particles per
m path, both further show that these much larger ice
droplets could be responsible for only a minor fraction of
the optical signal at AMOS.

The transition to Rayleigh scattering near x 1.4 km
indicates that the mean particle radius at this distance from
Discovery's nozzle is between 0.1 and 0.3 pum. Our
sublimation model gives an estimate of the mean initial
radius as 0.3 + 0.15 pum. The corresponding radius
inferred in a space-simulation chamber (6), in which the
water stream had 1.6 mm diameter, 20°C temperature, and
a somewhat higher total flow rate, was 0.08 + 0.03 um.

CONCLUSION

The cloud of discrete particles that results when mm-
diameter continuous water streams are vented into the low
earth-orbital environment is found to have three
components. Macroscopic (from laboratory observations,
also mm-diameter) ice/snow particles are created by the
explosive bursting of the supersaturated high-vapor pressure
liquid, producing irradiances that were readily detectable in
the images from the intensified video cameras onboard
Discovery. 'The narrow cone angle in which these particles
appear indicates that this flash evaporation imparts relatively
little momentum compared with the longitudinal momentum
of these particles. Much smaller droplets that theory
indicates result from condensation of gaseous water produce
radiances that dominate the images from the much more
distant groundbased ISIT telescope-camera, in a volume
with essentially the same angular spread as the large
particles. The ~25% water gas, which is not detectable by
either type of camera, is evolved from vaporization and
sublimation of the liquid and solid (3, 7, 8). We have
estimated the mean diameter of the submicron particles
from an analysis of the dependence shown in Figure 3 of
the relative brightnesses from scattering of sunlight at
visible (S-20 photocathode response) wavelengths on
distance into the wake of the spacecraft. The surface
roughening that has been reported from laboratory
experiments is interpreted as accelerating the sublimation
rates of these small particles by factors up to about 2.
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INTRODUCTION

The Environment WorkBench (EWB) is being developed for
NASA by S-CUBED to provide a standard tool that can be
used by the Space Station Freedom (SSF) design and user
community for requirements verification. The desktop tool will
predict and analyze the interactions of SSF with its natural and
self-generated environments. The project is funded by Space
Station (SSE) and managed by NASA/Lewis Research Center.
In this paper, we briefly review the EWB's design and
capabilities. We then show calculations using a prototype
EWB of the on-orbit floating potentials and contaminant
environment of SSF. We examine both the positive and
negative grounding configurations for the solar arrays to
demonstrate the capability of the EWB to provide quick
estimates of environments, interactions, and system effects.

THE ENVIRONMENT WORKBENCH

The design of the EWB is based on the Environment Power
System Analysis Tool (EPSAT) developed by S-CUBED for

NASA and SDIO. EPSAT integrates into one modern screen-
oriented desktop tool the environment and analysis modules
needed to design and perform system studies on power
systems. For the EWB, the environment and interaction
modules are being replaced with modules containing Space-
Station-approved models. The architecture of the EWB is
shown below in Figure 1. The user interface is isolated from
the calculation modules, allowing sophisticated display
capabilities to be standardized. The calculational portion of the
tool is designed to allow modules containing physics models to
be "plugged" into software expansion slots similar to a bus on a
PC. The process controller then coordinates all input/output
(1/0) from the individual modules and data bases. This
structure provides flexibility and expandability. When new
modeling capabilities are needed, the necessary modules are
"plugged” and automatically work with all the other physics
modules and the display module.

The environment and interaction modules to be incorporated
into the EWB are called out in SSF 30425 and are listed in
Figure 2. The SSF document also details the specifics of the

G dees o

ity the valculations neces

Jor the dusired 1esult

lile griphi = | fora]
; 'con(%ur nlots moduls |

module e

Software

: Tunctiond  “Expansion Slots”
A i\/t I modulal V"'plug i new funclions

N —
module

functiona
module
i ' database |

Figure 1. The architecture of the EWB. The display module presents information to the user on
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Neutral Atmosphere

Plasma
lonospheric plasma
Auroral Plasma
Geosynchronous Plasma

Penetrating Charged Particles
Magnelospheric
Trapped Radiation
Cosmic Rays

Earth's Magnetic Field
Gravitational Field

Induced Environmental Effects

Plasma Wake

Neutral Wake

Glow

Charging
Contamination

EMR from Power
Induced Perturbations

Electromagnetic Radiation VxB
Galactic Radiation Nolse Plasma Currents
Solar EM Nolse Drag
Natural Environment EMR Torques

Radiation Dose
Meteor and Debris Impacts
Surface Degradation

Man-made Noise

Meteor and Debris
Meteoroids
Debris

Figure 2. Environment and interaction models to be
incorporated into the EWB.

models as currently conceived. However, as discussed above,
the modular design of the EWB will facilitate modifications,
extensions, and replacements as needed.

SPACE STATION FREEDOM CALCULATIONS

In this section, we present prototype EWB calculations of the

v x B-induced potentials, floating potentials, and contaminant
environment about SSF. The prototype EWB is an extension
of EPSAT and forms the basis of the EWB. These calculations
show that, for the negative ground configuration of the solar
arrays, the truss structure will float more than 100 volts
negative. During these conditions, thruster firings can ground
the structure significantly, increasing the current through the
structure.
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Figure 3. The north (N), east (E), and down (D) components
of the Earth's magnetic field for one orbit. The
magnetic field values are not periodic with each
orbit due to the revolution of the Earth.

In the calculations below, a 28° inclination 300 kilometer orbit
is used. Figure 3 shows a plot of the north, east, and down
components of the Earth's magnetic field as a function of
mission time for this orbit. The plot extends for approximately
one orbit. The magnetic field module contains the IGRF-87
model of the earth's magnetic field. The orientation of SSF on
its orbit has the cabin facilities in the gravity gradient direction
and the truss structure normal to the orbit plane. In this
orientation, the down component of the magnetic field induces
the potential gradient along the 130 meter truss structure. As
seen in Figure 3, the down component changes sign between
the northern and southern magnetic hemisphere and ranges to
almost 0.3 Gauss.

The induced v x B potential across the entire truss structure is
shown below in Figure 4. The potential is given as a function
of mission time for an entire day (86,400 seconds). The
potential is not periodic with orbit due to the rotation of the
earth. The sign of the potential changes with that of the down
component of the magnetic field (see figure 3). The maximum
potentials of +33 volts and -32 volts occur when SSF is
nearest to the magnetic poles.

Floating potential calculations were performed for the two
grounding schemes of the solar arrays. The results are shown
in Figures 5 and 6. For both cases, the 130m x 5m x 5m
truss structure was assumed to be solid and conductive. The
solar arrays were assumed to generate 150 volts continuously.
(Shadowing by the earth was ignored.) Solar array plasma
current collection is taken as the sum of the collection by the
individual solar cells. Each solar cell is assigned a voltage
depending on its position in the array and the array ground
potential. The plasma current collection by an individual cell is
dependent on the array and cell design and must be
parametrically defined. We use the form shown in Figure 7,
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Figure 4. The potential induced across the truss of SSF by its
motion through the Earth's magnetic field. The
cyclic motion is due 1o the orbit around the earth,
and the envelope is due to the earth's rotation.
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Figure 5. Floating potential of the truss for the positive
ground configuration. The two curves show the
potentials with respect to plasma ground of the two
ends of the truss.
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Figure 6. Floating potential of the truss for the negative
ground configuration. The two lower curves show
the potentials with respect to plasma ground of the
two ends of the truss. The top curve shows the
orientation of the solar arrays with respect to the
Fam.

which allows for different ion and electron collection
efficiencies and secondary electron and snapover effects. The
specific values used in these calculations were chosen to
reproduce the collection efficiencies of NASCAP/LEO
simulations of the SSF solar cells.

The SSF floating potential as a function of mission time is
shown in Figure 5 for the solar array positive ground
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Figure 7. Parametrized collection efficiency of a single solar
cell used in the floating potential calculations. The
plasma current collected is the incident plasma
current onto the cell surface multiplied by the
collection efficiency.

configuration. At each mission point, the EWB uses the IRI-86
plasma density module to compute the plasma density
appropriate for the location and local time. The floating
potential module then determines the potential that must be
added to each component to produce zero net plasma current to
the system. The two curves shown in Figure 5 are the
potentials with respect to plasma ground of the two ends of the
truss. As seen, the potential stays within v x B«L. of plasma
ground. The most positive part of the solar array is near
plasma ground, and the most negative portions are 150 volts
negative.

The negative ground configuration is shown below in Figure 6.
The difference is dramatic. The truss floats between 100 and
130 volts negative depending on the v x B+L potential. When
the truss is floating at 130 volts negative, over 1 ampere is
flowing through the structure. Figure 6 also shows the angle
of the solar arrays with respect to the ram. During part of the
orbit, the solar arrays do not face into the ram plasma and
cannot collect current. For these times, the floating potential
falls to low values similar to the positive ground configuration.

The final EWB calculations show the effect of firinga 10 1b.
thruster. As shown in Figures 8a and 8b, the density near the
thruster is high enough to cause a Paschen breakdown (~ 0.2
Torr-cm). This is confirmed in Figure 9, which shows a plot
of the pressure and the Paschen breakdown pressure threshold
as a function of distance along the truss. Near the location of
the thruster (120 m), the pressure threshold is exceeded. In
this region, it is possible to have Paschen breakdown given
high enough voltage. However, if breakdown does occur, it
will tend to extinguish itself because the rest of the plasma
circuit (truss, solar arrays, etc.) cannot collect enough current
to sustain the arc. The system will be driven more positive,
increasing the current to the arrays.
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Figure 8. (a) Total neutral density near SSF during operation
of a 10 1b. thruster located at 120 m up the truss.
The calculation includes the ambient neutrals and
accommodated thruster neutrals. (b) Blowup of the
thruster region.

SUMMARY

The Environment WorkBench is being developed to provide
Space Station designers and users with a tool to determine
interactions of Space Station Freedom with its natural and self-
generated environments. The EWB will integrate into one
desktop tool the environment and interaction models needed to
perform system analysis and requirements verification. As
demonstrated by the prototype calculations presented here,
having environment and interaction models integrated into one
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Figure 9. (a) Profile of the EWB space station model. The
thruster is located at 120 m. (b) Neutral pressure
and Paschen breakdown pressure threshold as a
function of distance along truss. Near the thruster,
the breakdown pressure is exceeded.

tool allows the user to analyze quickly and reliably system
performance of configurations and to determine if requirements
are being met.
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ABSTRACT

A workshop to consider the effects of the various
proposed SSF grounding schemes was held at NASA
Lewis Research Center May 22-24, 1990. Experts
from the plasma interactions community evaluated
the impacts of environmental interactions on SSF
under each of the proposed grounding schemes. The
grounding scheme chosen for the Space Station
Freedom (SSF) power system was found to have
sericus implications for SSF design. Interactions
of the SSF power system and structure with the low
Earth orbit (LEO) plasma differ significantly
between different proposed grounding schemes.
Environrcental constraints will require modification
of current SSF designs under any grounding scheme.
Maintaining the present, negative grounding scheme
compromises SSF safety, structural integrity, and
electromagnetic compatibility, and will increase
contamination rates over alternative grounding
schemes. One alternative, positive grounding of
the array, requires redesign of the primary power
system in Work Package Four. Floating the array
reduces the number of circuit changes to Work
Package Four but adds new hardware. Maintaining
the current design will affect all Work Packages.
However, no impacts were identified on Work
Packages One, Two or Three by positively grounding
or floating the array, with the possible exception

of extra corona protection in multi-wire
connectors.

INTRODUCTION:

Interactions of spacecraft with the natural

environcent have been of concern ever since the
Gemini space program. Since that time, much has
been learned of spacecraft/environment
interactlons, especially as new technology has been
developed and flown.

Space Station Freedom {SSF) represents a
significant increase in spacecraft size and power
levels. ©01d rules of thumb must be re-examined and
their validity retested before applying them to the
new technology. In the 1980's, with the advent of
the STS, efforts were begun to understand how large
spacecraft interact with the ionospheric plasma.
By 1986, recommendations were made to ground SSF to
the positive side of its arrays. Many engineers in
wWork Package 4 used a positively grounded array as
a baseline at a time when the primary power
distribution system was AC. In 1989, when the
primary power changed to a DC distribution system,
power system designers assumed a negatively
grounded system. However, the plasma interactions
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community raised concerns about this grounding
scheme in meetings of the Space Station Plasma
Interactions and Effects Working Group, through a
change regquest propesal to change the grounding
scheme to a positive ground, and through letters
and conversations with SSF personnel.

On May 22-24, 1990, experts on the Low Earth Orbit
(LEO) environment plasma interactions met with
engineers from the major Space Station Freedom
contractors, and representatives of NASA management
to evaluate the impacts of the different proposed
power system grounding schemes for Space Station
Freedom. It was known that the interactions of SSF
with the amblent LEO environment would be quite

different for the different grounding schemes. The
impacts of these interactions on the safety,
weight, feasibility, operating requirements,

maintenance and reliability or risk of SSF were in
need of evaluation to support an imminent decision
on the 55F grounding scheme. The results reported
here are the result of that evaluation process. An
attempt has been made to bring to bear all known
engineering and physical facts about interactions
with the LEO environment to evaluate the impacts of
all the proposed grounding schemes. An effort has
been made to be as quantitative as possible. It is
hoped that this report will be a first step in the
necessary evaluation of the environmental issues
regarding SSF grounding.

The first day of the Workshop was devoted to
presentations about what we can expect in the way
of grounding-related SSF environmental
interactions, how they may be estimated, and what
xinds of answers need to be obtained. Ground rules
for the next day's calculation sessions and the
basic premises of the Workshop were presented.
These basic premises are repeated below:
o SSF operations and designs can be optimized by
fncluding considerations of physical processes
of environmental interactions.

In LEO, current balance will be satisfied -
positive and negative collected currents must
balance.

The grounding configuration chosen for the
Space Station will influence all systems.

Our understandings of the laws of physics
(models, theories, equations, empirical
guidelines) are sufficient that some
predictions of the interactions and their
impacts may be made.

No one wants a SSF that won't work well.



on the following day, the Workshop split up into
four working groups, The FLOATING POTENTIALS AND
GROUND CURRENTS WORKING GROUP, the ATOMIC OXYGEN,
SPUTTERING, MATERIALS DEGRADATION AND CONTAMINATION
WORKING GROUP, the CORONA, ARCING, AND INSULATIOR
WORKING GROUP, and the ARC RATES AND EFFECTS, EMI,
AND KAPTON PYROLIZATION WORKING GROUP. Much of the
following is the result of thelr calculations and
estinmates.

SPACECRAFT/PLASMA INTERACTIONS:
The ionosphere in LEO is a conductive plasma. Any

spacecraft placed in this environment will come to
an equilibrium potential relative to the plasma

such that no pet current is collected. If the
spacecraft has a distributed voltage (drivenm,
perhaps, by an illuminated solar array) which

permits currents to be collected from the plasma,
then part of the spacecraft will be positive
relative to the plasma potential {"zero volts"},
collecting electrons, and the rest will be negative
relative to the plasma, collecting lens. The
electrons are very 1light, mobile, and easily
collected. The ions are massive, slower moving,
and difficult to collect. Therefcre, the total
spacecraft voltage relative to the plasma will be
such that most of its area will be negative of the
plasma potential and only a small part will be
positive., Figure 1 illustrates these points. It
also shows that if a spacecraft structure |is
grounded to the positive side of the solar array
then it will be near zero volts because its surface
area adds to the surface area which can collect
electrons. If tha spacecraft is grounded to the
negative side of the solar array it will be driven
negative by most of the array-generated voltage.
Many experiments on the Space Shuttle and
tree-flying LEO spacecraft have shown these
concepts to be sound.

In the past, these effects have been seen on
spacecraft in LEO conditions, but the voltages and
spacecraft sizes were such that they enly had to be
considered in correcting and interpreting results
of scientific experiments. However, the physical
size and voltage level of the SSF power system
require that plasma effects be considered in the
design.

BASIC ASSUMPTIONS ABOUT. THE SSF POWER SYSTEM:

The objective of this workshop was to Investigate
the consequences of various 'grounding schemes. In
order to justify the practicality of the grounding
configurations chesen for evaluation, some features
of the power distribution systemw were noted.
Details of the power s5ystem are discussed in
reference 1.

with this background three possible grounding
configurations ~were identified. Additional
configurations may be identified but their

consegquences are covered in this set, and they give
rise to additional levels of impracticality.

The first configuration identified has the array
grounded with the primary power distribution on its
negative side and the secondary power distribution
also grounded on the negative side. This is the
concept currently being used to design the power
distribution system [Fig. 2].

The second configuration is to ground the array and
the primary power system positive, and ground the
secondary power distribution negative. The ground
reference would change sign across the transformer
in the DDCUs (DC to DC Converter Units). The
primary power distribution system would have
positive referenced circuitry [Fig. 3].

The third configuration would flecat the solar
arrays and negatively ground both the primary and
secondary power distribution systems. For this
configuration a DDCU would have to be added cutside
the alpha joint, either in the DCSU (DC Switching
Unit} or just after the SSU (Sequential Shunt
unit). This may require an additional DDCU for
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each solar array mast. Such a DDCU would have
different requirements than the DDCUs which convert
to the secondary power system and, in general, will
not have interchangeable parts. This would permit
most of the power distribution circuitry to have a
negative ground. But the SSU and some support
circuitry might need to be grounded separately and
electrically isclated from the rest of the system
[Fig. 4I.

PLASMA/SSF GROUNDING:

If the structure is grounded to the negative
side of the array, the structure/array will flocat
nearly the entire array voltage negative in the
daytime (about =-150 to -130 V negative of the
jonospheric plasma). This is to balance the
positive ion collection by the structure and array
with the electrons collected by the array [Figure
2}. At night, when no voltage is generated by the
array, the structurae will be near plasma potential.

With the structure grounded to the positive
side of the array, the positive structure is
electron collecting, while nearly the entire array
must be ion collecting to balance this [Figure 3].
As a result the structure is only slightly positive
relative to the plasma. However, the negative side
of the array now floats nearly 160 V negative
relative to plasma.

A floating array would permit the array to
float relative to plasma, and permit the structure
to float near plasma potential [Figure 4}. This
option combines some environment interactions
advantages with a slightly reduced arc probability
due to the slightly more positive floating array.

IDENTIFIED IMPACTS OF GROUNDING SCHEMES ON SSF:

Grounding configurations considered in this effort
were:

1. Solar arrays (SA), primary power
distribution (PC), and secondary power
distribution (Sc)} all grounded negative.
2. 5A and PC grounded positive and SC
grounded negative.
3. SA floating,
- grounded negative.

but both PC and SC

Some of the relevant effects of these
configurations are presented in matrix form in
Table I. This table gives both advantagecus and
disadvantageous impacts. Additional details of the
impacts, the methods used to guantify and evaluate
them, and detailed recommendations on implementing
the different grounding schemes can be found in
reference 1.

SUMMARY :

There are technical problems with all grounding
designs which will affect SSF's costs and/or
schedule. They arise for a variety of reasons,
involving design changes to accommodate identified
deficiencies in the «current design or to
accommodate the alternative grounding schemes.
Ne V. :
The present design grounds all systems
negative, and ties the ground to the negative side
of the array. This will cause SSF ground and
structure to float 130 to 150 V below plasma.
safety concerns are raised because of the 140 V
difference between SSF and free flying bodies such
as the docking of Shuttle or astronauts on EVA.
Interlock mechanisms will need to be incorporated
to prevent thruster firings or venting events while
these other bodies are connected to or touching SSF
because such events will cause currents through the
spacecraft body or the Extravehicular Mobility Unit
{EMU) of about 10 amps. Alternatively, active
charge control systems (hollow cathodes or other
plasma contactors) could be used to limit
potentials. However, these will increase the



plasma density around the entire SSF and will
exacerbate other interactions (such as array
current collection).

Arcs will occur on the structure. The present
anodized surface will break down under the electric
field imposed on it. Arcs will be triggered by
micrometeoroid impacts, but their characteristics
are unknown. Arcs analogous to solar array arcs
may occur on the structure.

The SSF structure design will need to be
re-evaluated. Erosion rates are increased because
of sputtering by ions accelerated by the -140 V
structure potential to holes in the anodization
caused by dielectric breakdown or debris impacts.
This will compromise the structural integrity of
the trusses in from five to thirteen years.

lLarge currents that violate present EMI
requirements will occur. 1In addition to the solar
array related currents, a current of about one Anp
DC is expected because of leakage currents through
the structure anodization. This will increase over
the lifetime of SSF. Voltage transients of 160 V
and current transients of about 10 Anmps are
expected during thruster firings. During arcs,
similar voltage swings and transient currents up to
100 Amps may occur. Additional shielding may be
required on egquipment.

Finally, contamination rates on Solar Arrays,
Thermal Coating, and Optics will be increased
because of the increased sputtering of the
structure.

Vi oung:

In order to ground the solar array and primary
while maintaining
negative ground on the secondary power system,
Work Package Four will have to redesign the primary
Either NPN technology
will have to be replaced with PNP technology or
Also
the DDCUs will need minor modifications for their
insulation to survive increased corona occurrence,
Solar array arcs
have a slightly higher risk of occurring because of
the -160 V maximum negative potential rather than
-140 Volts on the negative grounded system,
The sputtering problem on the solar arrays will be

power distribution positively

power distribution system.

circuits will need to be more complicated.

as will multi- wire connectors.

the
slightly increased.

Floating:

In order to float the array, new hardware will
New additional DDCUs will be required.
These DDCUs will not be parts-compatible with the
other DDCUs because they must tolerate higher
and higher corona

be needed.

voltages, higher power levels,

levels.

Summary of impacts:

Environmental constraints require modification
Maintaining the current
Structural
Integrity, Electronagnetic Compatibility, and will
X Positive grounding
of the array requires reworking of the primary
impacts Work Package Four.
Floating the array reduces the number of circuit
changes to Work Package Four but adds new hardware.

of present SSF designs.
grounding scheme compromises

Safety,
increase contamination rates.

power system, which

TABLEIL. PRIMARY POWER GROUNDING CONFIGURATION ASSESSMENT

IMPACTS
CONFIBURATION

ADVANTAGEOQUS MPACT

DISADVANTAGEOUS BMPACT

Modules/Trusa groundad to
negaltive end of soler array
{currant desipn approach -

sge Flg. 2) (a minimal advantage}

o -140 V vs -180 V max potenllal on
salar array with respect 1o plasma o

o Al Work Packages Impaoted by plasma effacis

o Salaely (EVA/Docking) compromised by Inducad
voltages and 10 amp current through EMU vents

o Thermal control malerials must be re-
evalualod, rodesignod or subsilituled

Truss struclure sorlously
quoslionable In 6-13 years

o Large plasma-induced curronte and
voltages ta be accommodated

o Contaminallon Increased by aputterlng

o Conducted EMI regulromont not mel

sputtering, Insulalion raq.

Modules/Truss grounded to
positivo ond of eolor array
(sce Fip. 3)

a sinple Work Packago

o Module/Truas vollage near plasma
polontial oliminatos slructurat

o Thormal coatinge: no chango

o Minimum plasma/elrucluro curront

o No now EVA/Docking safoly probloms

o Keeps impacis & redenign Taauss In

o 280 V vs 180 V maximum DC polentlal
In power connactore to DDCU

o Rodesign of DC-DC Convarters requlred

o Corona douslgn roquiromonts incronsod
in DOCU

o Redosign of ptimary power cantrol clrcullry

Modulea/Truss floating with
rospoct lo solar array

(see Fig. 4) Same 88 sbove

Corona dosign rogulramonts slightly
increased In new, addilional DDCU

a

Dosign now DDCU (160 V to 160 V)

a

fodoslon of polar panol powor conlrol clrculls

Q

691




Maintaining the current negative ground design will
affect all Work Packages. However, no impacts were
identified on Work Packages One, Two or Three by
positively grounding or floating the array, with
the possible exception of increased corona
protection in multi-wire connectors.
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SMALL SATELLITE DEBRIS CATALOG MAINTENANCE ISSUES
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Peterson AFB, CO 80914-5003

ABSTRACT

The United States Space Command
(USSPACECOM) is a Unitied Command of the
Department of Defense with headquarters at
Peterson Air Force Base, Colorado Springs,
CO. One of the tasks of USSPACECCM is to
detect, track, identify, and maintain a
catalog of all man-made objects in Earth
orbit. This task we call space sur-
veillance. The most important tool for
space surveillance is the satellite cata-
log. The purpose of this paper is
threefold. First, to identify why the
command does the job of satellite catalog
maintenance. Second, to describe what a
satellite catalog is. Third, and finally,
to identiry small satellite debris catalog
maintenance issues. This paper's
underlying rationale is to describe our
catalog maintenance services so that the
members of the community can use them with
assurance.

USSPACECOM OVERVIEW

USSPACECOM is a warfighting command. It
is authorized to employ forces in support
of its missions. USSPACECOM exercises
compatant command of its assigned space
forces by assigning tasks, designating
objectives, and providing direction. A
summary of the USSPACECOM mission, taken
from the Unified Command Plan, is pre-
sented below:

Space operations to include space
control and space support.

Integrated warning for North
American Aerospace Defense Command
and other Unified and Specified
Commands .

Planning for eventual operation of
the Ballistic Missile Defense
system.

Space surveillance is important to all
three USPACECOM missions. However, it is
actually a subtask of the space operations
mission called space control.
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Space control is USSPACECOM's warfighting
missicn., Space control is analogous to
sea control. Its goal is to achieve
superiority in those areas of space vital
to U.S5. national interest. Through the
space control function, USSPACECOM ensures
access to space, tracks objects in space,
protects U.S5. ana allied space-related
assets, and when directed, negates hostile
space-related forces.

USSPACECOM SURVEILLANCE MISSION

Space surveillance is the fundamental
task. It includes detecting objects as
they enter space, detecting events caused
by objects in space as they occur, and
conrirming that an object has departed
space. Space surveillance is thus essen-
tial to control of space. Without
accurate surveillance, efforts at
assessment and warning, protection,
negation would be futile.

and

Space surveillance tasking is directed by
the USSPACECOM Space Surveillance Center
(SSC). The SSC performs space surveil-
lance using both a space-based constella-
tion of geosychronous launch detection
sensors and a ground-based network of
tracking sensors. The SSC uses this set
of sensors to detect and track launches
when they enter space. Once the launch is
tracked, the S8SC can enter information
about tne launch into the SSC satellite
catalog.

To summarize, USSPACECOM maintains the SSC
satellite catalog because it is essential
to space control operations. Actually,
the principle of maintaining it is simple.
The SSC tasks the space surveillance net-
work to use the satellite catalog to track
satellites. The SSC then takes the obser-
vations and updates the satellite catalog.
(See Pigure 1) However, the actual pro-
cesses for maintaining the catalog are not
so simple. Thus, this paper will next
describe what the satellite catalog is and
then how things get into it.



WHAT A SATELLITE CATALOG IS.

"Every State launching an object into
space 1is required to maintain a registry”
(Convention on Registration of Objects
Launched into Outer Space, 1975).

Further, every State is required to pro-
vide to the Secretary-General of the
United Nations the following information,
as soon arfter launch as practicable.

Name of launching State (or States),
designator of the space object, date
and location of launch, pbasic orbital
parameters (nodal period, inclina-
tion, apogee, and perigee) and
general function of the space object.

The SSC Satellite Catalog contains not
only this registry information, but other
operationally useful information, as well.
In general, the SSC catalog is used in two
forms. The first form is the registry.
The second one is a data base of current
orbital parameters on every object for
which the SSC can maintain data. A set of
orbital paramenters Lor an object is
called an "element set". Thus, this
secona catalog is called the SSC element
set catalog. The discussion that follows
will consider the following three
questions. First, what kind of infor-
mation is kept in the registry? Second,
what does the element set catalog contain?
And, three, how do objects get into the
catalog?

SSC REGISTRY CATALOG

The registry catalog maintains the
following kinds of information on each
object:

The SSC number, satellite common
name, international designator, owner
source, launch date, launch site, and
decay date (when appropriate).

The SSC number is assigned sequentially by
the SSC as objects of the launch attain
orbit and have a current element set.
example, the oldest object in orbit is
satellite number 0005, Vanguard 1, a
payload, launched from Air Force Eastern
Test Range on March 17, 1958.

For

The satellite common name, launch site,
and launch date is as stated by the owner
when the launch is announced.

The international designator is assigned
based on rules in COSPAR Information
Bulletin No ¢, July 1962,

The international designator contains year
of launch and number of the launch that
year, on a worldwide basis. The final
suffix uniquely and sequentially defines
each object put in orbit by that launch.
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The SSC uses the following conventions to
assign object suffixes. The suffix "A" is
always reserved for the primary object of
a launch. Then, suffixes are assigned by
a combination of availability of element
sets and importance of the object, usually
payload, rocket body, and then debris.
(See Figure 2)

The summary of basic orbital parameters on
each object is current as of the date that
the catalog was generated. These basic
orbital parameters are taken from the SSC
satellite element set data base.

SSC ELEMENT SET CATALOG

The most commonly available satellite ele-
ment set catalog contains "two-card" ele-
ment sets: This form of satellite element
set is described in two 69-character data
lines. It is a mean, general pertur-
bations element set using modified
Keplerian elements, including; epoch time,
drag terms, inclination, right ascension
of the ascending node, eccentricity, argu-
ment of perigee, mean anomaly, and mean
motion in revolutions per day. This mean
two-card element set is used with our
ephermeris prediction package to generate
predictions on the satellite's location.

A mean orbit is the mathematically
smoothed description of the orbit. An
osculating orbit represents the actual
orbit of the satellite as it is acted on
by natural forces.

Table I provides a summary of objects in
the SSC Element Sets Catalog as of 05 June
1990

PAYLOADS ROCKET BODIES DEBRIS
OBJECTS 1666 989 3515
Table I. Summary of Object Types in the

SSC Catalog

The structure and content of the SSC
satellite catalog is significant to the
user. Note that the catalog includes both
registry and satellite element set infor-
mation. We protect the distribution of
our catalog because sometimes we have
information on a launch that may not be
confirmed by the satellite owner. We
respect the confidentiality of a satellite
owner's decision to not release this
information.

HOW THINGS GET INTO THE CATALOG?

The most essential step in space sur-
veillance is to detect man-made objects
during launch, before they enter space.
This is the most common way that objects
are found and entered into the satellite
catalog.



Space launches are initially detected
before they enter space by the Defense
Support Program (DSP), a constellation of
satellites in geosynchronous orbit,

With initial launch detection information,
the ground-based sensor network is
directed by the SSC to locate the new
launch and all of its pieces. The sensor
tracking data is then used to update the
SSC element set data base (Figure 1}.

Wwhen the element sets are associated with
the launch event, the launched objects are
cataloged. Technically, S5SC may have an
element set, but no registration infor-
mation on an object to enter it into the
catalog. As of 05 June 1990, there were
370 element sets with no registration
information.

Today, twenty-six sensor systems make up
the USSPACECOM space surveillance network.
Figure 4 depicts the low-altitude coverage
provided by our space surveillance sensors
at 100nm above the Earth. The dashed line
shows a typical Soviet satellite orbit
trace for a launch from the Soviet Union.

Another significant way for objects to
enter the catalog is when a satellite
breaks up into many smaller plieces. When
an object breaks up, the cloud of pieces
is often found by the large search pat-
terns maintained by certain ground-based
sensors. Sensors such as NAVSPASUR,
Eglin, and Cavalier keep large search fen-
ces up at all times. Administratively,
the largest piece of the breakup maintains
the satellite catalog name given when the
object was initially correlated to a
launch. The rest of the pieces are cata-
loged with new international designator
suffixes, beginning from the last cata-
loged piece of the launch.

Satellites no longer in space are logged
in the satellite catalog as "decayed".
decayed satellite is one which reenters
the earth's atmosphere; thus, it is no
longer in orbit,.

A

Presently, man-made objects reenter from
orbit on the average of more than one per
day. Of these, over 95% are so small that
they break up and burn up in the earth's
atmosphere. Those that might survive
reentry are monitored in a program called
Tracking and Impact Prediction (TIP}).

Many factors make it difficult to preci-
sely predict where and when a satellite
will decay. There are two important fac-
tors to mention. The first one is the
fact of atmospheric reentry: the com-
bination of atmospheric drag and unique
physical characteristic of the object
significantly influences both the speed
and course of an object's decay. The
second part is that our sensor network,
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due to sensor coverage limits, cannot
maintain continuous track on such objects
during their decay phase. Thus, depending
on the time of the last track (from just
now to three hours ago) the ground area of
the reentry prediction could be from 100
to 1000 miles long. Historically, 95 out
of 100 objects have decayed within the
predicted "confidence window", which has
an error of plus or minus 20% of the time
from the last observation to the predicted
decay time.

SMALL DEBRIS MAINTENANCE ISSUES

Presently, USSPACECOM does not track

and maintain orbit predictions on small
debris (objects less than 10 cm).
However, if USSPACECOM is going to main-
tain small debris there are three issues
that must be addressed. Each of these
issues are stated below.

One: All satellite element sets
are not alike.
Two: Definition of a Tracking
Observation.
Three: Size of Small Debris

Tracking Requirement.
ALL SATELLITE ELEMENT SETS AREN'T ALIKE

the SSC uses several forms

of element sets. The first one described
was the SSC two-card element set. This
form is an analytically derived mean ele-
ment set. The other common SSC element
set is a numerically derived special per-
turbations vector, or "XY¥i" vector. This
vector is an osculating representation of
an object's orbit, For a visual represen-
tation of "mean" versus "osculating” see
Figure 3. It is very important to note
that these two kinds of element sets can-
not directly replace one another.

Actually,

This issue gets even more complex.
Depending on the application, different
descriptions of the forces on an orbiting
object are included in the element set.
For example, near-earth perturbations are
different from those experienced in deep
space. Near-earth orbits have more
atmospheric drag effects than geosynchro-
nous deep-space orbits. Therefore,
depending on the requirements of their
satellite orbits, other agencies have
developed their own element set forms.
For example, SSC routinely provides vec-
tors in forms used by Onizuka AFB, CA and
NASA Goddard, MD for satellite control.
SSC also services six other user coor-
dinate systems in non-real time. Note
that this also means that an SSC vector
cannot directly replace an Onizuka or NASA
vector.



The bottom line to you, as a user, 1is that
any element set i1s not necessarily equiva-
lent to any other element set.
Fortunately, we can provide both element
sets and look angle prediction software
to authorized agencies.

DEFINITION OF A TRACKING OBSERVATION

There are agtually three problems

within this  issue. The first one is
called observation "correlation". The
second is definition of how many obser-
vation constitute a track. And the third
is how many site tracks are needed to
define the first SSC element set, called
"Element Set 1".

OBSERVATION CORRELATION:

The SSC satellite element set data base
provides the location of all trackable
objects in orbit around the earth. This
data base is used to generate predicted
look angle data for comparison to actual
track data. If tracking data compares
very closely, then the object is iden-
tified as a "correlated" object. If the
object does not correlate, then it is an
"uncorrelated target (UCT)". If all
objects in earth orbit have current ele-
ment sets (and thus are correlated), then
a UCT is probably tied to a significant
space event, Thus, another good reason
for maintaining the satellite catalog is
to allow our sensor network to detect new
uncorrelated objects rapidly and easily.

OQur experience is that failure to use
identical correlation procedures both at
the SSC and at the sensors can have a
measurable impact on the $SC computational
process.

DEFINITION OF THE TERM "TRACK".

While a track may contain one observation,
it generally contains several observations
taken during a length of time. For
example, from our historic experience in
tracking UCTs, we know that a roughly five
minute long track on a near-earth object
from a single site will produce an element
set good for several revolutions. After
that time, new observations are needed.
Given that this 5 minute track length on a
90 minute orbit provides a basic element
set, our rule of thumb is that the initial
track length on a UCT must be at least
5.5% of the orbit period. This rule pro-
vides the appropriate track length as a
function of period in Table II below.
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OBJECT PERIOD TRACK LENGTH

(Minutes) (Minutes)
90 S
100 5.6
250 13.9
300 16.6
500 27.8
800 44.4
TABLE II. Track Length as a Function of

Object Period

NUMBERS OF SITE TRACKS IN ELEMENT SET 1.

Once a good track length is obtained, then
a certain dispersion of site traking
observations is required in order to
define the element set parameters.
Practically, this is stated in the
following rules for SSC Element Set One:

Observations from any three sensors
which track the object.

Two sensor's obervations at least
one-half revolution apart.

Same sensor's observations on
separate revolutions.

Once Element Set 1 is established, the
element set can be maintained with a
relatively small sample of tracking obser-
vations gathered periodically.

In summary, generation of an element set
on any object that the SSC will maintain
requires not one observation, but several
sets of tracking observations. The
tracking length will also be a function of
the object's orbit period. Note that ele-
ment set generation is not element set
maintenance.

SIZE OF A SMALL DEBRIS TRACKING
REQUIREMENT

Tne size of this requirement; that is, how
many additional objects need to be

tracked is important. For example, if the
catalog doubles, we have problems that can
be resolved by upgrading equipment. If
however, the catalog increases ten-fold,
we probably need a great deal more com-
puter and communication capacity and more
sensors. In other words, there is a
significant cost factor.

SSC SPACE SURVEILLANCE NETWORK

The network used by the SSC uses several
types of sensors including mechanical
tracking radars, phased array radars, and
tracking telescopes. (Table II lists our
ground-based sensor capabilities.) The
capability of sensors to track is a fixed
function of their total sensor tracking
opportunities.



For example, mechanical tracking radars
generally have only one tracking beam.
Also, they generally do not have the
inherent capability to track objects
smaller than 10 cm. The exception is
Haystack. In addition, these sensors have
no extra time to track other objects such
as small debris. They are primarily used
to track high priority objects as payloads
and rocket bodies. Thus, these sensors
have limited tracking opportunities to
track small space debris.

The phased arrays functionally have more
than one tracking beam and thus inherently
could be used to track more objects.
However, only a few have the inherent
capability to support tracking objects
less than 10 cm. The sensors that could
support include the radars at Cavalier and
Eglin.

The tracking telescopes also functionally
have a single object tracking capability.
Depending on refelectivity of the object
and site weather, telescopes can track
small debris. However, in reality, they
have little time to track other objects
such as small debris. They are primarily
used to track deep space objects and per-
form periodic deep space searches.
Indeed, the command has further require-
ments for two more deep space tracking
Sensors.

The bottom line is this. If the catalog
doubles, there are few sensors that will
have available tracking opportunities to
handle this. One would expect that the
phased arrays of the existing SSC network
should be able to handle it. However, if
the catalog increases on the order of ten-
fold, then new tracking sensors will pro-
bably be required.

SPACE SURVEILLANCE COMPUTATIONAL CAPACITY

Now, tne computational capacity concern.
The current SSC satellite element set data
base includes nearly 7,000 objects in
earth orbit. The present SSC system
(427M) processes approximately 40,000
observations per day. The new SPADOC 4B,
due in summer 1991, will not be able to
provide significant support to 427M for
catalog maintenance. SPADOC 4C, due in
mid 1995, is intended to greatly improve
catalog maintenance capabilities. It is
planned currently to process about 150,000
observations per day.

Satellite element sets are maintained by

a process called "differential
correction". Fundamentally, this process
starts with a site observation and a pre-
dicted observation from the current SSC
element set. These two positions are com-
pared and the error, or residual, is used
to generate a correction to the current
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element set. Practically, this process
"jterates” until the corrected element set
fits the site observations on the object.
The daily network differential correction
process requires a fast scientific com-
puter, not a data base configured com-
puter.

As the numbers of objects increase in the
data base, then the need for more speed
and/or distributed scientific computer
power rises in the SSC.

The loads on the communications system
connecting the SSC and the sensors is
routinely quite high. Double the size of
the catalog and the communications system
may not be able to pass the amount of
observations required to maintain that
doubled satellite catalog. The com-
munications pipes may not be large enough
to handle that flow.

The bottom line for computers and com-
munications lines is that we may be able
to handle a doubling of the satellite
catalog. If larger numbers of objects
must be maintained, more scientific com-
puter power and larger communications
pipes most probably must be obtained.

CONCLUSION

USSPACECOM has the mission to detect,
track, identify, and maintain a catalog of
all man-made objects in earth orbit.
However, there is currently no military
requirement to track small debris, and we
do not have, hor are we developing the
capability to do so. Most of our sensors
are not capable of tracking small debris.
Our computational resources and com-
munications lines may functionally handle
the problem, but more capacity is probably
required. Based on national needs and
other important factors, if it is decided
to require USSPACECOM to track small
debris, then funds must be applied to
improve USSPACECOM resources.



SYSTEM

ALCOR

ALTAIR

FPQ-14
FPQ-15
FPS-92

HAYSTACK

COBRA DANE
FPS-85

FPS-49

NAVSPASUR
FPQ-14

MILLSTONE

FPS-79

PAVE PAWS

PARCS
SAIPAN

SPAR

AMOS

GEODSS

MOTIF

SITU

LOCATION

Kwajalein
Atoll

Rwajalein
Atoll

Antiqua lls
Ascension lls
Clear, AK

Millstone
Hill, MA

Shemya 1lls
Eglin, FL

Fylingdales,
England

Dahlgren, VA
Raena Point, HI

Millstone

Hill, MA
Pirinclik,
Turkey

Cape Cod, MA
Beale, CA

Robins, GA
Eldorado, TX

Cavalier, ND
Saipan 1lls

Thule AFB,
Greenland

Mati, HI

Socorro, NM
Taegu, Korea
Maui, HI

Diego Garcia

Maui, HI

St Margarets
Canada

TABLE III. Space Surveillance Sensor Capabilities

RADAR SENSORS

SENSOR_TYPE

C Band

UHF/VHF

C Band
C Band
UFH

X Band

L Band
UHF

UHF

Continuous Wave
C Band

L Band

UHF

UHF

UHF
C Band

URHF

ELECTRO-OPTICAL SENSORS

RANGE (KM)

5555 KM

40000 KM

2300 RM
1600 KM
5555 KM

35000 KM

5555 KM
5555 KM

5555 KM

8100 KM
1800 KM

35000 KM

4300 KM

5555 KM

3200 KM
2500 RM

5555 KM

Visible, IWIR

Visible

Visible, LWIR

Visible

35000 KM

35000 KM

35000 KM

35000 KM
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THE IMPORTANCE OF MOMENTUM TRANSFER IN COLLISION-INDUCED
BREAKUPS IN LOW EARTH ORBIT

Robert C. Reynolds and Brian J. Lillie

INTRODUCTION

Although there is adequate information on larger objects in
low Earth orbit, specifically those objects larger than about
10 c¢m in diameter, there is little direct information on ob-
jects from this size down to 1 millimeter. Yet this is the size
regime where objects acting as projectiles represent the
ability to seriously damage or destroy a functioning
spacecraft if they collide with it. Since there is poor data in
this size regime, this population component must be in-
ferred from the creation of larger fragments in observed
breakups. Of the three commonly attributed causes of
breakup, low- or high-intensity explosions and collisions /1/,
only collisions, with a power law distribution in fragment
size, represents the potential for a significant source of mil-
limeter and centimeter debris.

The observed consequences of known collisional breakups
in orbit indicates no significant momentum transfer in the
resulting debris cloud. The position taken in this paper is
that this is an observational selection effect, that what is seen
in these events is an explosion-like breakup of the target
structure arising from shock waves introduced into the struc-
ture by the collision, but one that occurs significantly after
the collision processes are completed; the collision cloud, in
which there is momentum transfer, consists of small, unob-
served fragments. Preliminary computations of the con-
tribution of one known collisional breakup, Solwind at 500
km in 1985, and Cosmos 1275 at 950 km in 1981, assume no
momentum transfer on breakup and indicate that these 2
events are the dominant contributors to the current mil-
limeter and centimeter population. A different story would
emerge if momentum transfer was taken into account.

The establishment of the role of momentum transfer in col-
lisional processes will become more critical in the future, as
collisions become more frequent. Also, kinetic energy anti-
satellite (ASAT) weapons tests and usage, which might be
anticipated, need to be understood in the role they will play
in the state of the environment.
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DISCUSSION
Observation of On-Orbit Collisional Breakups

There are 2 cases in which collisional breakups have oc-
curred in orbit under known conditions. The first of these
was the test of a hovering ASAT vehicle by the United States
in 1985 using as a target Solwind, a science satellite. This
breakup occurred at an altitude of 525 km, and the resulting
debris cloud was well observed. The second was the
designed impact of the upper stage and the science payload
in the Delta 180 flight. Again, the debris clouds resulting
from this test were well observed.

The most significant feature in both tests was that the debris
clouds, a single cloud for Solwind, and two clouds for Delta
180, showed little evidence of momentum transfer occurring
during the collision process/2,3/. The center of mass for the
Solwind cloud was that of the satellite had it not encountered
the ASAT vehicle; for the Delta 180 experiment, there were
2 debris clouds, one moving in the orbit of each vehicle. In-
struments that were able to observe smaller fragments found
more indication of momentum transfer than those seeing
only the largest objects.

These observed results appear to oppose what seems to be
intuitively obvious, that there must be momentum transfer
in a collisional process. This can be viewed as demonstrat-
ing the special characteristics of hypervelocity impact
processes. In laboratory tests of small projectiles at small
targets, an exiting debris plume is observed if the projectile
is large enough to penetrate through the target. This debris
plume shows a mixture of target and projectile material
where there has been momentum coupling, but consists en-
tirely of very small particles. Scaling the interacting particles
to sizes of objects in orbit, but moving the impact 100’s of
kilometers away would lead to a debris cloud that would be
difficult to detect.

These data can be combined into a single model for col-
lisional breakup of objects in orbit if the collisional process
is viewed as directly involving only the material in the line
of flight of the impacting projectile. It is this material which
is subject to momentum exchange and fragment creation fol-
lowing the power law size distribution characterizing col-
lisional impacts. The impact, because it is occurring at
speeds higher than the sound speed in the target structure,
deposits significant energy, but little momentum, in the form
of shock waves propagating through the structure. The
energy of these shock waves yields the catastrophic fragmen-
tation of the entire structure that was observed in Solwind.



Because the source of breakup energy is being supplied by
shock waves, it might be expected that the size distribution
of this second cloud would resemble that of a high- intensity
explosion, and because little momentum was transferred
into these shock waves, the resulting breakup would have
the motion of the unperturbed structure motion as its cen-
ter of mass motion.

Mode! for Momentum Transfer

The model for momentum transfer is summarized in Figures
1and 2. First of all, a spacecraft can be viewed as consisting
of several weakly connected components, called elements,
as shown in Figure 1. In this figure, a generic spacecraft con-
sists of 4 elements: a main body, 2 solar panels, and an an-
tenna. If the line of flight of debris hitting the spacecraft
does not go through 2 or more elements, which it generally
will not, only a single element would need to be considered
in the collision process. In contrast to connections between
elements, which are relatively weak, the connections within
an element are strong and an element can be viewed as a
single cohesive object. Within the element, the material in
the target structure is viewed as having 2 components, the
material in the line of flight of the projectile, denoted as the
column mass, and material out of the line of flight, called the
residual mass. This type of model has been suggested by
Chobotov and co-workers /4/, The column mass participates
in the creation of collisional debris - it plus the projectile
mass yield a debris cloud having size and velocity distribu-
tion characteristics of collisional processes. If the residual
mass is large enough, that material remains intact; if not, it
breaks up in a size and velocity distribution characteristic of
an explosion event /5/.

When hypervelocity impact occurs, a cone of ejecta, consist-
ing of both projectile and target material, emerges from the
impact site. If there is a void on the back side of the first sur-
face in the target, as there is for a Hubble shield and for fuel
tanks on spent stages, the debris cloud expands as it
propagates and spreads over a larger area on the second sur-
face it encounters. However, if there is material behind the
front surface, it might be expected that this material will col-
limate the debris cloud, since there is no significant source
of energy to cause it to expand. In effect, for filled volumes,
the geometry for propagation of hypervelocity fragments is
similar to that for subsonic propagation. The coupling be-
tween the collisionally involved material and the rest of the
structure comes from the edge effects, where very large im-
pulsive loads transform into shearing, with little momentum
transfer. Because this coupling involves area to mass effects,
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laboratory tests on scale models will have to be interpreted
with care.

Within the columnar mass and the projectile, the interaction
is taken to be completely inelastic, so that the consequent
mass forms a single debris cloud moving with a center of
mass characterized by the center of mass of the projectile
plus the column mass.

The residual mass plus any appendages will remain after the
collision, but will experience shock waves propagated by the
initial impact. These shock waves will transform into stress
waves at free surfaces, and at all changes in material condi-
tions. Links between other elements and that directly in-
volved in the collision will be relatively weak, and will be the
most easily broken. In fact, compared to the connection
strengths within these other elements, it might be expected
that very little shock is propagated into these elements and
that they retain their integrity, either associated with the af-
fected structure or appearing as large debris objects emerg-
ing from the collision.

Within the element directly involved with the collision there
will be much stronger bonding between the components, so
there will be much more damage caused by the shock waves.
Rather than viewing the consequences of impact in terms of
shock waves in this structure, it is easier to picture the frag-
mentation of this structure as occurring from a large amount
of energy being released within the structure, as would occur
in an explosion.

This leads to the picture in Figure 2 of two types of clouds -
one characterized by collision processes and the other by ex-
plosion processes. This is an adequate picture for the impact
of objects of significantly different size. If the objects are of
comparable size, since off-center collisions are most likely
to occur, the overlap masses will become the column mas-
ses, and the non-overlap masses will become the residual
mass. In this case there would be two explosion clouds
created, one from each of the residual masses, as well as a
collision cloud. This case has been discussed by Chobotov
and co-workers /4/.

Velocity Space Representation of Breakup Clouds

The velocity space representation provides a singularly
simple means of representing the intact objects before col-
lision, and the debris cloud(s) after collision. If the coor-
dinate axes in this space are taken to be Z-axis radial
velocity, X-axis the in- plane horizontal velocity, and Y-axis
cross-range horizontal velocity, kinematically interesting



characteristics can be expressed in terms of conic surfaces.
At a given altitude, the surfaces of constant perigee altitude
will be hyperboloids of revolution about the Z-axis and will
have the functional form

ey

vi (52 (2) i)

where

vH = horizontal velocity = sqrt(vx2 + Vyz)

vz = radial velocity

rp = perigee radius = perigee altitude + radius of Earth
ro = radius distance of reference point

u = gravitational constant * mass of Earth

The associated surfaces of constant apogee altitude in this
space are ellipses, which have the functional form

@)

where
rA = apogee radius

Figure 3 presents a 2-dimensional cross-section of this
space, with the radial velocity plotted on the vertical axis,
and the horizontal velocity plotted on the horizontal axis.
The space is symmetric about both the horizontal and verti-
cal axes, 50 only one quadrant is shown. The altitude is 500
km. A hyperbolae opening to the right represent families of
orbits having common perigee altitude, as labeled on each
curve. The ellipses opening to the left are the lines of con-
stant apogee, also labeled on each curve. The zero energy
surface, marking the limit of bound orbits is the circle of
radius 10.8 km/sec. The point representing a circular orbit
at 500 km is indicated by the "x" at a horizontal velocity of
7.626 km/sec.

As the perigee altitude approaches 500 km (from below),
the hyperbola representing orbits of that altitude become
more elongated along the horizontal axis; the horizontal axis
to the right of the circular orbit velocity represents orbits
having perigee of 500 km. Similarly, the horizontal axis to
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the left of the circular orbit velocity represent orbits having
apogee of 500 km.

It is obvious from this figure that there is a compression in
the hyperbolae along the horizontal axis, indicating that a
small reduction in the horizontal velocity for an object in cir-
cular orbit will significantly reduce the perigee altitude of
the resulting orbit. A debris cloud, which forms a volume in
this space, will consist of objects with orbits of lower perigee
altitude, and hence reduced lifetime, if the center of mass
for the cloud can be moved to the left.

The explosive breakup of a single object in orbit will retain
the orbit of that object for its center of mass. That is, for an
explosive breakup spherically symmetric in the co-moving
frame of the exploding object, the breakup cloud will form
a spherical volume in velocity space centered on the velocity
of that object.

However, the picture will be different for collisionally in-
duced breakups. Momentum exchange in a collisionally in-
duced debris cloud will have the center of mass of the
interacting material as its center, or the velocity of the intact
object as its center for the explosion component of the
breakup. Specifically, for the 4 cases in Figure 2, there will
be:

Case I the single object in the center of mass orbit

Case 2: an explosion cloud and a collision cloud, both
centered on the center of mass velocity

Case 3: a single large object moving in its original orbit, and
adebris cloud centered on the center of mass velocity for the
directly involved collisional material

Case 4: an explosion debris cloud centered on the velocity
of the large object and a debris cloud centered on the cen-
ter of mass velocity of the directly involved collisional
material.

The effect of momentum transfer in the collisional clouds is
important because the center of mass velocity will be less
than the circular orbit velocity, if neither of the initial
velocities exceeds the circular orbit velocity. That means
that in velocity space the center of the clouds will move
toward the Z axis, and the fragments in the cloud will there-
fore have lower perigee altitudes than they would had
momentum exchange not been accounted for.



Looking at a debris cloud in velocity space, it is possible in
a very straightforward way to determine the amount of
material that re-enters almost immediately by calculating
the volume of that cloud (in velocity space) having orbits in-
side a hyperboloid of low perigee altitude. An altitude of
200 km will be used in this paper. The volume will depend
on the center of mass velocity for the cloud and on the
characteristic velocity perturbations for the cloud particles.

Figure 4 presents the cross-section of a spherical debris
cloud, showing velocity intervals of 200 m/secup to 1 km/sec
and centered on the circular orbit velocity. The shaded
region represents the orbits that are reentering, where it
must be noted that the full 3 dimensional space must be
shown to measure the actual volume. The percentage of or-
bits reentering as a function of center of mass velocity is
shown in Figure 5.

While the figures show how to represent the volume of the
debris cloud in velocity space, the density distribution of
fragments in this volume is the real quantity of interest. It
is this density times the related volume that will characterize
the number of objects reentering, or populating short- or
long-life orbits. To calculate this density distribution,
N(v,d), the velocity distribution integrated over size must be
established for the debris cloud.

This joint size and velocity distribution will be assumed to
be separable and of form

/v, 0.1y=V =V,
N{v,d) =K 4 % 1.3-V/Y, )

03 %EVe13y

as suggested by Kessler (/6/), where the K4 is évaluated from
the size distribution. Integrating over all velocities leads to

N(d)=0.645 Kyv,

Q)

However, the expression for N(d) is (/7/)

709

N(d)=bArﬁ'(b+1) (5)

to give a value to Kq of

—(b+1)
Kg= 2Am__° (6)
0.645 vq
To convert from mass to size, the relationship
_nd*p
m="6
will be used, leaving K4 defined as
—(b+1)
kam 22 (22) g 36+ (7)
4" 0645\ 6 Yo (d)
leading finally to a joint distribution function given by
oA [ma (g 0TNEV Y, ®)
N(v,d)= — {— — § 1.3-V/V
0.645 6 vo (d) —3—9 V°£V‘1 JVD

The peak in the velocity distribution, denoted as vy, is itself
a function of size. In this paper, the size/velocity relation-
ship derived by Su (/8/) is assumed. It is of form

0.875-0.676 (log(d/d )" d )
0.875

fog 10 Vo=§

14
a o

I\

where

dm = 9.9083X10°mp!Pvp?? (m)
mp = projectile mass (kg)
vp = impact velocity (km/s)



This function is plotted in Figure 6 for mp=15kg and
vp=10km/s. A line of constant velocity in this diagram will
map onto a spherical surface in velocity space, when the cen-
ter of the sphere is taken to be the velocity of the center of
mass for the cloud. The relative contribution of different
sizes of objects at a given breakup velocity vi, i.e. the den-
sity distribution along a horizontal strip of Figure 6, can be
seen in plots of N(v1,d).

For purposes of illustration throughout the rest of the paper,
dm=1.26X10 meters and b=0.7496 will be assumed.
Figure 7 presents plots for vi = 50m/s, 300m/s, and 1km/s,
where the curves have been normalized by dividing out the
constant (size independent) part of K4. This makes sense be-
cause only relative contributions are used in the following
discussion. The S0m/s curve characterizes the largest ob-
jectsin the breakup, the 300m/s velocity the centimeter frag-
ments, and the 1km/s velocity the millimeter fragments.

To calculate the number of objects as a function of velocity
only, N(v1), the joint distribution function must be in-
tegrated over size, thus

Drmax
N (V1 , X) dx

min

N(v,) = S (10)

where the upper and lower integration limits are functions
of vi. They are determined as follows:

(1) the lower limit is the diameter Dmin(v1) having avo satis-
fying 0.1 * vo = vy, and

(2) the upper limit is the diameter Dmax(v1) having a vg satis-
fying 1.3 *vp = v1

Since the primary concern is for debris fragments that can
seriously damage a spacecraft, Dmin is taken to be no smaller
than Imm.

Performing the integral expressed in Equation 10 leads to
the density distribution within the cloud. A plot of N(v1),
using the same normalization as for Figure 7, is provided in
Figure 8 for three cases - of 10cm and larger, 1cm and larger,
and 1mm and larger debris clouds. Using this density dis-
tribution, the percentage of reentering objects is shown in
Figure 9 for these three cloud components.
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It only remains to relate the center of mass velocities, as
derived from conservation of momentum, to the velocities
shown on the abscissa of Figures 5, 8, and 9. This will be
done for two cases in the following sections.

Case: Collision Induced by a Zero Velocity Projectile

For this case the collision is induced by a projectile near
apogee in a ballistic orbit, so that the impact speed is the or-
bital speed of the target object. This is the type of ASAT test
conducted against the Solwind satellite. It is the simplest
case for calculating momentum transfer, as the results can
be characterized by the single parameter of ratio of the
projectile mass, mp, to the column mass, me. The center of
mass velocity as a function of these quantities is given by

Mg 1
Vv T —— = ———
M= N+ Mp 7© = T#Xg O (11)

where
Xo = mp/ Mmc
The ratio m¢/(mp + mc) is plotted as a function of mass ratio,

myp/me, in Figure 10. The percentage of mass to re-enter as
a function of mass ratio is provided in Figure 11.

Case: Collision Induced by a Projectile in Circular Orbit

The case of 2 objects in circular orbit colliding presents a
more complex problem since the solutions depend on both
mass ratio and encounter angle. The center of mass velocity,
expressed in terms of these quantities, is

1 ve
oo.—_mﬁ +2X,Cot X3) (12)

where

X = COS(X)

3o = Vem/ Vo

The greatest complication is that the collision speed, which
enters the velocity distribution as seen in Equation 9,
depends on this encounter angle through the simple relation



Vp =42 Vp (1-Co)"” (13)

This has the effect of varying the distribution as shown in
Figure 8 as a function of 8. For the volume of the cloud in
velocity space that lies in the reentry region, as opposed to
the number of reentering objects, this complication does not
arise, and aplot such as Figure 12 can be used to characterize
surfaces of constant ratio between the center of mass
velocity and the orbital speed. The line of fixed ao cor-
responds to a single point on the horizontal axis of Figure 5;
if the velocity distribution was not a function of e, suchaline
would also correspond to a single point on the horizontal
axis of Figure 9.

CONCLUSIONS

A two component collisional breakup process has been sug-
gested to provide a mechanism for distinguishing between
material directly involved in the collision process, and that
material in the same structure only indirectly involved. Only
the indirectly affected material forming an explosion-type of
cloud has been observed in on-orbit tests, since this cloud
contains the larger objects. Momentum transfer only invol-
ves the directly involved material, which is characterized by
the column mass in the target. This model provides a
method for identifying the mass involved in the collisional
component of the resulting debris cloud.

Momentum transfer in the collisional component of a col-
lisional breakup can lead to significant reduction in the
amount of debris scattered into long-life orbits. Two cases
were used to demonstrate the technique for determining
center of mass velocities.

The major deficiency in the current work is that the effect of
relative velocity, which is a parameter of the collisional
debris velocity distribution, is not considered. Also, the sug-
gested model decoupling the directly involved target mass
from the residual mass can be better documented relative to
hypervelocity impact tests and modeling than has been done
in this paper. Both considerations are currently being ad-
dressed.
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ABSTRACT

Satellite break-ups via explosion or
collision can instantly increase the
trackable orbiting population by up to
several hundred objects, temporarily
perturbing the routine space surveillance
operations at U. 5. Space Command
(USSPACECOM) and the Naval Space
Surveillance Center (NAVSPASUR).
paper is a survey of some of the
procedures and techniques used by
NAVSPASUR to respond to such events.
First, the overall data flow at NAVSPASUR
is described, highlighting the places at
which human analysts may intervene with
special processing. So-called manual
intervention is required in a variety of
non-nominal situations, including break-
ups. Second, a description is given of
some of the orbital analysis and other
software tools available to NAVSPASUR
analysts. These tools have been developed
in-house over the past thirty years and
can be employed in a highly flexible
manner. The basic design philosophy for
these tools has been to implement simple
concepts as efficiently as possible and
to allow the analyst maximum use of his
personal expertise, Finally, several
historical break-up scenarios are
discussed briefly. These scenarios
provide examples of the types of
questions that are fairly easy to answer
in the present operational environment,
as well as examples of questions that are
very difficult to answer.

This

INTRODUCTION

NAVSPASUR has conducted space
surveillance operations for almost 38
years. The primary product of such work
is a satellite database containing
orbital element sets and associated
observations for all trackable objects.
Many military, scientific and engineering
enterprises depend on the accuracy and
timeliness of this database. Although
most of the satellite cataloging
operation is completely automated, a
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variety of situations can occur in which
a human analyst must intervene with
special procedures. A break-up event is
just such a case. Historically, NAVSPASUR
has been quite successful in deriving
orbital elements from observations of new
debris fragments, even when the event
involves several hundred trackable
objects. This fact has come into special
prominence since 1985 when NAVSPASUR was
designated as Alternate Space
Surveillance Center (ASSC), back-up to
the Space Surveillance Center (SSC)
operated by USSPACECOM at Cheyenne
Mountain AFB. A dozen major break-ups
have occurred since then [1l]. Currently,
NAVSPASUR provides identifications for
almost all of the unassociated
observations reported to the SSC by the
worldwide surveillance network.
NAVSPASUR contributes two main
resources to the space surveillance
effort. The first is the NAVSPASUR
"fence™, a radar interferometer deployed
on a great circle coast-to-coast across
the southern United States, which
provides unusually wide geographical and
altitudinal coverage. It is an all-
weather, dedicated space surveillance
instrument that does not have to be
"tasked" (scheduled in advance for
aiming) as do tracking radars. Rather, 3
transmitters provide a continuous-wave
fan beam in the great-circle plane.
Satellites penetrating the beam reflect
signals to one or more of 6 receiver
sites. At each receiver site, signal
phases and amplitudes are measured on
arrays of antenna elements and this data
is relayed in real time to Dahlgren for
processing. The second main resource is
less tangible, namely, human expertise.
NAVSPASUR employs civilian orbital
analysts for operational work and
requires them to have at least 6 years’
experience., There are several staff
members with over 208 years' experience.
The result is that the analysts®
subjective judgment becomes well tuned to
the problems of orbital element
maintenance. In the present system, human



expertise is indispensible, especially
for infrequent but stressing situations
such as break-ups.

NAVSPASUR DATA FLOW

In order to understand the special
processing needed for break-up analysis,
it is necessary to understand something
of the routine processing that occurs in
maintaining the satellite catalog.
NAVSPASUR is continually receiving a
mixture of observations and element sets
from the S$SC and other surveillance
network sensors, besides raw data from
the fence (Fig. 1).

OBSERVATION & ELEMENT DATA FLOW

Data Links
NAVSFgASUH Sensors SSM
nce umulate
L_, SATO nknown
Verify ID
ADR - of Obs VERIFY
ID Unknown
Obs
Fence Predictions SDCEL
Verify New,
Accumulated f
t Rejected <« Rejected Els
SSMDC MANDC Els
Update Rejected —1
El DC's
El/Obs
Database
FIGURE 1

ADR is the real-time program which
reads the incoming fence data and
converts the phase measurements into
direction cosines as seen from each
receiver site. Doppler measurements are
also extracted from the raw data. ADR
attempts to associate these single-
station sightings with known orbits based
on comparisons with a time-ordered list
of predicted time, cosine and Doppler
values for fence crossings of known
satellites. These predicted values will
have been computed from the most recent
element set on file for each satellite,
as described later. In case the sighting
cannot be associated within nominal
tolerances, ADR performs a triangulation
of time-correlated single-station
sightings to arrive at a position
estimate for the object. Various other
programs will use this position in a more
refined attempt at association, but in a
non-real-time manner.

SATO is really a set of programs which
are cued every 15 minutes to add incoming
element sets and observations to the
database. Unassociated observations and
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tracks are written to a holding file.
Elements that are new or out of tolerance
with the existing sets are written to
another holding file.

SDCEL is executed once each day to re-
examine incoming element sets rejected by
SATO. A more thorough comparison with
existing sets is made and those sets
still rejected are saved for review by
analysts.

VERIFY also is executed once each day
to re-examine the unassociated tracks
rejected by SATO. If, after more
extensive checking, the track still
cannot be associated with a known orbit,
it is saved for analyst review.

SSMDC attempts a batch least-squares
differential correction of each element
set in the database using the associated
observations, if new observations have
become available since the last epoch.
The new epoch is placed at the time of
the last observation. The fit interval is
chosen by an empirical formula containing
the satellite's mean motion and rate of
change of mean motion (the latter is
mainly a decay effect). If the fit
interval has fewer than 5 observations,
or if new elements change by more than
prescribed tolerances from the earlier
values, or if the residuals in the fit
are too high, the orbit is declared "not
fit" and is noted for attention by
analysts. However, SSMDC is able to fit
about 98.5% of the database automatically
under routine conditions; that is, of
6508 orbits, only about 1¢0 will need
further work by the analysts.

Finally, another set of programs uses
the updated orbital elements to produce a
time-ordered list of all predicted fence
penetrations for the next 24 hours,

SOFTWARE TOOLS

Observations that cannot be associated
with known orbits by VERIFY must be
associated by the analysts. Likewise,
incoming element sets that were rejected
by SDCEL (for any of a variety of
reasons) can be entered into the database
only under direct analyst supervision.
Moreover, there are always a few
correctly associated observations that
still do not produce an acceptable
differential correction in SSMDC. These
cases also require analyst attention,
There are tools designed to aid in all
these processes (Fig. 2).

General UCT Processing

The abbreviation "UCT" stands for
"uncorrelated target", that is, an
unassociated observation or track. The
initial association attempt can fail for
a variety of reasons, even for well known
objects, and, in fact, about 94% of all
UCTs turn out to be finally associated

with some already-cataloged orbit [1].



UNKNOWN PROC

Accumulated
Unknown Obs

Accumulated
New, Rejected

Els

4

Orbit
Determination
EGG
FORCOM
SAD

Compute
Breakup Tim
BLAST

Identity
Obs
SID

y

MANDC

l

Compare Els/Obs
FNSORT
COMPEL

]

Els/Obs
Database

FIGURE 2

Hence, one should try to associate a UCT
with an existing element set before
assuming that a new orbit has appeared.
If only a few observations or tracks are
to be considered, the analyst can address
them essentially one by one. There are
several programs designed to operate on
this category of problems.

SID seeks to associate observations
and tracks with known orbits through a
systematic relaxation of tolerances.
Here, the analyst's knowledge of such
things as lunar/solar effects, decay
behavior and maneuvers is used to
compensate for the incomplete
representation of these effects in the
orbital model.

FORCOM and EGG produce an element set
from a single track and attempt to
associate other tracks to this candidate
orbit.

FNSORT compares each element set from
FORCOM and EGG to the catalog to see if
it matches an existing set (perhaps
locating a "lost" satellite) or if it is
an entirely new orbit.

COMPEL helps insure close correlation
between the satellite databases at
NAVSPASUR and at the SSC. Elements sets
generated at the two centers are compared
and and a list is generated of those
orbits for which NAVSPASUR has a more
recent epoch. Occasionally, NAVSPASUR has
a current epoch for a satellite reported
by the SSC as "lost". (By convention, a
satellite is "lost" if it has had no
observations associated to its orbit for
a specific time span: 5 days for near-
Earth objects or 3@ days for deep-space
objects.)

MANDC (Manual Differential Correction)
allows the analyst complete control of
the fitting process. This program is
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identical in concept with a program of
the same name used at the SSC. The user
may specify the fit interval, the
tolerance used to accept observations,
and the starting value of any element.
Any subset of an element set can be
corrected, and the user can reject
observations at will.

COMBO (Computation Of Miss Between
Orbits) is also conceptually identical to
a program of the same name used at the
SSC. It computes the times and locations
of local minima in the distance between
any two specified satellites in a given
time span. A straightforward option
allows a list of satellites to be
compared against another list. The method
uses analytic procedures to identify the
distance minima that are less than a
specified value, and then numerical
integration is used to compute these
close encounters as accurately as
possible. The 8SC version of the method
has been described in the open literature
[8]. In either version, the program can
require long execution times, so some
analyst discretion is needed to employ it
effectively.

Break-up Processing

When a break-up occurs, one is faced
with a large number of UCTs plus actual
new orbits. The analyst workload always
tends to go up geometrically with the
number of UCTs because, in order to
determine the orbits, observations have
to be associated between successive
passes of the debris cloud through the
fence or other sensor coverage. The above
programs by themselves would not be
adequate for this task, but special
software has been devised to help the
analyst sift through the vast number of
possible association combinations that
must be checked.

SAD (Search and Determine) operates on
an analyst-specified subset of the whole
UCT list [2,3]. The analyst may suspect,
based on his experience and intuition,
that some particular observations all
belong to the same break-up. SAD selects
pairs of positions and computes candidate
orbits by solving the secular-perturbed
Lambert boundary-value problem for each
pair. The size of the family of candidate
orbits is constrained by user-specified
limits on inclination, period and
eccentricity. The analyst may also
enforce an a-priori decay rate on the
orbits. For each candidate orbit, the
full orbit model is used to try to
associate other observations with the
candidate, based on position tolerances
in radial, transverse and normal
directions. If enough associations are
found, the orbit is refined via
differential correction. The fit
statistics are compared with previous



differential corrections for the family
and the best orbits are saved. When no
more observations can be associated,
another pair of positions is selected and
the whole process is repeated. When all
pairs of observations have been checked,
the analyst has a list of element sets
with which to begin MANDC processing. The
list is likely to contain many spurious
orbits, but an experienced analyst will
be able to "separate the wheat from the
chaff" in a reasonable amount of time.
course, the running time of SAD is
potentially very long and the analyst
must exercise discretion in presenting
data to this program. Besides time span
and element value limits, the user can
select association tolerances and the
number of associations which must be
found before a differential correction
will be performed. One more option,
crucially important, will be discussed
below after a different program has been
described.

BLAST attempts to solve the special
problem of locating when and where the
break-up occurred, assuming an
instantaneous event [3]. A list of
candidate element sets is used to
calculate the position on each orbit at
equal time increments (initially 7
minutes) using the full orbit model.
Conjunctions in these ephemerides are
detected and recorded for analyst review.
Presumably, the positions will show
definite clustering near the actual
break-up location, even given the
inaccuracies in the element sets., It is
quite common for several candidate "blast
points" to appear, and the analyst must
choose between them on statistical
grounds and based on a-priori
information.

Once the blast point is known, that
time and position can be used to
constrain the selection of orbits on
which the remaining unassociated
observations are assumed to lie. An
additional option in SAD is to force the
blast point to be always one of the pair
of positions to be processed. This is the
crucial step in sorting out the whole
mass of unassociated observations; not
only is the SAD processing time
drastically reduced, but also the results
generally contain fewer spurious orbits.
The new SAD orbits can be used to refine
the estimate of the blast point in
another run of BLAST, which in turn
increases the efficiency of subsequent
SAD searches. The temptation in this type
of processing is always to try to
determine the blast point too soon, that
is, before enough data is available. If
an inaccurate blast point is adopted then
the subsequent searches may go astray.
SAD might appear to be confirming this
wrong point when, in fact, the fits are
not nearly as good as they would be if

the correct point were being used.

of
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EXAMPLE BREAK-UP EVENTS

It is difficult to classify any given
break-up as "typical", either in terms of
orbital behavior or processing sequence.
However, several examples will illustrate
the degree of success which can be
achieved in the current system.

The first example illustrates the
simplest type of break-up, one in which
only a few small pieces appear singly
over an extended period of time and
depart from the parent body at low
relative velocity [1]. TIROS N, a fourth
generation Television and Infrared
Observation Programs satellite, was
launched on 13 October 1978 into a sun-
synchronous orbit at 99 degrees
inclination. The altitude of 451 x 460
nautical miles gave the satellite a long
orbital lifetime estimated at 358 years,
and the payload remained active until 1
November 1988. Seven years later,
NAVSPASUR analysts discovered and
cataloged two small debris pieces which
were shown to have originated recently
from TIROS N. Break-ups at this altitude,
whatever the piece count, have intrinsic
interest because they contribute to the
growing problem of long-lived orbital
debris. Analysis showed the first piece
to have separated at 1658UT on 28
September 1987 and the second at 2107UT
on 4 October 1987. High probability
attaches to these times, and hence to the
corresponding locations, because of the
simplicity of the scenario. Only one
orbit at a time had to be identified,
the low-eccentricity, low-decay orbits
could be propagated guite accurately.

The second example is more complicated
[1]. Cosmos 1823, a second generation
geodetic satellite, broke up on 17
December 1987. The satellite had been in
an orbit of 73.6 degrees inclination at
an altitude of 785 x 823 nautical miles,
so again much of the debris would become
part of the permanent orbiting
population. The event aroused extra
interest because this type of satellite
has not been prone to break up. COMBO
analysis demonstrated that the original
satellite had experienced no conjunctions
as close as 25 nautical miles to any
known orbiting object. The first
observations were made by the PARCS
phased array at Cavalier, North Dakota.
22 pieces were detected between 21050T
and 21150T. Two hours later, the cloud
passed through the NAVSPASUR fence. 36
pieces were detected between 2305UT and
2319UT. On 18 December, after additional
observations had become available,
NAVSPASUR analysts were able to generate
10 element sets and a blast point. The
main debris piece was identified by
determining which orbit was most similar
to the parent orbit. This identification,
supported by a high observation count,

allowed the SSC to renumber the main

and



debris piece to the parent number. Over
the next several weeks, NAVSPASUR
analysts continued to discover additional
pleces associated with this break-up. By
7 January 1988, a total of 175 element
sets had been sent to the S§S8C, and of
these, 33 had been cataloged. The main
complication in this scenario was the
large number of objects. The orbits were
mostly low-decay and so could be
propagated accurately, while the pieces
persisted long enough that many
observations could be taken and reliable
orbits computed.

The third example indicates that low-
altitude break-ups can be more difficult
to assess operationally than higher-
altitude events [3]. Cosmos 1485 had been
deployed originally in an orbit of 65
degrees at an altitude of 168 x 181
nautical miles, but broke up on 28
December 1983. From later analysis, the
event was believed to have occurred at
1214UT at 23.7 degrees S latitude, 44.9
degrees E longitude, 182 nautical miles
altitude, with a standard deviation of
3.5 nautical miles. The first NAVSPASUR
observations were not made until more
than 7 hours later. 67 pieces later
associated with this event were detected
between 1929UT and 1936UT, spread
geographically between longitudes 102
degrees and 95 degrees W and altitudes
133 and 233 nautical miles. In one 2-
minute period, at least 280 objects were
detected, however. This tight clustering
meant that NAVSPASUR analysts had to wait
until the cloud had passed through the
fence for the third time, late on 21
December, before before meaningful
element sets could be generated. Time had
to be allowed for the cloud to disperse
sufficiently so that new observations
could begin to be associated correctly
with previous observations. By then,
though, the analysis proved to be
difficult for a different reason. All the
pieces were in high-decay orbits. The
orbit model could not propagate the
orbits as accurately as for higher-
altitude events, and pieces were already
beginning to reenter, eliminating
opportunities for further observations,
Moreover, the differential decay rates
among pieces were rather high, amounting
(in-track) to 30 seconds in a 1l2-hour
prediction and apparently due to
different pieces having different area-
to-mass ratios. Therefore, not only were
predicted fence crossing times uncertain,
the predicted order of pieces passing
through the fence also was unreliable.
only 24 element sets were produced, and
some of these are likely to have been
spurious. In the end, BLAST produced
several candidiate event locations. The
accepted time-and-location quoted above
was selected based on its marginally
higher statistical weight and the fact

that no element sets were rejected in
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this solution. The solution also happened
to be near the middle of the various
candidate solutions. By two weeks after
the event, the number of UCTs that could
be associated with the break-up had
dwindled to 1 or 2 per day, and all the
cataloged pieces were being seen
regularly. Without the complications due
to high decay, an event of this magnitude
would probably have ceased to be an
operational problem within one week, even
using only NAVSPASUR fence data [3].

The final example is, to date, unique
in NAVSPASUR records of break-up
processing [4,5,6]. Three satellites were
involved in the analysis, and at the time
some suspicion was raised that an
inadvertent on-orbit collision had
occurred. Before it broke up, Cosmos 1646
had been deployed in an orbit of 65
degrees inclination at an altitude of 216
X 234 nautical miles. The accepted time
and location of break-up were determined
by NAVSPASUR analysts to be @¢131UT on 2@
November 1987 at 64.9 degrees N latitude,
60.3 degrees W longitude. Early piece
counts were about 58, while later
estimates ranged up to 15¢. On 21
November, TVSAT-1, key payload in a
cooperative European venture, was
launched due east from Kourou, French
Guiana, aboard the Ariane V2@ vehicle.
3rd stage injection into geosynchronous
transfer orbit commenced at 923507 and
payload separation occurred on schedule
at @2380UT. 3¢ seconds later, the payload
and the spent 3rd stage crossed the
Cosmos 1646 orbit plane near the west
coast of Africa at approximately the
altitude of the debris. At about #244UT
it was discovered that one of the solar
panels on the payload had failed to
extend. Between @530UT and §726UT the 3rd
stage was tracked from Kwajalein (by
ALTAIR) and observed to have an anomalous
low thrust. Launch plans had called for
the 3rd stage to remain in orbit, but
instead the low thrust caused reentry on
the first revolution at about 12490T. The
coincidence of these two malfunctions led
debris scientists at NASA/Johnson Space
Center to speculate that collisions with
small particles, even millimeter-scale
ones, from the Cosmos break-up could have
punctured the pressurized 3rd stage and
damaged the solar panel. (The relative
velocity was about 9 km/sec.) NAVSPASUR
was asked to investigate the orbital
conjunction., COMBO analysis indicated
that TVSAT-1 did indeed penetrate the
debris cloud but had approached no closer
than 1903 nautical miles to any of the
known pieces. Some uncertainity attaches
to this figure because of fairly high
decay in the debris orbits, Meanwhile,
contractor analysts at NASA/JSC pursued a
parallel study. They used NAVSPASUR
element sets because the accepted time
and location of the break-up had been



based on NAVSPASUR calculations. However,
not having access to the NAVSPASUR orbit
model, they attempted to recreate the
scenario using the S8C orbit model. It
was found that the latter model would not
propagate the NAVSPASUR element sets
backwards to a close conjunction at the
accepted time of break-up, making any
forward calculation of conjunction with
TVSAT-1 highly dubious. In retrospect,
this failure is not too surprising
because the two models differ markedly in
their decay terms. When SSC-generated
elements were used, a fairly close
conjunction with the 3rd stage could be
calculated, which showed the stage
somewhat below and behind the known
debris pieces rather than among them.
Either COMBO result could be used to
argue for taking the collision risk
seriously, but, of course, the actual
verdict on collision is at most a weak
"not proven"., At NAVSPASUR the collision
hypothesis is considered very unlikely in
view of the fact that the payload was
later reported to be functioning
normally, while the Ariane itself has not
had a trouble-free history.

It is easy to see that early
prediction of accurate conjunctions
between debris and other satellites will
become essential in future space
operations. In this connection, the
prediction incompatibility between
NAVSPASUR and the SSC evidenced in the
TVSAT-1 example is certainly of
operational concern; however, it is a
well known problem [7]. Various work-
around procedures have been used for more
than a decade, though not always with
complete success. The apparently obvious
remedy of adopting a common orbit model
turns out to create other operational
difficulties which are beyond the scope
of this discussion, and in any case a
common model is only part of the answer.
Currently, Air Force Space Command
(Directorate of Operations) is taking the
lead in developing comprehensive
operational standards for astrodynamics,
and NAVSPASUR has developed an element
conversion procedure that partly
compensates for the orbit model
incompatibilities.

SUMMARY AND CONCLUSION

Using a variety of special software
tools and drawing on a wealth of in-house
expertise, NAVSPASUR analysts have been
quite successful in deriving orbital
elements for trackable debris fragments
from break-ups. In the present system,
reliable figures can almost always be
given for the time and location of a
break-up within one day of the event and
sometimes sooner. Within a week, most of
the observations due to a high-altitude
break-up can be associated with element
sets., For low-altitude events, the
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association may take longer because of
the complications introduced by high
decay.

In the present surveillance network,
of which NAVSPASUR is a part, it is
difficult to calculate event time and
location within, say, 1 or 2 time periods
of revolution of the debris cloud by the
orbital mechanics techniques outlined
here. The cloud must have dispersed
sufficiently for correct associations of
observations to be possible, and
sufficient numbers of observations on
each piece must be available to estimate
the orbits. Moreover, since initial
debris orbits are known with relatively
poor accuracy, conjunctions with other
satellites of interest cannot always be
accurately predicted. As a result, the
collision risk from even the trackable
debris can be only poorly known in the
current system until well after the
break-up occurs,
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ABSTRACT

Atomic oxygen in the low-earth-orbital
environment will oxidize SiOx protected
polyimide Kapton solar array blankets at
sites which are not protected such as pin
windows or scratches in the protective
coatings. The magnitude and shape of the
atomic oxygen undercutting which occurs at
these sites is dependent upon the exposure
environment details such as arrival
direction and reaction probability. The
geometry of atomic oxygen undercutting at
defect sites exposed to atomic oxygen in
plasma ashers was used to develop a Monte
Carlo model to simulate atomic oxygen
erosion processes at defect sites in
protected Kapton. Comparisons of Monte
Carlo predictions and experimental results
are presented for plasma asher atomic
oxygen exposures for Tlarge and small
defects as well as for protective coatings
on one or both sides of Kapton. The model
is used to predict in-space exposure
results at defect sites for both directed
and sweeping atomic oxygen exposure. A
comparison of surface textures predicted
by the Monte Carlo model and those
experimentally observed from both directed
space ram and laboratory plasma asher
atomic oxygen exposure indicate substantial
agreement.

INTRODUCTION

The prime material being considered for
construction of the Space Station Freedom
solar array blanket is polyimide Kapton
{ref. 1). This material has been shown to
be vulnerable to oxidation by low-earth-
orbital atomic oxygen thus indicating a
need for its protection or replacement with
a suitable alternative material (ref. 2).
Because atomic oxygen durable substitutes
for Kapton have not yet been demonstrated
to be fully acceptable, 1300A thick SiOx
(where x = 1.9-2.0) sputter deposited
coatings are to be used to protect a two-
layer polyimide blanket with coatings on
either side of each sheet of each one-mil
{0.025 millimeter) thick Kapton H polyimide
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blanket as shown in figure 1. The
mechanical ability of the array blanket to
provide support for the solar cells and the
flexible printed circuitry 1is highly
dependent upon the atomic oxygen durability
of the SiOx protected Kapton. Defects in
the protective coatings can exist because

of particulate contaminates, surface
irregularities, abrasion during handling
and processing, and micrometeoroid and

debris impacts. Portions of the solar
facing side of the array blanket (between
the cells) and all of the anti-solar side
of the array blanket are exposed to
sweeping atomic oxygen attack. Recent
atomic oxygen durability evaluations of
1300A thick SiOx sputter deposited coatings
on each side of Kapton H blankets indicate
that scratch defects as opposed to pin
windows represent the most serious threat
to high fluence solar array blanket
durability. Figure 2 is a photograph of a
sample of such a material after exposure to
an effective fluence of 1.28 x 10% atoms
per cm’ on each side of the Si0x coated 1
mil (0.025 millimeter) thick Kapton H. As
can be seen by Figure 2, significant
oxidation has occurred along scratched
defect sites.

Efforts to model the atomic oxygen
undercutting which occurs at scratched
defect sites have resulted in a Monte Carlo
model which is capable of simulating the
effects of plasma asher, directed space
ram, and sweeping space ram attack at
scratch defect sites (ref. 3). The Monte
Carlo model predicts undercutting shapes at
defect sites by statistical ray tracing
techniques. The model operates on the
following assumptions:

0 Two dimensional scratch or crack
defects.

0 Atomic oxygen reaction probability
with Kapton H is proportional to
E® where E is the impact energy.

0 Reaction probabilities:
a) 0.138 for space (for first
impact).

b) 0.0098 for space (for



second and
impacts).
c) 0.0098 for plasma ashers.
0 Reaction probability decreases
for grazing incidepce and is
proportional (cos e)” where e is
the angle between the surface
normal and the impact direction.

subsequent

(4} Atomic oxygen thermally
accommodates with surfaces
impacted.

0 Atomic oxygen remains atomic after
impacting protective coatings.

0 Unreacted atomic oxygen leaves

surfaces in a cosine distribution.

This technique was used to prédict the
shape of atomic oxygen undercutting
geometries which are presented in reference
3. Recent scanning electron microscopy
investigations at defect sites indicate
that the undercut profiles experimentally
observed from plasma asher exposures are
not as accurately predicted by the Monte
Carlo model as is desired. This paper more
closely examines the details of the
undercut sites and utilizes that
information to refine the Monte Carlo model
and predict Tlaboratory and space atomic
oxygen undercutting profiles.

APPARATUS AND PROCEDURE

Atomic oxygen exposure at defect sites is
accomplished by use of 13.56 MHz RF plasma
ashers operated on air and a directed
atomic oxygen ion beam using a gridless
(end Hall) ion source operated on oxygen.
Details of the atomic oxygen exposure
apparatus are given in references 1, 4,
and 5. The directed oxygen ion beam was
capable of directed ram oxygen attack as
well as sweeping ram attack.

Samples exposed in the plasma asher were
examined by scanning electron microscopy
to document the shape and size of scratch
and pin window defects. Aluminum adhesive
tape used for scanning microscopy sample
grounding was applied to the surface of
the sample. This tape was then peeled off
which removed the Si0Ox coatings from the
underlying Kapton where undercutting had
occurred. As a result, a clear view of
the undercut patterns was observed in
subsequent scanning microscopy inspections.
The shape of these undercut profiles was
used as a guide to modify the Monte Carlo
assumptions to allow a better match between
theory and experiment.

Alterations to the assumptions of the Monte
Carlo calculation were evaluated and
compared with experimentally observed
plasma asher results as well as knowledge
of directed and sweeping beam results to
produce a predictive model which more
accurately agrees with observed
experimental results. Modifications to the
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initial assumptions included consideration
of the following items:

0 Higher atomic oxygen reaction
probability at the SiOx Kapton
interface than in the bulk.

] A finite probability of
recombination of atomic oxygen
upon each impact.

0 Specular as opposed to diffused
scattering off the SiOx surfaces.
0 A higher initial impact reaction

probability than subsequent impact
reaction probabilities for Kapton
in plasma ashers.

RESULTS AND DISCUSSION

Aithough previous examination of the shape
of atomic oxygen undercutting of Kapton at
defect sites was greatly limited because
remnants of the protective coating blocked
inspection of the undercut cavity below the
protective coatings, tape peeling allowed
full inspection of defect sites. Figure 3a
and 3b compare plasma ashed SiOx coated
Kapton prior to and after tape peeling.
Many atomic oxygen defect sites can be
clearly identified after tape peeling which
are marginally or not at all evident prior
to tape peeling. Figure 4a and 4b compare
the more microscopic details of a defected
area prior to and after tape peeling. As
can be seen in figure 4a, the defect on the
left has a central pin window approximately
1.5 micrometers in diameter. The SiOx
coating has spontaneously peeled away from
the defect after the conclusion of plasma
ashing. This observation can be concluded
by a comparison of the resulting
axisymmetric undercut profile and the
unpeeled  defect protective  coating
geometry. The defect on the right in
figure 4a and 4b has a diameter that must
be substantially less than one micron in
diameter. By comparison of these two
defects and numerous others, a conclusion
was drawn that defects whose width-to-
coating-thickness ratio greatly exceed one,
produce double dimpled cavities as shown on
the left in figure 4b; whereas those whose
width-to-coating-thickness ratio is less
than or equal to one, produce a single
dimpled cavity which is rather conical in
shape. These results appeared to be
consistent whether the defect is a pin
window, a crack, or a scratch. In
addition, the angle between the polyimide
Kapton and the oxidized surface plane at
the perimeter of the defect was not 90° as
was previously predicted by the Monte Carlo
model. Alterations in the Monte Carlo
assumptions were evaluated to see if
different modeling assumptions would
produce either the double dimpled defect
cavity shape or the more conical cavity as
opposed to a hemispherical cavity.
Alteration of the Monte Carlo model to
assume specular scattering of atomic oxygen



off the bottom of the protective coating
was found not to cause any measurable
change in the profile of the undercut
defect. A model alteration which included
a finite probability of atomic oxygen
recombination upon each impact, similarly
did not yield undercut profiles which
agreed with experimental resuits. However,
if one assumes that the probability of
atomic oxygen reaction with the Kapton at
the Si0Ox interface is greater than that of
the bulk Kapton, then a more conical
undercut cavity is predicted at its outer
edges. Figure 5 is a plot of the undercut
angle resulting from various interface
reaction probabilities. Assuming that the
bulk reaction probability is 0.0098, based
on experimental plasma asher observation,
an interface reaction probability of 0.049
(5 x bulk reaction probability) was
selected for the Monte Carlo model
improving assumption. The double dimple
feature observed for large width-to-
coating-thickness defects was found to be
produced if one assumed the initial impact
reaction probability for plasma ashers was
larger than the subsequent thermally
accommodated impact reaction probabilities.
Based on trials of various initial impact
reaction probabilities, an initial impact
reaction probability of 0.0392 (4 «x
reaction probability for the second and
subsequent impacts) for plasma ashers was
selected to produce erosion predictions
which were in reasonable agreement with
experimentally observed results in plasma
ashers.

Rationale for the reasonableness of these
two model change assumptions have not been
fully developed. However, it is quite
conceivable that the atomic oxygen reaction
probability at the polyimide SiOx interface
is in fact different than the bulk due to
details of the interface chemistry either
resulting from the Kapton fabrication or
the sputter deposition of the S10x coating.
The higher initial impact reaction
probability for plasma ashers s quite
possible because of the mix of many stable
states and ions at higher than thermal
temperatures in the plasma asher discharge.
This may produce reaction probabilities
which exceed those which would be projected
based on the room temperature energy alone.
The higher 1initial impact reaction
probability was assumed only for the plasma
asher environment and not for the more
energetic 4.5 ev space atomic oxygen. A
summary of the revised Monte Carlo
assumptions is given in table 1.

Figure 6 compares the predicted Monte Carlo
undercutting profiles for large crack-
width-to-coating-thickness defects and
small crack-width-to-coating-thickness
defects. As can be seen from figure 4b,
the experimentally observed undercutting
profile of the wide defect is in reasonable
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agreement with the Monte Carlo predicted
profile. Figure 7 is a scanning electron
photomicrograph of a plasma ashed undercut
defect site for a narrow width-to-coating-
thickness ratio defect. As can be seen, it
also compares favorably with the predicted
results shown in figure 6. A comparison of
the Monte Carlo predicted and
experimentally observed undercutting
profile for plasma ashed polyimide Kapton
which has protective coatings on both
surfaces and a defect on the top surface
only is shown in figure 8. As can be seen
by comparing figures 8a and 8b, the
predicted camphored walls of the undercut
polyimide Kapton is in reasonable agreement
with experimentally observed results.
Based on comparisons between pin window and
scratch defects from plasma asher
experiments, the undercut profiles of each
appear to have the same general shape.
Thus the two-dimensional results of the
Monte Carlo prediction are relevant to the

three-dimensional pin window defect
profiles.
The higher initial impact reaction

probability of space ram atomic oxygen
interaction causes a considerable drilling
effect as shown in figure 9 for normal
incident atomic oxygen because of the
higher interface reaction probability.
There 1{1s also a small but noticeable
flaring to the undercut profile at the Si0x
interface. Figure 10 compares the results
of a wide defect exposed to fluence levels
which produce the same depth of erosion for
both plasma asher and normal incident space
ram atomic oxygen attack. As can be seen,
the surface morphology of a plasma asher is
rather smooth compared to the space ram
exposed surfaces. These results are very
consistent with experimentally observed
plasma asher and space exposure results.
The predicted undercut Kapton profile for

scratch or crack defects exposed to space
sweeping ram atomic oxygen exposure as
would occur on Space Station Freedom
photovoltaic arrays is shown in figure 11
for polyimide Kapton protected on one
surface and figure 12 for polyimide Kapton
protected on two surfaces. As can be seen
in figure 12, scattered atomic oxygen
widens the undercut region well beyond the
defect site.

SUMMARY

Tape peeling of plasma ashed Si0x coated
polyimide Kapton provides a clear view of
defect undercutting profiles by scanning
electron microscopy. The undercutting
profiles have a conical shape for defects
whose width-to-coating-thickness ratio is
less than or equal to one, and have a
double dimple shape for defects whose
width-to-coating-thickness ratio greatly
exceeds one. The undercutting profile
experimentally observed is more conical



than the hemispherical undercutting that
previous Monte Carlo modeling had
predicted. Monte Carlo modeling provides
a good fit to experimental results if the
initial 1impact reaction probability in
plasma ashers is 4 times the subsequent
impact reaction probability and the
probability of interface reaction for
plasma ashers in space is 5 times the bulk
reaction probability. Observed surface
textures produced by plasma ashers and
normal 1incident space ram are in good
agreement with resulting Monte Carlo
predictions. Sweeping ram exposure to
polyimide Kapton protected on the top and
bottom surfaces is expected to produce wide
undercutting due to scattered atomic
oxygen.
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TABLES

Table I - Monte Carlo Model Assumptions
with Modification to Produce Agreement with
Plasma Asher Results.

ASSUMPTIONS:

o 2D model simulates scratch or crack defect

o  Reaclion probability a (energy)*™
0.138 for space (1st impact)
0.0098 for srnce {z 2nd impact)
0.0392 for plasma ashers (1st imrnct)
0.0098 for plasma asher (> 2nd Impact)
0:)4:0 for plasma asher and space at Kaplon/protective coaling
nlariace

©  Reaction probabllity dacreases for grazing incidence a (cos @)
e o)

Z 7
o Atomlc oxygen thermally accomodates with surfaces Impacted

o  Atomic oxygen ins atomic after impacting protecti

9

a Unrecacled atomic oxygen leaves surfaces In a cosine dislribullon
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Figure 1 - Cross Section of Space Station
Freedom Photovoltaic Array.

Figure 2 - Kapton H Protected on Both Sides
with 1300A Thick Si0x coatings After Plasma
Ashing to a Fluence of 1.28 x 102 atoms
per cm’ on each side.
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(a) Before Tape Peeling.

{b) After Tape Peeling. (b) After Tape Peeling.

Figure 4 - Comparison of Two Defects in

Figure 3 - SiOx Coated Kapton H after Protected Kapton after P1asmax)Asher
Plasma Asher Exposure to a Fluence of 4.45 Exposure to a Fluence of 4.45 x 107 atoms

x 102 atoms per cml. per cm’,
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Figure 6 - Monte Carlo Plasma Asher
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Figure 7 -
Photomicrograph of Plasma Ashed (to a
fluence of 1.28 x 10% atoms/cm’) and Tape
Peeled Defects on 1300A SiOx Coated Kapton
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(a) Monte Carlo Prediction for Crack in
Top Surface Defect.

(b) Plasma Asher Experimentally Observed
Results for Pin Window Defect.

Figure 8 - Comparison of Monte Carlo
Predicted and Experimentally Observed
(after plasma ashing to a fluence of 1.28
x 102 atoms/cm?) Atomic Oxygen Undercutting
Profiles for Polyimide Kapton Protected
(1300A Si0x) on Both Top and Bottom Surface
with a Defect in the Top Surface Only.

Figure 9 - Normal Incident Space Ram Atomic
Oxygen Monte Carlo Prediction for Defect on
Kapton Protected on One Surface.
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PLASMA ASHER HORMAL TNCIDENT SPACE RAM

Figure 10 - Comparison of Monte Carlo
Predicted Surface Profile for Equal Depth
Erosion Plasma Asher and Normal Incidence
Space Ram Atomic Oxygen Exposure of a Wide
Defect.

Figure 11 - Sweeping Ram Atomic Oxygen
Monte Carlo Prediction for Defect on Kapton
Protected on One Surface.

Figure 12 - Sweeping Ram Atomic Oxygen
Monte Carlo Prediction for Defect on Kapton
Protected on Top and Bottom Surfaces.
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ABSTRACT

We describe a device fpr the production of low energy (3-10 eV) neutral atomic beams for surface modification
studies, which reproduces the flux of atomic oxygen in low Earth orbit. The beam is produced by the acceleration
of plasma ions onto a negatively biased plate of high-Z metal; the ions are neutralized and reflected by the surface,
retaining some fraction of their incident kinetic energy, forming a beam of atoms. The plasma is generated by a
coaxial RF exciter which produces a magnetically-confined (4 kG) plasma column. At the end of the column ions
fall through the sheath to the plate, whose bias relative to the plasma can be varied to adjust the beam energy.
The source provides a neutral flux =~ 5 x 10'6/cm?s at a distance of 9 cm and a fluence =~ 10?°/c¢m? in five hours.
The composition and energy of inert gas beams has been diagnosed using a mass spectrometer/energy analyzer.
The energy spectra of the beams demonstrate energies in the range 5-15 eV, and qualitatively show expected
dependences upon incident and reflecting atom species and potential drop. Samples of carbon film, carbon-based
paint, Kapton, mylar, and teflon exposed to atomic O beams show erosion quite similar to that observed in orbit
on the Space Shuttle,

INTRODUCTION

In low Earth orbit, about 150-300 km altitude, the atmosphere consists primarily of atomic oxygen and
molecular nitrogen. The surface of an orbiting spacecraft collides with these species with high relative velocity—
the O atoms carry about 5 eV kinetic energy in the spacecraft frame. Spacecraft surfaces are thus exposed to a
flux of highly reactive energetic O, ranging from 10' to 10'®/cm? s, depending upon altitude. Observed effects of
this bombardment include the production of an optical glow in front of ramming surfaces (the “spacecraft glow”
phenomenon[1]) and the erosion of exposed surface materials.

Structures intended to remain in service in low orbit for many years, such as the Space Station, must employ
protective surface materials and coatings which can withstand this chemically active flux. Thus there is a need
for a source of “superthermal” (4-20 eV) neutral beams to study in the laboratory the effects of the energetic
neutral bombardment, and for accelerated testing of candidate materials and coatings, simulating years of on-orbit
exposure within a few days. )

The need for laboratory facilities for studying the interaction of superthermal (5 eV) atomic oxygen with mate-
rials, including its role in the degradation of spacecraft surface materials and in the spacecraft glow phenomenon,
has led to the development over the past several years of several new systems using different methods to achieve
high fluxes of energetic oxygen atoms.

Besides their application to spacecraft environmental effects, these oxygen beam sources (and low energy
neutral beam sources in general) are useful tools for many other purposes. Likely research “spinoffs” for these
atomic beam techniques include: beam-surface interactions, atomic scatlering, gas phase “hot atom”™ chemical
reactions, and materials processing and surface modification technologies, such as semiconductor etching. Many
of these processes have not been well studied at these energies because high flux sources have not been available—
older methods of producing neutral beams (such as thermal effusion as in chemical molecular beam experiments,
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or acceleration and charge exchange neutralization of ion beams) do not work well in this energy range.

We will describe the operating principles and characterization of a system for the production of high-flux
low-energy neutral beams which is based on a coaxial RF plasma source and utilizes a biased metal surface for
the acceleration and neutralization of plasma ions. In this paper we emphasize the characterization of the beam
energy and tests of the principles on which beam production is based. In an accompanying paper|2] results are
presented from experiments to measure the beam flux and from material exposures performed to evaluate the
beam’s reproduction of effects due to exposure in orbit. The beam facility, developed at Princeton under contract
for Marshall Space Flight Center, has proven successful in meeting the requirements for simulating the orbital
interaction of atomic oxygen with materials, and shows promise for other technological applications. The beam
source is capable of sustained production of high flux beams of essentially 100% atomic O.

PRINCIPLES OF OPERATION

The method we have used for producing a low energy neutral beam utilizes a metal surface in contact with a
magnetically confined plasma to accelerate and neutralize plasma ions. The metal plate is biased negative with
respect to the plasma potential, and plasma ions are accelerated onto the surface, attaining an energy determined
by the bias voltage. The jons are neutralized by picking up an electron from the negatively charged metal, and
undergo collisions with the atoms of the solid surface. If the metal atoms are much more massive than the jons,
the incident particles are mostly reflected back from the surface, retaining a large fraction of their incident kinetic
energy, thus forming a beam of superthermal neutrais of adjustable energy.

The interaction of the plasma ions with the metal surface is itself a process of fundamental interest. These
interactions are not well studied experimentally in the energy range below 100 eV, due to lack of sources and
diagnostics. Such processes are important in various technological areas, for example, in the edge regions of fusion
plasma devices where the plasma interacts with material surfaces. The characteristics of the reflected neutrals
produced in our beam source can yield significant new experimental data on these interactions and provide a
test of theoretical models used to describe them. Calculations have been made with TRIM (TRansport of lons
in Matter), a Monte Carlo code used to model the interaction of a particle with a solid surface[3,4], in order
to predict the reflection efficiency and energy spectrum for various incident ions and surfaces. The TRIM code
follows the trajectory of each incident particle, calculating the effect of each successive collision with the atoms
of the solid, and also models the effect of energy loss to electrons and of surface binding forces on the incident
particle. The surface binding forces are modeled as a planar attractive potential directed toward the surface,
which can only approximate the complex interaction with the atoms of the surface; thus the model’s predictions
are less certain for species which may tend to bind strongly (e.g. oxygen) than for those which interact more
weakly (noble gases).

The reflection efficiency and energy spectrum of the reflected beam depend upon the exact species of the
incident particles and surface atoms, their relative masses and the strength of binding forces acting between
them, and upon the condition of the surface with respect to roughness and impurities. In general the TRIM
calculations predict that for a large enough mass ratio, low energy (5-100 eV) ions are reflected fairly efficiently
as neutral atoms, with the energy spectra peaked around a particular fraction of the incident energy, having
a characteristic spread of a few eV. The larger the mass ratio between incident and surface atoms, the larger
is the fraction of incident energy at which the peak in the reflected spectrum occurs. The expected angular
distribution of the reflected beam is roughly a cosine distribution about the normal to the surface. Figure 1 shows
an example of the energy spectrum of the reflected neutrals as predicted by the TRIM code for oxygen incident
on molybdenum (a reflecting surface frequently used in our erosion experiments). Note that the spectrum is fairly
peaked at around 6 eV, with a spread of a few eV.

Figure 2 shows the predicted reflection efficiency for oxygen atoms incident on molybdenum over the energy
range 10-50 eV. Also shown is the fraction of the incident energy at which the peak of the reflected energy
spectrum occurs for particles reflected into the solid angle range from 25-45° from the surface normal (£10°
from our usual experimental viewing angle). Over a wide range of incident energies the reflection efficiency is
around 60% and the ratio of the reflected energy peak to the incident energy is 0.40-0.50. For example, at 30 eV
incident energy E,.f/E;n. = 0.46; this value from TRIM calculations can be compared with the energy retained
upon a reflection due to a single elastic collision at 35° from the incident path, which for these masses would be

Ere/Eine = [m? + m3 + 2m;ymacosbem]/(mi + my)? = 0.54

SYSTEM DESIGN AND OPERATION

Figure 3 shows a cross-sectional view of our low energy neutral beam apparatus. It has two basic parts:
a plasma chamber containing a coaxial plasma source and the neutralizing plate, and an experimental ‘target’
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Figure 1: TRIM calculations for the reflected energy spectrum of oxygen atoms reflected from a molybdenum
surface for an incident energy of 15 eV, for all reflection angles (0-90° from normal). The calculation used an
attractive potential of 2 eV to model the binding forces between the oxygen and surface molybdenum atoms.
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Figure 3: Cross-section view of the Princeton Low Energy Neutral Beam facility, as configured for beamn energy
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chamber oriented perpendicularly.

In order to produce pure oxygen plasmas, we use an RF driven plasma source, thus avoiding the problems
associated with hot filaments and cathodes that limit the oxygen content of simple arc and glow discharges.
Our system is based on a magnetically confined coaxial plasma source of the type developed by Motley and
co-workers[5]. The source is driven by 1 kW microwave power at 2.45 GHz applied to a center conductor coaxial
with an Inconel outer cylinder, which acts as a quarter-wave antenna. The RF propagates through the plasma as
lower hybrid waves. The plasma source produces an intense plasma column of about 1 cm radius. The Inconel
outer conductor and the back side of the ceramic seal are water cooled.

The magnetic field in the plasma source is produced by two sets of 11 water-cooled coils arranged in a

Helmholtz-like configuration. A current of 440 A is passed through the coils, yielding an axial field of 4 kG.
~ Plasma particles travel along the field lines from the coaxjal source to the neutralizer in a well-confined
cylindrical column. The neutralizing surface is provided by a thin plate of metal mounted on a copper block which
can be water- or air-cooled and which can also be heated to a few hundred degrees C by means of an internal
heating element for purposes of outgassing. The surface materials used most often have been molybdenum and
tantalum, chosen for their high atomic mass, resistance to reaction with oxygen, and low sputtering (platinum
and gold surfaces have also been used).

The plate can be rotated to any angle with respect to the B field, and is usually oriented at about 55°.
Because the potential drop across the sheath to the plate is large compared to the ion thermal kinetic energy,
the ions impinge on the surface at nearly normal incidence. The reflected neutral beam is directed across the
magnetic field, and thus the field keeps charged particles away from the beam target area. Because the plasma
column striking the neutralizer is small in radial extent the neutral source is well defined and tightly focused.
The neutralizer can be biased from -50 to +15 V relative to ground (positive bias limited by the electron current
drawn); combined with the positive plasma space potential this gives incident ion energies from about 10 to 60
eV. The ion current to the neutralizer plate is measured from the voltage drop across a 1 (1 resistance in the
power supply circuit using an oscilloscope.
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Both parts of the vacuum vessel are composed of 6 inch diameter cylindrical stainless steel sections. Two
baffled gas chokes may be installed in the target chamber, creating two stages of differential pumping. The high
vacuum stage is connected to a 1500 1/s turbo pump. During beam production, operating pressure is a few
mTorr in the plasma chamber, but can be held to a few times 10”7 Torr in the experimental chamber with the
differential pumping. To reduce the danger of pumping pure oxygen, we bleed nitrogen into the backing pump at
a nitrogen/oxygen ratio about 2:1.

For measurement of the properties of the plasma the system is equipped with two electrostatic probes, one a
single Langmuir probe and the other an electron emitting hot probe. Each probe can be independently moved
radially and axially through nearly the entire length of the plasma column; the probes have been used to measure
the plasma density and electron temperature and the plasma space potential. The hot probe is especially useful
for directly measuring the plasma potential, but has a limited range of densities over which it can operate. A
monochromator spectrograph has also been used to measure the plasma emission spectrum, viewing the plasma
column through a quartz window in the plasma chamber (not shown). Plasma emission spectra show virtually

complete dissociation in oxygen plasma: the ions are O* rather than OF. This is crucial since we desire a beam
of atomic O.

The system can achieve a sustained ion current to the plate of 4 A in O* or Ar*. Using the predicted reflection
efficiency for O reflected from Mo this gives:

O flux > 5 x 10"8cm 257!
at the usual target position about 9 cm from the neutralizer.

The sysiem is operated in a pulsed mode, with pulse lengths of a few msec. Duty cycles of up to 10% have been
achieved sustainably, limited by heating of the coaxial exciter center conductor. The system operates rehiably in
100% oxygen plasmas over the long run times (several hours) neéded to achieve high fluence (10?°crn ™2} exposures.

The damaging effects of atomic oxygen on system components have been small. The stainless steel center
conductor of the coaxial is corroded visibly, but is robust enough to survive more than 100 hours plasma operation;
no limit to survival time has been reached for any other system component.

NEUTRAL BEAM MEASUREMENTS

Measurements of the absolute neutral atom flux for atomic oxygen beams have been made in collaboration
with the Physical Science Branch of the Materials Laboratory at Marshall Space Flight Center and are reported
in a separate paper in these proceedings [2]. These measurements were made using catalytic probes [6] which
measure the heat produced by the recombination of oxygen atoms striking a catalytic silver oxide surface. These
measurements support the predicted flux levels to within the experimental error (about a factor of two). The
measurements also confirm the expected variation of the flux as the inverse square of the distance from the neu-
tralizer. Measurements of the angular distribution of the beam flux from the relative erosion rates of polyethylene
targets exposed simultaneously in the target chamber are also reported in Vaughn et al.

In this paper we report the results of direct measurements of neutral beam energy spectra which have been
made using an energy analyzing quadrupole mass specirometer (VG model SXP-500) installed as in Fig. 3. Neutral
particles enter this instrument through a 4 mm aperture and pass through an “ion source” region where a small
fraction of them are ionized by electron impact. The ions then pass into a cylindrical mirror analyzer (CMA),
which uses electrostatic focusing to allow only ions with a certain desired energy to pass through. The energy
spectrum of incoming particles is obtained by scanning the energy at which ions can pass through the CMA. lons
then enter an electric quadrupole mass filter which will allow only ions of a particular g/m ratio to pass through.
These 1ons are then detected by a channeltron electron multiplier.

The likelihood of an incoming particle’s detection is determined by the probability of ionization upon passing
through the ionizing region; this is proportional to the time spent in the region, and thus inversely proportional
to the velocity. Therefore, the signal due to the thermal neutral gas (background from the gas feed to the
plasma source ) is much larger than the signal {from the superthermal neutral beam (detected at 50 cm from
the neutralizer), even with the background pressure in the spectrometer chamber kept quite low by differential
pumping. Because of this effect and the instrumental broadening of the thermal gas energy spectrum, the tail
of the apparent thermal distribution obscures the low energy end of the spectrum of the reflected beam. This
imposes a low energy limit to observation of the spectrum of 2-3 eV.

Argon rather than oxygen atom beams have been used to perform most of the energy spectrum measurements
for the source, for three reasons. First, argon has a high cross-section for electron-impact ionization. Second,
being more massive than oxygen, argon has a lower velocity at a given energy, thus a longer residence time in the
jonizing region of the spectrometer. These two effects make the quadrupole much more sensitive to argon than
to oxygen. In addition, for molecular gases, dissociation of thermal background molecules in the ionizer creates
atoms with a few eV energy (Franck-Condon dissociation energy). The signal from these energetic atoms can
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Figure 4: Energy spectrum for argon beam reflected from tantalum as measured using CMA energy analyzer.
Instrumentally broadened signal from backgroung thermal gas obscures low energy end of beam spectrum. Data
shown averaged to same energy resolution as numerical prediction (Figure 5).
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Figure 5: TRIM calculations for the reflected energy spectrum of argon atoms reflected from a tantalum surface
for an incident energy of 30 eV, for all angles of reflection.
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swamp the signal from the much less efficiently ionized superthermal neutral beam atoms in the affected energy
range.

Figure 4 shows an example of the energy spectrum for an argon beam reflected from a clean (outgassed)
tantalum surface. The peak energy is 10-12 eV with a spread (HWHM) of 4-5 eV. This spectrum can be
compared with TRIM code results (Figure 5), which show a quite similar peak energy and energy spread. Energy
spectra with characteristics like those of Fig. 4 are obtained during the first several minutes of beam production,
after which the peak energy begins to shift downward, falling to about 7 eV for Ar on Ta after about 30-40
minutes of beam production. We believe the time variaton is caused by gas loading of the reflecting surface, as
discussed below.

Evidence for the effect of the plate bias (i.e. accelerating potlential across the sheath) on the energy is shown
in Figure 6 for argon incident on molybdenum. A change in the sheath potential, measured with a Langmuir
probe, from 40 to 10 Volts shifts the peak from about 8 to 5 eV, demonstrating the ability to control the energy
of the beam.

In experiments performed with other plasma species and reflecting materials, we have seen qualitatively the
expected variation in the beam energies depending upon the atomic masses of the incident and surface species,
at least for those species for which we have collected significant data (for some cases examined, the data were
not clear enough to characterize the spectrum). For example, the reflected energy spectrum for argon incident
on molybdenum occurs at lower energies than for Ar incident on tantalum at comparable incident ion energy,
demonstrating the dependence on target mass. Also, the reflected energy spectrum of Krypton incident on Ta
falls at lower energies than that for Ar on Ta at comparable energy, demonstrating the expected dependence on
incident lon mass

However, as mentioned above a complication arises from the contamination of the surface by atoms of the
plasma species. TRIM predicts that at sufficient impact energies some incident particles will be implanted in the
surface material rather than reflected; the residence time for such implanted particles in the metal is unknown.
In addition, surface adsorption may also occur, especially for chemically reactive species. Incident particles which
collide with implanted or adsorbed atoms of the same mass will lose more of their kinetic energy than if colliding
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Figure 6: Location of the peak in the energy spectrum for argon beams reflected from a molybdenum surface, as
a function of the incident energy of the ions (determined by the potential drop across the sheath to the reflecting
surface). Error bars indicate the approximate uncertainty determining the peak from the mass spectrometer
data; since the peaks are relatively broad and flat, determining the exact position of the maximum is somewhat
uncertain.
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only with the heavy metal atoms; this will result in a reflected beam of lower energy neutrals. Beginning with an
outgassed reflecting surface, it has been observed that the energy spectrum of the neutral beam shifts to lower
energies over the course of several minutes of operation. The spectrum can be shifted back to higher energies by
outgassing the neutralizing surface. Thus the reflected energy spectrum from the interaction of an ion species
with a homogeneous metal surface will be different from the spectrum seen in practical, prolonged steady beam
production.

The unknown degree of occupation of the surface material by oxygen atoms makes it difficult to predict from
theory exactly what the beam energy spectrum will be for long-time oxygen beam exposures. Direct measurements

of the oxygen beam energy spectrum during steady-state beam production are necessary, and this is now one of
the principal issues that need to be resolved.

CONCLUSIONS AND FUTURE WORK

The neutral beam source described here produces atomic beams with energy spectra that have been directly
measured (for inert gas beams) to be in the desired energy range (about 4-15 eV), with an adjustable peak energy
and a spectrum width of a few eV. Some qualitative features of the reflection of low energy inert gas atoms from
surfaces have been observed from the measurements to date, and are in rough agreement with the numerical
simulations from theory. Tt is clear, however, from the behavior over time of the observed spectra that surface
loading of the reflecting material by the working gas ions plays a large role in the reflection physics. To explore
this further we have added heating coils to the mounting of the neutralizing plate so that we can either heat cycle
the plate between spectral measurements, or raise the plate to such a temperature that the gas atoms are expelled
at the same rate they arrive so that suface conditions are stable.

Additionally, we intend to increase the duty cycle of the source above 10% by actively cooling the center
conductor, and to reduce the O, pressure in the spectrometer chamber to permit the measurement of atomic oxygen
beamn spectra. The presence of O beams at high flux levels has already been conclusively demonstrated by other
measurements (including direct flux measurements with catalytic probes, and erosion of exposed materials{2]),
and the beam source has proven a useful simulation of the atomic oxygen bombardment in orbit, but the energy
spectrum remains to be determined.
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ABSTRACT

Laboratory experiments designed to uncover mechanistic
information about the spectral and spatial characteristics of
shuttle glow were conducted. The luminescence was created
when a pulse of O atoms traveling at orbital velocities was
directed toward NO molecules previously adsorbed to
aluminum, nickel, and Z306 Chemglaze (a common baffle
black) coated surfaces held at various temperatures.

Spectral and spatial measurements were made using a CCD
imaging spectrometer. This instrument is identical to the one
used in flight studies except for the substitution of a CCD
array rather than photographic film at the focal plane.
Corroborative spectral information was recorded in separate
measurements using a scanning monochromator and gated
photomultiplier arrangement. The surface mediated
laboratory luminescence was found to be spectrally similar
to space borne observations of the visible shuttle glow
phenomena and to the red of the gas phase recombination
previously reported at thermal energies and observed at
orbital energies in the present work. Relative intensities
above the three materials studied were found to be within a
factor of two at liquid nitrogen temperatures. Spectral
observations above the aluminum and chemglaze samples
were similar but nickel was consistently shifted further to
the red by approximately 30 nanometers. The intensity
above a given surface was found to vary inversely with
temperature increasing an order of magnitude as the
temperature was dropped from ambient to liquid nitrogen
{presumably due to enhanced NO accomadation).
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The e-folding distance at several
calculated from images of the surface glow using the

temperatures was

Photometrics image processing capability of the imaging
spectrometer. The e-folding distance was not altered as a
function of incoming O beam velocity (over the range 6-10
km/s tested). Plots of the projected e-fold distance versus
the square root of temperature were linear implying a
thermalization of the exiting species. These results coupled
with the apparent need to utilize chemical energy in the
removal of product species bound to the surface (as
evidenced by the spectral shift observed in the helerogenous
recombination spectra as a function of distance from the
interaction plate and concomitant increase in lifetime) led to
an assumption of Maxwellian exit speeds. The consequence of
such spatial spatial measurements at 93 K leads to a
computed average excited state lifetime on the order of 180
useconds. These observations provide direct evidence that the
visible Shuttle glow results from recombination of oxygen
atoms and surface bound NO.

Introduction

The visible glow above shuttle surfaces subjected to impact
by energetic atmospheric specles was first observed during
the STS-3 Mission (Banks et al., 1983).
next mission Mende and coworkers undertook a series of

Starting with the

systematic photographic observations which characterized
the glow phenomenon (Mende et al.,, 1983a, b, 1984a, b,
1985, 1986, 1988; Swenson et al, 1985).
present only above surfaces subjected to the direct impact of

The glow was

the residual atmosphere, suggesting that kinetic energy
pilayed a role (Mende et al.,, 1988, Slanger, 1987).
Spectrally resolved observations revealed the glow as a
broad band emission peaking at 680 nm. Because of the
similarity of the spectrum to that of the NO, gas phase
recombination, heterogeneous recombination mechanisms
involving atomic oxygen and NO at shuttle surfaces were
postulated as the source of the glow (Swenson et al., 1985;
Kofsky and Barrett, 1986). The glow brightness was
inferred to vary inversely with temperature based on
modeling of orbiter surface temperatures and NO surface



residence times (Swenson et al., 1986).

Recently two laboratory studies (Arnold and Coleman, 1988,
Orient et. al.,1990) of the surface mediated recombination
of NO, using high velocity CW atomic oxygen beams have
attempted to simulate the observed glow. Comparisons
between their observations and results obtained in the
present pulsed study reveal mechanistic features of the
proposed luminescence processes.

Space borne measurements also revealed a characteristic
spatial extent of the observed luminescence. The glow
thickness is a result of the convolution of excited state
lifetimes and the distribution of exit velocites of the emitting
species from the interaction surface. Since the exact nature
of the NO, formation mechanism is still debated, questions of
recoil energy, thermalization, and excited state lifetime are
still open to speculation. To further complicate matters the
excited state lifetimes reported in the literature range from
ius measured by Sackett and Yardley (1971) to 170-260
us reported by Donnelly and Kaufman (1977). Variations
between the lifetimes of NO, have been attributed to mixing
of the 2B, and 2B, states or explained in terms of one or
more of these excited state variably coupled to the high
vibrational levels of the 2 A, ground state (Douglas 1966,
Paulsen 1970, Alder- Golden 1989) yielding a wide range of
values. Considerable varlation in lifetimes based solely upon
emission criterlon have also been reported. The common
assumption of a 70 u sec. lifetime qouted in the analysis of
flight data forces an emitter velocity greater than the
spacecraft surface temperature would provide and hence has
generated a discussion of the possible transfer of ram
energy.

An Ely-Rideal recombination process in which an incoming O
atom pulls off a surface bound NO to form the excited stale
species might transfer some of the ram kinetic energy to the
ND, product in an amount reduced by small losses to the
surface. However, ejection of an excited NO, molecule with
thermalized kinetic energy is expected if NO, is formed via
the Langmuir-Hinselwood surface migration processes.

This report describes direct laboratory tests of these
mechanistic tenants. Good agreement with spectra observed

in orbit both in terms of spectral distribution and observed
temperature scaling were observed. In addition, the resuits
of this study suggest that thermalization even at high O atom
velocities common to the ram interactions of the shuttle Is
likely, but cannot rule out a Rideal interaction hypothesis.
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Experimental

Atomic oxygen with a velocity of 8 km/s was produced in a
large vacuum chamber via a pulsed laser discharge technique
{Krech and Caledonia, 1986) and was directed onio targets
located 85 c¢cm down stream from the O-alom source. The
apparatus has been described in greater detail previously
(Caledonia, 1989; Hoitzclaw et al., 1990). Six by six inch
targets of aluminum, nickel and Z306 Chem-glaze paint
were mounted on a reservoir which could be filled with
liquid nitrogen.
copper-constantan thermocouple probe calibrated by
and liquid

Target temperature was monitored with a
immersion into water/ice, dry ice/ethanol,
nifrogen baths.

The surfaces were selectively doped prior to oxygen
exposure with a purified pulse of NO. Residual non adsorbed
gas was removed from the chamber during a pump out
interval prior fo O atom interaction. NO (stated purity >98.5
percent) was first passed through an Ascarite column to
remove residual NO, prior to sample dosing. Dosing was
performed with a small solenoid valve (General Valve series
9) placed directly in front of the target.
monitored with a mass flow meter and was typicaily 0.007

NO flow was

standard cc's per pulse. A puise of NO was delivered to the
target prior to every O-atom pulse. The NO mass flow rate
was specified such that less than one monolayer of NO
impinged the target with each pulse. The relatively high
vapor pressure of NO, even at 77 K, precluded the buiidup of
a thick NO film on the target surfaces. A sufficient delay
(~1s) between the NO and O-atom pulses was used to insure
that all NO was evacuated from the chamber before the next
oxygen atom pulse (p < 10-5 torr). This precaution is
Important since gas phase reactions of O and NO could
produce interfering emissions (Fontijn, 1964). Typical fast
O-atom fluence levels for these tests were 1 x 10'4cm 2 per
pulse.

Spectral and spatial information was taken using a CCD
imaging spectrometer designed at Lockheed that has been used
to photographically record the glow observed above the space
shuttle in low Earth orbit. The instrument as employed in

these experiments is identical to that used for the orbital

studies (Swenson et al.,, 1985) except that an unintensified
378 x 576-line CCD array in a Photometrics model 3000
camera was substituted for the photographic film. The
instrument has provision for removing the slit and grating
from the optical axis wherein the instrument is an imager.



Spatial image measurements were performed upon surfaces
at room temperature and when cooled to liquid nitrogen
femperature. In addition, images were gathered of the
interaction plume as a function of O atom velocity from
5km/s-10km/s. The inside of the chamber was blackened to
minimize reflections which might obstruct the image. The
instrument processor permitted real time display,
background subtraction, and image ‘analysis during these
experiments.

With the the slit and grating inserted into the optical path,
the instrument is a spectrometer with y axis wavelength
dispersion (spectral resolution ~7 nm) as a function of the
x (distance) axis of the array. Confirming spectral
information was recorded in separate measurements using a
scanning monochromator and photomultiplier tube where the
signal processing was performed with a gated photon counter.
The spectral resolution of the monochromator was 2.7 nm.
The relative spectral response of the CCD imaging
spectrometer was determined using an NBS referenced
quartz halogen lamp. Wavelength position and spectral
resolution were determined using Hg and Ne line sources.
The spectral response of the monochromator was determined
by viewing the gas phase reaction of O and NO in a flow tube.
This reaction has long been used as a secondary standard for
spectral calibrations in the visible region of the spectrum

(Fontijn, 1964).

Spectral Resuits :

An image of the surface glow above an NO-doped 2306 Chem-
glaze coated foil held at ~93 K taken with the imaging
spectrometer is shown in Figure 1. The oxygen atom beam
enters from the left and envelops the whole of the target. A
separate nozzie also to the left is used to inject NO on the
surface. This image was integrated over ~100 pulses of the
beam. The black strip in the center of the image demarks the
shit position. As mentioned above, when the slit and grating
are inserted into the optical path, the instrument is a
spectrometer with wavelength dispersion along the y axis of
the array as a function of x distance from the target plate as
shown in the inset of the figure.

The spectral distribution of the glow observed under these
conditions was measured in separate tests using either the
scanning monochromator or the CCD array-spectrometer.
These observations are contrasted in Figure 2 with spectra
measured from the Space Shuttle.
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All spectra have been smoothed for ease of comparison. The
shuttle data (Mende et al., 1988) was taken with an imaging
spectrometer similar to that used in the laboratory, but
using film rather than a CCD array (Swenson et al., 1985).
Intensities were obtained from densitrometry traces and
corrected for window transmission and film response. The
laboratory spectra are in reasonable agreement with the
observed Shuttle glow. The monochromator data displays a
similar onset and the imaging spectrometer exhibits a
similar spectral shape. Spectra obtained with the Imaging
spectrometer were found to fall symmetrically within the
the
monochromator with similar wavelength maxima. The

respective spectral envelope measured with
variation between the scanning monochromator and the
imaging spectrometer spectra could be the result of
calibration uncertainties; as described in the previous
section the calibration procedures employed for the two
diagnostics were quite distinct. The differences observed
between laboratory and Shuttle glows may be within the
in both the
All three
spectra suspected to result from surface mediation are
significantly shifted from the gas phase three body NO,
recombination spectra also shown in Figure 2. The magnitude
of the observed shifts are in line with typical surface
physisorption energies. In fact, the spectral shift of ~80 nm
between the gas/gas and surface mediated spectra obtained in

uncertainties
laboratory and flight data correction procedures.

cumulative experimental

this work is thought to be the result of surface bond energy
expended in the removal of NO,* from the target.
Measurements were performed in the absence of a target to
examine the luminescence resulting from the NO gas phase
collisions with the O beam employed in the present study.
The gas phase luminescence is blue shifted relative to the
surface glow described above, peaking at ~625 nm as in
thermal recombination. Note that the mechanism producing
the gas phase luminescence observed in this work has not
been identified. NO recombination with collisionally slowed
oxygen atoms or fast atom interactions with NO dimers may
occur. The NO-NO dimer bond energy is only on the order of
0.06 eV.
Since the targets were limited o approximately monolayer
coverage of NO, any material dependence observed will
reflect differences in material adsorption properties
relating to the heterogeneous recombination process.

Luminescence measurements were performed on NO-doped



cooled targets of Z306, nickel and aluminum. In all cases the
observed intensities were similar in magnitude (factor of
two, we did not evaluale the variability in adsorbed NO
amongst these materials). The spectral distributions for the
three materials are quite similar with the exception that the
spectra on nickel appears red-shifted by approximately 30
nanometlers. The delineation of any material dependencies
will require careful acquisition of a larger database than
provided to date.

A similar set of measurements were made for room
temperature targets of Z306 and aluminum. All other
experimental conditions were held the same. For these cases
the surface glow was spectrally similar to that observed on
the cooled samples but the intensity levels were down by an
order of magnitude. This inverse temperature dependence
may reflect the fact that more NO can be accommodated on
surfaces as they are cooled. Swenson et al. (1986) have
analyzed Shuttle glow data from various missions and show
that the glow intensity drops approximately an order of
magnitude as the surface temperature is decreased from
room temperature to 173 K. Laboratory measurements at
additional temperatures would elucidate the exact nature of
this correlation of intensity as a function of temperature.

Spatial Results :

Images of the luminescent plumes created by the interaction
of a pulse of O atoms with previously NO doped surfaces were
recorded utilizing the CCD imaging spectrometer. A
background subtraction provided difference images.
Exposures integrating 100 such pulsed events were taken
using a 35 mm lens at various surface temperatues. The
overipot on the 93 K image shown in Figure 1 displays the
intensity drop off of the glow from the surface using the
Photometrics image processing capability. The plot shows
the relative intensity of a set of row elements selected from
the image matrix array versus pixel location. As mentioned
above, the black rows in the center of the image correspond
to the position of the interchangeable slit which was removed
during image measurements. An image of the NO nozzle
provided a reticle to benchmark the spatial length
represented by each pixel number. A narrow band of rows
were selected symmetric about this vacant slhit position for
analysis. A uniform field correction on the order of 10
percent at the periphery was made by imaging a large

uniformly illuminated diffuse plate.
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Figure 3 shows a corrected intensity plot as a function of
position in centimeters from the surface (derived from the
image shown earlier in Figure 1) which is approximately
linear when ploted on a logarithmic scale (see inset).
Similar plots of pairs of such central row regions for a given
image taken symmetrically about the slit region were found
to be virtually identical.

Image data taken as a function of temperature and incoming O
beam velocity were similarly analyzed. A few images were
clearly obstructed by scattering but most displayed an
exponential decay in intensity with distance from the
interaction surface. The e-folding distance (distance over
which the intensity drops to 1/e of the intial value} was
calculated for each experimental condition. This parameter
is of interest since the number of molecules in the excited

state decays exponentially as exp (-t/1). Multiplying the top

and bottom of this exponent by the mean molecular speed
characteristic of the product exit velocity distribution yields

the expression exp (- d/vt). Hence the e-fold (e~ 1y distance
d can be equated to the molecular velocity v times the average
lifetime T of the excited molecules.

No change in this e-folding distance (measured at 93 K) was
observed as a function of initial O beam energy over the
velocity range from 6 to 10 km/s tested. Thus increasing the
translational energy of the incoming species within this
range does not seem to impart any additional exit energy to
the products formed by surface interaction. However, this
result alone does not distinguish between a Langmuir
Hinselwood or Rideal mechanism.

The calculated e-folding distances as a function of the square
root of the plate temperature (in K) are plotted in Figure 3.
The e folding distance increases in rough proportion to a
square root dependence of the surface temperature. A linear
fit is provided for comparison. Such behavior indicates that
the interactions at the surface are thermalized and products
are most likely ejected with root mean squared exit
velocities determined by the surface temperature in a
Maxwellian fashion ie. v= ¥ 3RT/M.

The low number densities of interacting species suggest a
collisionless analysis regime with long mean free path. If the
species are thermalized as they react at the surface and no
elastic energy or momentum is imparted to the exiting
products, then the assumption of a Lambertian directional
distribution of these exiting species with Maxwellian speeds



can be invoked. Under such an assumption no influence due to
incoming beam profile is expected since no translational
energy is transfered. As seen in Figure 1, the glow thickness
is not uniform but diminishes at the edges since the
interaction plate is of finite (6 inches in length) dimension.
A flattened maximum spatial extent region above and below
the slit position was found in each plume image distant
enough from the edge to receive symmetrical contributions
of the exiting species. A narrow set of rows within this
region were selected to plot the intensity drop off as a
function of position described above. The e-fold lengths
described above are then projections along the line of sight of
the distance these product molecular emitter species travel
during their excited state lifetime. The average distance an
emitter species travels in contributing to a line of sight
pixel can be found by dividing the projected distance by the
cosine of the half angle of 30° which demarks the solid angle
into which half of these contibuters are dispersed in
accordance with a Lambert cosine distribution. The average
molecular distance associated with the e-fold parameter at
93 K was determined to be 4.2 centimeters. A value between
the root mean squared speed of 225 m/s or the most
probable speed of 183 m/s indicative of the Maxwell
distribution curve at 93 K can serve as an estimate of the
exit speed. The lifetime of the excited state can be determined
as the ratio of this characteristic glow thickness parameter
divided by the assumed exit velocity. A lifetime of the excited
species on the order of 185-225 usec results from such a
calculation.

Spectra as a function of position from the plate are obtained
by selecting column elements from the inset array shown in
Figure 1 at various x distances from the plate. A spectrai
red shift on the order of 30 nm. is observed in spectra 1.3
cm. removed from the plate as compared to that observed on
the surface. A progressive red shifting is observed for
spectral slices as a function of distance from the plate.
Species with longer lifetimes are responsible for the
spectral emission at incremental distances from the
interaction surface. These observations are consistent with
the loss of energy required for these relatively longer lived
species to overcome physisorption bonds to remove these
product species from the surface. Surface bound emitters not
having expended such energy are relatively shorter lived and
their higher energy emission is peaked 1o the blue. The
lifetimes of NO,* have been shown 1o depend upon excitation
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energy (Donnelly and Kaufman,1978; Alder-Golden, 1989).
The higher energy excitation is associated with a shorter
lived species and vice versa.

Discussion

The laboratory glow data are in quite reasonable spectral
agreement with Shuttle glow observations and also exhibit a
similar inverse temperature dependence. These observations
provide strong evidence that the Shuttle glow results from
recombination of oxygen atoms and surface bound NO. The
ND,* recombination spectra created by a laboratory pulse of
atomic oxygen traveling at orbital velocities was shown to be
red-shifted from the gas phase interaction because of surface
mediation. Only small variations in spectra and intensity
were observed from material to material.

As mentioned above, two recent laboratory studies (Arnold
and Coleman, 1988, Orient et. al.,1990) of the surface
mediated recombination of NO, using high velocity CW atomic
oxygen beams have attempted to simulate the observed glow.
The first of these (Arnold and Coleman, 1988} directed a
supersonic (1.4 km/s) beam containing oxygen atoms and
an effussive NO beam at a nickel surface. The observed
luminescence was observed to peak at 830 nm, well to the
red of both the flight measurements of Shuttle glow and
spectra obtained in the present pulsed study on nickel
surfaces. A velocity effect may be indicated by this
comparison, altough such a dramatic shift to the red may also
be related to the alternate removal of a more tightly bound
surface O atom by NO. In addition, the presence of excited
oxygen molecules can also produce an NO, spectra to the red
of that created by O + NO (Kenner and Ogryzilo 1984). More
recently, (Orient et. al. 1990) directed an 8 km/s O beam
and a Jet of NO onto a MgF, surface. Their observations
include a broad visible emission spectra peaked at 625nm
which is similar to that observed in the present study when
the gas pulses were allowed to interact prior to dopant
isolation in the presence of a surface. Their light collection
technique is not capable of spatial differentiation of the glows
created as done in the present study.

it should be noted that the fast atom source used in these
studies is not composed entirely of ground state oxygen
atoms. Oxygen molecules are present at a concentration <20
percent and the metastable O(1D) density in the beam has
not been measured. Although the concentration of this latter
species is estimated to be low, based upon quenching rate



constants for O(1D) by O and O, (Davidson et al, 1976) iis
potential contribution to the observed luminescence cannot
be ascentained. This species is of course also present in the
ambient atmosphere and its reactivity should be investigated
Independently.

Recently, a discussion of lifetimes and recoil energies
involved in reconciling the flight data for various
mechanisms proposed was provided by Sianger. Slanger
suggests that translational energies In the 0.3 -1 eV range
with radiative lifetimes between 100-200 us are most
compatible with existing evidence. Our measurements appear
to be consistent with these predictions. No difference in e-
fold was found by varying the impinging O atom velocity but
a direct measure of product exit velocities was not
undertaken. The possibility of a momentum exchange
contribution which does not vary with the velocity of the
incoming species Is possible, but the energy lost to the
surface which manifests itself as a spectral shift must be
considered. The red shift in the NO, spectrum has been
thought to indicate that internal chemical energy Is needed to
break the surface bond and that O atom coilisional energy Is
not efficient in removing the product species from the
surface. A red shift similar to the flight results was
observed in these heterogeneous O + NO laboratory
experiments.

It should be noted that exit velocities for erosion glows
(Holtzclaw et.al. 1990) using a similar beam source were
measured to be 1.3 km/s. Erosion glow processes result
from quite different mechanisms in which a material's
chemical bond is broken. If exit velocities of this magnitude
(1 Km/s) are shown to be involved, the above mentioned
calculated lifetimes would be reduced on the order of less
than 35 useconds. The present results argue against other
than thermalized velocities and direct time of flight
measurements of the product exit velocities in these surface
mediated O + NO recombination studies are planned.
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ABSTRACT

Polysiloxane-polyimide films are of
interest as a replacement for polyimide
Kapton in the Space Station Freedom
solar array blanket. The blanket
provides the structural support for the
solar cells as well as providing
transport of heat away from the back of
the cells. Polyimide Kapton would be an
ideal material to use, however, its high
rate of degradation due to attack by
atomic oxygen in low Earth orbit, at the
altitudes Space Station Freedom will
fly, is of such magnitude that if left
unprotected, the blanket will undergo
structural failure in much less than the
desired 15 year operating life.
Polysiloxane-polyimide is of interest as
a replacement material because it should
form its own protective silicon dioxide
coating upon exposure to atomic oxygen.
This paper presents mass, optical and
photomicrographic data obtained in the
evaluation of the durability of
polysiloxane-polyimide to an atomic
oxygen environment.

INTRODUCTION

The Space Station Freedom solar array is
being designed to provide the primary
power for the first phase of the station
(1) . Polyimide Kapton (DuPont) was the
material originally selected for the
structural support of the solar cells
for the flexible array. Its light
weight, flexibility, strength and IR
transparency made it an ideal material
for this application. However, it is
readily oxidized by atomic oxygen in the
low Earth orbital (LEO) environment
(2,3,4).

Single, neutral oxygen atoms in the
ground state are the most predominant
species in LEO between altitudes of 180
and 650 km (5). As spacecraft pass
through the atmosphere at these
altitudes, they collide with the oxygen
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atoms with an equivalent energy ranging
from 3.3 to 5.5 eV (6). This is
energetic enough to break many chemical
bonds and allow the highly reactive
atomic oxygen to oxidize many organic
and some metallic materials (3). When
atomic oxygen reacts with polymers it
forms gaseous oxidation products
(primarily €O) which results in material
losses that can hinder system
performance (7). The Space Station
Freedom solar array is designed for a 15
year operating life in LEO, however, the
oxidation rate of this material is great
enough that structural failure of the
blanket would occur in much less than 15
years. The current Space Station Freedom
design utilizes a sputter deposited Sio,
(where x=1.9 to 2.0) for atomic oxygen
protection.

A modified Kapton manufactured by DuPont
designated as AOR (atomic oxygen
resistant) Kapton has been proposed as a
back up material for the Space Station
Freedom solar array design. It is a
polysiloxane-polyimide solid solution.
Results of the testing of this material
for atomic oxygen resistance is
presented in this paper.

APPARATUS AND PROCEDURE
AOR Kapton

The AOR Kapton was manufactured by
DuPont in an experimental batch process.
It is a homogeneous
dimethylpolysiloxane-polyimide film cast
from a solution mixture. The
dimethylpolysiloxane is added to the
polyimide in an attempt to make the
material resistant to attack by atomic
oxygen since polysiloxane is a metal
oxide former. Metal oxides are highly
resistant to attack by atomic oxygen
(3). The material lot # was RM449AAA.
The material was received in 5 sheets
from different portions of the processed
roll. Four 2.54 x 2.54 cm atomic oxygen



exposure samples were taken from each
sheet in order to test for process
uniformity. Since past testing of a
different version of AOR Kapton (93-1)
exhibited non-uniformity between the air
and roll processing sides of the sheet,
the four samples tested were sandwich
samples with identical surfaces exposed
to atomic oxygen (8). Acrylic adhesive
from 3M was used to bond two adjacent
sections of the sheet together that the
samples were cut from. Two samples were
prepared with the air sides out, and 2
with the roll side out on each sheet.
this manner, the durability to atomic
oxygen could be determined separately
for each side. Additional atomic oxygen
exposure samples were prepared from
sheet #3 as well as scanning electron
microscope (SEM) samples (1.27 x 1.27
cm) and single thickness optical
specimens. The optical specimens could
not be sandwiched because the adhesive
in the center would interfere with the
measurement. Therefore, during atomic
oxygen exposure only one side of the
sample was exposed (air side) by placing
the sample on top of a glass slide with
the edges held down in close contact to
the slide with a thick glass ring.

In

Atomic Oxygen Durability Testing

A plasma asher (SPI Plasma Prep II) was
used to evaluate the atomic oxygen
durability of the AOR Kapton. It uses a
13.56 MHz RF discharge to create an air
plasma of oxygen and nitrogen ions and
atoms in various energy states in a
glass sample chamber kept at 80-100
nTorr. The nitrogen species have been
shown to be relatively unreactive with
polyimide in previous experiments (9).
The species in the plasma impact
surfaces placed in the plasma at thermal
energies which is much lower than the
energy in space but still energetic
enough for chemical reactions to occur.
The arrival at the surface is also
omnidirectional while the arrival in
space is more directed but sweeping, due
to the rotation of the solar array to
track the sun. The arrival flux (atoms
striking/cm® of surface every second) is
much greater than that in space. The
combination of directionality and higher
flux make the asher a more severe
environment than space, but it can
provide a qualitative indication of
survivability since materials which
survive in the asher also survive in
LEO.

The atomic oxygen testing was performed
in three different plasma ashers. The
samples with the roll side out were
placed in a separate asher for testing
than those with the air side out because
of observed contamination from the roll
side of DuPont 93-1 that coated the
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polyimide Kapton HN witness coupon. All
AOR roll position uniformity tests for a
particular side were performed in the
same asher. Exposure of additional mass
loss coupons, optical, and SEM samples
from sheet #3 of the roll were exposed
in the third asher. All testing was
performed with a polyimide Kapton
witness coupon in the asher during
testing. The mass loss of polyimide
Kapton is well characterized in space
and was used to correlate the different
ashers as well as determine the
effective atomic oxygen fluence (atoms
striking during exposure/cm’ of surface)
in space that the asher exposure
represented.

The AOR Kapton and polyimide Kapton
witness coupons were dehydrated in a
vacuum (30-50 mTorr) for at least 48
hours prior to the initial mass
measurement of the sample and atomic
oxygen exposure. This procedure was used
to eliminate any errors in mass
measurement due to water vapor from the
atmosphere absorbing or desorbing from
the polyimide. Although the effect of
humidity on polyimide Kapton is quite
large, AOR Kapton did not show any
noticeable mass change due to humidity;
however, it was dehydrated along with
the polyimide Kapton so that both would
be exposed to the same conditions. After
atomic oxygen exposure, the Kapton was
removed from vacuum and quickly weighed
on a Sartorius microbalance to achieve
an accurate mass value. The AOR was also
weighed on the same balance.

Since three different ashers with glass
racks supporting samples at two levels
were used for sample exposure, it was
important to determine the effect of the
power level, intensity of the plasma,
and the position in the asher on the
atomic oxygen arrival flux. Since the
plasma intensity is difficult to
quantify, a solar cell connected to a
current meter was placed against the
asher glass to provide a relative
intensity scale. Polyimide Kapton was
used as a measure of the effective flux
in the asher. Figure 1 contains a plot
of the effective asher flux as a
function of the power level meter
reading. Each level indicated represents
the multiple of 20 watts with 5
representing the full power of 100

watts according to the manufacturer.
Test results indicate that the flux is
independent of the power level for
different tuned plasma intensities.
Figure 2 indicates that the flux appears
to be highly dependent on the intensity
of the plasma and also shows its
independence from the power level. As a
result of these tests, the ashers were
adjusted to roughly the same visual
intensity during exposure of the AOR



Kapton. In each asher, the flux can also
be dependent upon the position of the
material in the asher. Flux is most
likely highly dependent upon the amount
of material placed in the asher since it
changes the path of gas flow in the
asher. Samples on a double rack fully
loaded in the asher exhibit the flux
arrivals shown in Figure 3. To determine
the difference in arrival on the top and
bottom of the samples, polyimide Kapton
was used which had one side coated with
silicon dioxide which could act as a
barrier against atomic oxygen. The
duration of the exposure was kept short
in order to minimize any significant
losses by undercutting of defects on the
coated side. In general, the flux was
more uniformly distributed on the bottom
rack than on the top. On the botton
rack, the direction the Kapton faced did
not seem to make a significant
difference, however on the top rack, the
Kapton facing up had a significantly
larger flux. This is believed to be due
to the proximity of the glass rack on
the top level with respect to the gas
inlet tube. The Kapton facing down had
fluxes much closer to those on the
bottom rack. Flux on the bottom rack
appeared to decrease the farther the
samples were from the roughing pump
vent. Mass loss specimens were kept on
the bottom rack for testing where
possible and towards the back of the
asher. Kapton witness coupons were
placed in close proximity to the samples
with a witness on each level so that
flux variations and variations between
ashers could be taken into account.

Durability Characterization

Durability to atomic oxygen was
determined primarily through mass loss
measurements and visual observation.
Scanning electron microscopy using a
JOEL 840 scanning electron microscope
was used to document the visual changes
occurring on the sample surface at
different atomic oxygen fluence
intervals. Total transmittance and
reflectance measurements of the AOR
Kapton representing different fluence
intervals was taken with a Perkin Elmer
Lambda 9 UV-VIS-NIR spectrophotometer
with an integrating sphere attachment.

RESULTS AND DISCUSSION

Mass loss per area as a function of
fluence was measured for AOR Kapton from
each of the 5 sheets from the batch
roll. Figure 4 contains the plots of
this data for the air and roll sides.
The data with the "*" by the number in
the legend represents an adjacent piece
from the same sheet which was included
for improvement of test data
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reliability. The data indicates that the
air and roll sides lose mass at very
close to the same rate. The roll side
may be slightly higher but is within the
error of the mass measurement. The roll
also shows a high degree of uniformity
over the five sheets. The long term
ashing test data in Figure 5 also agrees
with that in Figure 4. Initially, the
positional testing was toc be used to
determine uniformity of the roll only,
with longer term ashing determining the
durability. However, the AOR samples
began to crack and split at a fluence of
approximately 7x10** atoms/cm® and fell
apart completely at 9.5x10*' atoms/cm’.
One estimate for the total fluence that
the SS Freedom solar array will
encounter is 2x10% atoms/cm’ which is
about twice the fluence experienced by
the AOR when it structurally failed. The
mass loss rate in comparison to Kapton
is relatively constant for most of the
exposure and is between 10 and 17
percent of that for unprotected Kapton
HN. The AOR does provide an improvement
over polyimide Kapton but still not
enough to fulfill the SS Freedom life
requirements.

Figure 6 contains a photograph of the
optical samples that were exposed in the
asher. Each sample represents a
different atomic oxygen fluence level.
The spots on the surface were believed
to be caused by the remnants of a Si
containing roll processing release agent
which formed a thin film protective
coating on the AOR Kapton. The unexposed
sample has a barely visible spot of the
release agent on its surface as well.
The release agent coated areas offer
limited protection due to the number of
defects in the coating which increases
with exposure. The samples which
received roll side exposure were a
slightly darker tan color overall in
appearance with dark tan spots, while
the air side was uniformly light tan
with orange spots. The spots on the roll
side behaved more like the overall AOR
sample. In all other respects, both
sides reacted the same. Eventually, the

AOR begins to split and areas that were
coated with release agent actually fall
out as the AOR around them oxidizes
through. The highest fluence sample in
this photograph was too fragile to make
an optical measurement on. The sample
crumbled at the lower edge when trying
to move it with tweezers. As exposure
progressed, the once transparent surface
became increasingly opaque as can be
seen from the plot of transmittance as a
function of wavelength at different
fluence levels in Figure 7. The
reflectance of the surface increased
initially with fluence and then leveled
off so that the net result was a slight
increase in solar absorptance as shown



in Figure 8.

Scanning electron photomicrographs of
the AOR Kapton as a function of fluence
are shown in Figure 9. The AOR Kagton

at a fluence of 1.75x10%*! atoms/cm
(Figure 9a) shows two areas with release
agent surrounded by AOR Kapton.
Initially, there is some cracking of the
AOR but the majority of the cracking is
centered around the release agent coated
areas. With increasing fluence, cracking
of the AOR becomes w1despread until
finally at 9. 48x10?! atoms/cm?, the
majority of the AOR Kapton has lifted
off of the surface leaving only a thin
layer of AOR Kapton sections clinging to
the adhesive used to bond the two sheets
together. Figure 10 contains closeups of
the AOR Kapton and release agent coated
areas. Overall cracking of the AOR
appears to occur gquickly since fgll
cracking was observed at 5.14x10
atoms/cm’. This represented a crack
length per unit area 1ncrease from
approxxmately 50 cm/cm’ to nearly 120
cm/cm?. Cracking of the release agent
appeared to progress more linearly. A
closeup of the AOR Kapton shows that the
protection is particulate in nature. The
surface exposed at the maximum test
fluence still has particles clinging to
the adhesive in a few locations but the
matrix material is noticeably absent.

CONCLUSIONS

The experimental AOR Kapton evaluated
for atomic oxygen resistance was found
to exhibit a mass loss between 10 and
17% that of unprotected Kapton HN in the
plasma asher. This is a significant
improvement over polyimide Kapton,
however the material does degrade and
eventually structurally fails between 7
and 10x10*! atoms/cm® with a random
atomic oxygen arrival. In space, the
arrival of atomic oxygen is more
directed and sweeping than in the asher
so that the particulate sites of
protection may provide more shielding of
the matrix material allowing it to
survive longer. However, this material
is unlikely to meet the SS Freedom array
lifetime without a thin film protective
coating on the surface. A metal oxide
coating would greatly improve the life
of this material and the AOR Kapton
underneath would add a backup safety
factor to the coating since it is more
durable than standard polyimide Kapton.
A metal oxide coated AOR Kapton array
blanket may be a viable solar array
backup material for Space Station
Freedom.
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Figure 6 - Photograph of AOR Kapton
optical samples exposed to various

fluence levels; top left: 0 atoms/cm?,
top right: 1.75x10% atoms/cm?, bottom
left: 5.14x10* atoms/cm’, and bottom
right: 7.31x10?' atoms/cm®.
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Figure 11 - Scanning electron
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sheet 3 (air side out) showing
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ABSTRACT

An experimental effort to characterize an existing
5-eV neutral atomic oxygen beam facility being
developed at Princeton Plasma Physics Laboratory
(PPPL) will be described. This characterization
effort includes atomic oxygen flux and flux dis-
tribution measurements using a catalytic probe,
energy determination using a commercially designed
quadrapole mass spectrometer (QMS), and the expo-
sure of oxygen-sensitive materials in this beam
facility. Also, comparisons were drawn between
the reaction efficiencies of the materials exposed
in this facility, the reaction efficiencies of
materials exposed in plasma ashers, and the reac-
tion efficlencies previously estimated from space
flight experiments. The results of this study
show that the beam facility at PPPL is capable of
producing a directional beam of neutral atomic
oxygen atoms with the needed flux and energy to
simulate low Earth orbit (LEQ) conditions for real
time accelerated testing. The flux distribution
in this facility 1is uniform to 267 of the peak
flux over a beam diameter of 6 cm.

INTRODUCTION

The recent return of the Long Duration Exposure
Facility (LDEF) provided startling evidence of how
volatile the LEO environment is on materials. One
of the most material destructive constituents in
the LEO enviromment is atomic oxygen which oxi-
dizes many metals and erodes the surface of many
polymers., Considering the expense and logistical
demands of doing flight experiments, such as LDEF,
for investigating a materials susceptibility to
atomic oxygen, the need for a ground-based facil-
ity capable of simulating the LEQ atomic oxygen
environment exists. The requirements of a facil-
ity capable of simulating LEO atomic oxygen condi-
tions are: (1) the beam facility must be able to
produce a high energy, directional beam of atomic
oxygen atoms (i.e., the atom would have an energy
equal to the mass of the atomic oxygen atom times
the orbital velocity of the spacecraft of 5 eV for
atomic oxygen atoms); and (2) the beam facility
should produce a flux of atomic oxygen compatible
with LEO mission-integrated flux in a reasonable
test period (i.e., at least a flux in the range of
1014 to 1016 atoms/cmZ*s).
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The 5-eV neutral atomic oxygen beam facility
discussed in this paper was developed at PPPL
under contract with NASA/Marshall Space Flight
Center (MSFC). This neutral beam system is cap-
able of producing atomic oxygen atoms with a flux
of 1013 to 10! atoms/cmz*s and an energy of 4 to
20 eV which meets the previously stated require-
ments. Also, the facility has features which
make it possible to study the combined effects of
UV and other LEO environmental concerns on
materials.

The results of this study include a direct meas-
urement of the atomic oxygen flux in this beam
facility using a catalytic probe similar to the
one described by Carruth et al. [l1] and a meas-
urement of the flux uniformity by evaluation of
material erosion at discrete intervals across the
beam diameter. Reaction efficiencies from mater-
ials exposed in this facility and the reaction
efficiencies of materials exposed in ground-based
plasma ashers are compared to the published reac-
tion efficiencies of materials exposed during the
ST5-8 and S5TS-41G missions. This comparison
includes graphic evidence of the enhanced simula-
tion of the surface morphology effects of LEO
atomic oxygen with a directional beam then with
plasma ashers. Scanning electron microscope
(SEM) photographs will be shown to demonstrate
how this beam facility closely reproduces the
surface morphology of materials that have been
exposed to atomic oxygen during flight experi-
ments. The SEM photos of the flight and PPPL
neutral atom beam facility exposed materials will
be compared to materials exposed in plasma ashers
at MSFC.

ATOMIC OXYGEN BEAM FACILITY

The PPPL atomic oxygen beam facility produces a
low energy neutral atomic oxygen beam by placing
a metal plate in contact with a magnetically
confined (3 to 4 kG) oxygen plasma. The oxygen
plasma is produced by a radio frequency (RF)-
driven lower hybrid source [2] which operates on
molecular oxygen gas., A magnetron supplies 1 kW
of power at an RF frequency of 2.45 GHz to the
center pin to break down the gas. The RF fre-
quency of this facility produces a plasma with



complete dissociation of the molecular oxygen gas
[3]. Because of the intense heat built up on the
center pin, the plasma source is currently pulsed
at a 5% to 15% duty cycle over a few milli-
seconds. Cycling the plasma source in this man-
ner enables the beam source to operate in oxygen
for over 100 hours per pin. The plasma is con-
fined by a magnetic field (3 to 4 kG) which
produces an intense plasma column about 1 cm in
diameter. Because of the tightly confined plasma
column, the neutral atom distribution beyond the
neutralizer plate 1s well collimated. The metal
neutralizer plate is bilased negative of plasma
potential, and plasma lons are accelerated toward
the surface of the plate by an energy determined
by the potential difference between plasma poten-
tial and the plate blas. The ions impact and are
reflected from the neutralizer plate picking up
an electron in the process. The reflection is
designed to be an inelastic reflection causing
the atoms to lose a fraction of their energy.

The fraction of energy retained by each atom
depends primarily on the ratlo of the particle
mass to the neutralizer plate atomic mass.
Because the energy of each particle depends on
plasma potential and not all ions exit at the
same potential, not all ions will be reflected at
the same energy, producing a small spread in
energy.

The lower hybrid plasma source is capable of
supplying 4 amps of atomic oxygen lons to the
neutralizer plate per pulse producing an esti-
mated flux of >5x1016 atoms/cmz*s atomic oxygen
atoms 10 cm from the neutralizer plate. The
average integrated flux over the entire duty
cycle 1s 1x1013 to 7x1013 atoms/cmz*s at this
same axial position. The limiting factor in the
flux level for this beam facility is the duty
cycle of the plasma source.

ATOMIC OXYGEN BEAM FACILITY DIAGNOSTICS
Energy Diagnostics

A commercially designed energy-analyzing QMS was
used to detect the energy of the neutral atoms in
this facility. The QMS is a standard QMS with a
cylindrical mirror energy analyzer downstream of
the quadrapole rods. With this instrument, a
neutral beam entering the ionizing chamber can be
scanned measuring both the energy spectrum of a
particle at a single mass or the mass spectrum at
a single energy. Special pumping stages were
designed to incorporate the QMS in the neutral
beam facility to minimize scattering of the in-
coming high energy atomic oxygen atoms and reduce
the production of energetic atomilc oxygen atoms
(Franck-Condon atoms) created by the dissociation
of molecular oxygen in the ionizing region of the
QMS.

The energy measurements to date have been limited
to monatomic gases such as argon and krypton.
These measurements were compared to calculations
using the TRIM model [3]. The beam energy and
energy spread with these measurements agreed well
with the TRIM calculations. The atomic oxygen
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energles presented in this paper have been esti-
mated from the plasma potential, the neutralizer
bias, and using conservation of momentum results
from argon and krypton gases. Attempts to
measure molecular gases like nitrogen and oxygen
have been unsuccessful to date because of compli-
cating effects caused by the dissociation of the
thermal background molecules in the QMS ionizing
section. A further reduction in background pres-
sure is being considered to eliminate the back-
ground molecules.

Atomic Oxygen Flux Diagnostics

A special catalytic probe for monitoring the
atomic oxygen flux was designed for use in this
neutral beam facility. The catalytic probe was
modeled after the one used by Carruth et al. [1]
in a conventional plasma asher. The catalytic
probe uses silver oxide as the catalyst to pro-
duce an increase in temperature caused by the
recombination of atomic oxygen atoms on the sur-
face of the catalyst. Since the inelastic colli-
sions of the high energy neutral atoms with the
catalytic probe also cause the probe to heat up,
a method to account for this heating was devised.
The catalytic probe designed for this facility
consisted of two thin (approximately l-mm thick)
circular glass substrates with a type k thermo-
couple attached to the back. One probe was
coated with 1,000 angstroms of silver and oxi-
dized in an oxygen plasma atmosphere, while the
other probe was left uncoated. The silver oxide
probe was used as the active probe to measure the
flux of atomic oxygen atoms in the facility, and
the plain glass probe was used as a dummy probe
to monitor the increase in the catalytic probe
temperature due to the atomic oxygen atoms
impacting on the catalytic probe surface. A
separate thermocouple was placed near the chamber
wall to measure the ambient temperature.

A simple first-order model was developed to make
flux calculations from the recorded temperature
data. The model assumes that both the catalytic
probe and the dummy probe radiate their heat to
the surrounding environment, and that conduction
and convection heat losses were mnegligible.
Because the thermocouple wire is the only heat
conductive path possible and the wire is very
thin, the assumption is correct to a first order
approximation. The model also takes into account
the energy of atomic oxygen recombination on the
catalyst (5.2 eV per every two atoms [4]) and the
fact that only a fraction of incoming atoms
recombine on the surface of the probe (i.e.
recombination coefficient).

A literature search shows that the value of the
recombination coefficient used in previous work
ranged from 0.25 to 1 [1]. Carruth et al. [1]
assumed that the recombination coefficient for
atomic oxygen on silver oxlde was near unity for
the work they did in an oxygen plasma asher
knowing that some inaccuracy may exist. Because
the inelastic collisions of the incoming atomic
oxygen atoms with the silver oxide surface
scatters a fraction of the atoms away, the



recombination coefficient in the work in this
paper was assumed to be 0.5. This assumption is
inherently uncertain to within a factor of two
because of the uncertainty in the scattering
efficiency of the atomic oxygen atoms during the
collision. However, data will be presented com-
paring the flux computed from catalytic probe
temperature data and flux data from ion current
measurements. Also, data showing the error in
the recorded flux measurements caused by varying
the recombination coefficient from 0.25 to 0.75
will be shown.

Below is the final result of the model. Equation
(1) was used”to make the atomic oxygen flux
calculations for this varticular study.
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In equation (1) the constant (l.4x107) takes into
account the 5.2-eV energy per every two atoms of
recombination and converting the flux into the
correct units of atoms/cmz*s. The values of the
emissivity and the area of both the active probe
and the glass probe are listed as eps Ap and €gps
A p* respectively. The silver oxide probe emis-
s%vity was 0.85, and the glass probe emissivity
ranged from 0.7 to 0.8, The area of both probes
was the same. Finally, n represents the recom-
bination coefficient.

MATERIAL EXPOSURE PROCEDURE

Samples exposed to the atomic oxygen neutral beam
were placed in an aluminum sample holder and
insulated from the metal to keep them from being
heated as the aluminum increased in temperature
during operation of the plasma source. A type K
thermocouple was placed in contact with the rear
surface of the specimen for continuous monitor-
ing. The samples were placed in the PPPL neutral
beam facility at a location 8 to 10 cm downstream
of the neutralizer plate.

The atomic oxygen beam was turned on when a
pressure of 1076 torr was reached inside the
vacuum vessel. The samples were exposed to an
atomic oxygen flux of 1x10 to 7x10153
atoms/cm?*s for 1 to 12 hours, depending on the
desired fluence. The temperature was recorded as
well as the ion current to the neutralizer plate
at intervals during the exposure process., The
ion current was measured by bilasing the neutral-
izer sufficiently negative to repel all electrons
from reaching the plate. This process lasted
only a few seconds to minimize the effect on the
samples.

The flux of atomic oxygen atoms arriving at the
surface of the sample was calculated using a 1/R?
dependence (the 1/R2 dependence was measured and
the data is shown in Fig. 3 of this paper).
Equation (2) was used to calculate the atomic
oxygen flux using the measured ion current data.
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(2)

In this equation, J, is the ion current hitting
the neutralizer plate, DC is the duty cycle, q is
the electronic charge, z is the axial distance
from the neutralizer, and K is a constant. The
factor K takes into account scattering of the
neutral atoms due to collisions with molecules,
the cosine distribution of the atoms leaving the
plate, and the efficiency of the neutralizer
plate to produce neutral atoms, This factor was
calculated to be 0.5 based on available data.

NEUTRAL BEAM DIAGNOSTIC RESULTS
Beam Energy Data

Preliminary energy results using krypton reflect-
ing off a tantalum neutralizer plate are shown in
Fig. 1. The voltage bilas (V,) on the tantalum
neutralizer plate for this set of data was -10 V.
Figure 1 1s a plot of QMS intensity as a function
of beam energy. This QMS neutral beam profile
shows that the krypton neutral beam has a peak
energy of 7 eV and beam energy spread defined by
the full-width-half-maximum (FWHM) of #3 eV. The
large sighal in the few eV range, which is typi-
cal of all profiles taken in the PPPL neutral
beam facility, is caused by the background pres-
sure. The beam energy profile shown in Fig. 1 is
typical of all QMS profiles taken with argon and
krypton. Future work in this area will concen-
trate on producing reliable energy measurements
of atomic oxygen by reducing the background
pressure.
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Figure 1 - Typical QMS Neutral Beam Energy
Profile (Krypton on Tantalum
Neutralizer Plate)



Atomic Oxygen Flux Results

Measurement of the flux and the flux distribution
of the neutral atomic oxygen beam has shown much
consistency. The flux level has been detected
using the catalytic probe described earlier and
verified from mass loss data of high density
polyethylene (HDPE) exposed for a known period of
time. Figure 2 shows the flux calculated using
the temperature measured by the catalytic probes
at various times over an 80-minute test period.
The squared symbols indicate the atomic oxygen
flux computed using equation (1), and the dashed
line shows the atomic oxygen flux computed by
measuring the ion current impinging on the
neutralizer plate. The flux computed from cata-
lytic probe temperature measurements agree well
with the flux computed from the ion current meas-
urements. The rise in the flux level at 42
minutes was caused by an increase in the duty
cycle of the plasma source. The increase in the
duty cycle was done deliberately to demonstrate
the ability of the catalytic probe to adjust 1its
temperature with a change in the level of atomic
oxygen flux in the vacuum chamber. It should be
noted that because the catalytic probe does not
cool down quickly, all tests were done by start-
ing at the lowest atomic oxygen flux level and
working toward the highest in order to get a
response in a reasonable amount of time. The
error bars associated with computed flux from the
catalytic probe temperature data signify the
amount of uncertainty induced by varying the
recombination coefficient (n in equation (2))
from 25% to 75% and by taking into account the
uncertainty involved in the emissivity of both
the glass and catalytic probes. Samples of HDPE
were exposed to the same conditions as those data
in Fig. 1. HDPE was used to make flux calcula-
tions based on the mass loss data because HDPE is
not hydroscopic. The results of mass loss data
similarly indicate the flux varied from 1.5x1015
and 4x1015 atoms/cm?*s at the 5% duty cycle.

FLUX MEASURED WITH CATALYTIC PROBE

FOR. 5 oV BEAM FACILITY

CFines 10615)

PLUK Catams/ saciom™1)

TIME (vinciae)

Figure 2 - Flux of Atomic Oxygen Atoms
Measured With a Catalytic Probe
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Figure 3 shows the atomic oxygen flux computed
from catalytic probe temperature measurements
made at three axial positions in the vacuum cham-
ber. These measurements were made to demonstrate
the 1/R? dependence of the atomic oxygen flux in
this chamber. The line in Fig. 3 represents the
1/R2 dependence line which was computed knowing
the flux of atomic oxygen atoms just leaving the
surface of the neutralizer plate and correcting
the flux at incremental axial positions. The
data points in Fig. 3 were computed from the mean
catalytic probe temperature measured over a 15-
minute period. The error bars indicate the
spread in the flux computations caused by the
variation in the measured temperature data.
figure indicates that the atomic oxygen flux
closely follows the prescribed I/R2 distribution.

This

FLUX MEASURED WITH CATALYTIC PROBE
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Figure 3 - Dependence of Atomic Oxygen Flux
on Axlal Distance

The flux uniformity in the sample exposure region
was also measured from the mass loss data of 1.5
mil HDPE spaced equally across the specimen
exposure plane., The flux calculations were made
using the published reaction efficiency for
polyethylene of 3.7x1072% ¢m3/atom [5]1. The
results of the flux distribution in the PPPL beam
facility are shown in Fig. 4. The angle of the
neutralizer plate was set to provide the highest
flux down the center (or O cm radial distance) of
the specimen exposure plane. The angle of the
neutralizer was set at 35 degrees from the center
of the sample region to the normal of the neu-
tralizer plate. The square data points are the
flux data computed from the measured mass loss of
each polyethylene sample, and the inverse tri-
angular symbols are for the flux data computed
from the ion current data and corrected for the
1/R2 dependence from the center of the neutral-
izer plate. In this case, the flux computed from
the mass loss data is four times higher than that
indicated by the ion current measurements. The
discrepancy in the data is not known at this
time, but there is evidence that indicates the
reaction efficiency may depend on the energy of
incident atoms [6]., The higher energy atoms in
the PPPL facility, with a higher reaction
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efficiency, would lower the calculated flux.
However, from a relative perspective, it is
important to notice that the peak in both curves
occurs at the center of the vacuum chamber, and
the flux decreases 11% over a 13-cm beam diameter
with the plate positioned at this angle. A ques-
tion arose during these tests as to the extent
the uniformity would be affected by a rotation in
the plate. This question was addressed in a
second 1.5-mil HDPE sample exposure. The same
procedure was followed, except the plate was
rotated 20 degrees from the first position (i.e.,
the normal of the plate was 55 degrees from the
horizontal axis down the center of the sample
chamber). Figure 5 shows the atomic oxygen flux
distribution in the sample chamber measured from
this test. It should be noted that the energy
was Iintentionally reduced closer to 5 eV during
this test to get the data in better agreement,
The peak atomic oxygen flux in this case has
shifted from the center of the vacuum vessel
toward the right side of the vacuum chamber, but
the uniformity has not changed. The atomic
oxygen flux still decreases 6% 3.2 cm from the
location of the peak atomic oxygen flux.
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Figure 5 - Atomic Oxygen Flux Distribution
in PPPL Beam Facility

Atomic Oxygen Beam Directionality

In order to examine the directionality versus the
randomness of the atomic oxygen beam at the test
sample location, experiments were conducted to
address this question. Polycarbonate (LEXAN)
samples were spaced evenly across the specimen
exposure plane and exposed to a known fluence of
atomic oxygen. Polycarbonate was chosen for this
test because its crystalline structure preferen-
tially etches under the attack of atomic oxygen
[9]. The samples were covered with a transparent
(90%) nickel mesh screen to protect a portion of
the sample from atomic oxygen atoms. If the beam
is directional, then the samples should be etched
in the unprotected area producing a checkerboard
pattern that has near vertical, uniform edges.

If the beam is random, the checkerboard pattern
will still be observed, but the face of the
raised edges will not be vertical and uniform.

Figure 6 is an SEM photograph of the polycar-
bonate surface. The surface features shown in
this photograph are typical of all the samples
exposed in the beam. In Fig. 6, the light-
colored area is the area attacked by the atomic
oxygen, and the dark-colored area was protected
by the screen. The SEM photograph shows that a
distinct checkerboard pattern was etched in the
polycarbonate sample by the atomic oxygen beam.
One interesting characteristic of this photo
which confirms the beam directionality is the
sharp, square corners observed. A measure of the
atomic oxygen erosion depth, and how straight and
uniform the atomic oxygen eroded the polycar-
bonate, is shown in Fig. 7. The data shown in
Fig. 7 were taken using a Dektak II surface
profilometer, by scanning across one individual
square. Fig. 7a is a scan across one of the
squares etched in the polycarbonate samples, and

b bt

100En ZUEL i Qs

Figure 6 - SEM of Polycarbonate Covered With
Nickel Screen Exposed in PPPL
Neutral Beam Facility
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Fig. 7b is the same etched square rotated 90
degrees. These data indicate that the atomic
oxygen etched the polycarbonate to a depth of
6,000 angstroms, and these traces show the pre-
cise, sharp edge between the unexposed and
exposed polycarbonate. Comparing the distance
between the two raised edges of each profile
shows the etched area to be close to a perfect
square. These data provide evidence that the
neutral beam in this facility is likely
directional.

COMPARISON OF VARIOUS ATOMIC OXYGEN EXPOSED
MATERIALS

The effectiveness of this neutral beam facility
in simulating the LEO atomic oxygen environment
can be judged by comparing the results of mater-
ial tests done in this facility to space flight
material tests. The data compiled to make this
comparison are shown in Table I. The data pre-
sented in this table were taken from various
flight experiments [5,7,8] flown on STS-8 and
STS-41G, the results of material tests done in

I

the PPPL neutral beam facility, and material
tests done in plasma ashers at MSFC. The data
from which these results were compiled are for
the same sample temperature. The results of this
comparison show the reaction efficiency of the
PPPL neutral beam facility to accurately
reproduce the data from flight results. It
should be noted that a large error was induced in
the reaction efficiency of the kapton sample
because of the hydroscoplic nature of the sample
and poor control over mass measurements to
determine mass loss.

Table I - Reaction Efficiency of Atomic
Oxygen (AO) Exposed Materials
(Reaction Efficiencies in units of cm3/atoms)

Kapton-H Black Lexan HDPE
2 mil Kapton 5 mil 1.5 mil
Space * + *k *
(STS-8 & 3x1072%  8x10724 6x10724 4x10-24
STS-41G)
PPPL
5eV AO 11x1072%4  8x10724 5x10724 4x10724
Beam
MSFC
Plasma 4x10-26 6x10726  5x10726 2x10-25
Asher
*¥[5] Visentine
+[8] Whitaker et al.

**[7] Gregory et al.
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The reaction efficiency calculated from mass loss
data of plasma asher exposed materials at MSFC
differs from both space flight determined reac-
tion efficiencies and PPPL determined reaction
efficiencies. Two possible explanations have
been identified as to the large discrepancy.
first suggests that the reaction efficiency of
polymer materials is dependent upon the energy of
the incoming atom. Secondly, the flux used to
compute the above reaction efficiencies was
Ixl018 atoms/cmz*s which was measured by Carruth
[2) using a catalytic probe. However, attempts
to reproduce the flux measurements using HDPE
indicate a flux two orders of magnitude
different.

The

A final comparison of the surface morphology of
materials exposed to the different atomic oxygen
simulation techniques can be made from SEM photo-
graphs. Figure 8 is an SEM photograph of the
surface of silver covered with 5 mils of FEP
Teflon (Ag/FEP) exposed to a fluence of 1x1020
atoms/cm? in the PPPL neutral beam facility, and
Fig. 9 is an SEM of similar material taken from
the covering on The Transverse, Flat-Plate Heat
Pipe Experiment (S1005) aboard LDEF. Comparing
both Figs. 8 and 9 it is difficult to tell them
apart at first glance. The slight difference
observed 1n aspect ratio (ratio of height of peak
to diameter of the base of peak) may be due to the
difference in energy or dose of atomlc oxygen
(LDEF fluence was 9x1021 atoms/cm¢). In contrast,
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Figure 8 -~ SEM of Ag/FEP Exposed in PPPL
Neutral Beam Facility (5k X)

HaiCrhD nrC

Figure 9 - SEM of Ag/FEP Exposed in Space
Aboard LDEF (5k X)

Fig. 10 shows an SEM of the surface of Ag/FEP
exposed in the MSFC plasma asher to a fluence of
1x1020 atoms/cmz. The surface of the sample
exposed in the plasma asher does not show the
spiked nature seen in the other two SEM photo-
graphs. Overall, from the evidence provided, the
PPPL neutral beam facility provides a better simu-
lation to the LEO environment than the plasma
asher.

CONCLUSIONS
The high energy atomic oxygen beam facility

developed at PPPL is capable of simulating an LEO
environment better than an ordinary plasma asher.
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Figure 10 - SEM of Ag/FEP Exposed in
Plasma Asher at MSFC

The reaction efficiency of materials exposed in
this facility compares quite well to those
exposed during flight experiments aboard STS-8
and STS-41G.

The high energy atomic oxygen beam source
developed at PPPL is capable of producing atomic
oxygen flux levels of 1x1o0l atoms/cm‘*s and
greater., These flux levels have been verified
using both the catalytic probe and material mass
loss data. The flux uniformity at the specimen
exposure plane decreases 11% over a 13-cm diame-
ter beam. While the flux distribution is not
effected by rotating the neutralizer plate, the
peak flux can be displaced from the centerline
axis of the specimen exposure plane by this rota-
tion.

The beam energy measurements, made with the QMS
using argon and krypton reflecting off either
tantalum or molybdenum neutralizer plates, show
the facility does produce neutral beams with an
energy range of 4 to 20 eV. Attempts to measure
the energy of an atomlic oxygen neutral beam have
not been successful to date because of the crea-
tion of energetic particles produced during the
dissociation of molecular oxygen in the ionizing
region of the QMS. Further reductions in back-
ground pressure are needed to measure atomic
oxygen atoms.
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There is strong jnterest in being able to
accurately and gensitively monitor
materials degradation in both ground-based
and space-based environments. 1In this
paper we review two optical techniques for
sensitive degradation monitoring, namely
spectroscopic ellipsometry and
photothermal spectroscopy. These
techniques complement each other in that
ellipsometry is sensitive to atomically
thin surface and sub-surface changes, and
photothermal spectroscopy is sensitive to
local defects, pin-holes, subsurface
defects, and delaminations. Our progress
in applying these spectroscopies (both ex
situ and in situ) to atomic oxygen
degradation of space materials is
reviewed.

Introduction:

Quantitative evaluation of material
degradation rates and mechanisms is
important for design of future long term
space missions. Certailn techniques for
evaluation of materials on earth after
space exposure are effective but can’t be
adopted for use in space. Examples are
electron microscopy and weight loss. The
purpose of this paper is to briefly review
two optical techniques that are effective
diagnostic instruments on earth but can
also be potentially adapted for in situ
space monitoring.

We have successfully applied spectroscopic
ellipsometry to several space materials
systems, including reflector materials,
after exposure to a series of pure oxygen
plasma ashings. These experiments yield
information on changes in thicknesses of
thin films of both metals and dielectrics
as well as information on microstructural
damage due to oxygen exposure. More
recently we’ve developed in situ
spectroscopic ellipsometry on vacuum
chambers. This involves getting polarized
light beams through stress free windows.
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The hardware for ellipsometry is now

light weight, compact and reliable.
Adaptation entirely to a vacuum environment
is promising, and will be highly desirable
for potential real time materials
degradation measurements on space

missions.

Photothermal spectroscopy has been
developed for general material defect
analysis, but until now has not been used
for atomic oxygen degraded materials.

Much of the hardware for this technique is
similar to that used for ellipsometry and
can thus be thought of as a related
technology. An important difference from
ellipsometry is that photothermal
measurements involve thermal waves, and
are highly effective in locating pinholes,
delaminations, and sub-surface defects.

Several examples of applications of both
spectroscopies to space materials
degradation studies will be given.

Simplified Theory of Ellipsometry

The complete details of the theory are
algebraically messy and won’t be repeated
here. In short, linearly polarized light
having in-~plane (p-polarized) and
out-of-plane (s-polarized) light vector
components is incident on a material under
study. The reflected ray is elliptically
polarized, and the ellipticity and
orientations of the ellipse are determined
using a second (rotating) polarizer. The
simplest geometry is shown in Figure 1 for
a material with no surface roughness and
no films. The incoming light beam makes
an angle of incidence of ¢ to the sample

normal, and incident and reflected beams
define the plane of incidence. Real
materials are more complicated, and

ellipsometry can be used to determine
layer thicknesses, surface and interfacial
roughnesses, and alloy fractions in
complicated materials systems.

In our system the initial polarizer is at
a fixed azimuth and a second polarizer
(analyzer) is rotated. The relative (not
absolute) intensity of light as a function
of analyzer azimuth is measured. Figure 2
shows a system we call VASE (for Variable



Angle Spectroscopic Ellipsometry). Under
computer control are the wavelength of
light, polarizer and analyzer azimuths, a
shutter and filter, and the angle of
incidence. The system is fast, and data
at a large number of angles of incidence
and wavelengths can be taken.

For in situ applications (including
potential space flights) ellipsometers are
remarkably compact. Figure 3 shows a
schematic of an ellipsometer recently
adapted for vacuum systems.

Measured is the complex reflectance ratio
f = tanyexp (34) = Rp/Rs where Rp and Rs
are the complex Fresnel Reflection
coefficients for p- and s- polarization
vector components. These coefficients
contain information of interest about the
material, such as layer thicknesses, alloy
fractions, void fractions, and general
optical constants.

The analysis procedure is to calculate §£
based on an assumed structure for the
material and to compare the experimental
and calculated . A regression analysis
is done to minimize the differences
between experimental and calculated £,
where the variables are the unknown
materials parameters such as layer
thicknesses.

There are two important caveats in
ellipsometric analysis. The first is that
the sensitivity to measurement of a system
variable depends strongly on angle of
incidence and wavelength as a result of
the spectral dependence of the optical
constants of solids. This means that the
user must have both angle of incidence and
wavelength under control in order to gain
proper sensitivity.

Secondly, parameters are often correlated,
meaning the value found for one layer
thickness depends on the value found for
another. To avoid or minimize correlation
the user can select a proper number of
measurements at the best angle and
wavelength conditions. Often even this is
not enough and the user needs to know when
variables are correlated. Commercial
systems with one wavelength and limited
angle of incidence selection generally
meet neither the sensitivity, nor the
correlation criteria.

Thus we are strong proponents of a full
VASE analysis, with ability to calculate
sensitivities and correlations.

Thus when done properly ellipsometry can
be an extremely sensitive tool. It can be
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performed in a wide variety of ambient
conditions, including a wide range of
pressures and temperatures, and can even
be performed in an aqueous environment.
It is also completely non-destructive.
(Even electron beams in SEMs damage
surfaces). The experiments can be
performed remotely, and real time
operation in space is a realistic
possibility.

Simplified Theory of Photothermal
Spectroscopy

Photothermal spectroscopy can be performed
in several modes. In this paper we
discuss the version known as photothermal
beam deflection spectroscopy, which is a
sensitive non-contacting and
non-destructive evaluation technique.
has a number of applications including
thermal imaging of defects, optical
absorption coefficient, film thickness,
and thermal diffusivity measurements.
spectroscopy is especially useful for
imaging subsurface defects, not normally
visible, such as delaminations and
subsurface damage.

It

The

Figure 4 shows the experimental apparatus
layout. The sample is mounted on a
computer controlled x-y translation stage,
and one light beam "skims" just above the
surface of the sample. A second beam is
directed perpendicular to the sample and
is chopped at a controlled (variable)
frequency. Absorption of this radiation
causes periodic heating of the sample at
the chopped frequency. Heating causes a
periodic index of refraction gradient
resulting in a small but measurable
deflection of the sensing ("skimming")
beam. The deflection is detected with a
position sensitive solid state detector
using a lock-in-amplifier.

Example Ellipsometry Applications to Space
Materials

Atomic oxygen is known to enlarge pinholes
and erode materials even beneath a
coating. In addition it can cause uniform
oxidation over larger areas, and uniform
erosion of materials including metals and
carbonaceous materials. A major purpose
of ellipsometric analysis of space
materials is to detect and follow (with
monolayer sensitivity) changes in
surfaces, interfaces, and films after
exposure to atomic oxygen for even very
short times. Thus it is sensitive to
degradation very early in a mission.



Figure 5 shows the thickening of an oxide,
and simultaneocusly the thinning of a
silver metal film monitored by
ellipsometry. Note the very fine scale of
error bars for measurement. Figure 6
similarly shows the formation of aluminum
oxide from an aluminum reflector exposed
to atomic oxygen.

Examples of Photothermal Imaging

Figure 7 shows a photothermal image over
the surface of a silicon semiconductor
wafer showing the edge of a film having
1000 Angstroms thick tin oxide covering
400 Angstroms thick silver which was
deposited on the wafer.

Figure 8 shows the photothermal image of a
pulsed laser evaporated "strip" of copper
removed from a substrate. The removal was
not "clean", and residual metal was left
in central regions, but the spectra are
dominated by excess metal piled up at the
edges of the "strip".

Figqure 9 shows a photothermal image of a
defect hole in a film of 300 Angstroms of
silver on 25 Angstroms of aluminum on a
silicon wafer. The hole is approximately
1000 microns wide. Figure 10 shows that
the hole has widened and eroded after 3
hours of ashing to 1300 microns width.

We are in the early stages of applying
photothermal imaging to space coatings,
and the resolution and scale of data
presented above will likely improve
dramatically in the near future. It will
be especially useful for guantitatively
detecting film undercutting and
delamination due to atomic oxygen.

* Research supported by NASA Lewis Grant
NAG-3-95.
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Photothermal image of removal of copper
in a strip geometry (using laser ablation)
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Introduction

The goal of the Space Flight Program at
the Center for the Commercial Development of
Space—Materials for Space Structures located at
Case Western Reserve University is to provide
environmentally stable structural materials to
support the continued humanization and commer-
cialization of the space frontier. Information on
environmental stability will be obtained through
space exposure, evaluation, documentationand
subsequent return to the supplier of the can-
didate material for internal investigation.
This program provides engineering and
scientific service to space systems de-
velopment firms and also exposes CCDS-
developed candidate materials to space
environments representative of in-flight
conditions.

The maintenance of a technological edge
in space for the National Aeronautics and Space
Administration suggests the immediate search for
space materials that maintain their structural in-
tegrity and remain environmentally stable. The
materials being considered for long-lived space
structures are complex, high strength/weight ratio
composites. In order for these new candidate
materials to qualify for use in space structures,
they must undergo strenuous testing to determine
their reliability and stability when subjected to the
space environment. Ultraviolet radiation, atomic
oxygen, debris/micrometeoroids, charged particle
radiation, and thermal fatigue all influence the

778

design of space structural materials as shown in
Figure 1."? The investigation of these environ-
mental interactions is key to the purpose of this
Center, one of the sixteen Centers established and
sponsored by NASA.

DEBRIS/
MICROME TEOROID

Figure 1

Space Flight Program

Materials produced by CCDS projects
will be verified for space environment stability
by testing on future space flights beginning in
April 1991 and continuing through 2005. Cur-
rently, no terrestrial capability exists that pre-
cisely reproduces the environment in which these
materials must function. This Space Flight Pro-
gram concentrates on using existing and planned



Space Transportation Systems to facilitate expo-
sure of materials while, at the same time,
reducing costs. The Space Flight Program
intends to build on the completed experiments of
Long Duration Exposure Facility (LDEF) and
Evaluation of Oxygen Interactions with Materials
(EOIM) through the development of materials
exposure fixtures which will provide for in-situ
data generation. Thus, the search for the informa-
tion necessary to ascertain which materials will be
suitable for space applications stretches into the
next century. These advanced materials investi-
gations will allow the development of special
application engineered materials.

The Space Flight Program at this CCDS
consists of three distinct phases. Phase I focuses
on program planning and program development
under the auspices of active Center sponsors from
Industry, Academia and Government. The Phase
Iflightrequests consist of essentially three passive
payloads currently scheduled in 1991. Data from
these flight related activities will be used to:

1. Expand the existing space materials
data base

2. Establish a service related en- =

deavor with functional/opera- PG EXPERIMENT /

tional parameters 4 -
A_

3. Verify standards for
materials degrada-

tion

4. Calibrate

and perform

functional

checks of re-

quired special

nonde -

structive test

equipment BAS ADAPTER BEM\I
The flight projects OPTIONAL SECOND
identified by the Cen- A

ter under Phase I development are termed Lim-
ited Duration space environment Candidate Mate-
rials Exposure (LDCE) experiments.

As the CCDS flight activities grow, the
need for in-situ data generation also gr