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INTRODUCTION

In this brief paper, 1 we summarize the results of recent research on the conceptual foun-

dations of fuzzy logic [9]. This research resulted in the formulation of several semantic models

that interpret the major concepts and structures of fuzzy logic in terms of the more primitive

notions of resemblance and similarity between "possible worlds," i.e., the possible states, sit-

uations or behaviors of a real-world system. The metric structures representing this notion

of proximity are generalizations of the accessibility relation of modal logics [1].

Possibilistic reasoning methods may be characterized, by means of our interpretation, as

approaches to the description of the relations of proximity that hold between possible system

states that are logically consistent with existing evidence, and other situations, which are

used as reference landmarks. By contrast, probabihstic methods seek to quantify, by means

of measures of set extension, the proportion of the set of possible worlds where a proposition

is true.

Our discussion will focus primarily on the principal characteristics of a model, discussed

in detail in a recent technical note [3], that quantifies resemblance between possible worlds

by means of a similarity function that assigns a number between 0 and 1 to every pair of

possible worlds. Introduction of such a function permits to interpret the major constructs and

methods of fuzzy logic: conditional and unconditional possibility and necessity distributions

and the generalized modus ponens of Zadeh on the basis of related metric relationships

between subsets of possible worlds.

1The present paper is a slightly revised and expanded version of a communication appearing in the

Proceedings of the 1990 Iizuka Conference on Fuzzy Logic and Neural Networks.
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THE APPROXIMATE REASONING PROBLEM

Our semantic model of fuzzy logic is based on two major conceptual structures: the

notion of possible world, which is the basis for our unified view of the approximate reasoning

problem [4], and a metric structure that quantifies similarity between pairs of possible worlds.

If a reasoning problem is thought of as being concerned with the determination of the

truth-value of a set of propositions that describe different aspects of the behavior of a system,

then a possible world is simply a function (called a valuation) that assigns a unique truth

value to every proposition in that set and that, in addition, is consistent with the rules of

propositional logic. The set of all such possible worlds is called the universe of discourse.

In any reasoning problem, knowledge about the characteristics of the class of systems

being studied combined with observations about the particular system under consideration

restricts the extent of possible worlds that must be considered to a subset of the universe of

discourse, called the evldentiM set, which will be denoted _'.

The purpose of the inferential procedures utilized in any reasoning problem may be

characterized as that of establishing if, for a given proposition ,,_ (the hypothesis), either

8" , oW or 8" =_ -_,,'F, i.e., whether existing evidence implies the hypothesis or it implies its

negation. In approximate reasoning problems, as illustrated in Figure 1, such determination

is, by definition, impossible: there are some possible worlds in the the evidential set where

the hypothesis is true and some where it is false.

SIMILARITY FUNCTIONS AND IMPLICATION

In the view of fuzzy logic proposed by our model the purpose of possibilistic methods is

the description of the evidential set by characterization of the resemblance relations that hold

between its elements and elements of other sets used as reference landmarks. By contrast,

probabilistic methods (i.e., probabilities usually interpreted as frequencies or as degree of

personal belief) seek to measure the relative extensions of the sets _' fq _ and I¢ fq -_¢T'.

To represent similarity or resemblance between possible worlds we introduce a binary

function S that assigns a value between 0 and 1 to every pair of possible worlds w and w'.

A value of S equal to 1 means that w and w _ are identical, while a value of S equal to 0
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HYPOTHESIS TRUE HYPOTHESIS FALSE

P

Figure 1: The approximate reasoning problem

indicates that knowledge of propositions that are true in one possible world does not provide

any indication about the nature of the propositions that are true in the other.

In addition to the above requirement of reflexivity, i.e.

s(_,_) = 1,

we will need to impose additional axioms to assure that S captures the semantics of a

similarity relation. In addition to assuming that S is symmetric, i.e.,

s(_, _') = s(_', _) ,

we will also require that S satisfies a form of transitivity that is motivated by noting that

if w, w' and w" are possible worlds and if w is highly similar to w' and w' is highly similar

to w", then it would be surprising if w and w" were highly dissimilar. This consideration

indicates that knowledge of S(w, w') and S(w', w") should provide a lower bound for values

of S(w, w"), as expressed by the inequality

s(_, _") > s(_, _') ®s(_', _"),

where ® is a binary operator used to represent a real function that produces the required

bound. If reasonable requirements are imposed upon the function ®, it is easy to show
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that it has the properties of triangular norms: a class of functions that play a major role in

multivalued logics [6].

The generalized transitivity property expressed by the above inequality may be easier to

understand as a classical triangular inequality if it is noted that the function 5 = 1 - S has

the properties of a metric. When ® is the Lukas_ewicz norm

a®b = max(a + b- 1,0)

, then the transitivity property of S is equivalent to the we!l-known triangular property

< +

of distance functions. If ® corresponds to the Zadeh triangular norm a ® b = min(a, b), then

5 may be shown to satisfy the more stringent ultrametric inequality

6(z,z) <

The correspondence between propositions and subsets of possible worlds simplifies the

interpretation of the classical rule of modus ponens as a rule of derivation based on the

transitive property of set inclusion. If three propositions p, q and r are such that the set of

possible worlds where p is true is a subset of the set of possible worlds where q is true, and if

such set is itself a subset of the set of worlds where r is true, then the modus ponens simply

states that the set of p-worlds is a subset Of the set of r-worlds.

The conventional relation of set inclusion, based on the binary truth-value structure of

classical logic, allows only to state that a set of possible worlds is a subset of another or that

it is not. Introduction of a metric structure in the universe of discourse, however, permits

the quantification of the degree by which a set is included into another. Every set of possible

worlds, as illustrated in Figure 2, is a subset of some neighborhood of any other set. The

minimal amount of "stretching" that is required to include a set of possible worlds q in a

neighborhood of a set of possible worlds p, given by the expression

I(plq ) = inf sup S(w,w'),
wq-q wl'-p

is called the degree of implication.
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Figure 2: Degree of implication

The degree of implication function has the important transitive property expressed by

I(p Iq) > I(plr)®I(r ]q),

which is the basis of the generalized modus ponens of Zadeh. As illustrated in Figure 3, this

important rule of derivation tells us how much the set of p-worlds should be stretched to

encompass q on the basis of knowledge of the sizes of the neighborhoods of p that includes

r and of r that includes q.

Figure 3: The generalized modus ponens

A notion dual to the degree of implication is that of degree of consistence, which quantifies

the amount by which a set must be stretched to intersect another, and that is given by the

expression

C(plq) = sup sup S(w,w').
wt_-q wl-p
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POSSIBILISTIC DISTRIBUTIONS

Although the transitive property of the degree of implication essentially provides the

bases for the conceptual validity of the generalized modus ponens, this rule of derivation is

typically expressed by means of necessity and possibility distributions.

An unconditioned necessity distribution given the evidence F is any function defined

over propositions that bounds by below the degree of implication function, i.e., any function

satisfying the inequality

Nec(p) < I(p [ if).

Correspondingly, an unconditioned possibility distribution is any upper bound for the

degree of consistence function, i.e.,

Poss(p) ___c(p I

The definition of conditional possibility and necessity distributions makes use of a form

of inverse of the triangular norm denoted Q and defined by the expression

a®b=sup{c: b®c<a}.

Using this function, it is possible to define conditional possibilistic distributions as follows:

Definition: A function Nec(.I. ) is called a conditional necessity distribution for F if

Nec(qlp ) < inf [I(qlw) QI(plw)].,
wl-g

Definition: A function Poss(.[. ) is called a conditional possibility distribution for 8" if

Poss(qlp) > sup [I(q [w) Q I(p [w)].
w_-_'

GENERALIZED MODUS PONENS

The compositional rule of inference or generalized modus ponens of of Zadeh is a gener-

alization of the corresponding classical rule of inference that may be used even when known

facts do not match the antecedent of a conditional rule. The interpretation provided by

our model explains the generalized modus ponens as an extrapolation procedure that uses
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knowledge of the similarity between the evidence and a set of possible worlds p (the an-

tecedent proposition), and of the proximity of p-worlds to q-worlds, to bound the similarity

the latter to the evidential set. The actual statement of the generalized modus ponens for

necessity and possibility distributions in terms of similarity structures makes use of a family

.¢_ of satisfiable propositions that partitions the universe of discourse:

Theorem (Generalized Modus Ponens/'or Possibility Distributions): Let ._ be a partition

and let q be a proposition. If Poss(p) and Poss(qlp ) are real values, defined for every

proposition p in 9', such that

Poss(p) >__C(P [ _'),

then the following inequality is valid:

Poss(qlp) _> sup [I(q [w) Q I(p Iw) ],
wl-¥

sup [Poss(qlp ) ® Poss(p) ] >__C(q Ig' ) .

Theorem (Generalized Modus Ponens for Necessity Distributions): Let ,_ be a partition

and let q be a proposition. If Nee(p) and Nee(q[p) are real values, defined for every

proposition p in _, such that

Nee(p) < I(pl g'),

then the following inequality is valid:

Nee(qlp ) >__inf [I(qlw) QI(plw)],
wl-_"

sup [Nee(qlp)®Nec(p) ] < I(qlg).

VARIABLES AND FUZZY RULES

If our attention is restricted to propositions of the form "X = x," describing the value of a

variable X, and to logical combinations of these propositions, then a possibility distribution

YIrlx may be regarded, as is well known, as an elastic constraint that restricts the values of

a variable Y on the basis of general background information (the evidence _) and knowledge

about possible values of another variable X.

In our similarity-based interpretation, this notion of elastic constraint is easier to under-

stand (Figure 4) by means of the concept of compatibility relation that associates specific
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Figure 4: Compatibility Relation.

values of one variable (X) with possible values of another (Y). Using this basic notion, we

may now describe two major interpretations of fuzzy rules as its similarity-based approxi-

mations by means of fuzzy-set theoretic structures.

The first interpretation, originally proposed by Zadeh [8] and further developed by Triltas

and Valverde [6], is the formal translation of the statement

If/_A is a possibility for X, then ttB is a possibility distribution for II.

Using our structures we may define this particular formulation by saying that

Voss(ylx) = _.(y) O_A(X) >_ I(y Iw) OI(x Iw),

for every world w _- _', i.e., that Poss(.[-) is a conditional possibility distribution. This

distribution expresses a basic relationship between the similarity between possible evidential

worlds and the core of/_ as a "fraction" of their similarity with the core of _tA.

Under this interpretation, the fuzzy-rule based approximation to a compatibility relation

may be depicted as done in Figure 5, where it has been assumed that the underlying metric
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(i.e., dissimilarity) is proportional to the euclidean distance in the plane. As illustrated in

that figure, the core of the corresponding conditional possibility distribution is an (upper)

approximant of a classical compatibility relation (which fans outward from the Cartesian

product of the cores of A and B). Whenever several such rules are available, then each one

of these rules will lead to a separate possibility distribution, which may be illustrated, as

done in 7, as an approximating fuzzy relation. Combination of these estimates by intersection

results in a sharper "integrated" estimate of the effect of a rule set.

y core(B)

i I
I I
I I
I I
I

core(A)

X

Figure 5: Rules as Possibilistic Appro×imants of a Compatibility Relation.

The second interpretation, originally propoded by Zadeh [7], was first applied by Mam-

dani and Assilian [2] to design fuzzy controllers, being also the basis for a wide variety of

recent industrial products [5]. In this formulation, a number of statements of the form

If Xis Ak, then Y is Bk, k= 1,2,...,n,

are interpreted as a combined "disjunctive" description of the compatibility relation, rather
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Figure 6: Rule-Sets as Possibiiistic Approximants of a Compatibility Relation

than as a set of independently valid rules, as shown in Figure 6. In this case, each disjunctive

approximant, corresponding to a fuzzy relation such as that illustrated in Figure 8 (with the

relation "slopping" away from the cartesian products of the core of the fuzzy sets) is combined

disjunctively by fuzzy set union with the other approximants.

CONCLUSION

Models based on the logical notion of possible-world provide interpretations of the ma-

jor concepts and structures of fuzzy logic in terms of primitive notions of similarity and

resemblance. These interpretations clearly show the basic nature of the difference between

possibilistic, which are based on metrics, and probabilistic methods, which are based on set

measures.
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Figure 7: A Possibilistic Conjunctive Conditional Rule
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MOTIVATION

• Provide basic characterization of

concepts

Possibilistic

° Possibility and Necessity Distributions

° Possibistic Calculus

° Inferential Rules (GMP)

• Determine analogies and differences with

Probabilistic Reasoning Methods

° Unified Approach to Interpretation

° Needs for specific formalisms/theoretical
structures

I FUZZY LOGIC MAY BE FORMALLY EXPLAINED /

BY METRIC CONCEPTS AND STRUCTURES:

Enrique H. Ruspini
Artificial Intelligence Center

247



I Illlllflllil ] II II

POSSIBLE WORLDS

• Possible States, Behaviors, Trpjectories of a
Conceptual System that is being reasoned about

Examples: Weather System, Vehicle Control
System, Portfolio Status

• Formally equivalent to a Valuation:

• Assignment of truth-values (i.e., T, F ) to all
relevant propositions about the state of system

• Consistent with rules of logic

• Universe - Set of all Possible Worlds

W

p q -_r s -_t

I II I 1 I1[

Enrlque H. Ruspini
Artificial Intelligence Center
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THE APPROXIMATE REASONING
PROBLEM

• Conventional deductive methods fail to
unambiguously determine the truth-value of a
proposition of interest (h_y.pothesis),

Worlds consistent with the evidence ( _'

Worlds logically inconsistent with the evidence

HYPOTHESIS TRUE HYPOTHESIS FALSE

T

Enrique H. Ruspini

Artificial Intelligence Center
249
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APPROXIMATE REASONING METHODS
Hllil i I iiiiiii

• Describe properties of the Evidential Set _'

Probabilistic Reasonina :

• Based on the use of additive set measures

• Concerned with (objective or subjective)
proportions of occurrence of certain events,
e.g.,

I_(H I_) -'- I_(_H I_')

Possibilistic Reasoning:

• Based on metric notions (distance, similarity,
proximity)

• Uses measures of resemblance between
subsets of possible worlds

• Oriented toward characterization of conceptual
flexibility, typicality, proximity, degree of fitness

I II I IIIIII I II I II 1

Enrique H. Ruspini
Artificial Intelligence Center
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Semantic Formulation of
I J

Modal Logic

• Basic Elements:

• U : A set of possible worlds (the universe)

• V: a valuation (mapping pairs of possible
worlds and propositions into truth values),
e.g.,

(w, "it rains") -->T

• R: A binary relation (between pairs of
possible worlds) called the conceivability,
reachability, or accessibilitv relation

• POSSIBILITY AND NECESSITY :

• p !s possible in w ( w I" ]-[P )
nfand only tf p Is true in some world w'
that is related to w

• p is necessary in w ( w I- Np )
if and only if p is true in every world w'
that is related to w

• Different properties of R lead to different
modal systems (T, $4, $5)

Enrique H. Ruspini
Artificial Intelligence Center
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II

INTERPRETING ACCESSIBILITIES

U .R(w)

.R=UxU : Conventional notion of logical necessity

O = {a propositional subset} (the "observables")

R(w,w') if w and w' share the same "observations"
( Necessity then models rational knowledqe)

• Inevitability: Two worlds are related if they are
identical up to some point in time

• Coanitive capability

• Moral Necessity

• Linquisti,c Modalities

WE ARE INTERESTED IN MODELING THE ABILITY
OF POSSIBLE WORLDS TO EXEMPLIFY CERTAIN

CONDITIONS

Enrique H. Ruspini
Artificial Intelligence Center
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MULTIPLE ACCESSIBILITY RELATIONS

• Generalize notion of accessibility relation by
consideration of a family of relations indexed by a
numerical parameter between 0 and 1

• Modeling Objective:

Define resemblance between situations so as to

allow a form of analoqical reasoning

Example: Investment advice for S

(Wealth=$1,000,O00) is vafid (to some extent) for
S' (Wealth=S999,999)

We want to be able to describe behavioral rules
that are valid in neighborhoods of sets of

possible worlds

U

•W

00

• Defined by means of a similarity function

Enrique H. Ruspini
ArUflclal Intelligence Center
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I II IIIll [ Ill

SIMILARITY FUNCTIONS

• Assigns a similarity value to pairs of possible
worlds

S: W x W -_ [0,1]

• S(w,w')=I means that w is identical to w'

• S(w,w')=0 means that w and w' are completely
dissimilar

• Properties of Similarity Relations:

• S(w,w') =1 if and only if w=w' (Reflexivity)

• S(w,w') = S(w',w) (Symmetry)

• S(w,w") z S(w,w') ® S(w',w")

w _®13 w""--.

• Imposition of reasonable requirements indicates
that ® should have the properties of a continuous
trianaular norm (T-norm).

• 8- ] - S, is a distance function.

Enrique H. Ruspini
Artificial Intelligence Center
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LOGIC and METRICS
!!1 I I

• Metric structures allow to characterize

implications between propositions (i.e., subset
inclusions) in terms of similarities between
subset elements:

• If B _DA, then every point of A has one point
of B (i.e., itself) that is similar to it to the
degree I

A

• In general, every point of a subset A is
similar to some degree to a point of B (i.e.,
falls in some neighborhood of B)

iiiiiiiii!iii i iiii iiiiiiiiiiiiiiii iiiiiiiiii i iiii!iiiii iiiiiiiiiiiiiiiiiiii!i!ii!iiiiiiiiiiiiiiiiiiii iii

i

Enrique H. Ruspini
Artificial Intelligence Center
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II1 III I II
T • • • I

MODELS (Good, Bad, and otherwise)

• MODELS (MODAL LOGIC) :

• q iS a model of p (q.l=P)
q-world ts a p-world, t.e.,

if and only if every

q_P

• GENERALIZED MODELS :

• q is a necessary model of p to the degree
and only if every q-world is m-similar to a
p-world, i.e.

q => 1-1_p

OC if

("De Re" Interpretation)

• To what degree q is a necessary model or a
good example of p? ( "Degree of Implication" )

I(plq)=inf sup S(w,w')
wl-q w'l-p

Enrique H. Ruspini
Artificial Intelligence Center
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DEGREE OF IMPLICATION

• I(plq) measures the extent by which np_g,£q-world
resembles some p-world

• Degree by which was is true in one set must apply on
another

• Properties of I(p!q):

• If p => r, then I(plq) -<I(rlq),

• If q => r, then I(plq) ->I(plr),

• I(plq)->l(Plr)®l(rlq),

• I(plq) =sup[l(plr)®l(rlq)]

• Basis for _cleneralized modus ponens

P
r

q

Enrique H. Ruspini
Artificial Intelligence Center
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DEGREE OF, CONSISTENCE

C(Plq)=sup sup S(w,w')
wl-q w'l-p

• "Dual" of the degree of implication function

• Measures extent by which true propositions in one set
apply on another

I II I ] "1 IIIIIF
i i i -i'1 •

Enrique H. Ruspini
Artificial intelligence Center
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UNCONDITIONED POSSIBILITY DISTRIBUTIONS

• Upper bounds of C(pl_

C(pI_ - Poss(p)

UNCONDITIONED NECESSITY DISTRIBUTIONS

• Lower bounds of I(pl_

Nec(p) _ I(Pl_

Nec(p) _<I(pl_ -<C(pI_ - Poss(p)

Enrique H. Ruspini
Artificial Intelligence Center
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I I II I II I I

Inverse of a T-Norm

aOb = sup{c: b ® c _<a}

a®b
I I III IIIII IIII

max(a +b- 1,0)

ab

min(a,b)

min(l+ a- b,1)

a/b, if b>a,

1, otherwise

a, if b > a,

1, otherwise

Enrique H. Ruspini
Artificial Intelligence Center
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Conditional Distributions

• Conditional Necessity

Nec(qlp)_< inf [l(qlw)Ol(Plw)]
wl-_"

• Conditional Possibility

Poss(qlp) >_su_ [l(qlw)O I(Plw)]

The conditional distributions measure the extent by
which similarity to the consequent

must or _ (respectively) exceed

the similarity to the antecedent

Enrique H. Ruspini
Artificial Intelligence Center
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I I III I Illll II

Generalized Modus Ponens

sup [Nec(qlp)® Nec(p)] _<I(ql_)

sup [Poss(qlp) ® Poss(p) ] _ C(ql _')
,9"

q
V

P

:_:i:_!_!_!!_i_:E:_:_:_:_:_:!:!:_:!:i:!:i:i:i:i:i:i:i:i:i:i:!:i:_:i:_:!:_:_:_:_:_:!:!:i:!:i:_:_:_:_:_:_:_:_:_:_:_:!:_:!:_:_:!:!:!:i:!:!:!:!:!:!:!_!:!:!:!:i_!_:i:!:_:i:i!_:ii:_._i U

IIIIII IIII I
. i

Enrique H. Ruspini
Artificial Intelligence Center
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POSSIBLE WORLDS and VARIABLES

• Possible Worlds will be characterized by means of
a number of variables X, Y, ...

• Each variable X takes values in a well-defined

domain .._( X ), e.g.,

._(Color) = { Green, Red, Blue, ...}

• Possible worlds correspond to a complete

specification of variable values

• Partial specification of variable values defines a

subset of possible worlds

• The propositions of interest are those of the form:

"X is x," "Y is y," .....

and their logical combinations (conjunctions,

disjunctions, ... )

• [X=x] denotes the subset of all worlds where X=x

Enrique H. Ruspini
Artificial Intelligence Center
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Compatibility Relations

• Define relationship between values of two
system variables (in the "actual" world)

• Permits the derivation of possible values of Y
from knowledge of possible values of X

• Constrain the extent of the evidential set

Evidence In X

X

.HII

V

Enrique H. Ruspini
Artificial Intelligence Center
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CONDITIONAL POSSIBILITIES from FUZZY RULES

• ff X is A, then Y is B

• Interpretation:

• If _ is such that

then

Poss(xl_')=/_A(X)>_C(xI_') •

/_B(y)->C(YI_').

• The function n(ylx) defined by

]-[(yl x)=/JB(Y) O/IA(X),

is a conditional possibility for y given x

Enrique H. Ruspini
Artificial Intelligence Center
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Locjica! Interpretation of a Conditional Rule

(Zadeh-Trillas-Valverde)

• The conditional possibility is an "enclosing"
approximation of the compatibility relation

y core(B)

I.

I I
I I
I I
I I
I I

core(A)

X

Enrique H. Ruspini
Artificial Intelligence Center
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ZTV Intemretations as Fuzzy Relations

Enrique H. Ruspini
Artificial Intelligence Center
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I I III III I I II I I I I I I II I11
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Disjunctive Interpretations
of Conditional Possibility Relations

(Zadeh-Mamdani-Assilian)

• "If X is A, then Y is B" is interpreted as one of a set
of regions that must be combined (by disjunction)
to approximate the compatibility relation

• Relation is characterized as a "set of points" rather
than as the intersection of constrainning regions
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ZMA Disjunctive Appr0ximants
as Fuzzy Relations
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AutoDomous Robotics Research
at the Artificial Intelligence Center

• FLAKEY

• Successor of the pioneer autonomous robot
SHAKEY

• Technological Emphasis:

• Autonomous Navigation

• Autonomous Planning/Replanning

• Multiple Intercommunicating Agents

• Explicit Representation of Knowledge states

• Integration of Sensing Activities into Plans

• Learning

• Fuzz L ic/N al N w rk Investi i n :

• Rule-based "blending" of Local Behaviors

• Flexible Navigation

• Flexible Planning/Replanning

• NN-Based Learning
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