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Abstract

The results of a preliminary investigation of the combustion of hydrogen fuel at hy-

personic flow conditions are provided. The tests were performed in a generic, constant-

area combustor model with test gas supplied by a free-piston-driven reflected-shock

tunnel. Static pressure measurements along the combustor wall indicated that burn-

ing did occur for combustor inlet conditions of P, ot_c "" 19kPa, T, tow. "_ 1080K and

U - 3630m/s with a fuel equivalence ratio ¢ __ 0.9. These inlet conditions were ob-

tained by operating the tunnel with stagnation enthalpy H° "_ 8.1MJ/kg, stagnation

pressure P° " 52MPa and a contoured nozzle with a nominal exit Mach number of
5.5.

*Research of the first author was supported by the National Aeronautics and Space Administration under
NASA Contract No. NAS1-18605 while he was in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.
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Nomenclature

f : mass fraction

H : stagnation enthalpy

M :Mach number

rh : mass flow

P : pressure

T :temperature

t : time

U : velocity

z : (streamwise) distance along combustor duct

7 : ratioof specificheats

:fuelequivalence ratio

p : density

Subscripts

fill

flight

tritot

plenum

s

static

: initialshock-tube fillingconditions

: free-flightconditions

: as measured with a Pitot probe

: hydrogen plenum conditions

: nozzle supply conditions

: free-streamconditions at the nozzle exitplane

1 Introduction

The development of the National Aero-Space Plane and generic air-breathing propulsion

systems for the flight regime 10 <_ Mflight ____25 has led to a demand for experimental com-

bustion data. So far, the only combustion experiments at the high-speed end of this regime

have been performed in free-piston-driven shock tunnels [1] [2] [3] [4]. These experiments

typically used a 25ram × 51ram cross-section combustor of length 0.5m.

In reference [3] it was reported that combustion of hydrogen in the 25ram × 51ram

combustor was achieved in the hypersonic flow at M -_- 5.6 with static pressure 19kPa, and

stagnation enthalpies in the range 6MJ/kg < Ha < 13MJ/kg. However, it was observed

that the hydrogen did not burn when the combustor cross-section was increased to 49.5mm x

51ram. It was hypothesized that the burning in the 25ram × 51ram combustor was promoted

by compression and heating of the air stream by the boundary layers growing along the

combustor walls. For the 49.5mm × 51ram combustor, the boundary layer effects were

smaller and so did not promote burning within the 0.Sin length of that particular model.

In order to check this hypothesis, a sirailar experiment was conducted in a 47ram ×



100ram x 1.32m combustor model which was geometrically similar to (but approximately

double the size of) the 25ram x 51turn model. The primary goal was to see if combustion

occurred at distances greater than 0.5m along the duct. This particular experiment has

also been the focus of a continuing computational study in which the transient flow in the

combustor is simulated in a time accurate manner [5] [6].

The purpose of this report is to describe the combustor geometry, the data reduction

procedure, and the data from some preliminary shots. These shots are 1006 through 1009

as recorded in the T4 facility logbooks. The operation of the T4 shock tunnel and the

evaluation of the test flow conditions are described in Section 2. Section 3 contains contains

a description of the combustor model while Section 4 describes the instrumentation and data

reduction. The quasi-steady wall-pressure measurements are presented in Section 5 and a

full set of time traces is included in appendix A.

2 Shock-Tunnel Operation

The principal features of a free-piston driven shock tunnel, along with an approximate wave

diagram, are shown in Fig. 1. The driver tube, which initially contains low pressure helium

downstream of the piston, and the shock tube which contains the test gas, are separated

by the primary diaphragm. Attached to the downstream end of the 75ram diameter shock

tube is the facility nozzle with a throat diameter of 25ram. The subsonic portion of the

nozzle effectively closes the downstream end of the shock tube and forms the shock reflection

region. The test gas is retained in the shock tube by a thin mylar diaphragm. The supersonic

portion of the nozzle empties directly into a test section and dump tank which is evacuated

to approximately 30Pa. The inlet of the combustor model is located close to the exit plane

of the contoured nozzle which has a nominal exit Mach number of 5.5.

The first stage of operation is the launch of the piston and its acceleration along the

compression tube. The driving force is supplied by compressed air from a reservoir. The

helium in front of the piston is compressed and eventually bursts the primary diaphragm

(at a pressure 56.6MPa for a 4ram thick diaphragm). After diaphragm rupture, the he-

lium expands into the shock tube and shock-compresses the test gas before it. The primar'!i

shock wave travels the length of the shock tube, reflects from the closed end, and brings

the test gas to rest in the nozzle supply region. Operation in this manner is called tailored

and is shown in the wave diagram (Fig. l(b)) by the contact surface coming to rest when

intercepted by the reflected shock. Ideally the nozzle supply conditions, characterized by

the stagnation enthalpy Ho and pressure P,, are maintained as the reflected shock continues
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Figure 1: Reflected-shock tunnel operation. (a) Tunnel schematic, (b) z - t wave diagram.

upstream though the driver gas. In an effort to delay the arrival of the driver gas at the

nozzle throat and increase the available test time, the shock tube was operated in an un-

dertailored mode where the reflected shock accelerates into the driver gas and an expansion

propagates into the nozzle supply region. This mode of operation increases the distance

between the driver-gas/test-gas interface and the end wall of the shock tube but also results

in an unavoidable drop in Po shortly after shock reflection. The net result is a typical nozzle

supply pressure history as shown in Fig. 2. The transducer used to obtain this trace was

located approximately 8 centimetres upstream of the closed end of the shock tube. Hence,

the passage of the primary and reflected shocks are shown as distinct events. Because of

the location and limited response time for the transducer, the peak reflection pressure was

not recorded. Once past the maximum value, Po continued to decay due to the combined

effects of undertailored operation and driver dynamics. For pure helium driver gas and the

operation considered here, this decay was typically 25 - 300£ during a nominal 0.5ms test

time.

Upon shock reflection, the light secondary diaphragm bursts and some of the test gas

following the primary shock expands through the nozzle throat into the divergent part of

the nozzle. The nozzle then expands the hot test gas to a parallel and uniform test flow at

3
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Figure 2: Typical history of the (unfiltered) nozzle supply pressure showing the principal
events: (a) arrival of the incident shock; (b) reflected shock; (c) establishment of equilibrium

pressure; (d) driver gas contamination.
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the inletto the combustor.

2.1 Test Flow Conditions

The only flow property measured in the test region (at the exit plane of the nozzle) was

Pitot pressure. Other flow properties were inferred using quasi-one-dimensional computer

codes and the following procedure. Note that measurements from shot 1006 have been used

as the basis for the following discussion.

Step 1: The shock tube was initially filled with air at P/_u = 163.SkPa and T/iu = 296K.

The passage of the primary shock was recorded at 3 locations (spacing 2.005rr_) by a set

of coupled pressure transducers. An average shock speed between stations 2 and 3 was

estimated as 3000m/a but, because the primary shock weakened as it traveled along the

shock tube, there is a q-10_ uncertainty in this estimate.

Step _: The nozzle supply conditions (behind the reflected shock) were estimated with the

FORTRAN program "ESTC" [7] which incorporated an equilibrium-chemistry model for

air. From the shock reflection conditions, the under-tailored operating conditions allowed

the gas to expand adiabatically (and in chemical equilibrium) to the measured nozzle supply

pressure of P, -_ 52MPa q-10_. This expansion resulted in an estimated stagnation enthalpy

tto __ 8.1M J/k9 and stagnation temperature To _ 5280K. Note that a 10% uncertainty in

shock speed introduces a 15_ uncertainty in H, and a 10% uncertainty in T,.

Step S: Using these stagnation conditions, the flow at the exit plane of the nozzle was esti-

mated with the quasi-one-dimensional program "NENZF" [8] in which the test gas consisted

of a mixture of the species N2, N, 02, O, NO, At, NO + and e-. The gas was assumed

to be in chemical equilibrium at the nozzle throat but a finite rate chemistry model with

11 reactions was used in the expansion region of the nozzle. The calculation was continued

along the nozzle until the computed pitot pressure (calculated as 0.92pU 2) was equal to the

measured pitotpressure (P_tot/P, = 0.014). The q_zas_-s_,ead_.lconditions at the end of the

nozzle (and inletto the combustor) are shown in Table I. The uncertaintieslistedin the

table were obtained from an estimate of the flow conditions for a primary shock speed of

3300m/s.

3 The Scramjet Combustor Model

The combustor model used in this experiment is the same as that used in the pressure-scaling

study [9] except for the first 120tara of the duct. Detailed drawings of the model components



Z

Flow Value Uncertainty

Quantity

Pmsatic

P
T.fafic

U

19kPa 12

6.03 × lO-_kg/m 3 8
1080K 21

3630m/ s 6

5,6 3

0.334 3

fN2

fN

/o
fNo

fNo+

0.7228

0

0.1914

0.0051

0.0665

0.0129

0

0

3

i00

Table 1: Test flow conditions at the nozzle exit plane.

are available in [10].

An schematic view of the model is shown in Fig. 3. The combustor duct consisted of

upper and lower walls (starting at z = 0 and extending to m -- 1.32m) and two sidewalls

which are not shown in the figure. The inlet cross-section was 47.14mm high by 100ram

across and remained constant for the length of the duct. Fuel was added to the air flow via

a centrally located injector strut which protruded forward from the duct inlet by 138ram.

This distance was specified so that the shock propagating from the strut leading edge (and

the subsequent expansion) did not enter the combustor duct. The strut spanned the duct

and fuel was added to the air stream as a coflowing jet at m = 0.113m. All leading edges are

sharp.

The geometry was intended to produce a nominally two-dimensional flow so that in-

terpretation of wall pressure measurements and CFD analysis would be relatively simple.

However, there are a number of factors which introduce uncertainty. The inlet to the model

was located 0.07m downstream of the nozzle exit plane (nozzle length __ 0.82m) and the test

flow nonuniformities are not well known. Also, fences were not used along the protruding

section of the injector strut.

The fuel system is similar to that reported in [2]. A fixed volume (V = 1.81 x 10-3m 3)

consisting of a small reservoir and a Ludwig tube initially contains hydrogen at room temper-



Test flow 23.57mm

Figure 3: Schematic view of the 47ram x 100ram x 1.32m combustor duct.

ature and at a pressure of approximately 1MPa. This volume is isolated from the injector

plenum by a .lash.acting valve [11] which is activated (from the tunnel recoil) some time

before the air flow arrives in the test section. Timing sequences are set so that the fuel

flow through the injector is established several milliseconds before the air flow. There is a

circular-arc throat at the exit of the injector with a height of 1.45ram and a span of 97ram

(across the combustor duct). Note that these dimensions are slightly different to the original

dimensions given in [10]. Sonic conditions should exist at the throat during a run and stag-

nation pressure of the hydrogen is measured by two PCB pressure transducers in the plenum

between the fast-acting valve and the injector throat. The fuel system has been calibrated

and provides a mass flow of hydrogen given by

¢nH_,[kg/s] = 6.67 x 10 -s P_,,.,,,,,,[kPa] (-I-5%) (1)

4 Instrumentation

The combustor duct was instrumented with wall pressure transducers mounted along the

upper wall as shown in Fig. 4. Although centerline tappings were used in this initial study,
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Figure 4: Layout for combustor instrumentation.

the upper-wall segments included tappings off the centerline. Table 2 shows the locations

of the wall pressure transducers. The sensitivities specified in the table are those that were

used to convert the recorded voltages to the pressures presented in Section 5.

A shortage of transducers resulted in a number of tappings being plugged for this exper-

iment. Also, space constraints resulted in the use of transducers, for 0.33m _< x _< 0.81m,

which were not acceleration compensated and not as sensitive as the preferred PCB112 trans-

ducers. In hindsight, this was not a good idea as the signals from these transducers were

very poor.

Initial shots indicated that stress-waves in the model severely degraded the pressure sig-

nals. The transmission of these waves was reduced in the shots reported here by chamfering

the trailing edge of the first segment (0 <_ x _ 0.12m) of the duct wall (see Fig. 4) and

filling the gap with modelling clay. This arrangement effectively isolated the instrumented

wall from the impact of the facility starting flow.

Analysis of the recorded pressure signals included filtering each with a moving average

filter (averaging over a window of 0.05ms) and then normalizing by the filtered nozzle supply

pressure. This normalization procedure was an attempt to remove some of the transient

aspects of the test flow (specifically the long term decay in Po after the peak) and was

8



Wall
Segment

0

1

2

3

4

5

Pitot

X

(m)
0.130

0.170

0.210

0.250

0.290

0.330

0.370

0.410

0.450

O.490

0.530

0.570

0.610

0.650

0.690

0.730

0.770

0.810

0.850

0.890

0.930

0.970

1.010

1.050

1.090

1.130

1.170

1.210

1.250

1.290

0.0

data-box transducer Serial Sensitivity

Module type (PCB) ...... # (mV/kPa)
1

2

3

4

5

6

12

8

9

10

11

7

13

14

15

16

17

18

19

20

l12A 2540 6.82

112A2 2542 7.20

112A2 2539 6.78

112 2535 6.70

112 2538 7.06

105A2 341 0.598

105A2 352 0.908

105A 368 0.253

105A 369 0.705

105A 359 0.374

105A 371 0.546

105A12 364 0.780

105A 363 0.353

105A 346 0.633

l12A 4902 6.54

l12A 2541 6.86

l12A 4903 6.79

l12A 2543 6.98

113A 3384

l12A 2534

2.80

5.84

21 lllA 1936 0.151

A_

(ms)

0.270

0.281

0.292

0.303

0.314

0.324

0.335

0.346

0.368

0.378

0.400

0.422

0.342

0.354

0.476

0.486

0.508

0.530

0.551

0.573

0.235

Table 2: Transducer positions and specifications.

Comment

bad for shot 1008

bad

consistently high

bad

high for 1009

bad for 1009

9



Data-box Time Interval (ms)
Module shot 1006 1007 1008 1009

1

2

3

4

5

12

8

9

10

7

13

14

15

16

17

18

19

2O

3.0-3.2 3.0-3.2 3.0-3.2 -

3.0-3.3 3.2-3.5 - 3.7-4.0

3.0-3.1 2.9-3.1 2.9-3.1 3.7-4.0

3.3-3.6 3.4-3.7 3.2-3.5 3.7-4.0

3.3-3.6 3.4-3.7 3.2-3.5 3.7-4.0

3.2-3.5 3.3-3.6 3.2-3.5 3.5-3.8

3.2-3.5 3.4-3.7 3.2-3.5 3.5-3.8

3.3-3.6 3.4-3.7 3.4-3.7 3.7-4.0

3.2-3.5 3.4-3.7 3.4-3.7 3.7-4.0

3.3-3.6 3.5-3.8 3.4-3.7 3.6-3.9

3.3-3.6 3.5-3.8 3.4-3.7 3.7-4.0

3.3-3.6 3.9-4.2 3.4-3.7 3.9-4.2

3.6-3.9 3.9-4.2 3.4-3.7 3.9-4.2

3.7-4.0 3.9-4.2 3.7-4.0 3.8-4.1

3.7-4.0 3.9-4.2 3.7-4.0 3.8-4.1

3.7-4.0 3.9-4.2 3.7-4.0 3.8-4.1

3.7-4.0 3.9-4.2 3.7-4.0 3.8-4.1

3.8-4.1 3.9-4.2 3.7-4.0

Table 3: Start and finish times for the quasi-steady sampling periods.

implemented as
P(t)

P'_" - Po(t- At) ' (2)

where At (given in Table 2) was based on an average velocity of 3700rn/s from the nozzle

supply region to each particular transducer position. Once normalized, a quasi-steady value

was evaluated as an average of the trace over a test interval which started after the passage

of the starting transients (and other glitches). The start and finish times for these sampling

intervals are specified for each trace in Table 3. Because the traces were unusually noisy, the

test intervals were restricted to the range O.lms - 0.3ms.

5 Results

Four shots were used as the basis of thisexperiment. These were shots

• 1006 : Hydrogen fuelinjected into airtestgas.

• 1007 : Hydrogen fuelinjected into airtestgas.

i0



x P/Po x 10_
(rn) shot 1006 1007 1008 1009
0.13 2.352 2.362 1.817

0.17 4.618 5.038 - 4.072

0.21 3.002 2.946 2.896 3.468

0.25 3.415 3.421 1.820 2.000

0.29 3.199 3.280 2.371 3.017

0.37 3.981 4.668 3.802 5.043

0.41 -

0.49 1.976 2.187 1.808 2.704

0.53 4.255 5.691 2.897 3.487

0.69 7.507 6.756 4.169 3.726

0.73 8.249 8.790 4.881 4.645

0.81 5.712 7.585 4.851

0.89 4.142 3.406 2.970 3.355

0.93 6.274 7.493 2.781 4.305

1.01 6.820 5.124 4.808 3.619

1.09 7.517 7.625 5.094 5.663

1.17 6.548 5.852 5.096 6.139

1.25 8.992 8.740 3.434

Table 4: Quasi-steady normalized pressures.

• 1008 : Hydrogen fuel injected into Nitrogen test gas.

• 1009 : Air test flow only, no fuel injection.

Fuel injection for shot 1008 had a mass flow of 2.074 x lO-2lcg/s with a plenum pressure of

P_ae,_,,, = 311kPa. Fuel fuel flow rates for shots 1006 and 1007 were similar. For the air flow

conditions given in Table 1, this fuel flow rate c_rresponds to a fuel equivalence ratio

= 0.9 (3)
?-/%02

The key result of this study is the set of quasi-steady wall pressure measurements shown

in Fig. 5. These normalized pressure values are also given in Table 4. Superimposed on each

data set is the computed wall pressure for shot 1009. The computation was performed with a

Parabolized-Navier-Stokes code [12] and started at the base of the injector strut x = 0.113m

With air flow conditions U = 3674re�s, Pu,uc = 21.4kPa, T0t_u= = 1162K, fn_ = 0.7686 and

fo2 = 0.2314. There was no fuel injection and the strut base was assumed to be a solid wa11.

The pressure distributions indicate that there is a strong wave pattern present in the

duct for each of these shots. The comparison between the computed pressure distribution

11
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Figure 5: Quasi-steady normalized pressures along the combustor wall. The dashed line in

each frame indicates the pressure distribution for a no-fuel shot (1009).

12



and the experimental distribution for shot 1009 is reasonable only for z < 0.6m. Although

the general trend (i.e. no overall pressure rise) continues to agree for z > 0.7m, the wave

patterns diverge beyond this location. The comparison for shot 1008, with the inclusion

of a nonreacting fuel jet, is slightly worse. Confounding effects include: nonuniformities in

the inflow conditions; modelling of only part of the combustor duct (x >_ 0.113m); and the

difficulty of modelling recirculating regions with a PNS calculation.

The strong wave pattern in each distribution accounts for the relatively large pressure

fluctuations along the duct but burning of the fuel can be inferred from the increased pres-

sures shown in shots 1006 and 1007 at z locations greater than 0.6m. (Recall that the

computed pressure distribution is for a no-fuel condition.) Boundary layer growth along the

duct wall and mixing effects are eliminated from the possible causes of this pressure rise as

no significant pressure rise is seen in either shot 1009 or 1008 respectively. Unfortunately

the transducer spacing is so large that the wave patterns are not well resolved.

6 Conclusions

This experiment demonstrated the combustion of hydrogen in a hypersonic air stream in

a 47ram x lOOmm x 1.32m constant area combustor duct. The pressure rise attributed to

combustion was observed to begin downstream of x = 0.6m. Thus, this experiment provides

supporting evidence for the hypothesis that combustion seen in the 25ram x 51ram x 0.5m

duct (but not in the 49.5mm x 51ram × 0.5m duct) used in a previous experiment [3] was

probably induced by boundary layer effects.

The data may also be useful for calibration of CFD codes and turbulence models. How-

ever, it is realized that both the resolution and quality of the pressure distributions can be

improved.
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A Pressure Histories

The pressure histories for each shot are summarized on three pages. The first page shows

the stagnation pressure traces, the pitot pressure trace, the normalized pitot pressure trace

and the shock speed trace.The second page shows the filteredwall pressures,and the third

page shows the normalized wall pressure traces.

The nozzle supply pressure istaken from the largestof the two P, traceswhere the trace

has settledto an equilibrium value,just afterthe peak. The largertrace isused since heat

transferinto the gauges tended to reduce theiroutput signalwhen the thermal protection

was damaged. The shock speed is inferredfrom the time taken for the primary shock to

pass 3 instrumented stationsin the shock tube. The distance between adjacent stationsis

2.005rn.
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