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ABSTRACT

Active vibration isolation systems contemplated for micmgravity :pace

experiments may be designed to reach given performance requirements in a variety

of ways. An analogy to passive isolation systems proves to be illustrative but lacks

the flexibility as a design tool of a control systems approach and may lead to poor

designs. For example, it is shown that a focus on equivalent stiffness in isolation

system design leads to a controller that sacrifices robustness for pertbrmauce.

Control theory as applied to vibration isolation is reviewed and passive ana.lo_ies

discussed. The loop shaping trade--off is introduced and used to design a single

degree of freedom feedback controller. An algebraic control design methodology is

contrasted to loop shaping and critiqued. Multi-axis vibration isolation aml l lae

problems of decoupled single loop control are introduced through a two de._ree t_l

freedom example problem. It is shown that center of mass uncertainty _mv _¢,s_tl_

in instal)ility when decoul)led single loop cotltro] is used. This results I'roul l lie ill

conditioned nature of the feedback control design. The use of the Linear Quadratic

Regulator synthesis procedure for vibration isolation controller design is discussed.
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NOMENCLATURE (Continued)
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I. INTRODUCTION

Active vibration isolation for microgravity space experiments has generated

much interest lately. A variety of disturbances aboard manned space orbiters

contaminate the desired microgravity environment. These accelerations cover a

frequency band from DC to 100 Hz. Low frequency (< 10 -3 Hz) sources include

drag, solar pressure oscillations, tidal effects, and gravity gradient forces. At the

higher frequencies, manned activity, thruster firing, and orbiter systems contribute

most significantly. A comprehensive treatment of tile orbiter acceleration

environment is presented in [1] from which Figure 1, a characterization of _he

environment is taken.

The need for the active isolation of materials processing and fluid science

experiments in the frequency range .01 to 10 Hz has been demonstrated by Jones.

Owen, and Owens [1,2,3]. Above this ragne passive isolation systems could be used.

Below .01 Hz the ratttespace available for the experiment is not large enough to

accommodate the relative motion. Therefore, these accelerations must be passed by

the isolation system to the experiment.

Active isolation systems for

been designed and constructed by

generally use conventional P.I.D.

microgravity and pointing applications have

many investigators [3,4,5]. These systems

control of a non-contacting actuator, either

Lorentz or electromagnetic, to achieve low frequency disturbance attenuation.

While an actual microgravity experiment may require umbilicals for cooli_g a_)d

power (at this point, it is not clear whether these functions can be performed

otherwise as described in [4]) the isolation systems designed and tested so far

preclude an umbilical from consideration. These systems achieve their performance

by the very low stiffness made possible by low gain feedback of the relative l)osition

of the experiment to the mounting surface. Without an umbilical this stiffness may

be set by the designer at will. However, when an umbilical is present, the umbilical

81



82

stiffness presents a lower bound on achievable stiffness unless the feedback loop is

used to introduce a negative stiffness. In this paper, the issues of control system

design for the generic (i.e., with umbilical) microgravity experiment will be

considered.

Previous research in the area of active microgravity vibration isolat.iou has

established the importance of the umbilical in control system design. Jones et. al [6]

present a good preliminary examination of the single--degree--of-freedom control

issues for intrusive and non-intrusive isolation systems. Grodsinsky [7] examined

the use of acceleration and velocity feedback. Many of the issues these researchers

have discussed are revisited here from a control theory perspective. Analysis of the

six-degree--of-freedom problem in the literature has been restricted to

one-loop---at-a-time design. Generally the effects of cross coupling between the

various degrees of freedom have been ignored. Owens and Jones [2] have

investigated the effect of cross coupling due to center of mass displacement for a

single loop based controller. This work examines this important problem tbr the

non-intrusive experiment platform case where relative position feedback is

sufficient. The authors concluded that satisfactory performance can be achieved if

the control loops are designed for the decoupled degrees of freedom and not

autonomously for each local position. It should be noted that high gains are not

required to achieve isolation for the umbilical-free case. An example is presented in

this paper which shows that decoupled single loop design may not be sufficient for

the generic isolation problem.

Any microgravity isolation

specifications for translational axes:

(1) Unity transmissibility from D.C. to 0.001

experiment from impacting its enclosure's walls.

(2) At least 40 Db attenuation above 0.1 Hz [3].

system design should meet the following

Hz so as to prevent the



(3) Both stability and performancerobustnessunder errors due to changes

in umbilical/experiment properties,non---collocationor misalignment of sensorsand

actuators, center of massuncertainties, and unmodeledcrosscoupling between the

degreesof freedom.

Robustness refers to the ability of the control system to perform satisfactorily when

the true plant varies from the nominal plant. Performance requirements of the type

(2) for rotational degrees of freedom have not yet been specified to the knowledge of

the authors.

In this paper we shall examine the control system issues associated with

active microgravity vibration isolation. The purpose here is not to develop new

control theory but to apply existing concepts to the problem. We hope that this

paper will serve a outorial function for vibration engineers involved with the

microgravity problem. The thesis of this paper is that control system design, not

passive isolator design familiar to vibration engineers, is the proper tool for anlaysis

and synthesis. First, the control theory required for the examination is reviewed in

Section II. Section Ill reviews pm%ive isolation and applies it as an analog3 to

control system design. In Section IV classical loop shaping is applied to the

isolation problem and a controller is designed. A discussion of the result and a

passive system analogy follow. An example multi-degree-of-freedom system is

explored in Section V and system robustness is examined. Section VI concludes

with an examination of the Linear Quadratic Regulator for the isolation problem.

I[. Control Theory Preliminaries

We examine here the prerequisite control theory for the examination to

follow. While the actual isolation problem is multi-dimensional, a single-degree--

of-freedom example will be examined first.
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The one---degree--of-freedommicrogravity vibration isolation problem,

depicted in Figure 2, consistsof anexperimentof massm connectedby an umbilical

and an actuator to a wall of tim experiment enclosure. The umbilical is modeled

here as a linear element with stiffness k and damping c. The wall's motion

(displacementy) is transferred through the umbilical to the experiment resulting in

its motion (dispt,Lcementx). Direct disturbancesmay also act on the experiment

due to the experiment's processes(e.g. motors, valves, shutters). While it may

seemthat there is no needto distinguish betweenumbilical and direct disturbances,

they are indeed different. The distinction lies in the fact that the actuator

influences through the experiments motion the force transmitted through the

umbilical; direct disturbance forces, however, are independent of actuator force.

This distinction carries through to both passive isolator performance and control

system design.

The equatioa of motion for the experiment is

m:_ + c_¢ + kx = c_, + ky + d + f (1)

where d is the direct disturbance force and f is the actuator force. We assume here

that the spacecraft wall is of sufficient impedance so as to not be affected by the

actuator force. Under Laplace transfot'mation Eqn. (/) yields

x,s,[c++k]y,+,+[1 ],O,s,+F,s,lms2+ c s + k ms 2 + cs + k

or

ms 2 + c s + k ms 2 + cs + k [D(s)+F(s)]

(2a)

(2b)
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and this is illustrated in Figures 3a and 3b, a block diagram for the isolation system.

Here, H(s) is the feedback transfer function, T(s) is the feedforward transfer

function, and Vl(S), v2(s) are measurement noises. The actuator force is therefore a

linear function of the wall and the experiment motion. The subscripts p and a

throughout this paper refer to whether the model used is in position or acceleration

form.

If the umbilical properties were known explicitly and measurement noise is

sufficiently small, then transmitted disturbances can be rejected with o_ly

feedforward control. Note however that direct disturbances can only be attenuated

through feedback. As always, the primary purpose of feedback here is to account for

uncertainties, either in the disturbance or in the plant model.

The price paid for this property of feedback is the requirement that the

feedback be stabilizing over the range of uncertainties in the nominal plant, the

plant model assumed for design. The nominal stability of the closed loop system

may be checked by a variety of methods, the most popular for single-input-single-

output (SISO) systems being the Nyquist and Bode plots. Implicit in these methods

are measures of system robustness. The Nyquist stability criterion can be

generalized straightforwardly to multi-input-multi-output (MIMO) systems,

however the robustness measures do not carry over as straightforwardly.

Both Figure 3a and 3b can be generically expressed in the form of Figure 4

where G(s) is the plant, P(s) is umbilical's pre---compensation of the wall

disturbance and I_(s) is the equivalent disturbance to the system. Figure 4 has been

presented in unity feedback form so as to introduce the concept of loop shaping and

the trade---offs inherent in control system design. Denote the transfer functions

between I_(s) and X(s), the sensitivity _Lnction, as
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S(s)- X(s)= 1
I_(s) _ (3)

and between v2(s) and x(s), the complementary sensitivity function, as

C(s)=-XXv9_, = 1 GHGH (4)

Note that S(s) + C(s) = 1. Therefore, a feedback controller designed to attenuate

external disturbances at a particular frequency

Is(j%)l << 1.o ]GH(J_o) ] >> 1.0

cannot attenuate the measurement noise signal at that frequency

IC(j%)l _ 1.0

Likewise, a controller designed to reject a certain frequency measurement noise,

]C(JWo) 1 << 1.0, must pass the external disturbance at this frequency, ]S(J_'o) I

1.0. Classical design of control systems usually involves separating (if possible) the

frequency spectrum into regions where input disturbances (measurement noise here)

and output disturbances (external disturbance here) predominate. The

methodology, known as loop shaping, consists of choosing H(s) so that GH is large

and therefore S(s) is small at frequencies where output disturbances are dominant,

and choosing H(s) so that GH is small and therefore C(s) is small at frequencies

where input disturbances are dominant. This would be a relatively simple task if

the designer only needed to be concerned with the magnitude of GH. However,

stability of the feedback system requires that the argument of GH at crossover,
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where [GH(JWo)[ -= 1.0, be greater than -180". That is, the system must have

somephasemargin. Sincethe phaseof a transfer function is tied to its magnitude's

(in dB) derivative with respect to frequency, as was shown by Bode [8], the lool)

shaping's results are fundamentally limited by the difference in frequency between

the input and output disturbances. The designermay only changethrough shaping

H(s) the magnitude in dB of GH at sofast a rate. Thus, the frequencybandswhere

the magnitude of the sensitivity function and complimentary sensitivity function

may be small must be separated in frequency by a crossover region of a certain

width (which is dependenton G(s) aswell as how small IC(s) l and [S(s)l must b(').

'['he tra_le_ff between rejection of input and output disturbances lhrou_l_

feedback is also inherent in passive isolation systems. Suppose we are cal>able of

choosing the umbilical stiffness and damping of Figure 2 so as to design a passive

isolator. Note that the transfer function relations

C,(s) X(s) _ 1
?(s) 1 + G(s) D(s)/m- 1 + G(s) (-')

apply where

G(s)=(cs +2 k)
ms

Ft'om this, it is easy to see that direct disturbances ,_ct as output disturbances whil(,

wall accelerations act as input disturbances. The difference between designing _n

isolation mount for base disturbances and for direct disturbances is well known and

understood by vibration engineers. A soft mount is appropriate for isolating against

base disturbances while a stiff mount is appropriate for direct disturbances
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excitation. The loop shaping capability of springs and dampers is however very

restricted. Indeed, one cannot shape the loop to yield an unstable system. An

active control system may have its loop shaped to an arbitrary specification

provided it is possible to meet the specification with a stable system. Here lies the

chief advantage of designing an isolation system from a control paradigm: the

interaction of the conflicting specifications, stability, and robustness is clear

throughout the loop shaping procedure. Sensitivity and complimentary sensitivity

functions are extendable to MIMe systems through the use of singular values.

Robustness in single-input-single---output controller design is measured by

gain and phase margins. The gain margin is the range of gain that can be

introduced into the loop while maintaining stability. Similarly, the phase margin is

the amount of phase that can be introduced into the loop while maintaining

stability. The practical importance of the margins is that the gain and phase of the

nominal plant is not the same as that of actual plant. These margins may be easily

determined from Nyquist or Bode plots. Loop shaping also implies that a

compensator H(s) should not be so large as to extend the crossover frequency of the

compensated system into the higher frequency range where nominal models are very

inaccurate.

Robustness for MIMe systems can also be specified in terms of the

simultaneous gain and phase variations that may be introduced into the loops while

preserving stability. However, this description does not account for unmodeled

coupling in the dynamics. Uncertainty may be represented in terms of an additive

(in parallel) or multiplicative (ill series) transfer function matrix appended to the

plant. (While these are the most common there are othc, r representations.) Using

either uncertainty representation it can be easily shown by the small gain theorem

that stability can be guaranteed if uncertainties in the plant are required to be
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boundedby a norm of the compensated plant. This is best represented in terms of

the frequency dependent singular values of the plant and uncertainty t_'ansl'_w

flmction matrices. This measure, however, is conservative since it allows cross

coupling dynamics between channels that in actuality could never occur. The

structured singular value methodology attempts to alleviate this conservatism

through structuring the uncertainty model. Readers interested in a general

treatment of MIMO stability and robustness should consult Ref. 9.

III. Passive Isolation: An Analogy

We now examine the design of an active vibration isolation system tot

microgravity space experiments from an analogy to passive isolators. Indeed, the

primary reason for pursuing an active rather than passive system is not the

increased flexibility in loop shaping but the limitations of active systems in

attaining a stiffness low enough to meet the isolation requirements. This is true

even when no umbilical is present.

For the generic system model of Eqn. (1) with the nominal values

m = 220 kg

k = 20 N/m

c = 6.63 N.s/m (,5% of critical damping)

The transmissil)ility curve between base and experiment acceleration, slJown i_

FigureSis " _, .gxvm I)v

_(s)_ 2¢WnS + Wn2

_'(s) s 2 + 2(:WnS + _an2

(6)
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with

wn = _ = 0.3 tad/see = 0.048 Hz

= c_-/4mk u 0.05

Also depicted in Figure 5 are the transmissibility specifications (1) and (2) discussed

in Section I. While the system satisfies the unity transmissibility criterion, note

that the natural frequency is not low enough to meet the 40 dB attenuation

requirement. The system is also deficient in the magnification of disturbances ,_t

and near the resonance. Clearly any modification to the umbilical's dynamics

through feedback should include increased damping through a positive gain ol_

experiment velocity. Feedback of inertial experiment velocity permits the damping

coefficient ( to be increased in the denominator of Eqn. (6) without changing it in

tile numerator. Thus, the resonance can be removed without affecting the roll_)l'f

rate (since the zero of Eqn. (6) is not changed).

If the umbilical were softer, say with k = 0.20 N/m, both specifications (1)

and (2) could be met by the passive system. Unfortunately, an active system

cannot lower the stiffness with positive gains on position feedback. An active

system may be used to insert a negative stiffness spring in parallel with the

umbilical. For example, for the nominal plant with the controller transfer t'unctiot_s

of Figure 3a equal to

Hp(S) =-(6.0s + 19.8) Tp(S) =-(6.0s + 19.8) (7)

The natural frequency of t_'e system is moved an order of magnitude lower. (Here,

a negative damper has also been introduced so as to maintain the system's 5%

critical damping h)r the purpose of comparison. If less negative da,_ping is

9o



introduced in order to remove the resonance,even more negativestiffness must be

introduced to meet the 40 dB specification.) Note that this vibration engineering

approach, that is, lowering the stiffness, requires the near cancellation of the

umbilical's stiffness with that introduced via feedback. If the negative stiffness

exceedsthat of the umbilical, the equivalent stiffnessof the system willbe negative

and the system will be unstable. It is not surprising then that the introduction of

negativestiffnessvia the controller hasno robustnesswhatsoever. The designusing

Eqn. (7) has lessthan 0.1° phasemargin. The root locus for the system, shown in

Figure 6, clearly indicates this potential for instability. A focus on equivalent

stiffness ill isolation system design thus leads to control systems which sacrifice

robustness for performance. In a, _ lion, a design which achieves isolation tluo,t_},

lowering the system stiffness cannot attenuate direct disturbances over the same

frequency band, as discussed in Section II.

From a vibration engineering viewpoint, an alternative means of achieving

rejection of disturbances is to rigidly fasten it to an inertial structure. While there

is no such structure ill space, it is possible to achieve this result by a high positive

gain feedbatk on experiment l)osition. (The inertial position must be obtained by

integrating an accelerometer reading twice. This does pose a problem since this

procedure is marginally stable. However, this problem may be ameliorated through

replacing tile integrators with a second order low pass filter. The authors are aware

of this method being employed successfully on a six-degree--of-freedom magnetic

suspension isolation rig at NASA Lewis Research Center.) This acts as a very stiff

spring tying the experiment to inertial space. The controller and resulting transfer

functions in this case are

91



Hp(S)= 2000 Tp(S) = C (8)

_(s) _ 6.63s + 20

_/'(s) 220s 2 + 6.63s + 2020

X(s) _ 220s2
D(s)/m 220s 2 + 6.63s + 2020

While this controller meets the 40 dB specification, it does not have unity

transmissibility below 0.001 Hz. An experiment controlled in this fashion will

collide into the wall. The feedforward transfer function may be adjusted to provide

unit gain via

-200 0
Tp_Sj__= 159s + I

This feedforward with the feedback term of Eqn. (8) effectively acts to base

disturbances as a high relative stiffness up to 0.001 Hz changing to a large inertial

stiffness. The resulting transmissibility _(S)/_(s) is presented in Figure 7. Noto

that since the feedback loop introduced no damping, the original resonance is still

present although less damped and at a higher frequency. This may be corrected by

adding an inertial damping into the feedback loop. While this design nethod may

be used to meet the specifications with robustness it has three faults: (1) it requires

inertial experiment position, inertial wall position, and inertial experiment velocity

measurements which are problematic to obtain, (2) it requires very high gains in

both feedforward and feedback loops to obtain attenuation, and (3) an extension of"

the method to multi-degree--of-freedom systems would be difficult. It is also
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possiblethat when a flexible wall is considered,rather than the infinite impedance

structure assumed,that the systemwi/l beunstable.

As another method of fastening the experiment to inertial space,one may

employ inertial damping via feedback. By feeding back the inertial experiment

velocity with a high gain, it is almost possibleto achieveboth the 40 dB and unity

transmissibitity specificationwithout resorting to feedforward. For example,with

Hp(S)- 1000s Tp(S) =0

the resultant transmissibility are shown in Figure 8. Unfortunately, the roll--off

rate here is approximately 20 dB/decade and therefore it is impossible to achieve

both specifications simultaneously. This method has the advantage over the inertial

spring of being a great deal simpler and requiring only one inertial measurement

(experiment velocity which requires only one integration of accelerometev

measurements).

Another passive analogy is the lowering of the natural frequency of the

umbilical by increasing th. ,_xperiment mass. ALl increased experiment mass would

attenuate direct disturbances as well as those transmitted through the umbilical. ItL

addition, at frequencies below the natural frequency of the umbilical, the isolatAon

system would have unity transmissibility. Of course, for space applications any

additional mass is very costly. To lower the natural frequency by an order o['

magnitude would require increasing the experiment mass by a factor of one hundred.

Clearly, it is not practical to accomplish increased isolation through the addition of

real mass. However, it is possible to increase the effective mass of the system

through feedback. This will be examined in the next section, as this idea most

properly evolves out of loop shaping.
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To summarize, the passiveisolation analogyto control system designyields

someinsight but falls short as a design tool on three counts: (1) it doesnot have

the flexibility to shape the responsewith its simple analogical elements, stiffness,

damping, and mass,soas to achievethe performancerequirements, (2) it cannot be

easily or effectively generalized to multi--degree---of-freedomproblems, (3) it

completely ignores the robustnessproblem inherent to active control systems. We

advocate, therefore, that vibration engineersconsider active isolation a controls

problem and usean automatic controls frameworkfor tackling it.

IV. The Control System Approach

A simple controller is now designed for the system described by Eqn. (1) and

the nominal values. The authors refer the reader back to Figure 5 where

transmissibility curve between experiment and wall accelerations (or positions) is

presented again along with the design specifications (1) and (2). The goal is to

design a feedback control Hp(S) that results in the closed loop transfer function

___ Gp ( s)P( s )
Gcl(S) - = 1 + Gp(S)Hp(S)

(9)

satisfying both constraints; that is

°3o

IGcl(J_o)l _ t.o _ < o,0ol Hz

%
]Gcl(JOao)]< O.Ol _ > o.1 Hz
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Note that the uncontrolled system Gp(S)P(s) satisfies the first of these constraints.



therefore, Hp(S) should be very small in the low frequencyband so that the closed

loop system will continue to satisfy the unit transmissibility specification.

Therefore,this specificationyieldsa condition like

I GHp(JWo) I < 0.01
WO

] Hp(J_o) ] < 0.2 _ < 0.001 Hz

At and above 0.i Hz, the attenuation of the uncontrolled system is not sufficient. It

is desirable to increase the attenuation by approximately two orders of magnitude.

This may be accomplished by requiting Hp(S) to be very large in this frequency

range, approximately

I GHp(j%)[ > 100.

¢do

[ Hp(JWo) ] > 2000. _>0.1 Hz

These two design specifications on Hp(S) are shown in Figure 9 along with a simple

function satisfying these conditions,

Hp(S) = 5000 s 2 (10)

This controller design results in the closed loop transmissibility between experiment

and wall accelerations which is plotted in Figure 10. Note that both specifications

(1) and (2) are met. Inertial damping should be added to this design t,o eliminate

the resonance. It is easily seen from a root locus plot that this design is robust with

respect to changes in umbilical/experiment properties, Figure 11, and actuator finite

bandwidth, Figure 12. In practice, this design would be improved by rolling off the
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controller gain. This limits the controller bandwidth so as to not affect possible

unmodeledlightly---dampedhigh frequencymodesof the system (e.g. wall flexure).

A controller designwould probably also include a weakposition integral feedbackto

provide a slow centering forceso that accelerometerbias and noisedoesnot result in

wall collision.

The reader might object to the controller of Eqn. (10) since it is improper

(i.e., has more zeros than poles). However,this controller is realizable. Note that

Hp(S) multiplies the position measurementto yield the control force. Since the

factor s2 in the time domain is equivalent to two differentiations with respect to

time, Eqn. (10) prescribesconstant gain accelerationfeedback. This, as discussed

earlier, increasesthe effective ma of the system. (Of course, if we modify Eqn.

(10) to limit the controller bandwidth, then the massanalogyonly holds within the

band.)

While both transmitted al_d direct disturbances are attenuated, tlle

experiment acceleration level will be approximately the same as the accelerometer

measurement noise level. This results from the transmissibility between experiment

acceleration and measurement noise being nearly one due to the high gain feedback.

This is a fundamental issue as discussed in Section II; one must trade---off the

rejection of disturbances to the system and the rejection of measureme_t E_oise.

Since the disturbances may be up to one thousand times larger than the

measurement noise (accelerometer resolution typically 1 pg) the controller is

designed to reject disturbances. The performance of the control system is thus

directly a function of the quality of the accelerometer.

Recently, an alternative approach to design of active vibration isolation

control systems for microgravity experiments was presented in Reference [10]. A

desired transmissibility ratio Gcl(S ) is specified along with the plant model Gp(S)
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and P(s). Eqn. (9) is then solved via algebraic manipulation for the feedback

controller Hp(S) that yields the desired transmissibility (feedback of relative

position is also allowed and may be used; if used, a second condition must then be

specified for solution). While this approach resembles loop shaping in that it

attempts to achieve a certain transmissibility, it is fundamentally different in that it

does not properly consider the plant. The algebraic procedure in essence first

eliminates the plant and then replaces it with one which will yield the desired

transmissibility. As a control design procedure, this methodology has serious flaws:

(1) the stability of the resulting system may be entirely dependent on perfect

knowledge of the plant, (2) the procedure incorporates none of the known

relationships and fundamental trade-offs between stability and attenuation; it

implies that any specified transmissibility is achievable, and (3) for systems with

right half plane poles/zeros, the methodology may attempt cancellation with right

half plane zeros/poles. For a simple controls problem, the algebraic manipulation

method may result in a good controller. However, for more difficult problems, the

method is questionable. An extension of this methodology to multi-input-multi-

output control would be plagued by many problems.

To summarize, controller design for single-degree-of-freedom vibration

isolation problems is best performed through the classical control fi'amework of loop

shaping where tlle natural interplay between performance, stability and robustness

are evident. For multiple degree of freedom isolation problems, recent advances in

controller design, such as the extension of loop shaping principles via frequency

weighting and singular values [11] seems to be most promising. In order to

emphasize the question of coordination in control of MIMO systems, we next

examine a multiple-degree-of-freedom isolation problem.
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V. A Multiple--Degree-of:-Fr.ecdom System

A common misunderstanding among many engineers unfamiliar with control

system design is the nature of the differences between SISO and MIMO control

problems. The relative ease with which the uninitiated comprehend the elimination

of one error signal through negative error feedback yie_us the false impression that

the MIMO control problem is little more than the feeding back of multiple error

signals. This impression, however, is not totally groundless. Indeed, many MIMO

controllers in use today were designed by a single---loop-at-a-time procedure.

Design with this method can be quite difficult, time consuming, and non-intuitive.

Robustness is difficult to check except by analyzing all the possible permutations to

the nominal plant. The fundamental problem in MIMO design is the coordination

of the control in coupled channels when the plant is not well known (poorly modeled

or time varying).

Easily decoupled active vibration isolation control problems may be

deceptively simple. Unmodeled cross--coupling due to inaccuracies in center of

mass, sensor, and/or umbilical locations can result in poor performance and even

instability. An example isolation problem illustrates. Figure la shows a two-

degree-of-freedom isolation system composed of an isolated platform (width 0.5

meters and height 0.2 meters, depth unspecified), two accelerometers, two

actuators, an umbilical, and a translating base. The platform may translate

vertically or rotate about its center of mass. The actuators and accelerometers are

positioned a distance of q = 0.2 m symmetrically about the assumed center of mass

location. An umbilical of stiffness k (no damping) runs between this location and

the base. The platform has mass m and inertia I. The equations of motion for the

platforms translation x(t) and rotation 0(t) are
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rrg-_+ kA0 + kx = fl + f2 + dl

,+

I0+kA20+kAx=(q+A)f 2- (q-A)f I + d 2

(11)

where d 1

mass. The accelerometer readings are

,,_ = _-(q- A)O

°*

= _ + (q + A)0

and d 2 are the disturbances, and A is the error in the assumed center of

(12)

The nominal system (A = 0) can be decoupled to one in terms of the degrees of

freedom by the change in variables

F=fl+f 2

M = q(f2 - fl)

z 1 = (fit1 + ,_)/2

z2 = q (f12 -_)/2

(13)

which are nominally the translational force, the

acceleration, and the angular acceleration for the

nominal transfer function for the system are then

moment, the translational

platform respectively. The

9

I"lZl(S ) = .) (F(s) + DI(S))
ms'+ k

Z2(s)= [+] (M(s)+D2(s))
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For translational motion, the natural frequency of the platform is _F_-. The

rotational motion of the platform is freesincethe umbilical is attached to the center

of mass. To compensatethe nominal system, feedbackcan be designedfor each

mode of the system separately since the system is decoupled. Translational

accelerationand velocity feedbackis first usedto add effectivemassand damping

F(s) =-(a + c) Zl(S ) (i4)

This lowers the natural frequency of translational motion yielding the closed loop

transfer function

s2Zl(S) = (m+a)s 2 + cs + k
Dl(S)

Next, angular deflection feedback is used to constrain low frequency rotational

motion and some damping is provided

b

M(s) = -(s + s-_ ) Z2(s) (15)

yielding

[2]SZ2(s)= Is 2 + ns + b D2(s)
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The following valuesare usedto illustrate this example.

PLATFORM

m = 400 kg

k = 50 N/m

9
I = 10 kg. m-

CONTROL SYSTEM

a = 31600 kg

c = 1000 N.s/m

b=0.015 N.m

n = 0.2 N.nl.s

where tile control system values are in effective units. This control design lowers

the natural frequency of translational motion frorn 0.056 Hz to 0.006 ltz with 40_7_ of

critical damping. The controlled rotational motion has a natural frequ(,ncy ¢)t (1.00(;

Hz with 26_ of critical danlping. This controller design wouht vi(qd v_,rv _qt,,<tiw,

isolation on the nominal sys_em.

The actual closed loop transfer functions will be different from the nominal

due to the error in the center of mass, A. The transmissibility can be derived from

Eqns. (11-15) as follows

[ms:_+ klX(s) + [kS]O(s) = F(s} + Dl(S)

[Is2 + k'--X2]OIs)+[k_lX(s)= M(s) + _F(s) + D2(s)

Zl(s) := [s2lX(s)+ [zas2lO(s)

Z2(s) = [sg-la(s}

V(s) =- [a + c/s] Zl(s)

M(s) =- [n/s + I>/s_] Z4s)
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yielding

(m+a)s2 + cs + k]s2 Zl(S ) + [mA] Z2(s ) = Dl(S )

[(as 2 +s +,) k)Al Zl(s)+ [Is2 +ns+9
S- 8"

b ] Z2(s ) = D2(s )

The poles of this system are given by the roots of the characteristic equation

[(m + a)s 2 + cs + k][ls 2 + ns + b] -[m&][_(as 2 + cs + k)] = 0 (16)

For the nominal plant, A = 0, tile roots of the Eqn. (16) result in the prescribed

natural frequencies and critical dampings. However, as the center of mass error

increases, the poles migrate and the system becomes unstable. For an error as small

as 6 millimeters, instability occurs. A plot of the pole movement versus error in

center of mass is shown in Figure 14. This sensitivity results fi'om the ill

conditioned character of the required controller. I11 conditioned here means that tho

('ontroller's gain to an output signal varies strongly with the signal's direction. Thi_

results in a ('()tltrol system which is not rol)ust to this model's tmcertainty (cent_ f

mass) [12]. A proper MIMO controller design might remedy this problem. In any

case, an analysis of the problem from a MIMO control perspective would indicate

the potential instability and the nature of the trade-off between performance and

robustness. (The authors note that increasing the damping and stiffness for the

rotational mode improves the system robustness significantly, while changing the

damping or effective mass for the translational mode has little effect.)
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VI. Linear Quadratic Regulator for Isolation

MIMO control design, since it requires a high degree of coordination, must

proceed by a synthesis procedure. One such method is Linear Quadratic Regulator

(LQR) synthesis [13]. This produces a state feedback controller which is optimal

with respect to the quadratic (two norm) performance function

J =f ._ (jw) Qx(jw) +uT(jw) Ru(j_)dw (17)

where Q and R are respectively the symmetric (usually diagonal) state and control

weighting matrices, and ._(j_) and u(j.,) are the Fourier transforms of the state and

control vectors. The state (positions and velocities for vibration isolation) satisfies

the differential equation

= A_ + Bu

The quadratic performance function of LQR, Eqn. (17), is well suited to this

problem since vibration isolation quality is usually measured in terms of

root-mean-square. However, some modification of the performance function is

necessary to apply this synthesis procedure to microgravity isolation controller

design. The reader will note that state feedback for the isolation proble_ is

feedback of experiment positions, velocities, angles, and angular velocities. Thus,

LQR can only result in inertial stiffness and inertial damping feedback. As was

shown in Section III, these isolation techniques cannot yield acceptable isolation

performance. Thus, an LQR performance function of the form of Eqn. (17) will not

yield a satisfactory controller. Note that the differential equation does not include a

disturbance term. Consequently, the controller is optimal with respect to white
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noise. Since the power spectrum of the microgravity envi,ronment is not of this

shape, the LQR controller will not be optimal with respect to rejection of the

disturbance. Through the incorporation of a disturbance model (essentially a

shaping filter) the LQR problem may be modified to yield an optimal disturbance

accommodating (i.e. rejection) controller. This incorporates the addition of

pseudo-states to the state variable model [14].

Closely related to disturbance accommodation is the concept of frequency

weighted LQR performance functions [15]. Here, the Q and R matrices are chosen

to be even rational functions of frequency. This results in the addition of

pseudo-states to the state variable model. Through choice of the weighting

functions, tile designer can in essence shape the control loops [11]. This also permits

the weighting of experiment acceleration. It should be noted that for successful

application of LQR theory to the microgravity isolation problem frequency shaped

cost functions must be used. Without this, the control resulting from the synthesis

procedure would attenuate the vibration at frequencies below 0.001 Hz (non-unity

transmissibility). The reader should note that the well known robustness

characteristics of LQR controllers do not apply to most frequency shaped designs or

to plants with unmodeled cross coupling.

VII. Conclusions

Successful active isolation for microgravity experiments can be achieved but

only if the problem is analyzed fi'om a controls perspective. A passive isolation

analogy, while useful for an understanding of the control problem, is not an effective

design tool. Design of active vibration control systems can best be carried out

through loop shaping. For intrusive isolation platforms, this results in a high gain
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acceleration feedback design. A two-degree---of-freedom example was used to

illustrate the instability that can result under unmodeled cross coupling when the

control system is designed via decoupling/single loop design procedures. The source

of this sensitivity was ill conditioning of the controller. The Linear Quadratic

Regulator was examined for the isolation problem. For synthesis of an effective

controller, the procedure must be modified to include loop shaping.
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3: Displacement (a) and Acceleration (b) Isolation System Block Diagrams
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7: Transmissibility X(s)/Y(s) for Inertial Stiffness with Feedforward Design
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8: Transmissibility X(s)/Y(s) for Inertial Damping Design

Designs Specifications and ttp(S)

Resultant Transmissibility for Loop Shaped Design

Root Locus of Loop Shaped Design with respect to Umbilical
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Bandwidth, a)b = actuator pole break frequency
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EXPERIMENT ENCLOSURE
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TX

Y

r w

Figure 2: The One-Degree--of-Freedom Microgravity Vibration Isolation Problem
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PROBLEM:
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PERFORMANCE SPECIFICATIONS

• UNITY TRANSMISSIBILITY FROM
DC TO 0.001 Hz

• 40 dB ATTENUATION ABOVE 0.1 Hz

• BOTH STABILITY AND PERFORMANCE
ROBUSTNESS

Robustness: The ability to withstand

ummodelled effects

EXPERIMENT ENCLOSURE
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OUTLINE

(1) CONTROL THEORY REVIEW

(2) PASSIVE ISOLATION ANALOGIES

(3) CONTROLLER DESIGN

(4) MDOF EXAMPLE

(5) LINEAR QUADRATIC REGULATOR

(6) CONCLUSIONS
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THE LOOP SHAPING TRADE-OFF

SENSITIVITY FUNCTION

X(5)
Sc_)--_F_ -

COMPLIMENTARY SENSITIVITY FUNCTION

X (_) G-H
_(s') = Vz(s) = -i+ GH
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LOOP SHAPING: PASSIVE ISOLATION

SPRING-MASS SYSTEM:

GCs'}= cs+k
_qS="

Direct disturbances a_,{ as output disturbances while
wall accelerations act as input disturbances.

Passive isolation design:
soft mount for base disturbance
stiff mount for direct disturbance
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LOOP SHAPING DESIGN

BODE PLOTS:

/.0
S,C- I

i m

The classical conrol framework displays the trade-offs
between input and output disturbance rejection and
stability and robustness.
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PASSIVE ISOLATION ANALOGIES

THREE ANALOGIES:

RELATIVE
INERTIAL
INERTIAL

STIFFNESS
STIFFNESS
DAMPING

SYSTEM MODEL:

m=220 kg
k-20 N/m
c=6.63 N s/m
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10 2 =

101 =

tO e

10-1

10 -z .

10 -3 ._

10-4 .......
te -4 1@ -3

j_" '.\

\

• , ....... ,..,

1@ -Z te -1

\\

"\

i

i

19 O 10 10 Z

ltr_lluenctl (Hz)

131



EQUIVALENT STIFFNESS

Lower the natural frequency of the umbilical by adding
negative stiffness to the system through the controller

ROBUSTNESS PROBLEM: If the negative stiffness added
exceeds that of the umbilical, the system is unstable.
But, to lower the natural frequency significantly,
the negative stiffness introduced must be nearly that
of the umbilical.

Root locus plot:
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Design has less than 0.1 degree phase margin.
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INERTIAL STIFFNESS

Fasten the experiment platform rigigly to an inertial
structure through inertial position feedback

PROBLEM: The natural frequency of the system is actually
increased; isolation is obtained by lowering the DC gain

of the system.Therefore,the resultant system does not
have unity transmissibility up to 0.001 Hz. This can be
fixed with feedforward.
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INERTIAL DAMPING

Prevent experiment movement through fastening the
System to inertial space via a damper.This may be
accomplished through inertial velocity feedback.

• This method does not compromise the system's DC
gain.

PROBLEM: The resulting transmissibility only rolls
off at 20 dB/decade. Therefore, the 40 dB at 0.1 Hz
and unity transmissibility up to 0.001 Hz design
specifications cannot be both achieved.
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PASSIVE ISOLATION ANALOGIES:

The passive isolation analogies yield some insight
into control system design.

THREE LIMITATIONS AS A DESIGN TOOL:

• Inflexibility to shape the response with
simple analogical elements, stiffness and
damping.

This inflexibility can be seen in the
inability of the analogical elements to
yield an unstable controller.

• Inability to easily and effectively extend
to multiple-degree-of-freedom problems.

• Completely ignores the robustness problem
inherent to active control system design.
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LOOP SHAPING DESIGN

CLOSED LOOP TRANSFER FUNCTION:

×(_) Gp.e

SPECIFICATIONS:

_-_ < o.ool

Low frequency: Unity transmissibility

High frequency: 40 dB attenuation

DESIGN SPECIFICATIONS AND FEEDBACK CONTROLLER
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LOOP SHAPING DESIGN

RESULTING TRANSMISSIBILITY:
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ROBUSTNESS ANALYSIS THROUGH ROOT LOCUS:
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Need to modify this design to

• add damping to remove resonance

• limit control system bandwidth

• add integral term to provide centering

137



MDOF DESIGN EXAMPLE

EXAMPLE PROBLEM:

METHODOLOGY:

Decoupling system to rotational and
translational modes, designing SISO
controllers for each mode.

• Rotational mode requires angular position

and velocity feedback.

• Translational mode requires translational
acceleration and velocity feedback.
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ROBUSTNESS TO CENTER OF MASS UNCERTAINTY

Decoupling is dependent on accurate knowledge of the
center of mass location.

Characteristic Equation:

Root Locus with respect to Center of Mass Uncertainty
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As little as 6 mm uncertainty can produce

instability.
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LINEAR QUADRATIC REGULATOR

MIMO control design, since it requires a high degree
of coordination, must proceed by a synthesis
procedure.

LQR SYNTHESIS:

• Quadratic Norm Performance Function

• State Feedback Controller

PROBLEMS:

• State feedback is feedback of inertial

positions and velocities. The resulting
system does not have unity transmissibility
at DC.

• Ignores the disturbances. Actually treats
them as white noise.

• Weak at loop shaping

FIXES:

• Frequency weighted performance functions

• Disturbance accomodation

Both these require the addition of psuedo-states
and permit loop shaping via singular value analysis.
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CONCLUSIONS

• The active isolation problem should be examined from

a control perspective.

• Design proceeds best from the classical control

framework of loop shaping.

• Loop shaping results in an acceleration feedback

design which increases the effective mass of the
isolation platform.

• Decoupling/SISO design procedures for MIMO control
problems may result in controllers with poor
robustness.

• Linear Quadratic Regulator synthesis for the

microgravity problem requires frequency weighted
cost functions and disturbance accomodation.
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