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J. Ken'see, Research Assistant

R. C,. Kirk, Associate l'rofessor

ABSTRACT

Virginia Polytechnic Institute and State University
Blacksburg, VA

The need for better performance of turbomachinery with active magnetic bearings has necessitated
a study of such systems for accurate prediction of their vibrational characteristics. This is the second
part of a two part paper on the effect of sensor location on the forced response characteristics of
AMB turbomachinery. This paper presents a modification of' existing transfer matrix methods for
rotor analysis, to predict the response of rotor systems with activc magnetic bearings. The position
of the magnetic beating scnsors is taken into account and the effect of changing scnsor position on
the vibrational characteristics of rotor systems is studied. The modified algoritlun is validated using
a simpler Jeffcott model described in part I of this paper. The effect of changing from a rotating
unbalance excitation to a constant excitation in a single plane is also studied. A typical eight stage
centrifugal compressor rotor is analysed using the modified transfer matrix code. The results for a
two mass Jefl'cott model arc presented in part I of this paper. The results obtained by running this
model with the transfer matrix method have been compared with thc rcsults of lhe .leffcott analysis
for purposes of vcrification. Also included, arc plots of amplitude vs frequency fo. the cight stage
centrifugal compressor rotor. These plots will demonstrate tlic significant influence that sensor lo-
cation has on the amplitude azM crilicaJ frequencies of the rotor system.
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Modulus of elasticity (N/mm 2)
Moment of inertia of masslcss shaft (men 4)
Polar moment of inertia (ram _)
Transverse momcnt of incrtia (mtzP)
Stiffness ratio, k_/k 2 (dim)
Stiffness in tr_msthr matrix cqualions N/mm)

AMB stiflhess (N/mm)
Shaft stifliaess (N/ram)
Mass ratio, rndn h (dim)
Moment component in transfer matnx cquation (N-ram 2)
Moment component in transfer matrix cquation (N-ram _)
Shear componcnt in transfer matrix equation (N)
Shear component in transfer matrix equation (N)
Eccentricity component in transfcr matrix equation (nun)
Eccentricity component ill transfer matrix equation (ram)
Damping (N-scc/mm)
Exponential constant = 2.7182818 (dim)
Conaplex constant (dim)
Length of massless shafts in transfer matrix equation (mm)
Point masses in transfcr matrix equations (Kg)
Detlectiou component in transfer matrix equations (mm)
Deflection component in transfer matrix equations {ram)

Slope component in the transtbr matrix equation (rad)
Slope componcnt in the transfi:r matrix equation (rad)
Constant excitation force in Jcffcott model (N)

Constant excitation force component in the transfer matrix equations (N)
Constant excitation force component in the transfer matrix equations (N)
Ratio of the distance between bcaring centerline and sensor to half-span
of the rotor (dim)
Frequency of shaft excitation (rad/sec)
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s Frequencyof shaftrotation(rad/scc)

Subscripts

i Rotorstationnumberin transfermatrixequations
INTRODUCTION

The use of active magnetic bcarings in turbomachincry is a comparativcly new development but
one which has shown great promise for better control of rotating equipment. The idea behind these
bearings is not new however. The use of magnetic attraction to levitate the rotor shaft free of the
bearing had been tried before, but because the systcm is inhcrently unstable unless a real-time
control system is used, the use was not successful. The first actively controlled bearing was devel-

oped in the 1950"s. Since then the use of active magnetic bearings has gaincd widcspread acceptance
particularly in Noah America and Canada. Weisc [2] has given somc examplcs of thc varied uses
to which active magnetic bearings have been applied. Kirk I-5-1 lists a number of turbomachincry
inst-,dlations where active magnetic bearings have been used. Magnetic bearings possess a number
of advantages compared to convcntion_d bearings. Tlaey give an ahnost unlimited control over rotor
vibrational characteristics due to adjustable stiffness and damping. Automatic bahmcing is possible
by allowing the rotor to spin on its inertial axis. This lcads to decreascd vibrations and noise. Active
magnetic bearings do not require lubrication, and since they are non-contact bearings, they elimi-
nate the possibility of wear and tear of the stator and rotor surfaces. Wcisc [2] dernonstratcs the

tolerance of magnetic bearings to a wide range of temperatures aa_d also their insensitivity to hostile
environments. Zlotykamicn L i] gives a good description of the various advantages of active mag-
netic bearings.

Most of the research in active magnetic bcarings has bccn in the control systems used. Schwcitzcr
[7-1 shows a method for controlling an elastic rotor so that it can bc represented by a low order
model amenable to control techniques. Williams, Kcith and Allairc [6-1 have developed theoretical
relationships to relate the characteristics of a controller transfer function m the stiffness and damp-
ing properties of an active magnetic bearing. Burrows and Sahinkaya [8] have evaluated various
strategies for applying a magnetic bearing to control the synchronous vibration of a flexible rotor.
Kirk et al [ 5] have presented results of shop tests on a hio,_ speed ei ,_at stage centrifugal compressor
supported by active magnetic bcarings along with some design reco_nmcndations. Keesee [3_] has
examined the effects of sensor position on the critical frequencies of rotors with active magnetic
bearing. This work is an extension of Keesec's work to include sensor position effect on forced re-
sponse vibration amplitudes, using the modified transfer matrix method.

RESEARCH OB, IEC'flVI,:

As stated before in the introduction, the sensors are not locatcd at the place where the attraction
forces are applied on the rotor shaft, but at some distance away along the axis of the shall. I)uc to
this "non-colocation" of the sensors from the bearing position, the deflection scnscd by the :cnsors
is not the same as the actual dcflection at the bearing but differs from it by some magnitude, dic-
tated by the mode shape of the rotor shaft. Because of this, thc stiffness and damping forces of the
active magnctic bcaring depend not on the deflection at the bearing location, but on the dctlcction
at the scnsor location. For such cases, the vibrational characteristics of the rotor system is different
from that obtained using conventional analysis programs. The objective of this research is to take
into account, the effect of sensor non-colocalion on the vibrational characlcristics of rotors with
active magnetic bearings.

This research is an extension of the work done by Keesee [3] and inw)lvcs the modification of an
existing transfer matrix code to account for sensor non-colocalion. But whereas Keesce's rcsearch
was limited to studying the effect of sensor non-colocation on critical frequencies, this work also
considers sensor non-colocation effects on R_rccd response amplitudes. The othcr objective of this
research was to compare the vibrational characteristics of rotor systems, when they are subject to
unbalace excitation with circular synchronous shaft rotation, and constant excitation in one plane
with no shaft rotation or whirling. The effect of changing mass ratios and stiffness ratios was also
studied.

The modification of the transfer matrix program was validated by' comparing its results for Ihe two
mass model with the results obtained from a simple program written to specifically analyse lhc two
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massmodeldescribedin part1of thispaper.A typicaleightstagecentrif,tgalcompressorrotor
modelwasalsoanalysedusingthemoditiedtransfermatrixmethodandits_c._ultswerecompared
with theresultsof theJeff'coltmodelto verifythetrendof behaviourof lhe rotorsystemwith
varyingsensorlocations.

1HEMODIFIEDTRANSIERMATRIXMETHOD

The ftrst analytical study of flexible rotors using the transfer matrix metl od was prescntcd by
Myklestad and Prohl. The rotor is divided into several discrete masses cal cd stations and these
masses are joined by massless tlexible shafts. The response of the system is tomputed by using in-
fluence coefficients, and formulating a set of equations. The equations are solved and a final sweep
is made to obtain the solution. J. W. Lund analysed the equations involved in the transfer matrix

method for the case of cUiptic non-synchronous response of the rotor system and wrote a program
using these equations to study the vibrational characteristics of rotor systems. The program was
subsequently simplified to analyse circular synchronous response of rotor systems. This paper dc-
scribes the modification of prccisely this simplified transfer matrix program written by E. J. Gunter
Jr. and R. G. Kirk at thc University of Virginia, Charlottesville, Virginia. ]'he modification was
done to rake into account the non-colocation of sensors in active magnetic bearings.

To understand the classical transfer matrix method, consider a typical rotor section element as-
sumed to be composed of a point mass and a massless elastic shaft to its right.

Consider the forces acting on the mass to formulate the equations required for equilibrium. Refcr-
_g to tigure 1

_R _.Z, (me,o2 + + [1]xic = xic + -- Ki)xic - C)c°Xls FXCi axmi(o 2

l/_Ris= V_L + C,<oXic + (mic) 2 - Ki)xis + FXS l - ayimtco2 [21

_R l I.gyi_ + (tp - Ir)_,2o,_

uL =.,% + [41

0!L = t61
R L

Xic = xic [7]

R 1.
xi, = xi, [_1

The solution in the Y direction can be obtained from the solution in the X dircction since it is as-

sumed that the motion of the shaft is circular, llcncc cquations in the Y direction are not required.
Now consider the equations for the masslcss elastic shaft of ._talion i. l:rom figure 2

,L R
I,_ l+ 1_ = V_;i_ [91

L R
VI i+l_= Vii, [lO]

I, R R

L R R

0__+_= u_i_+ _ v#t_+ -/_ M_ [13]

ox _+_, = Oxt, + -T_ v_ + [14]
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R R
x/+I_= x;_.+ l.Ox_.+

R R
= Xis + li.Ox;s ++Is

6z/ _ M:_c [ 15]

( 'i_ a@v_+ # R6t::I _ M¢is [ 16]

These equations can be presented in matrix form and the matrices are called transfer matrices. As
can be seen from this matrix, a correction to account for the shear dctormation effect has also been
included. The terms of this correction factor are explained below

li [17]
GNt ai"Gi.sf i

a, = area of section i
G, = shear modulus of section i

[(7. + .6u)(1. + dr2) 2 + (20. + 12.u)dr 2]
sy;= [l_]

[6.(1. + 1_)(11. + dr2) 2]

/l is poissons ratio = E,/2G;- 1
dr, is the diameter ratio = irmer diameter/outer diameter

MODIFICATION FOR SENSOR NON-COI.OCATION

Due to sensor non-colocation, at the station representing the beating location, equations
[3.1] and [3.2] are modified as follows

v_ ':_ [l,q= I/xic + mico2Xic - h_Xic,,,, - C_,wXls,,,, + FXQ + ax mFz_2

,n ,L [2_I]1,xis = l/x_s + C:°xic,,_ + rn:'a2X_s - Ktxis,,, + FXSi - ay:n# "2

The beamag stiffness is multiplied by the deflection sensed at the sensor location instead of the ac-
tual deflection at the bearing.

ALGORITIIM FOR MODIFICATION DUE TO SENSOR NON-COLO(;A'I'ION

The modification in the point matrix for the beating station, due to the sens _r non-colocation has
already been discussed, tlowcver a straight forward sweep of the rotor is p _ssible only in certain
cases of sensor location. Upon examination, three cases of sensor location elative to the bearing
location can be listed.

1. One sensor before the bearing

2. One sensor after the bearing

3. Two sensors, one each on either side of the bearing.

Case 1
For case 1, the sensor deflections are saved in the sweeping process and tl _n used at the bcam_g
station, The sweeping process is straightforward. Refer figures 3.

Case 2

In tiffs case, since the sensor comes after the bearing, the sensor dctlection:, are not known when
the sweeping process reaches the bearing, l'hus the sensor detlcctions arc assumed to be some ar-
bitrary value. Generally, the deflections at the station before the bearing are used as these arbitrary
values. The sweeping process is then continued until the sensor location is reached, t lerc a
comparison is made between the assumed sensor deflection and the sensor deflection calculated by
the sweeping process. If the two quantities agree to within a cert,-fin margin of error, the sweeping
process is continued from the sensor station onwards. If the two quantities do not lie within the
error margin, the program iterates back to the bearing location and uses the sensor detlections cal-
culated by the current sweeping process. These sensor deflections are used, as explained before, in
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the bearing station point matrix calculations anti the sweep process is continued. This leads to a
series of iterations between the beating station and the sensor station and these iterations are con-
tinued unlil the sensor deflections used at the bearing station agree with the cnsor dctlections cal-
culated at the sensor station by tile sweeping process, i.e. convergence is obt: recd. refer figures 3.

C ,'Lse 3

With two sensors, one each betore and after the bearing, the case can be split _p into two cases one
resembling case one and the other resembling case two. Refer tigurcs 3. W ,on the sensor bcfo_c
the bearing is reached, the sensor detlcctions arc saved. These are used, the irst time the bearing
location is reached. The sweep process is then continued and the sensor afl r the bearing is dealt
with in a manner similar to case two.

DISCUSSION OF TIlE CONVERGENCE PROCESS

To aid the process of convergence to the correct values of sensor dctlcctio is, the Taylors series
convergence technique in two variables was used. This method was the m ,st suitable one since
there is cross-coupling between the stiffness azad damping terms. I lowcver, due to the very low
magnitude derivatives involved, the convergence process t_ai/s and leads tc divergence from the
correct solution.

When the cross-coupling of the stiffness and damping terms was ignored, and the Secant method

of convergence was used to converge on the sensor dctlections along the t_vo axes independently,
the algorithm converged with diminishing oscillations, ltowevcr the numbm of iterations required
were more than those required, when no convergence algorithm was used.

"lhus simply using the sensor deflections obtained from the sweeping proce,_, back at the beating
location, gave the fastest convergence. Ret_r table 1.

MODIFICATION TO SEPARA'IE GYROSCOPIC STIFFNESS FR_)M TRANSVERSE
STIFFNESS

When the rotor is subjected to an external vibrational force assuming no ur balance to be present,

the gyroscopic stiffness will depend only on the rotor spinning,speed and nct on the frequency of
excitation. Considering the rotor spinning frequency to be s , equation, [3.3_1 az_d[3.4] are
modified as follows

Mj._,: = MLc + co(sip- wl,v)Oxi c [21]

R L _(slp _olr)Oxi s [22]M_';,_= .'_1_i_+

Itere _ is the frequency of excitation.

COMPARISON OF TilE RESULTS OF TIlE 2 MASS ROTOR SYSTEM, FOR TIlE
JEH-COTI" MODEL AND TIlE TRANSFER MATRIX METllOI)

The results of the 2 mass rotor system as obtained by the Jefl'cott Model program have already been
shown mid discussed in part 1 of this paper. The same rotor syslem dala was used with the modified
transti:r matrix method program, so as to compare the rcsuhs with tire .h:ll_:ott model and thus

validate the correctness of the moditications. The Jcflcott model is important, but because of its
simplicity, its results arc of limited use. Also it does not model a COml,lcx rotor system composed
of many disk masses and possibly ditfercnt shaft cross-sections along the wtor length, t lence, it is
the transfer matrix method lhat is more useful tor application purposes, arlt] the .]et]'cott model will
serve tor the purpose of comparison only.

Tables 2 and 3 give the comparison between tire two programs. As can b: seen from the tables,
there is a fairly close agreement between the results obtained fi-om the two pr,,gra,n_,. The agreement
in the critical frequency values is much better than that bctwccn amplitude values and again, am-
plitude values agree better than phase angle values. This is because, the critic. 1 fl-cqucncics of a rotor
system depends mostly on its mass and stiffness properties, both of which are accounted for in a

similar manner in the two pro m'ams. The amplitude and phase angle wducs show geater disagree-
ment due to the fact that the Jcffcott code assumes a sine-wave shape for tb mode shapes and this
assumption is only an approximation of the actual mode shape. It can be st 'n from the tables, that
the Jeffcott code underestimates amplitude values in most cases. Also, a_,,plitude values show a
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higherdisagreementwhena constantforceexcitationis appliedinsteadof an unbalanceforce
excitation.

THE EIGIIT STAGE CENTRIFUGAL COMPRESSOR ROTOR SYSTEM MODEL

To obtain a more realistic idea of the influence of sensor position, an eight stage centrifugal
compressor rotor system was used with the transfer matrix code. This rotor system is illustrated in
figure 4 and its design parameters are given in table 4.
The program was run with all the four cases of sensor positions, namely sensor colocation, inboard
sensors, outboard sensors and two sensors on each side of the bearing, a values of -0.18, 0 and 0.18
were used, as is indicated by the sensor locations.

RESULTS OBTAINED FROM TIIE EIGIlT STAGE COMPRESSOR ROTOR SYSTEM

The results obtained from the eight stage compressor rotor system arc summarized below and il-
lustrated in figures 5 to ! 1.

The first mode critical frequency increases as the sensor is moved from the direction of the
outboard location in the direction of the inboard location. This is in agreement with the results
obtained from the two mass rotor system.

. A significant difference between these plots and those of the two mass model, is the hi,,_aer
amplitudes exhibited by tim compressor rotor system when the sensors are moved inboard.
To verify this deviation, an approximate two mass model of the compressor rotor system was
run with the Jeffcott program. The results obtained with this approximate model arc shown
in figures 7 and 8, and show agreement with the results obtained by the transfer matrix program
with the compressor rotor system data as input. The reason fbr this behaviour will become
clear when the mode shape shown in figures 9 is examined.
The deflection at the sensor location is less compared to the deflection at the bearing location.
l)ue to this, a lesser stiffness and damping fi)rce is applied at the bearing location and this leads
to higher amphtudes of the rotor system. For a cerlain inboard sensor location, the detlection
at the sensor location is reduced to zcm and tiffs condition will produce the largest amplitudes
in the rotor system. The peculiar first mode shape that produces this phenomenon is simil:,r
to that observed in the ttfird mode, and seems to be the result of the high bearing damping
values. It has been observed that as sensors arc moved inboard, the first critical frequency i_-
creases and the third critical frequency decreases. This is shown in figm'e 1(). lligh bearing
damping may bring the first and third critical fi'equcncies together in such a case and thu._
produce a first mode shape similar to the third mode shape.

. Additionally, it was observed that when tile mass ralio was increased, the maximum amplitudes
occurcd with inboard sensor locations nearer to the bearing location. Refer ligures 11. This
can also be explained from the plots of the/node shapes. The maximum amplitude is obsen'ed
when tile detlection at the sensor location is zero. In such a case, the stillness and damping
forces at the bearing location are reduced to zero and the rotor system essentially exhibits
free-free vibration. Due to tiffs, the deflection along the rotor longitudinal axis will depend only
on the mass distribution of the rotor system and not on the bearing stiffness and damping. A
higher mass ratio means greater mass at the bearing location and therefore, lesser deflection in
free-free vibration than that at midspan. In such a case, the point of zero deflection occurs
nearer to the bearing location and a scnsor placed at this point will produce the maximum
amplitude of vibration of the rotor systcm.

CONCLUSIONS

The modification of the rotor dynamics codes to account for sensor non-colocatiov show a definite
change in the vibrational characteristics when the sensors are n-toyed away from the bearing lo-
cation. The following conclusions can be drawn from this research:

. The first mode c,'itic_d fi'equency increases as the sensor is moved from the outboard to tile
inboard direction. This is due to the fact that for the first mode, the sensors sense a greater
deflection as they move inboard and away from the bearing location. This increases the cfl'cc-
live stillness of the active magnetic bearing and results in higher critical frequencies. Because
of this effect, it is possible to bypass the first critical by using thc inboard sensors while starling
the rotor and when the rotational frequency nears the first critical, switching to the outboard
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sensors.ThishasbeensuggcstcdbyKeesee[3]. Thchighercrilicalfiequcnciescanbchandled
similarly.

,

.

.

The amplitudes at the first critical will be higher with outboard sensors and decrease as the
sensors are moved inboard and away from the beating, ltowevcr, this is not true in certain
cases where tile first and third mode coincide. In such a case, the amplitudes at the first critical
increase as the sensors arc moved inboard upto a certain point and then decrease again. lhe
reason for such behaviour can be traced to the presense of high d:unping values along with the
condition of inboard scnsors. The behaviour of the critical frequencies and amplitudes, with
regard to changes in the sensor position, can be predicted by examining the mode shape of the
rotor shaft at or near the critical frequencies.

The results indicate a fairly close agreement between the Jeffcott model aJ_d the transfcr matrix

model. The comparison indicates greater differences in amplitude values compa,ed to criticaI
frequency values and greater deviation in phase angle values compared to amp[itude values.

The behaviour of the rotor system, with respect to changes in sensor location, does not indicate
any significant deviation when a constant force excitation is used instead of an unbalance force
excitation.

, The effect of sensor location on In'st mode critical frequency increases with higher stiftiwss ra-
tios. This has been explained in the second chapter, lligher mass ratios lead to incrcased
damping effects in the tlfird mode and hence lower the amplitudes considerably.

The following recommendations can be made for future work in this area:

The transfer matrix model modified tbr this work, does not consider the efliect of pedestal
stiffness and damping, ie it assumes a rigid toundalion. The program can easib be modified to
take this factor into account.

.

.

Yhe existing transfer matrix code can only handle circular synchronous rolati,m of the rotor
system. It can be extended to analyse non-circular and non-synchronous motion of the shaft.

The constant force excitation in the transfer matrix program is applied as a tbtce function, di-
rectly on the joum_d mass. The behaviour of the rotor system, when the cons_anl R_rce
excitation is applied as a displacement function, and on the bearing or pedestal mass, needs to
bE investigated.

. 'lhe modified transfer matrix code assumes that no couplings are present in the rotor lonb_-
tudinal cross-section. The code can be modified tor the presence of a coupling, which then,
would only transfer displacements anti shears across the connection, but would not transfer the
moments.
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Figure 4. The eight stage centrifugal compressor rotor system
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2 MASS MODEL, UNBALANCE EXCII'ATION, M = I, K = 2, ALPIlA = 0.3
FREQ = 130 HZ, CONVERGENCE TO XC, TRUE S()I.UTION = 7.649442

No. of Tayh)r's series

Iter. Convergence

I 3.500004
2 8.051951
3 7.737319
4 7.581234
5 7.849375
6 3.625942
7 69.54724
8 -959.629
9 15109.55
10 -235777.3
I I 3681287.0
12 ---
13 ---
14 ---
15 ---
16 ---
17 ---
18 ---
19 ---

% Diff. from
true Soln.

.54.24
-5.26
-I.15
0.89
-2.6!
52.60
-809.2
12645. I
- 197425
308238 I
-48124809

.-°

--°

Secant metluxl

Convergence

3.5OOOO4
8.05t95!
7.737319
7.93081 I
7.605373
7.642738
7.655252
7.65003O
7.649057
7.649363
7.649458
7.649447
7.649434
7.649441
7.649443
7.649442
7.64944 I
7.64944 I
7.649442

% Diff. from
true Soln.

54.24
-5.26
-I.15
-3.68
0.576
0.088
-0.076
-0.0i)77
0.0050
0.00 I
-0.0002 I
-0.00(i065
0.000 i
0.000013
-0.00(10 ! 3
0.0
0.000013
0.000013
0.0

Simple
Iteration

3.500004
8.05195 !
7.737319
7.628863
7.648726
7.650135
7.649398
7.649425
7.649445
7.649442
7.649442
7.649442
7.649442
7.649442
7.649442
7.649442
7.649442
7.649442
7.649442

% Diff. fl'om
true Soln.

54.24
-5.26
-!.15
0.27
0.0094
-0.009 I
0.00058
0.00022
-().()()()04
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

Table I. Comparison of different convergence schemes
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FIRSTMODE, UNBALANCE EXCITATION, M = 1, K = 2, BEARING/(.MIDSPAN)

= -0.2

Critical Frequency
Amplitude
Phase Angle

= 0.0

Critical Frequency
Amplitude
Phase Angle

= 0.2

Critical Frequency
Amplitude
Phase Angle

Jcffcot t Code

32.167 / (32.167)
2.285 / (4.425)
103.48 ] (102.57)

35.333 ] (35.333)
1.408 ] (3.401)
90.214 / (88.398)

40.333 / (40.333)
0.539 / (2.281)
92.571 / (86..391)

Transfer matrix
Code

32.167 / (32.167)
2.302 / (4.482)
86 / (85. I)

35.333 / (35.333)
1.408 / (3.402)
91.6 / (89.8)

40.167 / (40.000)
0.571 / (2.310)
1t)4.1 / (81.8)

% Difference

0 / (0)
-0.74 / (-!.29)
16.89 / (17.03)

0 / (i))
0 / (-0.1)3)
- !.54 / {- 1.59)

0.41 / (I).83)
-5.94 / (-1.27)
-12.45 / (5.31)

Table 2. Comparison of the results of the 2 mass rotor system_ fi_rthe Jeffcott model and the transfer
matrix method
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FIRSTMODE, CONSTANT FORCE EXCITATION, M = I, K = 2, BEARING/(MII)SPAN)

= -0.2

Critical Frequency
Amplitude
Phase Angle

= 0.0

Critical Frequency
Amplitude
Phase Angle

= 0.2

Critical Frequency
Amplitude
Phase Angle

Jeffeott C{alc

32.167 / (32.167)
4.577 / (8.896)
104.24 / (!04.24)

35.333 / (35.333)
3.045 / (7.352)
90.214 / (90.214)

40.333 ] (40.333)
1.335 / (5.643)
88.527 / (88.527)

Transfer matrix
Code

32.167 [ (32.167)
5.410 / (10.522)
86.8 / (86.8)

35.333 / (35.333)
3.262 / (7.882)
91.6 ] (91.6)

40.0(11) / (40.()I)0)
1.420 [ (5.7(19)
83.9 / (83.9)

% Difference

0 / (o)
-is.20 / (-18.2s)
16.73 / (16.73)

o / (o)
-7.13 / (-7.21)
- 1.54 ] (- 1.54)

o.83 / (o.83)
-6.37 [ (-I.17)
5.23 / (5.23)

Table 3. Comparison of the results of the 2 mass rotor system, fi_r the ,leff¢ott model and the transfer
matrix method
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ROTOR SYSTEM PROI'ERTY SI |YNITS ENGLISIt I%NITS

Total rotor length 1879.6 mm 74.0 in

l)istance to bearing I centerline 304.8 mm 12.0 in

Distance to sensor at bearing 1:

Outboard sensor

Inboard sensor

190.5 mm

419.1 mm

Distance to bearing 2 centerline 1574.8 mm 62.0 in

Distance to sensor at bearing2."

Inboardsensor

Outboard sensor

I460.5 mm

1689.1 mm

57.5 in

66.5 in

Mid-span diameter 177.8 mm 7.0 in

Journal diatneter 177.8 mm 7.0 in

Journal length 254.0 mm 1_i:0 in

Total rotor weight 2.9.5 KN 663.2 lbI

Reaction at bearing 1

Reaction at bearing 2

1.41 KN

1.54 KN

317.0 ibf

346.2 lb t

,11

"Fable 4. Data for eight stage centrifugal rotor system model
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