N91-21348

Experiments for Electromagnetic Levitation in Microgravity

R. Willnecker German Aerospace Research Establishment DLR, Div. Projects and Microgravity/PM, 5000 Cologne 90, FRG

and

I. Egry Institute for Space Simulation, DLR, 5000 Cologne 90, FRG

Containerless Processing is a promising research tool for investigating the properties of undercooled melts and their solidification. For conducting samples RF-electromagnetic levitation offers the possibility to obtain large undercoolings by avoiding heterogeneous nucleation at container walls.

On earth, however, strong magnetic fields are needed to compensate the gravitational force which imposes a lower limit on the available temperatures and on the accessible undercooling range. Under microgravity conditions the magnetic positioning fields can be minimized and hence, undercooling becomes feasible under ultra high vacuum conditions and lower temperatures become accessible.

In contrast to other undercooling and solidification techniques, electromagnetic levitation allows for diagnostic measurements during the early steps of nucleation and phase selection. Experiments cover a wide field of research topics: nucleation, directional solidification at a high velocities, generation of metastable phases, evolution of microstructures, properties of undercooled liquids. Examples from these classes including experiments selected for the IML-2 mission will be discussed with emphasis of technical requirements. An overview will be given on the German TEMPUS (Electromagnetic levitation facility) program.

EXPERIMENTS FOR ELECTROMAGNETIC LEVITATION IN MICROGRAVITY

- 1) 2) R. Willnecker , I. Egry
- 1) German Aerospace Research Establishment DLR, Code PT-PM1, 5000 Cologne 90, FRG
- 2) Institute for Space Simulation, DLR, 5000 Cologne 90, FRG

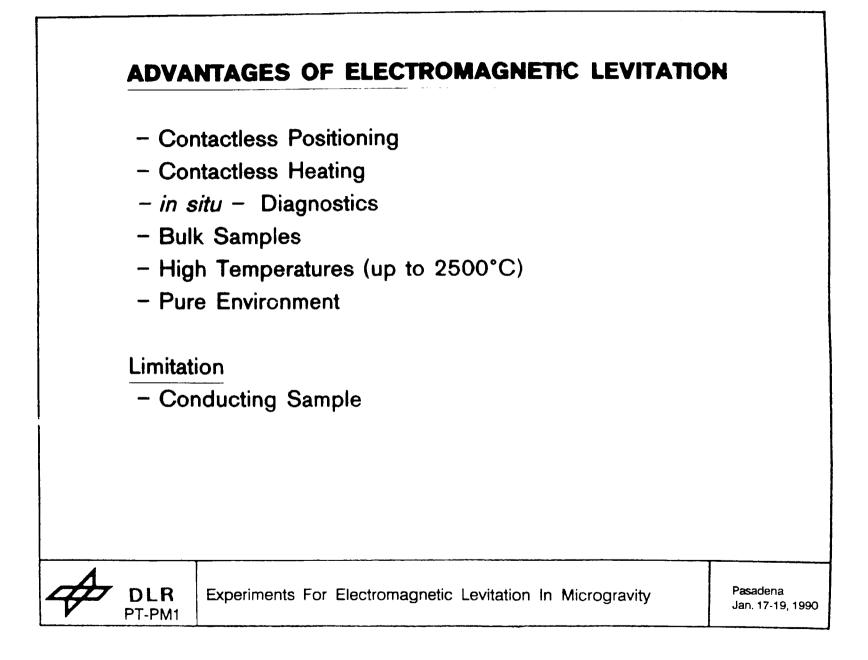
Workshop on Containerless Experimentation in Microgravity Pasadena, January 17 - 19, 1990

Experiments For Electromagnetic Levitation In Microgravity

Pasadena Jan. 17-19, 1990

Experiments for Electromagnetic Levitation in Microgravity

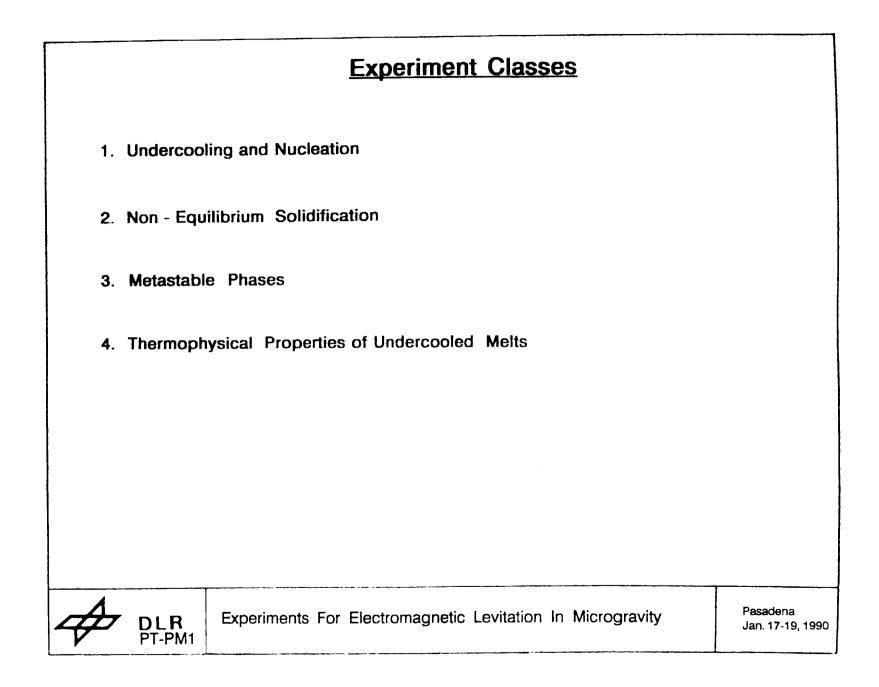
R. Willnecker, I. Egry (DLR)

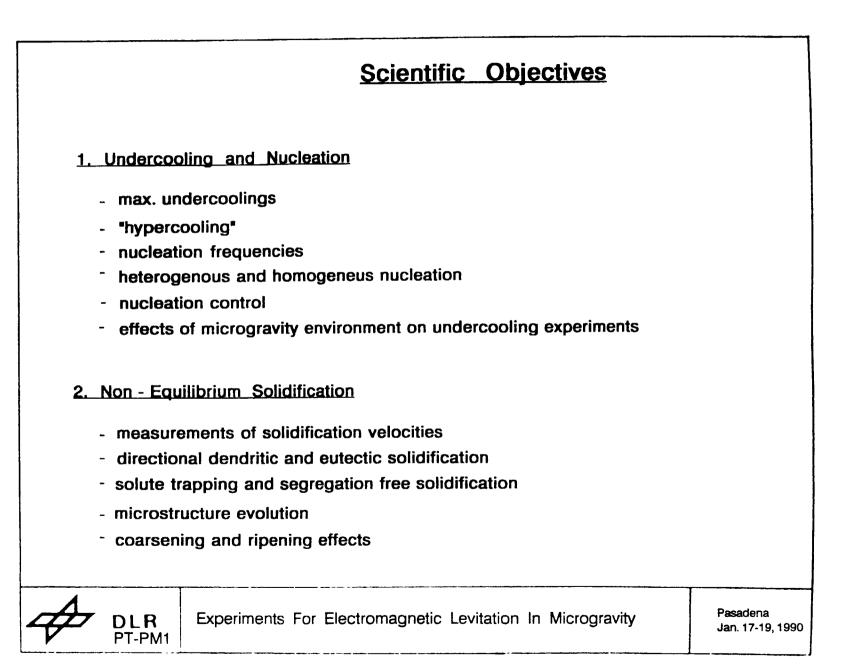

INTRODUCTION

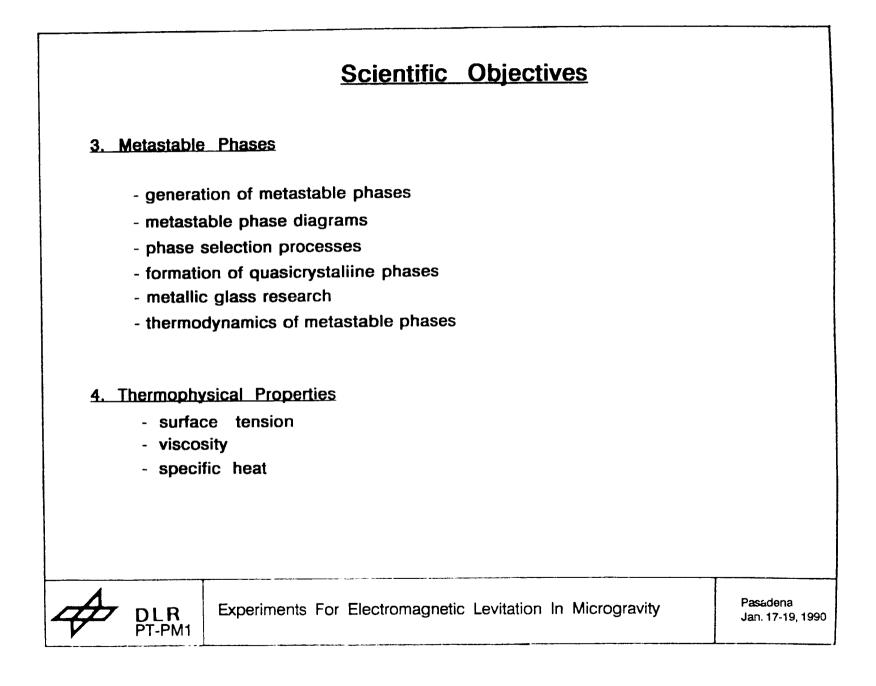
- General Aspects of Electromagnetic Levitation Techniques
 Advantages of Experiments under Microgravity
- **o** Experiment Classes and Scientific Objectives
- o Scientific Hardware Requirements
- o TEMPUS Development Program

Experiments For Electromagnetic Levitation In Microgravity

Pasadena Jan. 17-19, 1990


ADVANTAGES OF ELECTROMAGNETIC LEVITATION UNDER MICROGRAVITY


- Less R.F. power necessary for positioning
- Separation of positioning and heating
- Investigation of low melting metals
- UHV environment
- No shape deformation
- Reduced magnetic damping
- Stirring effects will be considerably weaker



Experiments For Electromagnetic Levitation In Microgravity

Pasadena Jan. 17-19, 1990

Experiment Hardware Requirements

 $^{-8}$ UHV \leq 10 mbar, pure inert gases

Generic Requirements

Pure Environment

Two Frequency Generators

Stable Sample Positioning

two coil system tunable input power 0-100% stable against 10⁻² g damped rotations and oscillations

Evaporation Shielding

Specific Requirements

	Nucleation	Growth	Metastable Phases	Properties
Pyrometry	<u>≤</u> 1,s; < 2570 C	<u><</u> 1 μs; = 90	≤ 1 s; ≥ 400 C	#
Power Modulation				10 W/s
Nucleation Trigger		#	#	
Video System		≤ 500 Hz		\leq 200 Hz; top and side view
Quenching Device		#	#	
DLR PT-P M 1	Pasadena Experiments For Electromagnetic Levitation In Microgravity Jan. 17-19, 19			

TEMPUS DEVELOPMENT PROGRAM					
STEP O: - Pre-Developments	Since 1983	DLR nst. for Space Simulation			
STEP 1: - Laboratory-type Model o KC-135 Tests o coil development o ground support program (TEXUS) o temperature diagnostics (contamination study) o user support program (IML-2)	3/86 - 11/87 11/1987, 5/1988 -1989 1988 1989/1990 1990 - 1993	Contractor: Dornier			
STEP 2: - TEXUS-Model Facility Test / Scientific Experiment First Mission - Spacelab Model Phase B	5/1987 - 6/1989 4/1989 6/1988 - 3/1990				
STEP 3: - Spacelab Model Phase C/D o First Mission : IML-2	4/1990 - 1/1992 Jan. 1993				
DLR PT-PM1 Experiments For Electromagnetic	Levitation In Microgravi	ty Pasadena Jan. 17-19, 1990			

PI	Affiliation	Title		
Bayuzick	Vanderbilt Univ.	"Effects on Nucleation by Con- tainerless Processing in Low Gravity"		
Flemings	MIT	"Alloy Undercooling Experiments"		
Szekely	MIT	"Measurements of the Viscosity of the Undercooled Melts Under the Conditions of Microgravity and Supporting MHD Calculations"		
Johnson	California Inst. of Technology	"Metallic Glass Research in Space"		
Egry	Inst. for Space Simulation, DLR	"Viscosity and Surface Tension of Undercooled Melts"		
Herlach	Inst. for Space Simulation, DLR	"Non-Equilibrium Solidification of Largely Undercooled Melts"		
Urban	Inst. for Solid State Research, KFA Jülich	"Structure and Solidification of Largely Undercooled Melts of Quasicrystal-Forming Alloys		
N.N.				
DLR PT-PM1	Experiments For Electroma	agnetic Levitation In Microgravity	Pasadena Jan. 17-19, 1990	