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A20kHzsingle-axisacousticpositionerisusedtolevitateaqueous-solutiondrops(volumes<
100micro-liters).Dropevaporationratesaremeasuredunderambient,isothermalconditionsfor
differentrelativehumidities.

Acousticconvectionaroundthelevitatedsampleenhancesthemasslossoverthatduetonatural
convectionanddiffusion.Atheoreticaltreatmentofthemassflowisdevelopedinanalogyto
previousstudiesoftheheattransferfromasphereinanacousticfield.

Predictionsoftheenhancedmassloss,intheformof Nusselt(Sherwood)numbers,are
comparedwithobservedratesofdropshrinking.

TheworkispartofanESAstudyoncrystalgrowthfromlevitatedsolutiondrops.
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DROP EVAPORATION IN A SINGLE-AXIS ACOUSTIC LEVITATOR

APPLICATION BACKGROUND: (LABORATORY AND MICRO-G CONDITIONS)

- ESA STUDY ON CRYSTAL GROWTH FROM I FVITATED-SOLUTION DROPS
- LARGER AND BETTER SINGI I::CRYSTALS IN CONTAINERI FSS

PROCESSING

SAMPLE AND ENVIRONMENTAL CONDITIONS:

- WATER SOLUTIONS OF INORGANIC AND ORGANIC MATERIALS

(PROTEINS), ALSO OTHER SOLVENTS
-DROPSIZE:10uI<V<100ul (2.5mm<d <6mm)

- ENVIRONMENT: AIR AT AMBIENT PRESSURE (1 atm)
TEMPERATURE: (0 C) 4 C < T < 40 C (70 C)
RELATIVE HUMIDITY: 0 < h,< 100%

- SOUND PRESSURE LEVEL (FOR l-G): 160 < SPL < 165 dB

HARDWARE FOR EXPERIMENTS:

- SINGLE-AXIS ACOUSTIC STANDING WAVE LEVITATOR (21 kHz)
- ISOTHERMAL PROCESSING CHAMBER ( T = +/- 0.1 K)
- HUMIDIFIER AND HUMIDITY SENSOR
- CCD CAMERA FOR DROP OBSERVATION AND MONITORING
- SOPHISTICATED OPTICS FOR VISUALIZATION OF STREAMING INSIDE
AND OUTSIDE OF THE LEVITATED DROP

- STERILE DROP DEPLOYMENT AND EXTRACTION
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Fig. 1 Processing chamber

1 Basic flange and housing

2 Top flange (cf Fig. 5)

3 Glass cylinder

4 Humidifier (cf Fig. 4)

5 Reflector assembly

(cf Fig. 2)

6 Transducer assembly (cf Fig. 3)

7 Humidity sensor

8 Side opening with septum

9 Sample injector

i0 Feeding tube/Manipulator
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DROP EVAPORATION IN A SINGLE-AXIS ACOUSTIC LEVITATOR

EQUATION OF MASS FLOW:

dm= _,,.A2R Dv (l_hr) (l)
dt ,*,-,swRvT

(:Is - DROP DIAMETER

Pv _VAPOR PRESSURE OF SOLVENT
Rv - GAS CONSTANT
T - TEMPERATURE
hr - RELATIVE HUMIDITY
D - GAS DIFFUSION CONSTANT

8 - BOUNDARY LAYER THICKNESS
NU - NUSSELT NUMBER (TOTAL HEAT FLOW)/(CONDUCTIVE HEAT FLOW)
Sh - SHERWOOD NUMBER (TOTAL MASS FLOW)/(DIFFUSIVE MASS FLOW)

BASIC THEORY OF DROP EVAPORATION (IN ANALOGY TO HEAT FLOW)

A FREE DROP IN AN ISOTHERMAL ENVIRONMENT AT A RELATIVE HUMIDITY, hf < 1, HAS
SATURATED HUMIDITY (hr = 1) INSIDE THE BOUNDARY LAYER. DENSITY DIFFERENCES
BETWEEN THE BOUNDARY LAYER AND THE BACKGROUND RESULT IN NATURAL CONVECTION (Nu
= Sh > 2) WHICH IS FURTHER ENHANCED UNDER ACOUSTIC LEVITATION CONDITIONS BY
STREAMING. (FIG. 2)

EQUATION (1) LEADS TO A SIMPLE NORMALIZED EQUATION FOR THE DROP DIAMETER AS A
FUNCTION OF TIME

WITH

[_- -1 -0.37t
4,0

=t/to.5 ,AND

(3)

9.25 x 10 -2 _,o Rv T 9s
to.5 = (4)

D pv (l-h,) Nu

WHERE to.5 IS THE TIME REQUIRED FOR A DROP TO SHRINK TO 50% OF ITS INITIAL VOLUME.

THE REFERENCE TIME, to.5 , (EQUATION (4)) CONTAINS KNOWN TEMPERATURE
DEPENDENT PROPERTIES OF THE SOLVENT. THE ONLY UNKNOWN IS THE NUSSELT (OR

SHERWOOD) NUMBER.

to.5 [hr]- 24 d2s.o IT1-0"94 e-19.7(l-_--)

Nu l-hr _To!

for H20 drops in air
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SOLUTION DROPS

WHEN THE DROP CONTAINS A "SALT" SOLUTION, WITH CONCENTRATION Ca , AND THE
PROCESSING CHAMBER CONTAINS A LIQUID RESERVOIR WITH THE SAME SOLUTION BUT A
LARGER OR SMALLER CONCENTRATION, coo , THAN EQUATION (1) HAS TO BE MODIFIED BECAUSE
THE VAPOR PRESSURE (HUMIDITY) IN THE DROP BOUNDARY LAYER, c, , AND IN THE
ENVIRONMENT ARE REDUCED ACCORDING TO RAOULT'S LAW. (FIG.3)

THE NORMALIZED DROP DIAMETER, ds = ds / ds.0 , AS A FUNCTION OF THE NORMALIZED TIME

IS GIVEN BY

2ds d (ds) _ -0.37 1-h,c______dt

1- Cads3 1-hr,o

(5)

WITH h r(c-) BEING THE RELATIVE HUMIDITY OF THE "SALTY" BACKGROUND. FIG. 5 SHOWS THE

SHRINKING CURVES FOR DIFFERENT CONCENTRATION RATIOS, ca / c-, AND INDICATES LIMITED

DROP SHRINKING FOR Ca / co. < 1 AND LIMITED DROP GROWTH FOR ca / c- > 1 RESULTING
FROM UMITED CONCENTRATION CHANGES INSIDE THE DROP.

to s _24 _.0 tT/-°94e-197(1-_,
[hr] Nu l-h; _Tool

1-h_ =Cs.- cf fig. 3

NUSSELT NUMBER MODEL

BECAUSE OF THE ANALOGY BETWEEN HEAT FLOW AND MASS FLOW OF A LEVITATED SAMPLE, WE
CAN REFER TO THE EXTENSIVE THERMAL INVESTIGATIONS BY C.P. LEE AND T. WANG [1] AND BY
E. LEUNG [2]. THESE AUTHORS FOUND AN EXPERIMENTALLY PROVEN CONNECTION BETWEEN
THE NUSSELT NUMBER, Nu, THE GRASHOF NUMBER, Gr, (THE RATIO OF BUOYANCY AND
VISCOSITY EFFECTS) AND THE EFFECTIVE REYNOLDS NUMBER, Re, OF A LEVITATED SAMPLE
RESULTING FROM FORCED CONVECTION IN THE ENVIRONMENT ARROUND THE SAMPLE. (FIG. 5)

FOR RELATIVELY LARGE SPL AND RESULTING REYNOLDS NUMBERS, E. LEUNG FOUND AS A GOOD
APPROXIMATION FOR THE HEAT FLOW (FIG. 6),
FOR 10 < Re < 50

Nu = 2 +e A. Gr B

WITH
AND

A = -0.72 + 0.46 In(1 + Re)
B = 0.25 - 0.015 In(1 + Re).
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Figure 3 Required undercooling and salinity of the fluid reservoir

for subsaturated humidity in ;he processing chamber at 20"£.
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GRASHOFF NUMBER MODEL

THE GRASHOFF NUMBER FOR A SOLUTION DROP WITH SATURATED VAPOR IN ITS BOUNDARY
LAYER LEVITATED IN AN ISOTHERMAL ENVIRONMENT OF A RELATIVE HUMIDITY OF hr < 1, CAN
BE EXPRESSED AS

Gr = d2 _ l-h.___g
p_ V 2

ds- SAMPLE DIAMETER

p., Ap _AMBIENT GAS DENSITY,
EXCESS DENSITY IN BOUNDARY LAYER

hr- RELATIVE HUMIDITY OF GAS
v - KINEMATIC VISCOSITY

g - GRAV. ACCELERATION (g = 9.81 m/s )

FOR WATER DROPS IN AIR THE GRASHOF NUMBER CAN BE APPROXIMATED BY

Gr = 208 class(1 - h,) e_T)T

WITH ct = 0.058 (1 - 0.0033T) AND ds MEASURED IN cm.

DISCUSSION OF EXPERIMENTAL RESULTS

WHEN INSERTING TYPICAL REYNOLDS NUMBERS, Re, FOR WATER DROPS WITH DIAMETERS
BETWEEN 2 AND 6mm, LEVITATED IN AMBIENT AIR AT 20 KHZ (TABLE 1), WE FIND NUSSELT
NUMBERS BETWEEN 5 AND 10 DEPENDING ON DROP DIAMETER d, RELATIVE HUMIDITY, h, ,

TEMPERATURE, T, AND SPL (OR LEVITATION SAFETY FACTOR, t_ ). FOR CONSTANT LEVITATION
SAFETY FACTOR, ¢,, Nu INCREASES LINEARLY WITH T AND d.

FIGURE 7 SHOWS A TYPICAL DROP SHRINKING CURVE MEASURED AT 20 C AND A RELATIVE
HUMIDITY OF ABOUT 80%. IN THE DISCRETE RANGE BETWEEN 2 AND 3 mm, THE CALCULATED
NUSSELT NUMBER IS Nu = WHICH DIFFERS BY A FACTOR OF 1.3 FROM THE MEASURED
VALUE; IT MAY RESULT FROM UNCERTAINTIES IN THE HUMIDITY MEASUREMENT.

WHEN THE DROP DIAMETER, TEMPERATURE, SPL, AND RELATIVE HUMIDITY ARE ONLY
SLIGHTLY VARIED DURING A MEASUREMENT THE NUSSELT NUMBER CAN BE ASSUMED
CONSTANT. IN THIS CASE IT IS POSSIBLE TO PREDICT THE RELATIVE SHRINKING TIME,to s,
(EQUATION 4), FOR A GIVEN ACCURACY OF THE MEASURED HUMIDITY,h,, AND TEMPERATURE,
T.
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