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Abstract

The increasing use of digital engine control allows

significant improvement in the performance of aircraft

engines. This improvement can be achieved by the

use of sophisticated control algorithms designed to re-

cover the full performance potential of the propulsion

system. The NASA Ames Research Center, Dryden

Flight Research Facility; McDonnell Aircraft Com-

pany; and Pratt & Whitney are in the process of de-

veloping and flight testing a performance seeking con-

trol (PSC) system on the NASA F-15 research aircraft

to optimize the near-steady-state performance of the

F100 turbofan based propulsion system. The paper is a

preliminary evaluation of the engine parameter estima-

tion algorithm which is the primary adaptive element

of the PSC algorithm. An evaluation has been made

using flight data from the F- 15 airplane. The flight data

presented were obtained at Mach 0.90 and 30,000 ft

and at three throttle positions, one of which was at

intermediate power. Based on the theoretical formu-

lation and the limited evaluation using flight data, it

appears that this estimation algorithm can provide rea-

sonable estimates of an extended set of engine vari-

ables needed for advanced propulsion control law de-

velopment. However, it must be noted that conclu-

sions drawn from this investigation are not strong be-

cause of a lack of independent flight measurements of
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many of the variables being estimated. Additional sen-

sors or independently derived estimates of many of the
extended variables are needed to firmly establish the

validity of the estimation algorithm.

Nomenclature

A state matrix

AAHT high pressure turbine area adder

deterioration parameter, in2

AJ nozzle throat area, in2

AJE, FF effective nozzle throat area, in2

Ames-Dryden Ames Research Center, Dryden

Flight Research Facility

B control matrix

BLD bleed air, lb/sec

C state observation matrix

CEM compact engine model

CIVV compressor inlet variable guide

vane angle, deg

D control observation matrix

DEEC digital electronic engine control

DEHPT high pressure turbine deterioration

parameter, percent

DELPT low pressure turbine deterioration

parameter, percent

DNOZ nozzle drag, lbf

DRAM ram drag, lbf

DWFAN fan airflow deterioration parameter,

lb/sec



DWHPC

EMD

F

FG

FNP

Hp

HIDEC

HPX

K

Ni

N2

P.,nb

PB

PLA

PS2

PSC

PT

RCVV

SMF

SMHC

SSM

SVM

TMT

TT

WCFAN

WCHPC

WF

t$

X

Y

Subscripts

b

high pressure compressor airflow

deterioration pararncter, lb/sec

engine model derivative

steady-state model sensitivity matrix

gross thrust, lbf

net propulsive force, lbf

pressure altitude, ft

highly integrated digital engine
control

horsepower extraction, lb/sec

steady-state Kalman gain matrix

fan rotor speed, rpm

compressor rotor speed, rpm

ambient pressure, lb/in 2

burner pressure, lb/in 2

power lever angle, deg

static pressure at engine face, lb/in 2

performance seeking control

total pressure, lb/in 2

mar compressor variable vanes, deg

fan stall margin

high pressure compressor stall

margin

steady-state model

state variable model

composite metal temperature

total temperature, °F

fan airflow, lb/sec

high pressure compressor airflow,
lb/sec

gas generator fuel flow, Ib/hr

control vector

state vector

vector of estimated engine variables

in the steady-state model, and
vector of measured variables in

the state variable model

predicted trim values, interpolated
from tables

c corrected

m measured

ot angle of attack, deg

fl angle of sideslip, deg

Superscript

^ estimated value of variable

Prefix

A perturbation

Suffix

RES Kalman filter residuals

Suffix, F100 engine station numbers, ref. Fig.1

fan inlet

compressor inlet

compressor discharge

high pressure turbine inlet

low pressure turbine inlet

afterburner discharge inlet

nozzle throat discharge

2

2.5

3

4

4.5

6
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Introduction

The increasing use of digital engine control has

opened up the possibility of significantly improving

the performance of aircraft turbofan engines. This im-

provement can be achieved by the use of control al-

gorithms designed to recover the full performance po-

tential of the propulsion system. These control algo-

rithms need accurate models of the system and esti-

mates of unmeasured parameters that can be used ef-

fectively in a real-time environment over an extended

operational envelope. Variations in manufacturing tol-

erances and the uncertainty associated with engine de-

terioration and other off-nominal behavior of gas tur-

bine components over time significantly increases the

difficulty in developing accurate models.

The Air Force has considerable interest in devel-

oping performance seeking control (PSC) technology

with the intent of applying it to advanced fighter de-

signs and has funded an independent PSC study) Fa-

vorable results from this study support further research

into adaptive optimization algorithms. NASA has a

history of supporting the development, flight test, and



evaluationof propulsion system improvements. The

F-15 flight research program started in the early 1980's

by implementing a digital electronic engine control

(DEEC) 2,5 followed by flight test of an F100 en-

gine model derivative (EMD), 3 and most recently im-

plementing a highly integrated digital electronic con-

trol (HIDEC). 4,6 As an extension of previous NASA

propulsion programs and the Air Force PSC study,

the NASA Ames Research Center, Dryden Flight Re-

search Facility (Ames-Dryden) contracted for the de-

velopment of a PSC system on the NASA F-15 re-

search aircraft to optimize the near steady-state perfor-

mance of an F100 based propulsion system. This sys-

tem is approaching flight test at NASA Ames-Dryden.

The development of the PSC algorithm has required
accurate estimates of variables not normally available

on current engines. In preparation for flight test of

the NASA PSC program, the contractor developed,
Kalman filter based estimation algorithm 7 was eval-

uated by NASA with flight data obtained during a pre-

PSC flight-test phase. Only the estimation portion of

the PSC algorithm was evaluated. The estimation al-

gorithm results are significant since the estimation al-

gorithm is not limited in application to the particular

control methodology or the specific engine selected for

the NASA project. A flight data evaluation of the en-

tire PSC algorithm was not possible prior to actual im-

plementation, because of its closed-loop nature. The

algorithm was tested extensively with simulated data

during the development process. The simulation re-

sults have generally been excellent but are not pre-

sented in this paper. The investigation of this paper,

using flight data, was made based on the concern that

the algorithm may be sensitive to real world problems

that are not easily simulated. A particular concern is
that the models used in the algorithm were directly de-
rived from the same nonlinear simulation that was used

to develop and evaluate the algorithm. Additionally,

real data inevitably challenges such simplifying ana-

lytical assumptions such as the noise on the system is

white or that the engine is operating in steady state.

The parameter estimation algorithm in this paper is a

two-step process. The flight evaluation results of each

step are presented separately. In the absence of mea-

surements of many of the estimated engine variables, a

conclusive evaluation is not possible. However, com-

parisons are made for a few parameters for which re-
search instrumentation is available but are not normal

for production engine instrumentation. The flight data

presented were obtained at Mach 0.9 and 30,000 ft al-

titude and at three throttle positions, one of which was

at intermediate power.

Airplane Description

The PSC program will be implemented on the

NASA F-15 research airplane which is a high-

performance air superiority fighter capable of speeds
in excess of Mach 2. The F-15 airplane is powered by

two afterburning turbofan F100 engines. The aircraft

has been modified with a digital electronic flight con-

trol system; the excess capacity of this system is used
for the research of integrated propulsion flight control

topics. Additional information on the F-15 airplane
can be found in Ref. 6.

The F100 EMD engine used in this study is a low-

bypass ratio, twin spool, afterburning turbofan derived
from the F100-PW-100 engine. The engine incor-

porates both compressor inlet variable vanes (CIVV)

and rear compressor variable vanes (RCVV) to ob-

tain improved performance over a wide range of en-

gine operating conditions. The afterburner consists

of a 16-segment augmentor that provides continu-

ously variable thrust augmentation. The convergent-

divergent nozzle also has variable area control.

The engine is controlled using a DEEC, which per-

forms the functions of the standard F100 engine con-

troller. The DEEC provides both open-loop schedul-

ing and closed-loop feedback control of fan airflow

and engine pressure ratio. A more detailed description

of the F100 EMD engine can be found in Myers and

Burcham. 2 A diagram of the engine showing relevant

instrumentation is shown in Fig. 1. The engine instru-

mentation is sampled at 20 Hz. Only the left engine

was analyzed in this paper because it had research in-
strumentation at station 2.5 in addition to the standard

set of operational instrumentation.

Parameter Estimation Process

The parameter estimation algorithm is a two-step

process as shown in Fig. 2. The first step consists of a

Kalman filter estimation of five deterioration parame-

ters. These parameters are designed to model the off-

nominal behavior of the engine during flight. They

are the changes in efficiency of the low and high pres-

sure turbine (DELPT and DEHPT), the changes in air-

flow in the fan and high pressure compressor (DWFAN

and DWHPC), and a high pressure turbine area adder

(AAHT). The second step is based on a simplified



steady-statemodelof theenginereferredto in thispa-
perasthecompactenginemodel(CEM).In thisstep
thecontrolvectorin theCEMisaugmentedbythede-
teriorationparametersestimatedin thefirststep.The
deteriorationparametersshiftthemodelto moreac-
curatelyreflecttheactualoperatingconditionof the
engine.TheCEMthenproducesestimatesof theen-
ginevariablesneededby thefollow-oncontrollaws.
Flightmeasurementsareusedbothto lookupmodel
dataandasdirectinputsforboththeKalmanfilterand
theCEM.Thesetwostepsandtheirrespectivemodels
aredescribedindetailin thefollowingsections.

KalmanFilter Implementation

Thefirststepin theestimationalgorithmisdesigned
toidentifytheoff-nominalcharacteristicsoftheengine
whenoperatinginanearsteady-statecondition.Thisis
donebyestimatingfivedeteriorationparameterswitha
Kalmanfilter,vTheseparametersareusedtoadjustthe
subsequentCEMtomorecloselymatchthemeasured
flightdata.

Thestatevariablemodel(SVM)isusedinthedesign
andimplementationof theKalmanestimator.It is a
piecewiselinearmodelrepresentingtheentirerangeof
engineoperationat0.9Mach,30,000ft altitude,stand-
arddayconditions.It consistsof astate-spacepertur-
bationmodelandanassociatedtableof steady-state
trim valuesfor all theenginevariablesin themodel.
Thestate-spaceperturbationmodelhastheform

aS:= [Alax+[B]au
ay = [C]ax+ [D]au (i)

where

AX= _--X b

Ay= Y-- Yb

A _ = I$ -- tl b

and associated Kalman filter formulation

a:_= [A]A_ + [B]au + [K](Ay- a._)

af/= [C]A_:+ [D]au

The state vector, x, control vector, u, and measurement

vector, y, are defined as follows

N1

N2

TMT

DEHPT

DEL, PT

DWFAN

DWHPC

AAHT

WF
PT6

A JEFF
PT4

CIVV
RCVV Y = 7'7'4.5

N1
HPX

N2
BLD

There are 49 sets of A, B, C, D, and K matri-

ces corrcsponding to values of PT4 ranging from 23

to 260 lb/in 2 which accommodate the engine oper-

ating range for the flight envelope corrected to the
Mach 0.90, 30,000 ft altitude reference condition. The

SVM uses the set of matrices closest to the input

value ofPT4, with some intentional overlap of model

ranges to avoid frequent model switching when op-

erating at a PT4 close to halfway between models.

The matrix elements were derived by perturbation and

numerical differentiation of a large component-based

nonlinear aerothermal simulation of the engine devel-

oped by the manufacturer. The last five states are in-

tended to model engine deterioration. As such these

parameters should be changing only very slowly and

are modeled as locally constant, that is the last five
rows of both the A and/3 matrices are zeros.

Figure 3 is a block diagram of the Kalman filter im-

plementation. The Kalman gain matrix, K, was de-

termined in advance assuming the system to be time

invariant for near-steady-state engine operation. In de-

termining the K matrix, the measurement noise inten-

sity matrix was obtained from known engine statis-

tics. The process noise intensity matrix was assumed

to be the adjustable design parameter for the Kalman

filter. The filter operates at 8 Hz. Details concerning

the Kalman filter design can be found in Ref. 7.

The associated tables of steady-state trim values are
scheduled as a bivariate function of PT4 and PT6.

The tables are linearly interpolated over 7 values of

PT4 and 40 values of PT6. The table, also derived

from the full nonlinear simulation, consists of the pre-

dicted steady-state values of the x, y, and u vectors for

a nominal undeteriorated engine over the entire flight

envelope corrected to the design condition. These are

the zb, Yb, and ub vectors in equation (I). The perturba-

tion vectors input to the filter, A u and 6 y, are thus the



differencebctwecnflightconditioncorrectedcontrol
andmeasurementvectors,andthetrimpredictionsat
eachpointin time.Thetrim predictionsarecomputed
foreachsampleofdatainputtotheSVMusingfiltered
valuesof PT4 and PT6, therefore the reference trim

condition is constantly changing.

Values for the following measurements and control

variables are taken directly from flight data: N 1, N2,
PB, TT4.5, P6, WF, CIVV, and RCVV. Addi-

tional engine and flight parameters are used indirectly

by the Kalman filter algorithm for correcting the en-

gine data and calculating other engine variables. These

are PT2, TT2, PS2, Pamb, Mach, and PLA. The
PT4 is calculated as a function of PB and PT2. The

measured and calculated variables are corrected to the

SVM design condition of Mach 0.90 and 30,000 ft alti-

tude. Each engine variable has a correction factor that
is a function of PT2 and TT2.

Three of the inputs to the Kalman filter, bleed

air (BLD), horsepower extraction (HPX), and effec-

tive nozzle throat area (A JEFF) present special

problems. The BLD and HPX are not measured. How-

ever analysis showed that at least the effect of bleed air

was significant and needed to be explicitly accounted
for in the model. The model matrices were linearized

about an engine with no bleed or horse power extrac-

tion modeled. It was decided to explicitly include BLD

and HPX as inputs to the model using the scheduled

values of these parameters. The HPX is scheduled as

a function of N2, and BLD is scheduled as a func-

tion of Mach and altitude. While these two inputs are

known to vary from the nominal schedules, using the

scheduled values is considered preferable to ignoring

these effects. This approach allows the use of the same

models for both engine test stand data with no bleed

and actual flight data with bleed. Moreover the nomi-

nal schedules can be modified if flight test shows it to

be warranted. A theoretically cleaner but perhaps less

flexible approach would have been to derive the model

matrices about an engine with the nominal bleed and

horsepower extraction included and not have BLD or

HPX as inputs. The nozzle throat area input was also
a cause for concern. The measurement of the nozzle

area is one of the poorer measurements on the system,

in particular it is prone to measurement bias. Moreover

the models were derived for subsonic operation with-

out the afterburner. It was concluded that the model

required an effective nozzle area rather than the ac-

tual measured nozzle area. Therefore the change in

effective nozzle area input (AAJEFF) is computed

using the temperature and pressure measurements at

station 6, the measured nozzle area, and the engine
fuel flow.

Compact Engine Model

The second step in the estimation process is based

on the CEM, which is a simplified steady-state sim-

ulation of the engine used to estimate the desired en-

gine variables. The CEM consists of a linear steady-

state perturbation model, steady-state trim tables, and

follow-on nonlinear calculations. Figure 4 is a block

diagram of the CEM.

The steady-state perturbation model (SSM) is a

piecewise linear model that serves as the basis of the

CEM. It is implemented as a steady-state perturbation

model having the form

6y = [Fl,au (2)

where

Ay= Y--Yb

u and y represent the control input and measurement

vectors respectively. They are defined to be

N1
WF

N2
PT6

AJ
CIVV

PT2 .5
RCVV

PT4
HPX

TT2 .5
u = BLD Y = TT3

DEHPT
TT4

DELPT
TT4 .5

DWHPC
TT6

DWFAN
WCFAN

DAAHT
WCHPC

This modcl was also derived by perturbation and nu-

merical differentiation of the full nonlinear engine sim-

ulation at the Mach 0.90 and 30,000 ft altitude design
condition. It was translated to the sea level static stan-

dard day reference condition using standard correction

factors. The steady-state trim tables are analogous to

those used with the SVM in the Kalman filter, provid-

ing the y_ and ub vectors in equation (2). Both the SSM
trim and the matrix models are scheduled as a bivariate

function of PT4 and PT6 using linear interpolation

between model points.

5



TheSSMusesenginemeasurementsforthefollow-
ingvariables:WF, PT6, CIVV, and RCVV. As with

the Kalman filter, additional flight parameters are used

to calculate additional SSM inputs and correction fac-

tors. The HPX and BLD are again derived from sched-

ules. The measured inputs are corrected to the SSM sea

level static reference condition using correction factors
that are a function of PT2 and TT2. The Kalman fil-

ter estimates of the deterioration parameters from the
first step are input to the SSM calculation as the last

five elements of the control vector. The F matrix and

set of trim predictions are obtained for each sample
of engine data as a function of P7"4 and PT6, there-

fore the model and trim conditions may be constantly

changing. The SSM provides estimates of the follow-

ing variables at sea level static conditions: N1, N2,

AJ, PT2.5, PT4, TT2.5, TT3, TT4, TT4.5,

TT6, WCFAN, and WCHPC. These estimates

are then recorrected to the original flight condition for

comparison with flight values and for use in the subse-

quent nonlinear CEM calculations.

Following completion of the linear SSM calcula-
tion, the nonlinear CEM estimates are calculated at

the original flight condition. These variables include

PT7, TT7, FG, FNP, DRAM, DNOZ, AJ,
3 M F, and S M H C. The nonlinear calculations are

based upon both measured engine variables and SSM

estimates. They use a combination of analytical equa-

tions and empirically derived data tables. The PT7
and TT7 are calculated from the station 6 variables us-

ing afterburner heat addition and friction effects mod-

ified by afterburner efficiencies. Gross thrust is calcu-

lated as a function of the station 7 variables and overall

airflow and fuel flow. The fan stall margin is a function

of the fan pressure ratio PT2.5/PT2, N 1, and CIVV

position. The high compressor stall margin is calcu-

lated from a compressor disc pressure derived from

PT4, the estimated P7"2.5, and the RCVV position.

Maneuver Description

To evaluate how the Kalman filter would perform

in a flight environment, flight data were obtained from

the F-15 airplane. A maneuver was desired that would

simulate a small change in engine operating efficiency

at a near-steady-state flight condition. Defining such

a maneuver was not trivial since normal aircraft ma-

neuvers don't have much effect on engine operation

except by changing the flight condition or introduc-

ing inlet distortion. There was also no way to intro-

duce small perturbations to any of the standard en-

gine controls. However, the pilot can selectively com-

mand the aircraft to get its bleed air only from either

engine rather than both engines as is nominal. This

would create changes in the bleed air flow and result

in a small change in engine operation. A disadvantage

of this potential maneuver was that the bleed air flow
is not measured and thus is not known with much ac-

curacy. At the time this flight experiment was being
conducted, neither the SVM nor the SSM models had

bleed or horsepower extraction as inputs. It was de-

termined that switching the bleed air from one engine

to the other was the best way to introduce a small un-

modeled change to the engine operation to test the abil-

ity of PSC estimation algorithm to follow that change.

The resulting change in engine operation was slightly

larger than anticipated and early analysis of the results
led to the reformulation of the models to include BLD

flow and HPX as inputs to the model. The analysis in

this paper uses the current models.

The maneuver flown consisted of flying at a stabi-

lized flight condition with the bleed air coming from

both engines for approximately 1 rain, switching to

get all the bleed air from the right engine for approx-
imately 1 min, switching to get all the bleed air from

the left engine for approximately 1 min, then returning

to get the bleed air from both engines for 1 min. This

was done at Mach 0.9, 30,000 ft altitude at left engine

power lever angle (PLA) settings of 32 °, 48 °, and 83 °.

The PLA was varied to obtain a range in the PT4 and

P7"6 engine pressures. This is the model design con-
dition so modeling errors should be at a minimum here.

The basic characteristics of this flight segment can

be seen in the left engine response and control vari-

ables shown in Fig. 5. The BLD and HPX traces were

synthesized from nominal schedules. Since BLD is not

measured, the precise times of the bleed switches have

been manually estimated based on pilot call-out during
the flight and the secondary effects observed in other

parameters. The bleed trace has been set to zero when

the left engine bleed was switched off. The nominal

schedules assume that the bleed air is coming equally

from the two engines and follows the scheduled bleed

curve as a function of Mach and altitude, however,

the actual bleed flow from the two engines may dif-

fer substantially. When all the bleed airflow is coming

from the left engine, the amount of increased airflow

is indeterminate. No attempt has been made to model
this increase.



KalmanFilter Results

This section presents the Kalman filter estimates of

the deterioration parameters. The deterioration param-

eters are intermediate values in the estimation pro-

cess and have no standards for comparison. The en-

gineering meaning of these parameters is somewhat

nebulous because in addition to actual changes in en-

gine efficiency, they pick up Reynolds effects which
are not accounted for in the model, sensor biases, and

errors in the steady-state trim tables. Their primary

function in this estimation algorithm is to shift the

CEM to more closely match flight data. The only con-

crete way to evaluate the deterioration parameters is

to observe their effects on the CEM parameter esti-

mates. This will be done in the section on the per-

formance of the CEM. They will however, be pre-

sented here with some primarily qualitative discussion.

The flight segment analyzed contains two large PLA

changes (Fig. 5(a)); these changes cause substantial

model changes and large engine transients. The algo-

rithm was designed for near-steady-state operation and

as such, the filter results during the PLA transient are

in transition and should be ignored.

The data were evaluated with two bleed models. In

the first, the nominal bleed schedule was used through-

out the flight segments, including when the bleed flow

from that engine had been cut off by the pilot. This

case represents an unmodeled disturbance. The change

in bleed flow from the engine can only be detected

by the Kalman filter indirectly through changes in the

other variables. Since bleed is input as being con-

stant, the changes in engine operation caused by ac-

tual changes in the bleed should appear as a change

in the engine operating efficiency. In the second case,
the nominal bleed flow model was overridden with a

zero input when the bleed was known to be turned off.
Therefore in this case the Kalman filter model knows

about the change in bleed airflow and should accom-

modate expected changes in other variables without

changing the deterioration parameters. Recall BLD is
not a measured variable and the nominal bleed sched-

ule is only a reasonable guess, and thus is a probable

source of modeling error that will show up as changes

in the deterioration parameters. Moreover, the maneu-

ver also had approximately a l-min segment when all

the bleed air was being pulled from the left engine. As

such the bleed air taken from the engine was proba-

bly higher than nominal during that minute; however,

as reasonable numbers for how much higher are not

available the nominal bleed level was used here.

The control inputs to the Kalman filter are shown

in Fig. 6. These inputs are the difference between the

measured control values and the predicted trim val-

ues of those controls. An example of this process is

shown in Fig. 7 for fuel flow, the bottom plot shows

the actual measured fuel flow plotted with the trim

values. The resulting difference, A WF, is shown in

the top plot. Note that some of the more pronounced

changes in A WF are caused by the measurement and

the trim value moving in opposite directions, this is

particularly evident when the bleed was switched off
at about 720 sec. The trim table values for BLD and

HPX are zero. The five measurement inputs are shown

in Fig. 8. Again these are the differences between the
measured values and the trim values scheduled as func-

tions of PT4 and PT6. The trim lookups are done
with filtered values of P7"4 and PT6 so the A P7"4

and A PT6 traces are simply the difference between
the unfiltered and the filtered values. The residuals for

these five variables are shown in Fig. 9, indicating that

at least steady-state, good matches were obtained.

The deterioration parameters for the Mach 0.9 and

30,000-ft altitude flight segment are shown in Fig. 10.

Shown are the values for the deterioration parameters

both with a nominal bleed assumed throughout and

with the bleed input set to zero when the bleed was

switched off. The bleed maneuver has a pronounced

effect on the five deterioration parameters, particularly

at the lower PLA settings. The Kalman filter seems to

handle the resulting transient well. The low turbine de-

terioration parameter tends to increase over the flight

segment, while the high turbine deterioration parame-

ter decreases. This effect may be more of an indication

of difficulty in separately identifying the two parame-

ters than a real change in the efficiency of either tur-
bine. Studies have shown that a bias in the T'7"4.5

sensor can have this effect and there is some reason to

believe that the flight data does have a bias exceeding

the instrumentation specification.

The engine deterioration parameters are modeled as

locally constant, as was mentioned in the discussion of

the Kalman filter implementation and as is more ex-

tensively discussed in Ref. 7. These parameters are

picking up relatively constant differences between the

measured engine variables and the predicted trim val-

ues for those variables for a nominal engine. Thus



theparametersshouldmodelhowfarthesteady-state
enginedeviatesfromthetheoreticalnominalengine.
Oneobviousproblemwith thisformulationis thatin-
strumentationbiaseswill appearasthesametypeof
constantoffsetfromthetrimvaluesandthuswill end
upbeingreflectedinthedeteriorationparameters.The
currentsetof controlsystemsensorsis insufficientto
separatelyidentifytheenginedeteriorationparameters
andsensorbiases.7Thisdatawasobtainedfromanold
enginenearinganoverhaul;however,thecontrolsys-
temsensorsarerepresentativeof fleettypeengines.It
wasanticipatedthatbothdeteriorationandsensorbi-
aseswouldexistonthedatabeinganalyzed.Thissit-
uationis probablytypicalof realenginesin thefield
andis thereasonanengineadaptivealgorithmisde-
sired.Nonethelessit clearlyrepresentsachallenging
firsttestcase.

CompactEngineModelResults

Therearethreemeansby whichtheCEMresults
canbeassessed.First,fiveof theCEMestimatesare
alsoinputmeasurementsto theKalmanfilter. Since
thisestimationprocessmakesnoattemptatestimat-
ingmeasurementbiases,theseestimatesshouldmatch
themeasurementsclosely. However,becausethese
areinputmeasurementsto theestimationprocess,a
goodfit for thesevariablesdoeslittle to ensurethat
theotherestimatesareequallyasgood.Second,for
twoof theCEMestimatestherearetruly independent
checksavailable.Thisenginehasbeeninstrumented
withpressureandtemperaturesensorsatenginestation
2.5thatarenotgenerallyavailableontheF100engine
andthuswerenot usedin theestimationalgorithm.
Resultswill becomparedto twotemperaturesensors
andtotheaverageof fivepressuresensorslocatedat
station2.5. Thestation2.5enginepressureandtem-
peratureestimatesareinputstobothof thenonlinear
stallmargincalculationsandthereforearealsokeyto
thequalityof thestallmarginestimates.A weakerin-
dependentcheckfor thefanairflowestimatealsoex-
ists.TheDEEClogichasasimpleestimateof thefan
airflowthatisusedin theDEECcontrollaws.Thises-
timateisdependentonanominalengineoperatingon
thenominaloperatingline. However,previousflight
testsofthisenginewithextrainstrumentationhavein-
dicatedthatthecurrentairflowestimateis accurate,
It is theopinionof theenginemanufacturersthatthe
CEMestimatedfanairflowshouldbebetterthanthe
DEECengineestimate,however,basedOnprevious
flight-testexperiencetheDEECestimatedoesprovide

anotherreasonabIeindependentcheckof theCEMes-
timates.Third,it is interestingto observehowsensi-
tivetheestimatesaretothebleedairflowmodelandto
thedeteriorationestimates.A highdegreeofsensitiv-
ity toeitherthebleedairflowmodelorthedeterioration
estimateswoulddefinitelybecausefor concem.

TheCEM estimatesof the five measuredinputs
(N1, N2, FT4, TT4.5, and A J) track the mea-

surements extremely well at all three PLA settings

(Fig. 11) with the traces for the measured and esti-

mated data being indistinguishable for all but AJ on

the scales shown. For the independent sensors at en-

gine station 2.5, Fig. 12, the agreement between the

estimates and the flight measured data is poorer. The

two temperature probes disagree by approximately 10°

at the 32°-PLA setting, and are in good agreement

with one another at the 48 °- and 83°-PLA settings.

The CEM TT2.5 estimate is approximately 15° to

25 ° higher than either probe throughout. The CEM

PT2.5 estimate gives excellent agreement with the

average measured PT2.5 for PLA settings of 32 ° and

48 ° but at a PLA setting of 83°, the estimate is approxi-
mately 0.5 lb/in 2 low. The CEM estimated fan airflow

also agrees with the engine airflow estimate at the 32 °-

and 48°-PLA settings but is about 5 lb/sec high at the

83°-PLA setting. The comparison of these three pa-

rameters is replotted in Fig. 13 for the 83°-PLA set-

ring. The difference for all three parameters is primar-

ily a constant offset throughout the segment, however

the traces do not really track each other closely even if
the offset is removed.

A representative example of the estimator's sensi-

tivity to bleed modeling is shown in Fig. 14. Eight of

the estimated parameters at Mach 0.90, 30,000 ft with

a PLA of 48 ° are shown. Each plot shows both the es-

timate using the nominal bleed model throughout and
the estimate obtained when the nominal bleed model

was zeroed when the bleed from the left engine was

off. Additionally, the flight data is plotted when avail-

able. From these plots one can determine the sensitiv-

ity of the CEM to a bleed modeling error of 100 percent
of the nominal bleed and therefore determine whether

using the nominal bleed model is acceptable for the

intended application. The most interesting result here

is seen in the PT2.5 traces. The flight data clearly

shows an increase in the pressure when the bleed flow

is tumed off (time = 40 sec). When the bleed is er-

roneously assumed to be at the nominal level through-

out, a similar small rise is seen in the estimated PT2.5



trace. However, when the bleed model is zeroed when

the bleed is turned off, the PT2.5 estimate remains

fairly constant and does not predict the pressure change
at station 2.5. While the effect is small, this discrep-

ancy indicates a modeling problem in the estimation

process. In contrast, for both TT2.5 and fan airflow,

modeling the bleed off does make the estimate match

the flight data more closely. While the effects of mod-

eling the bleed incorrectly are noticeable in many of

the key unmeasured estimates, the sensitivity to this er-

ror is not excessive and the estimates probably would

still be acceptable for most applications. Since the

nominal bleed schedule is only a coarse estimate for

the actual bleed airflow these results are reassuring.

However, the cumulative effect of multiple errors of

this magnitude would be a problem.

The estimated deterioration parameters contribute

significantly to the values of the CEM output param-

eters. Figure 15 shows overplots of the flight mea-
sured data and the CEM estimates with and without the

Kalman filter derived deterioration parameters for the

five measured inputs for the 32°-PLA condition. The
bleed model used is identical for both estimates and

has the nominal bleed model zeroed when the bleed

was switched off. As was previously noted, (Fig. 11)

the agreement between the measured data and the es-

timates from the full algorithm is excellent for these

parameters. However, from the overplots (Fig. 15)

it is also apparent that the high quality of the fit is

dependent on the estimated deterioration parameters.

The estimates obtained without using the deterioration

parameters to correct the CEM to the flight data are

poor, and probably would not be acceptable for many

applications. Thus it appears that the engine adap-

tive features of the estimation algorithm provided by

the Kalman filter are necessary. However, since the
Kalman filter used these five measurements to obtain

the deterioration estimates, agreement of these vari-

ables is not sufficient to guarantee similar accuracy in

the other estimated engine variables. The hope is that
the estimates of the unmeasured variables will be simi-

larly improved by matching the responses of these ma-

jor engine variables.

Comparisons of the estimates with the three inde-

pendent flight data parameters are shown in Fig. 16.
The estimates of PT2.5 and WCFAN match the

flight data substantially better, and the TT2.5 es-

timate is somewhat improved when the deteriora-

tion estimates are used. Similar results for these

three parameters were also obtained at a PLA of
48 °. However, at the 83°-PLA condition shown in

Fig. 17, the estimates for both PT2.5 and WCFAN

move away from the flight data when the deteri-
oration estimates are used, while the TT2.5 esti-

mate is again somewhat improved. The amount
that the PT2.5 and WCFAN estimates moved

away from the flight data is small enough not to be
of serious concern in itself, however, it does raise

the question of whether the deterioration parameters

will generally improve the estimates of the unmeas-

ured variables.

For the other CEM estimates no standards of com-

parison are available. The comparisons for three of

these parameters (the S M F , S M H C, and F N P ) are

shown in Fig. 18 for the 32°-PLA case and Fig. 19 for
the 83°-PLA case. Note that in the 32°-PLA case the

CEM predicts the high compressor stall margin to be

up to 15 percent higher and the fan stall margin up to

5 percent higher with the deterioration parameters. At
the 83°-PLA condition (intermediate power) there is

little change in the high compressor stall margin and a

steady 5-percent increase in the fan stall margin. Cau-

tion should be used in trading this extra computed stall

margin for performance gains. The thrust calculation

appears to be far less sensitive to the deterioration pa-

rameter estimates. There is a negligible change in the

thrust estimate at the 32°-PLA setting (Fig. 17) and

only a small change at the 83°-PLA setting (Fig. 18).

Concluding Remarks

Based on the theoretical formulation and the lim-

ited evaluation using flight data, it appears that the per-

formance seeking control (PSC) estimation algorithm

can provide reasonable estimates of an extended set
of engine variables needed for advanced propulsion

control law development. However, the conclusions

drawn from this investigation are limited because of a

lack of high quality independent flight measurements

of many of the variables being estimated. This will

also be a problem in the performance seeking control

(PSC) flight-test evaluation program. Additional sen-

sors or independently derived estimates of many of the

extended variables are needed to firmly establish the

validity of the estimation algorithm.



Theadaptivenatureof thePSCalgorithmisprimar-
ily providedbytheKalmanfilterdetermineddeteriora-
tionparameters.A comparisonof theestimatesof the
measuredvariableswithandwithoutthedeterioration
parametersindicatesthatthenominalenginemodelis
notadequate,andoff-nominalperformancemustbe
accountedforinanengineestimationalgorithm.How-
ever,thesuccessof thedeteriorationparametersin
matchingthecompactenginemodel(CEM)to flight
datafor themeasuredvariablescannotbeassumedto
extendto theunmeasuredvariables.Onecaseispre-
sentedinwhichthedeteriorationparametersmovethe
CEMestimatefurtherawayfromtheflightdata.The

stall margin calculations seem to be particularly sen-

sitive to the deterioration parameter estimates. In the

cases shown there was a significant increase in the two

stall margin estimates caused by using the deteriora-

tion parameters. Since the change is in an unconser-

vative direction, it is not clear how much of the stall

margin increase should be taken advantage of, until
further confidence in these estimates has been estab-

lished. Because of the model structure and limited in-

put measurements available, it is not possible to sep-

arate actual engine deterioration from sensor biases,

Reynolds effects, and other unmodeled phenomena or

modeling errors.
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