FINITE ELEMENT METHODS OF

ANALYSIS FOR SD INVISCID

COMPRESSIBLE FLOWS

NASA Cooperative Agreement NCCW-000010

Final Report for the Period 1 December 1989 : 30 November 1990

Prepared for the
Advanced Aerodynamic Concepts Branch
NASA Ames Research Center
Moffett Field, California 94035, U.S.A.

Submitted by the
Department of Aeronautics
Imperial College of Science, Technology and Medicine
LONDON SW 2BY
United Kingdom
Principal Investigator: Dr. Jaime Peraire

INTRODUCTION

The applicants have developed a finite element based approach for the solution of 3D compressible flows. The procedure enables flow solutions to be obtained on tetrahedral discretisations of computational domains of complex form. A further development has been the incorporation of a solution adaptive mesh strategy in which the adaptivity is achieved by complete remeshing of the solution domain. During the previous year the applicants have been working with the Advanced Aerodynamics Concepts Branch at NASA Ames Research Center with an implementation of the basic meshing and solution procedure. The objective of the work to be performed over this twelve month period was the transfer of the adaptive mesh technology and also the undertaking of basic research into alternative flow algorithms for the Euler equations on unstructured meshes.

COMPUTER SOFTWARE

J. Peiro visited Ames Research Center during the period 30th April - 4 May, 1990. He undertook the delivery of new versions of the Taylor-Galerkin flow solver (ARCTG), the surface triangulator (ARCST) and the volume generator (ARCVT). In addition he answered queries about the basic algorithms and code organisation and provided information on the modifications present in the updated versions of the code. As a major task under the current grant, the computer code necessary to perform the adaptive remeshing was provided. This code (ARCERR) provides new mesh parameter information based upon an error estimation procedure which uses the second derivatives of the solution. Dr. Erickson of NASA Ames R.C. requested additional codes and we agreed to make these available. These codes provided the ability to generate 3D meshes from a 2 D unstructured triangular grid (ARCGB) and for graphic postprocessing of the geometry and flow solution (ARCUT). To assist the group at NASA Ames R.C. with the process of familiarisation with the adaptive remeshing codes, J. Peiro undertook in London the adaptive solution of the problem of flow at Mach 1.75
past a 6 degree double wedge aerofoil. This work, which is attached here in the form of Appendix A, was written up in the form of a report and copies provided to Dr. Erickson.

BASIC RESEARCH ON FLOW ALGORITHM DEVELOPMENT

Theory

As a continuation of the work undertaken last year, further investigative work has been undertaken into the possibility of developing a least-squares based Euler solver for implementation on unstructured grids. The current generation of solvers are considered to be far too sensitive to grid quality. The driving force behind these investigations continues to be the hope that a successful implementation will allow for the incorporation of quadratic elements, which should prove to be less sensitive to the quality of the grid being employed.

The formulation which has been tested works with the governing equation

$$
\begin{equation*}
\frac{\partial U}{\partial t}+\frac{\partial F}{\partial x}+\frac{\partial G}{\partial y}=\frac{\partial U}{\partial t}+A \frac{\partial U}{\partial x}+B \frac{\partial U}{\partial y}=0 \tag{1}
\end{equation*}
$$

where A and B are the standard jacobian matrices and U is the vector of the conservation variables. This equation is discretised in time by the using a backward difference approximation, which can be written as

$$
\begin{equation*}
\frac{\Delta U}{\Delta t}+A^{n} \frac{\partial(\Delta U)}{\partial x}+B^{n} \frac{\partial(\Delta U)}{\partial y}=-\left[\frac{\partial F}{\partial x}+\frac{\partial G}{\partial y}\right]^{n} \tag{2}
\end{equation*}
$$

where $\Delta \mathbf{U}=\mathbf{U}^{n+1}-\mathbf{U}^{n}$ is the increment in \mathbf{U} over the timestep Δt and $\mathbf{A}^{n}=\mathbf{A}\left(\mathbf{U}^{n}\right)$, $\mathbf{B}^{n}=\mathbf{B}\left(U^{n}\right)$. The least squares method is based upon the minimisation of the L^{2} norm of this equation with respect to $\mathrm{U}^{\mathrm{n+1}}$. If the domain is divided into n -noded triangular elements (with $n=3$ for linear elements and $n=6$ for quadratic elements), then approximations for $\Delta U, F^{n}$ and G^{n} can be taken in the form

$$
\begin{equation*}
\Delta U=\Delta U_{i} N_{i} \quad F^{n}=F_{1}^{n} N_{i} \quad G^{n}=G_{i}^{n} N_{i} \tag{3}
\end{equation*}
$$

where N_{i} denotes the finite element shape function associated with node i of the mesh. A piecewise constant representation is employed for the matrices A^{n} and B^{n}. Upon insertion of these expansions into equation (2), the least squares requirement leads to

$$
\begin{equation*}
K_{i j} \Delta U_{i}=f_{i} \tag{4}
\end{equation*}
$$

where the entries in the matrix K and the right hand side vector f are defined by

$$
\begin{align*}
& K_{i j}=\int_{\Omega}\left[I N_{i}+\Delta t A^{n} \frac{\partial N_{i}}{\partial x}+\Delta t B^{n} \frac{\partial N_{i}}{\partial y}\right]^{\top}\left[I N_{i}+\Delta t A^{n} \frac{\partial N_{i}}{\partial x}+\Delta t B^{n} \frac{\partial N_{i}}{\partial y}\right] d \Omega \\
& \mathbf{f}_{i}=-\int_{\Omega}\left[I N_{i}+\Delta t A^{n} \frac{\partial N_{i}}{\partial x}+\Delta t B^{n} \frac{\partial N_{i}}{\partial y}\right]^{\top}\left[\frac{\partial F^{n}}{\partial x}+\frac{\partial G^{n}}{\partial y}\right] d \Omega \tag{5}
\end{align*}
$$

When steady state conditions are reached, equation (4) reduces to

$$
\begin{align*}
& \left.\int_{\Omega}\left\{N_{i}\right] \frac{\partial F^{n}}{\partial x}+\frac{\partial G^{n}}{\partial y}\right] \\
& \left.+\Delta t\left[A^{n} \frac{\partial N_{i}}{\partial x}+\Delta t B^{n} \frac{\partial N_{i}}{\partial y}\right]^{\top}\left[A^{n} \frac{\partial U^{n}}{\partial x}+\Delta t B^{n} \frac{\partial U^{n}}{\partial y}\right]\right\} d \Omega=0 \tag{6}
\end{align*}
$$

and the first term here can be seen to represent a Galerkin form of the steady state Euler equation set, while the second term represents a added diffusion. It can be observed that the amount of added diffusion depends upon the magnitude of the time step and on the jacobian matrices.

The time step employed can be taken to be uniform everywhere or, for the steady computations which are of interest here, Ical timesteps can be employed. It has been found that the convergence rate to steady state is enhanced by the use of local timestepping but that it also leads to the creation of oscillations in the solution in the vicinity of high gradient regions, especially when adaptive mesh refinement is employed. It should also be noted that numerical integration is required for the evaluation of the integrals appearing in equation (5) when curved-sided triangular elements are used in the discretisation of the domain. The solution to equation (4) is achieved by the incomplete Choleski conjugate gradient method.

An Adaptive Refinement Strategy

The diffusion term in equation (6) can be identified with the L^{2} norm of the residual and so provides a natural method for indicating where the mesh resolution is insufficient. The standard adaptive remeshing procedure has been modified to use this term as an error indicator.

Numerical Examples

Several examples, involving flows with a supersonic freestream, have been solved with the above algorithm using both linear and quadratic elements. It can be generally seen from the results presented here that quadratic meshes give more accurate results, but they do suffer from slower convergence and tend to exhibit some undesirable oscillations. The flow tangency condition which should be satisfied at solid walls is imposed weakly via a least squares functional term. A characteristic analysis is carried out along the computational boundaries.
(a) Double Wedge Aerofoil. Details of the meshes employed in the solution of this example are shown in figure 1. The free stream Mach number was 2. Also shown in figure 1 are the convergence rates achieved and the distribution of the pressure over the wedge.
(b) 20° Ramp. The free stream Mach number for these computations is 3 and the results are shown in figure 2. The application of the adaptive mesh strategy to this problem is illustrated in figure 3.
(c) Double Compression Corner. The free stream Mach number for this example is 2 and the results obtained are shown in figure 4. The superiority of the quadratic elements over linear elements is most apparent in this example. The solution obtained by adaptive remeshing is shown in figure 5.
(d) Supersonic Flow Past a Cylinder. Supersonic flow at a free stream Mach number of 3 past a circular cylinder is considered in this example. Only one quarter of the cylinder is considered as shown in figure 6 . Since the implicit artificial diffusion of the scheme is directly related to the jacobian matrices, it is apparent that problems may be expected in the vicinity of stagnation points. In this case, a small amount of explicit artificial viscosity had to be added to maintain the stability of the scheme. An adapted mesh solution is shown in figure 7.

Current Work

The method developed to date has been shown to be capable of producing encouraging results for compressible flows at low supersonic Mach numbers. However, numerical experiments with quadratic elements have indicated a tendency to produce oscillatory solutions. In addition, when refinement is employed, the method tends to generate oscillations in the vicinity of regions of steep gradient. These problems can be overcome by using a small amount of explicitly added artificial diffusion and this is relatively straightforward in the case of linear elements as several such methods already exist. Extending these methods to produce a diffusion operator on quadratic elements which is consistent with the algorithm is a task which is still to be performed.

CONCLUSIONS

Updated versions of a finite element based set of codes for the solution of the compressible Euler equations on general unstructured meshes have been successfully implemented at NASA Ames R.C. In addition, a facility for obtaining mesh adaptation by complete remeshing has been provided. Work on algorithmic development, with the objective of improving the solution quality on general grids, has proved of limited success and it is apparent that further efforts are needed to improve the situation in this area.

PUBLICATION

J. Peiro, J. Peraire and K. Morgan, 'The computation of 3D aerodynamical flows using unstructured meshes', in Science and Engineering on Supercomputers, Edited by Eric J. Pitcher, CML Publications and Springer Verlag, 103-111, 1990.

1816 linear elements

$\cdot 10^{5}$

455 quadratic elements

$\cdot 10^{-4}$

1480 linear elements

370 quadratic elements

Pressure contours

FIGURE 2 Mach 3 flow over a 20° ramp

First adaptation 1658 linear elements

Second adaptation 1092 linear elements

First adaptation 523 quadratic elements

1536 linear elements

384 quadratic elements

Pressure variation along the surface

1611 linear elements

Pressure variation along the surface

FIGURE 5 Mach 2 flow over a double compression corner - adapted mesh solution

988 linear elements

247 quadratic elements

FIGURE 7 Mach 3 flow over a cylinder - adapted mesh solutions

Report on the solution of the mach 1.75 double wedge

This report presents the results obtained for the solution of the flow past a 6° double wedge at $\mathrm{M}_{\infty}=1.75$ and $\alpha=0^{\circ}$. These results have been produced with the same codes currently in use in the Ames Research Center. The source files can be found in the SWANSEA account in RALPH and the names used are:

- arcst : Surface triangulator
- arcut: Tetrahedral mesh generator
- setboun : Sets the boundary conditions for the 3D mesh
- arctg: 3D Taylor-Galerkin Euler solver
- arcgb: Generator of initial 3D background meshes from 2D meshes
- arcerr : Program for error analysis and definition of background meshes from computed solutions
- arccut : Plotting program

The definition of the boundary of the computational domain employed in our computations was provided by Jahed. The data file (dwlp.dat) is enclosed in pages 4-5. A sketch of the computational domain is also included in page 6.

The background grid for the generation of the first mesh has been obtained from a 2D mesh using the program arcgb. The input data file (dwlp.bck) and a drawing of the 2D mesh are displayed in pages $7-8$. The final background grid data (dwlp.bac) can be found in pages 9-12.

The generated mesh, which will referred to as first mesh, contains 42905 elements, 10180 nodes and 11230 boundary faces. Page 13 shows a view of the surface mesh in the plane $y=0.1$. A set of preliminary runs was performed on this mesh in order to assess the best choice of parameters for the control file to be used in the code arctg. We selected a diffusion coefficient of 1.1 and a smoothing type 2 and tried different types of boundary conditions (parameter istron): weak (0), strong (2) and mixed (1). The computed distributions of the pressure
coefficient on the surface of the wedge at $y=0.05$ are displayed in page 14.

The solution obtained presents oscillations in both shocks and also in the expansion fan. The use of strong boundary conditions produces the best results giving the smallest oscilations in the trailing edge and the expansion fan. Since all the options produced oscillations on the leading edge shock we opted for the use of a bigger pressure switch coefficient. The control file (dwlp.con) employed for the final run is displayed in page 15. The flow solution obtained after 4000 timesteps starting from free stream values is displayed as follows:

$$
\begin{array}{ll}
\text { page 16: } & \begin{array}{l}
\text { pressure contours on the plane } y=0.1 \\
\text { page 17: } \\
\text { mach number contours on the plane } y=0.1
\end{array} \\
\text { page 18: } & \begin{array}{l}
\text { pressure coefficient on the su rface of the } \\
\text { wedge at } y=0.05 \text { compared with the exact } \\
\text { solution }
\end{array} \\
\text { page 19: } & \begin{array}{l}
\text { pressure coefficient at the line } z=0.0 \quad y=0.1
\end{array}
\end{array}
$$

Note that the wiggles at the trailing edge and the expansion fan have been substantially reduced. The leading edge oscillations, although smaller, still are present. The magnitude of the oscillations will, however, decrease after the remeshing.

This solution has been utilised to produce a second adapted mesh. The code used is arcerr and the "key" variable for the error indication is the mach number. The values employed to produce the background mesh for the generation of the second mesh are:

$$
\begin{aligned}
& \delta_{\text {scaling }}=0.0015 \\
& \delta_{\text {minimum }}=0.009 \\
& \delta_{\text {maximum }}=0.2 \\
& \text { stretching }
\end{aligned}=1.0
$$

The criterion for chosing these values was:
1.- Use a smaller δ minimum than in the first mesh
2.- Keep the same value δ maximum
3.- Choose $\delta_{\text {scaling }}$ such that the number of elements to be generated is aproximately equal or slightly higher than the one used in the first mesh (42905 elements).

The estimated number of elements given by arcerr was 52450. The actual number of elements generated by arcst and arcut in the second adapted mesh is 69742 . The generated surface mesh in the plane $y=0.1$ is displayed in page 20.

A second Taylor-Galerkin flow solution was computed by using the same parameters as in the first mesh. The control file is included in page 21. The flow solution obtained after 4000 timesteps starting from free stream values is displayed as follows:

```
page 22: pressure contours on the plane y=0.1
page 23: mach number contours on the plane y=0.1
page 24: pressure coefficient on the su rface of the
        wedge at y=0.05 compared with the exact
        solution
page 25: pressure coefficient at the line z=0.0 y=0.1
```

The new solution presents an overall improvement in definition of the flow features respect to the first solution as it can be observed in pages 26 and 27 which show the comparison between the pressure solutions obtained in the two meshes. Both solutions show a fair agreament with the exact solution.

The convergence curves for the residuals of the derivative of the density for both solutions are displayed in page 28. We have divided the residuals by the second value of the residual (the first one is usually meaningless and it is ignored) to be able to plot both curves together.

The slope of the residuals in the first solution is not steeper than the slope for the second solution as one would have expected. An explanation for this is the fact that the first mesh contains a distorted element that induces a disturbance on the flow solution. This can be clearly noticed on the contours of Mach number in page 17. This does not happen in the second mesh which presents a better convergence curve.

Finally, page 27 contains a drawing of the exact position of point of intersection between the expansion fan and the leading edge shock. At this point the leading edge ${ }_{A}$ changes direction and the solution in the neighborhood of the intersection is changed. The "reflected shock" on the boundary is more likely to be a feature of the flow caused by the interaction than a problem of the boundary conditions.

5

GEOMETRY
DEFINITION
21 brundony edgees 9 bounday smfaces.

Volume $=2.397$
\square

\circ

.040	.000	.000	1.000	.040
.040	.000	.000	1.000	.040
.040	.000	.000	1.000	.040
.040	.000	.000	1.000	.040
.080	.000	.000	1.000	.080
.080	.000	.000	1.000	.080
.080	.000	.000	1.000	.080
.060	.000	.000	1.000	.060
.200	.000	.000	1.000	.200
.200	.000	.000	1.000	.200
.200	.000	.000	1.000	.200
.200	.000	.000	1.000	.200
.200	.000	.000	1.000	.200
.200	.000	.000	1.000	.200
.200	.000	.000	1.000	.200
.200	.000	.000	1.000	.200

 おえ

20

