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SUMMARY

The proper orthogonal decomposition technique (Lumley's decomposition) is applied to the turbulent

flow in a channel to extract coherent structures by decomposing the velocity field into characteristic eddies

with random coefficients.

In the homogeneous spatial directions, a generalization of the shot-noise expansion is used to deter-

mine the characteristic eddies. In this expansion, the Fourier coefficients of the characteristic eddy cannot

be obtained from second-order statistics. Three different techniques are used to determine the phases of

these coefficients. They axe based on (1) the bispectrum, (2) a spatial compactness requirement, and (3) a

functional continuity argument. Results from these three techniques are found to be similar in most re-

spects. The implications of these techniques and the shot-noise expansion are discussed in the appendix.

The dominant eddy is found to contribute as much as 76% to the turbulent kinetic energy. In both

two and three dimensions, the characteristic eddies consist of an ejection region straddled by streamwise

vortices that leave the wail in the very short streamwise distance of about 100 wall units.

1 INTRODUCTION

The general recognition of the existence of organized motions or eddies in turbulent shear flows can

be traced to the works of Theodorsen (1952) and Townsend (1956) over three decades ago. In the past

20 years a great deal of insight into the characteristics of organized structures in turbulent shear flows

has been gained, primarily by means of flow visualization and conditional-sampling techniques (Cantwell,

1981). Some combined flow visualization and quantitative techniques (Kline, Reynolds, Schraub, and

Runstadler, 1967; Falco, 1977) have demonstrated the significance of certain events (e.g., the bursting

process) or structures in the turbulence production mechanism.

Unfortunately, the present knowledge of organized motions has seldom been used in turbulence theo-

ries or in quantitative models of turbulence. This is in part caused by the lack of a quantitative definition of

organized structures and an objective means for assessing their contributions to turbulence stresses, partic-

ularly their importance in the production of turbulence. In addition, most flow visualization studies have

been carded out at low Reynolds numbers where the limited range of turbulence scales makes it easier to

identify organized motions. Much of our knowledge of coherent motions is limited to those structures that

can be seen in flow visualization experiments. It is desirable to have the means to extract coherent motions

from fields and to evaluate their contribution to turbulence statistics, regardless of how chaotic the fields

are.

The need for quantitative descriptions of organized structures has led to the use of statistical tech-

niques. One method, used by Townsend (1956), Grant (1958), and Perry and Chong (1982), and others, is

to examine measured two-point correlation profiles for their consistency with a proposed structural model.

Because of insufficient experimental data, the agreement of the models with all the components of the

two-point correlation tensor has never been investigated. The data are usually deficient in the number of

components of the tensor or the directions of probe separation. Extrapolation from this insufficient data

can lead to confusion. For example, Moin and Kim (1985) have shown that the ability to infer structural



informationfrom thetwo-pointcorrelation profiles is highly dependent on the direction of probe separa-

tion. Casual inspection of two-point correlation profiles can also be misleading because one is seeking to

extract information on the velocity vector from a tensor.

The conditional or phase-averaging techniques (e.g., VITA technique of Blackwelder and Kaplan

(1976)) are statistical methods designed to obtain the average structure that satisfies a prescribed condi-

tion, usually at a single point. The difficulty with using conditional sampling methods is that the prescribed

conditions are generally ad hoc and their relevance to actual flow conditions is unclear. Moreover, Adrian

and Moin (1988) have shown that the two-point correlation tensor provides a good estimate of conditional

velocity fields. Thus, in the neighborhood of the point at which the conditions are specified, the condition-

ally averaged velocity can be extracted from the information contained in the correlation tensor.

Most statistical techniques for extraction of organized structures from turbulent flows will produce a

"structure" from virtually any stochastic field, whether or not structures of interest are in the field. Thus,

_e association of statistically derived structures with instantaneous events of dynamic importance must

be predicated on independent knowledge that dynamically significant structures do exist. The result of

any such statistical technique is an ensemble-averaged structure or flow pattern. This flow pattern is of-

ten confined to a small section of the flow domain with the surrounding structures averaged out, and the

inherent symmetries in the statistics impose "artificial" symmetries on the resulting structures. Moreover,

the interfaces of these structures are generally smeared when compared to the edges of instantaneous flow

structures. Therefore, it is likely that averaged structures do not resemble the instantaneous flow structures

in detail. The fundamental question is whether the structures that are deduced by statistical techniques are

relevant. This question will be addressed in section 6. Here we point out that for modeling purposes, one

generally is not interested in every detail of the instantaneous structures so the ensemble-averaged structure

may indeed be what is needed.

In 1967 Lumley proposed a mathematically attractive definition of organized structures and a sta-

tistical method for their extraction from stochastic turbulent velocity fields. The method is based on the

decomposition of the fluctuating velocity field into a sum of mutually orthogonal eigenfunctions of the

two point correlation tensor, weighted by random coefficients. The dominant (most energetic) eddy is de-

fined to be the eigenfunction with the largest eigenvalue. The Karhunen-Loeve expansion (Loeve, 1955;

Papoulis, 1965) is used for directions in which turbulence is statistically inhomogeneous. This decompo-

sition has also been used for meteorological mapping (Obled and Creutin, 1986) and for data compaction

and reduction (Ahmed and Rao, 1975). An important feature of this decomposition, that results from its or-

thogonality properties, is that the contribution of the extracted eddies to second-order turbulence statistics
can be determined.

There has been skepticism that the long-time averaged, unconditioned two-point correlation tensor

used in proper orthogonal decomposition can retain information about t.he highly intemfittent unsteady

structures which have been observed in turbulent wall layers. If a structure, no matter how intermittent,

contributes a majority of the total integrated energy or Reynolds stress, then it will dominate the two-point

correlation statistics; therefore, information about the structure will be retained in the correlation tensor. In

fact, it has been shown (Adrian, Moin, and Moser, 1987) that linear estimates of classical conditional av-

erages (quadrant II), which are computed from the two-point correlation tensor, are in excellent aga'eement

with the actual conditional averages. Thus conditional averaging of this type yields little information that

is not available from the two-point correlation tensor. However, if there are several dominant stntctures



with comparableenergy,the situationis notclear,andthetwo-pointcorrelationtensormaynot provide
adequateinformationaboutthestructures.Of course,methodsfor extractingstructuresfrom thetwo-point
correlationtensoralsosufferfrom thesamedifficultiesasdootherstatisticalmethods(e.g.,smearingand
artificialsymmetries).Also, wewill seein section4 thatcharacteristiceddydecompositionasformulated
hereis notuniqueandthatexternalinformationmustbesuppliedto uniquelydeterminetheFourier-phase
coefficientsof theresultingcharacteristiceddies.

AlthoughLumley's proposalwasmade20yearsago,it hasnot beenevaluatedthoroughlybecause
of a lackof thenecessaryexperimentaldata; thecompletetwo-pointcorrelationtensorwith at leastone
directionof probeseparationis required.Payne(1966)andBakewellandLumley (1967)werethefirst to
apply this technique.Payne(1966)usedthetwo-pointcorrelationmeasurementsof Grant (1958)in the
wakeof acircularcylinder.Grantmeasuredonlythediagonalelementsof thetwopointcorrelationtensor,
R,,a, (oL = 1,2,3) at three fixed positions. The remaining off-diagonal correlations were obtained by

using the mixing-length assumption and the equation of continuity. The energy content of the dominant

extracted eddy was not significantly larger than that of the next eigenfunction in the hierarchy. Because

of anomalies in the results, particularly the presence of some negative eigenvalues (which represent the

energy content of eddies), these results can not be considered conclusive. Bakewell and Lumley (1967)

applied a simplified version of the decomposition theorem to obtain the most energetic eddy structure in

the wall region (y+ < 40) of a turbulent pipe flow. The two-point correlation of the streamwise velocity

component, Rn (r_), was measured and decomposed. The other velocity components of the large eddy

were obtained by using the mixing-length assumption and the equation of continuity. They reported that

the largest eddy carries over 90% of the total streamwise turbulent intensity. Moin (1984), who performed

the decomposition in only one and two dimensions, was the first to make use of the full correlation tensor.

The correlation tensor was obtained from an underresolved numerical simulation of turbulent channel flow

which made use of a turbulence model to account for the unresolved portion of the turbulence (large-eddy

simulation). As in the previous studies, Moin found that the dominant eddy carried much of the turbulent

kinetic energy (as much as 64%). Recently, Glauser, Leib, and George (1985) applied the scalar decom-

position to the streamwise turbulent velocity fluctuations in an axisymmetric turbulent jet. Their results

indicate that the dominant eigenfunction carries about 40% of the total streamwise turbulent intensity in-

tegrated across the layer.

In recent work by Herzog (1986), the correlation tensor R,_a was measured in a pipe for a, fl =

1 and 3; the rest of the tensor was reconstructed from the continuity equation. These very ambitious

experiments have produced the most comprehensive application of proper orthogonal decomposition to

an experimental wail bounded flow, and they are the experiments most directly comparable to the current

results. Herzog's measurements were taken in a small subdomain near the wall; thus they are similar to

the near-wail domain decomposition discussed in section 5.

Possible causes for some quantitative differences between Herzog's and the present results are outlined

below.

1. Herzog measured the correlation tensor at only six points in the y and z directions and seven points

in the x direction, this probably provides an inadequate number of degrees of freedom for the decompo-

sition (see discussion at the end of section 3). Further, the spatial resolution of the measured correlation

tensor varied greatly in the x and z directions, with good resolution for small separations (A x" = 19 and
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Az ÷ = 9) and progressively coarser resolution for larger separations (z ÷ > 40 and z ÷ > 20). This ne-

cessitated the use of curve-fits to obtain representations of the correlation tensor which could be Fourier

transformed.

2. In Herzog's experiment, the correlation was measured using multiple hot-film probes. To preserve

the mathematical properties of the correlation tensor, these probes must have identical responses. Because

they were not identical, some of the eigenvalues were negative; although this was not as serious as in the

results of Payne (1966). The use of multiple probes can also lead to probe interference problems. Herzog

minimized probe interference by using small probes with slender carders, but it is still a concern, especially

for small spatial separations.

3. The correlations used for the current results were estimated from a smaller statistical sample than

the sample used in the experiments, which could lead to some difference caused by statistical error. The

impact of these difficulties is not clear.

The current results and the results of Herzog are largely in agreement; for example, Aubry and

Keefe (1987) found that the individual eigenfunctions they examined were similar in shape in most re-

spects. However, there are some significant disagreements (see sections 3 and 5). The extent to which the

disagreements are caused by the cited difficulties is a matter of speculation. Other potential causes of these

disagreements are (1) the differences between a pipe and channel, and (2) the fact that Herzog's pipe flow

was not fully developed.

The objective of the present work is to extract the characteristic eddies (as defined by Lumley's decom-

position) in fully developed turbulent channel flow and measure their contribution to turbulence statistics.

The characteristic eddies are those with maximal contribution to turbulent kinetic energy, but the theory

does not maximize their contribution to the turbulence production mechanism (i.e., Reynolds shear stress).

One of the results of this study is the contribution of the extracted eddies to the turbulent shear stress profile.

A major difficulty with the decomposition technique is the treatment of the homogeneous directions,

in which the Karhunen-Loeve decomposition is not useful. Lumley (1981) proposed using a generalization

of the shot-noise decomposition (Rice, 1944). However, there is considerable arbitrariness in the speci-

fication of this decomposition. In Lumley's approach, the magnitudes of the Fourier coefficients of the

decomposition are found easily, but the phases are more difficult. Lumley (1981) recommends using the

third-order moments in the form of the bispectra to recover the phases. This proposal has not previously

been implemented. One of the objectives of this study is to use additional statistical data to retrieve the

phase information, and to compare the characteristics of the dominant structure to those obtained with other

techniques. Some of the implications of using different specifications of the shot-noise decomposition have
also been studied.

The necessary statistical data is obtained from a data base generated by direct numerical simula-

tion of turbulent channel flow (Kim, Moin, and Moser, 1987). This data base consists of instantaneous

three-dimensional velocity and pressure fields collected at widely separated flow times. Calculations were

performed at Reynolds number 3200 based on the centerline velocity, Uo, and channel half width, 6. The

channel centerline corresponds to 9" = _lu,./v = 180, where u_ = _r_-/p is the wall shear velocity. The

computations were carried out with 128 × 129 × 128 grid points in the :r, 9, and z directions, respectively.

The mean flow is in the a: direction, and y is in the direction normal to the walls. Total averaging time was



about1906/Uo. Thephysicalrealismof thedatahasbeenverifiedby detailedcomparisonof statistical
correlationsandboth instantaneousandconditionallyaveragedflow patternswith availableexperimental
data.

In section2, theprocedurefor calculation of the two-point spectral density tensor is outlined. In

section 3, the inhomogeneous turbulence decomposition or Karhunen-Loeve expansion in the direction

normal to the walls, and its computational implementation, is presented. In section 4, the theoretical aspects

of the shot-noise decomposition in the homogeneous directions are discussed. The characteristic eddy

decomposition is applied in two and three dimensions in section 5, and the structure of resulting dominant

eddies are examined, followed by conclusions and a general discussion, in section 6.

We axe grateful to Drs. Robert S. RogaUo and Sanjiva Lele for their comments on a draft of this

manuscript.

2 CALCULATION OF TWO-POINT SPECTRAL DENSITY TENSOR

Application of the orthogonal decomposition theorem to turbulent channel flow, with one direction

of flow inhomogeneity and two homogeneous directions, requires knowledge of the two-point spectral

density tensor. This tensor is calculated from the direct simulation data base described in section 1. The

Karhunen-Loeve expansion requires the two-point velocity correlation tensor,

I_j(r=,y,y',r,) =< ui(x,y,z,t)uj(x + r=,y',z + r,,t) > (2-1)

where ui ( i = 1,2,3) are the instantaneous turbulent velocity fluctuations in the streamwise (x), normal

(Y), and spanwise (z) directions, respectively. The < > denotes ensemble average which, because of flow

homogeneity in x and z directions, is calculated by averaging in (x, z) planes as well as in time. It is

actually more convenient to compute and use the two-point spectral density tensor _0 ( k_, Y, Y', k,), which

is the Fourier transform of the two-point correlation tensor in r_ and r,, that is

lffdpii( k,,y,y',k,) = 4-- T e-ik'"-ik'*'P_j(r,,y,y',r,) drxdr,

where k, and k, are the wave numbers in the x and z directions.

(2-2)

For computational purposes, the discrete Fourier transform of each instantaneous velocity field has

been computed

_i( kx, y, kz, tn) = E ui( x, y, z, tn) e -ik'x-ik'z (2-3)

The two-point spectral density is obtained from

dp_i( k_,y,y',k,) = -_ __, _,( k_,y,k,,t_)_;( k_,y',kz,t_)
n=l

where Nt is the number of instantaneous flow fields used for ensemble averaging and • denotes complex

conjugate. Since _ is the Fourier transform of/_j, a real function, it is conjugate symmetric,

¢_j(k_, y, y', k,) = ¢_;.(-kx, y, y',-k_) (2-4)
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TheNavier-Stokesequations,andtheboundaryconditionsin thechannelflow areinvariantwith respect
to two coordinatetransformations,a reflectionin the z direction (z mapped to -z and w becomes -w),

and a reflection in the y direction about the centedine. For each velocity field in the ensemble, the velocity

field obtained by any combination of these reflections is also included in the ensemble because they are

equally valid solutions of the Navier-Stokes equations. This effectively quadruples the statistical sample

and exactly enforces the following two symmetries in _ij (V = 0 at the centedine).

oo(k., y, y', k.) = q-@o(k., -y, -y', k.)

Co(k., y, y', k.) = +¢_(k., y, y',-k.)

(2-5a)

(2-5b)

In equation 2-5a the minus sign is used when i = 2 or ] = 2 but not when both are 2, while in equa-

tion 2-5b, the minus sign is used when i = 3 or ] = 3 but not when both are 3. The symmetry in

equation 2-5b also results in a factor-of-two reduction in the computation required to perform the proper

orthogonal decomposition in three dimensions Finally, @iS has the following symmetry because of its

definition.

@_j(k_, y, y', k,) = @_(k_, y', y, k,) (2-6)

These symmetries, and others which can be derived by combining them, will be used throughout the sec-

tions that follow.

3 THE KARHUNEN-LOEVE EXPANSION IN THE INHOMOGENEOUS

DIRECTION

A preliminary evaluation of the decomposition theorem can be performed by using the the decompo-

sition of the correlation tensor,/_j(y, y'), for two points separated in the inhomogeneous direction only

(y). This decomposition, known as the Karhunen-Loeve expansion (Loeve, 1955; Papoulis, 1965), is the

foundation of the characteristic eddy decomposition for multiple dimensions presented in the next section.

Note that while the decomposition may be performed in one or more dimensions, the underlying turbulent

flow is always three dimensional and time dependent. The following material leading to equations 3-1 to

3-7 can be found in Lumley (1970). It is presented here for continuity.

Let v_(y) be a random vector function on a finite domain D. Given an ensemble of realizations of v_,

we wish to determine a deterministic vector function (or organized structure), ¢_(y), that has the highest

possible mean square correlation with the members of the ensemble. That is, we wish to find ¢_(y) that

maximizes the ensemble average of the magnitude squared of the quantity

oL= fo v_(Y)¢:(y)dy (3-1)
(-fD¢_(_) ¢;(_) d_) _/2

Unless otherwise stated, in this paper the summation convention is implied for repeated indices. Note that

in the above inner product only the shape, and not the magnitude, of ¢_ is considered. It can be shown

(Lumley, 1970) by the methods of calculus of variation that the desired ¢ is a solution (eigenfunction) of

fD l_j( y, y') ¢_( y') dy' = ),¢i(y)
(3-2)



whereR_; =< vi(y)vj(y') > is the two-point correlation function and <> denotes ensemble average. It

can be shown that equation 3-2 does not have a unique solution; instead, there is a denumerable infinity of

solutions, ¢_") (y), which can be normalized such that

= 6.,. (3-3)

Orthogonality implies that structures of different orders do not interact with each other in their contribution

to second-order statistics. Each eigenfunction ¢_") (y) is associated with a real positive eigenvalue 3,('_),

and the eigenfunctions form a complete set. That is, the random vector field v_ can be reconstructed from

the eigenfunctions

= (u) (3-4)
11

where coefficients of different order are uncorrelated

{ _(") n = ra< a,,a',, >= 0 n ¢ m
(3-5)

Equation 3-4 is interpreted as the decomposition of the stochastic field v_ into deterministic elements (or

eddies) with random coefficients. It is expected that more deterministic velocity fields will be more effi-

ciently represented by the expansion equation 3-4. An important consequence of equation 3-5 is that the

contribution of each structure to the turbulent kinetic energy and turbulence stresses can be determined

< v_(y)vj(y) >= _ 3,("_ ¢_") (y) ¢_-'_)(y) (3-6)
11.

and

E = [,_, < v_vi > dy = _ )_(") (3-7)
TI.

where E is the total turbulence kinetic energy in the domain. The eigenvalues _('_) thus represent the

contribution of each structure to total turbulent kinetic energy.

It should be pointed out that the Karhunen-Loeve expansion can be formulated for any subdomain,

Yt _< Y <_ Y,,. In this case the limits of the integrals in equations 3-2, 3-3, and 3-7 are changed to Yl and

y,, and the eigenfunctions represent the characteristic structures in that subdomain. The division of the

full domain of interest into two or more smaller regions may be advantageous for the convergence of the

expansion and provide the means for further dissection of the flow field in a given region. For example,

in turbulent boundary layers we may wish to find the characteristic structures in the wall and outer layers

separately, rather than to search for one global structure for the entire flow. This is consistent with the

general treatment of the problem of multiple scales in turbulent boundary layers.

The above formalism is applied to the three-dimensional time dependent velocity field, u_(x, y, z, t),

in turbulent channel flow. Our aim is to find the optimum representation, in the statistical sense outlined

above, of the velocity field in the direction y normal to the walls. That is, given the velocity profiles u_(y)

at all the (x, z) locations and at all times, we seek deterministic functions that optimally represent the y

variation of the velocity field. The desired ¢_'s are obtained by substituting into equation 3-2 the two-point

correlation tensor Ri;(y, y') defined in equation 2-1 with r_ = r, = 0. The integral equation 3-2 is solved

numerically. The numerical approximation to the integral in equation 3-2 is given by

N

foy( )d , (3-8)
i=l



where f_ is the value of f at a discrete grid point and w is the weight function for the particular quadrature

method used. In the present work we have used the trapezoidal rule with up to N = 129 nonuniformly

spaced grid points for the entire domain, -1 < y <_ 1. The grid points are given by

YJ = -C°SL ( N - 1)
j= 1,2,...,N

The numerical approximation of the integral in equation 3-2 leads to an algebraic eigenvalue problem

_.,,(n) __+(,0
A ¢ = ,k('o ¢ (3-9)

where A is a 3 N × 3 N matrix and

._._(n) ,t,(,O
¢ = [¢_'°(1),¢I'0(1),¢I'0(1),...,,e_ (N),¢(2'°(N),¢I'°(N)] r

is the discretized nth eigenvector (of dimension 3 N), with ¢_") (i) the streamwise component of the the

nth eigenfunction at the ith grid point. Because of the use of nonuniformly spaced grid points, A is not

symmetric. However, a simple scaling transformation using the diagonal matrix with the diagonal, D =

[ x/"_', x/'_', x/D-S', ... , x/r&'_', v/D'if, v/&-k-] transforms equation 3-9 into a symmetric eigenvalue problem.

The numerical integration in equation 3-8 also could have been done using the Chebyshev polynomial

representation that was used in the simulations of Kim, Moin, and Moser (1987), which would have been

more accurate. The trapezoidal rule was selected because it allows much greater flexibility in solving the

problem in subdomains. Use of the trapezoidal rule is justified because the correlation tensor is much

smoother than the instantaneous velocity fields.

It can be easily proven that the discrete system of equations in 3-9 preserves all the essential proper-

ties of its continuous counterpart given by equation 3-2. All the eigenvalues are real and positive, and the

eigenvectors are orthonormal when the discrete analog of equation 3-3 is formed by using the same quadra-

ture rule that was used to approximate the integral in equation 3-2. In addition, the relations (eqs. 3.4-3.7)

are also exactly satisfied when the discretized instantaneous velocity fields are represented in terms of the

eigenvectors of A. These properties serve as a good check of the computer implementation of the method.

It can also be shown for both the analytical and numerical problem that the eigenfunctions will satisfy the

same boundary conditions as the velocity, and that in the three-dimensional decomposition (see section 4),

the eigenfunctions will satisfy continuity (including Ov/Oy = 0 at the wall).

In this paper the eigenvaiues will be arranged in descending order, with ),o) as the largest eigenvalue.

We shall refer to ¢(1) as the "dominant" eigenfunction or eddy. Whether ¢(1) is indeed dominant depends

on the magnitude of ),(1) relative to the magnitude of the remainder of the eigenvalue spectrum. This must

be determined from the computations. For the one-dimensional formulation discussed in this section, the

spanwise component of each eigenfunction, ¢_'*), is uncoupled from its streamwise and normal compo-

nents. This is a reflection of the fact that for (i = 1,2), R3i, t743 are zero. Therefore, in the remainder of

this section, ¢_") denotes the spanwise component of the ruth eigenfunction with zero streamwise and ver-

tical components, and ¢_0 and ¢(0 denote the streamwise and vertical components of the/th eigenfunction

with zero spanwise component. However, when we refer to the total energy, E, it is the sum of all 3 N of

the eigenvalues. In the multidimensional formulation discussed in the next section, all three components

of each eigenfunction are fully coupled.
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The first four eigenfunctions for the domain going from the wail to the centerline of the channel

(0 < V" _< 180) are shown in figure 1. Note that the eigenfunctions are normalized to have a magnitude

of unity, in accordance with equation 3-6; however, in figure 1, they are multiplied by _ to allow com-

parison of their relative contributions to turbulent stresses. The Karhunen-Loeve eigenfunctions generally

behave in the same manner as other typical eigenfunctions; namely, the number of zero-crossings increase

with the order of the eigenfunction. It is particularly significant that the streamwise, qb_'_) , and vertical,

$(2'_), components of the first three eigenfunctions have opposite signs throughout the domain and hence,

make a positive contribution to turbulence production. This is not the case for some of the higher order
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Figure l. First four one-dimensional eigenfunctions in the wall-to-centerline domain: m, streamwise

velocity (u); .... , normal velocity (v); - --, spanwise velocity (w). (a) First, (b) second, (c) third, and

(d) fourth eigenfunction.
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eigenfunctions. It is also interesting that q_)(y) changes sign in the vicinity of the wall. A streamwise

vortex located near the wall yields a spanwise velocity profile, w, which is similar to ff_o.

The contributions of the first three eigenfunctions to the total turbulent kinetic energy (eq. 3-7) in

three separate domains are shown in table 1. The contribution of the dominant eigenfunction to turbulent

shear stress, and hence to turbulence production, in each domain is indicated by the quantity p(O/p(O,

where p(l) is the integral of the first term in equation 3-6 with i = 1 ,j = 2,

P(Ois the integral of the total turbulence shear stress

p(O f v,= < u_u2 > dy
l

Table 1. Contributions of the one-dimensional eigenfunctions to energy and production.

Domain No ,_(I)/E ),(2)/E ),(3)/E ,_(I)/,_ (2) p(1)/p(O

.<0 < y _ 40 29 0.61 0.15 0.08 4.2 1.03

140 < y" < 180 10 0.44 0.22 0.20 2.0 1.94

0 < y" _< 180 65 0.32 0.16 0.08 2.0 0.66

For the domain extending from the wall to the channel centerline, the dominant eigenfunction makes

an appreciable contribution to the total turbulence kinetic energy, and its contribution to turbulence pro-

duction is remarkably high. For the wall layer ( y÷ < 40), the contributions of the first eigenfunction to

both turbulent kinetic energy and production are very significant. For all the cases tabulated, the dominant

eigenfunction's contribution to turbulence shear stress is significantly higher than its contribution to turbu-

lent kinetic energy. Note that the first eigenfunction may contribute more than 100% of the Reynolds shear

stress. While the formulation guarantees that convergence to the energy and to the turbulence intensities is

monotonic, there is no such guarantee for the Reynolds shear stress. In fact, the decomposition emphasizes

the shear stress of the lower eigenfunctions, requiring higher order eigenfunctions to contribute negatively

to the Reynolds shear stress. In contrast, Herzog (1986) obtained Reynolds shear stress contributions which

were less than 100% and did converge monotonically. The reason for this difference is not known (see the

discussion of Herzog's experiment in section 1).

The convergence of the Karhunen-I.z)eve expansion for turbulence stresses as a function of the number

of terms in equation 3-6 for the wall-to-centerline domain is shown in figure 2. Note that in this figure, and

in the convergence plots shown in figure 3, the solid curve labeled "total" is the Reynolds stress taken from

the direct numerical simulation of Kim, Moin, and Moser (1987). All velocities are nondimensionalized

with the wall shear velocity, u,. The high Reynolds shear stress content of the lower order eigenfunctions

is clearly evident. It appears that approximately 10 terms in the expansion are required to reproduce the

10



A

-n
v

7

6

5

4

3

2

1

0

I

(a) ......... "_"_.

A

¢N
>

v

.7

.6

.5

4

.3

.2

.1

0

1.2

1.0

.8

A

t'N
_= .6

v

.4

.2

1.0

,,"()c ", ,,:

0 20 40 60 80 00 120 140 160 180 0

y+

.8

.6

>

v

.4

.2

i b i

20 40 60 80 100 120 140 160 180

y+

Figure 2. Convergence of --, total eigenfunctions; .... , first eigenfunction; - - - sum of first (a) 5,

(b) 10, (c) 5, and (d) 5 eigenfunctions; -. - sum of first (a) 10, (b) 20, (c) 10, and (d) 10 eigenfunctions.

(a) u 2 , (b) v 2, (c) w 2, and (d) uv in the wall-to-centerline domain.

turbulence stresses with reasonable accuracy. Note that for this case, the matrix A (eq. 3-9) is 195 × 195

and possesses 195 orthonormal eigenvectors.

The convergence of the expansion in the wall-layer (/j* <__40) is shown in figure 3. The convergence

is remarkably fast; three to five terms in equation 3-6 are sufficient to reproduce all the turbulence stresses.

In this case the matrix A is 87 x 87. The convergence of any expansion in a subdomain is expected to

be better than the convergence in the entire domain. However as shown in table 1, the K-L expansion

converges faster in the wall layer than in a subdomain of the same size away from the wall, despite the

fact that turbulence quantifies vary most rapidly in the wall region. A possible explanation for better
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convergence of the wall-layer eigenfunctions is that turbulence motions near a wall are more organized

(deterministic) than outer layer turbulence resulting in a larger projection t_ in equation 3-1.

The disparity of scales between the wall and outer layer suggests that better convergence may be

obtained if the entire domain is split into two or more regions and the eigenfunctions for each region are

calculated separately. To verify this assertion, the wall-to-centerline domain was split into the two parts,

y÷ < 40 and 40 < y* < 180, and for each case, equation 3-2 was solved. The sum of the contributions of

the dominant eigenfunction from each region is 45% of the total kinetic energy as compared to 32% when

the domain was not split. No attempt was made to optimize the y location at which the domain was split.
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Each velocity component has an alternative expansion that can be obtained by solving equation 3-2

with only the autocorrelation of that velocity component. For example, streamwise eigenfunctions can be
obtained from

o Rn (Y, y')_*(v')dy' = _o(V) (3-10)

Such an expansion for each velocity component clearly has a faster convergence rate than the one obtained

from the full decomposition. For example, equation 3-10 was solved for the near-waU domain, and the

dominant eigenfunction's contribution is 74% of the total streamwise turbulent intensity. However, scalar

decompositions for each component of the velocity fluctuations do not reveal any information about the

contribution of the eigenfunctions to the Reynolds shear stress.

Because the convergence of the Karhunen-Loeve expansion in representing energy is optimal, it is

of interest to see how its convergence compares to that of the Chebyshev polynomials which are used in

performing direct numerical simulations. To that end, the streamwise velocity component was decomposed

in the full domain from one wail to the other by obtaining the eigenvalues of equation 3-10. These are

compared with the energy carded by partial sums of the Chebyshev polynomials in the representation of

the streamwise velocity fluctuations. The power of the Karhunen-Loeve expansion is evident in the first

term; the first eigenfunction carries 23% of the energy; whereas the first Chebyshev polynomial carries

only 4%. However, when one considers the number of terms required to represent the energy to a given

tolerance, the performance difference is not as impressive. For example, to represent 90% of the energy,

10 eigenfunctions and 12 Chebyshev polynomials are required, and to represent the energy to a part in

10 3, 35 eigenfunctions and 42 Chebyshev polynomials are needed. Thus the Karhunen-Loeve expansion

is significantly advantageous if only one or two terms are to be retained; however, for accurate simulations

of the type performed by Kim, Moin, and Moser (1987), the small improvement in accuracy obtained by

using the Karhunen-Loeve expansion would not offset the increased computational cost such a scheme
would entail.

Finally, one should be cautious in drawing conclusions regarding the convergence of the expansions

when too few grid points are used in equation 3-2 or when Rij is measured at only a few points y. This has

often been the case in experimental measurements of two-point correlations (Herzog, 1986). Eigenvectors

of equation 3-9 form a basis for a space of vectors of dimension 3 No, where No is the number of grid

points in the domain. Thus, the number of terms in equation 3-6 required to recover all the turbulence

kinetic energy at the grid points is always less than or equal to 3 No. One can be confident that a sufficient

number of points have been used only if the number of terms required for convergence is significantly

less than 3 No. Note that for scalar decompositions such as equation 3-10, the corresponding turbulent

intensity at the grid points is recovered (by default) with less than or equal to No terms in the expansion.

In table 1, the number of grid points in each domain is shown.

4 THEORY OF CHARACTERISTIC EDDIES IN MULTIPLE DIMENSIONS

The one-dimensional Karhunen-Loeve expansion described in section 3 provided some guidance to

the significance of the "dominant" eigenfunction. The merit of this decomposition is evident in the wall

layer where the dominant eigenfunction is indeed the major contributor to turbulence kinetic energy and

production. However, eigenfunctions in one dimension do not represent eddies; and application of the

decomposition method to the problem of identifying organized structures in turbulent flows requires that

13



the method be implemented in more than one dimension. In that way, the shape of the extracted eddy, as

well as its contribution to turbulent stresses, can be determined. In this section we consider the theoretical

foundations of the three-dimensional decomposition, with two spatial directions (x and z) homogeneous.

A two-dimensional decomposition can be developed similarly.

For the three dimensional case, we wish to determine the eigenfunctions of the three-dimensional two-

point correlation tensor _R(rx, It, It', rz), where r_ and r, are separations in the homogeneous directions

x and z. Since the Karhunen-Loeve eigenfunctions in homogeneous spatial directions are the Fourier

functions (Lumley, 198 I), we can equivalently consider the following eigenvalue problem:

fo'x" (kx' It,It', k.)$;(k., It', k.) nIt'= x(k , k.)$,(k., It,k.) (4-1)

where _ij is the spectral density tensor discussed in section 2. The Karhunen-Loeve eigenfunctions are

then ¢i( k_, It, k,) exp( ik:,x + ik, z). These are not acceptable as characteristic eddies because the Fourier

functions are not local in space, and we expect the eddies to be spatially compact. Moreover, the Fourier

eigenfunctions are the eigenfunctions for any statistically homogeneous system, so they do not reflect

properties related to turbulence structure. The homogeneous spatial directions require a different treatment

which, following Lumley (1981), will be based on a generalization of the shot-noise decomposition (Rice,

1944).

The eigenfunctions of equation 4-1 have all the properties of the eigenfunctions developed in section 3.

In particular, eigenfunctions of different order are orthogonal and they can be normalized so that

f ^ TI,
•_( )¢k k ^(,n).,ri , x, It, ,) ¢i (k,, y, k,) dy = 6,,,,, (4-2)

and the Fourier transform of the velocity field can be reconstructed from the eigenfunctions with random

uncorrelated coefficients

and

^

II

('0(k,,k,), forn= m< h,_(kx, k,)h*_(kz, k,) > = O, forn-7/m

(4-3a)

(4-3b)

Note that the normalization condition equation 4-2 sets the magnitude of the complex eigenfunction ¢_ but

leaves the phase unspecified; the phases may be set arbitrarily.

To obtain the shot decomposition in the homogeneous directions,

equation 4-3 for each k, and k,

It,k.) = a,(k., k., It,k.)

consider the first term in

(4-4)

which is the "dominant" term of the inhomogeneous decomposition, and has the maximum contribution to

the kinetic energy at each wave number. Equation 4-4 can be inverse Fourier transformed to obtain

f I
u_l)(x,y,z) = gp_l)(z, - x ,y,z- z')al(x',z') dx'dz' (4-5)
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Theinversetransformof the coefficients al is al which can be interpreted as a stochastic process in the

homogeneous spatial directions, and the deterministic function ¢_1) is the inverse transform of the first

eigenfunctions for each wave number. This is the form of the generalized shot decomposition, in which

the deterministic function ¢_ 1) would be interpreted as a characteristic eddy which is distributed randomly

in the homogeneous spatial directions ("sprinkled" or"scattered") by the stochastic process a_. However,

the Fourier transform of ¢_1) obtained from equations 4-1 and 4-2 has arbitrary amplitude (set arbitrarily

by the normalization condition in equation 4-2) and phase, and is therefore inappropriate as a characteristic

eddy.

To determine these quantities for the characteristic eddy (¢_), we seek a generalized shot decomposi-

tion of u_ I),

_',(z,_,z)=f,:(z - _',_,z- z')_(z',z')_'az' (4-6)
where the magnitudes and phases of the characteristic eddy are determined by some objective criteria, and

g is the stochastic "sprinkling" process. The characteristic eddy ¢_ can be related to ¢_1) in equation 4-6,

and g can be related to al by the following relations:

¢_¢z,_,z)=f ¢_',(z-z',_,
and

z - z') f(x', z') dx'dz' (4-7a)

a,(_,z)=f /¢z- x',z- z')o¢z',z')dx'dz' (4-7b)

where f is a deterministic function. Equation 4-7b can also be interpreted as a generalized shot decompo-

sition of the homogeneous stochastic process ax. There are several subtleties to the decomposition equa-

tion 4-6 and to the criteria by which the Fourier magnitudes and phases of ¢_ are determined. In particular,

many criteria could be used to define the decomposition, so this decomposition is not unique. The criteria

actually used to obtain the results presented in section 5 are discussed briefly in the following paragraphs;

the appendix contains further discussion of this subject.

To determine the magnitudes of the Fourier coefficients of f and therefore ¢_, we require that g is

"white," in the sense that the integral of g in nonoverlapping intervals is uncorrelated (Lumley, 1981).

This property determines the second-order statistics of the process 9, which is assumed to have zero mean:

< g(x,z)g(x',z') > = S(x - x',z - z') (4-8a)

and

< _( k,,k,)_7(k'z,k'.) > = 6( ks - k'z,k, - k',) (4-8b)

Obviously, g could be multiplied by any constant, which would only change the scaling of f. Other con-

ditions on 9 or f are possible (see the appendix); however, this is an appealing choice, since it makes the

second-order statistics of 9 primitive. The function f then carries the second moment of al,

z)o,(x+_x,z+6z)>=f f(x,z)/(x+6x,z+6z)_dz (4-9)< a l ( X_

Taking the Fourier transform and recalling equation 4-3b, the spectrum of f is obtained;

[_(kz, kz)l 2 = ),(I)(kx, k,) (4-10)
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The Fouriermagnitudesof f and therefore ¢_ are thus determined; however, the phases of _ cannot be

determined from the second order statistics of g and at.

Though the phases do not affect the contribution of the characteristic eddies to second-order statistics,

they do determine the physical structure of the eddies. Results shown in section 5 use three different meth-

ods to find the phases. The first method makes use of the third-order statistics of the stochastic processes

al and g, as suggested by Lumley (1981). In the second method, the characteristic eddy is required to

be compact in space in a sense to be discussed below. The third method makes use of the fact that for

continuous wave numbers (infinite computational domain), it is expected that the Fourier components of

$_ would be continuous functions of the wave numbers. These methods are discussed below.

4.1 Phase determination from the bispectrum

To make use of the third-order-statistics of at and fl, we follow Lumley (1981) and consider the

bispectrum. The bispectrum of a stochastic process g, Bg, is the Fourier transform of the three-point

correlation function, Rg (Lii, Rosenblatt, and Van Atta, 1976; Van Atta, 1979; Elgar and Guza, 1985). We
have

and

Rg(r=, 'r_,r.,r.)' = < 9(x,z)g(x + r=,z + r.)g(x + r=,z' + r'.) >

Bg(k_,k'_,k.,k:) = < _(k_,k.)_(x_x.)g _ _ + k_,k_ + k') >

(4-11a)

(4-11b)

Using the Fourier transform of equation 4-7b and equation 4-10, the bispectrum of at and that of g can be

related

B.,(k=,k_,k.,k'.) = Bg(k=,k'=,k.,k'.) [)_(O(k=,k.).\(t)(k'.,k'.)X(')(kx + k'=,k. + k',)] t/2

x e_tO(k.,k.)+O( K,e.)-O( _ *k',k,+ K)] (4-12)

where 0(k_, k,) is the phase of f(kz, k.) (i.e., f( k_,, k,) = _/)_(1)(k.., k,)e¢°O"'k')). We would like to

require that Bg be a real, positive constant. This is analogous to the "whiteness" property imposed on the

second-order statistics of 9, and implies that g has primitive third-order moments in the sense discussed

above (see the appendix for further discussion). It is not possible to impose this condition, however, be-

cause equation 4-12 completely determines the magnitude of Bg for all wave numbers, and Bg will not (in

general) be constant. The condition that Bg be real and positive requires that

¢(k,, k,; k,, k,)' = O(k,, k,) + O(k',, k',) - O(k_ + k', k, + k',) (4-13)

where tb is the phase of B,, 1, which would allow the determination of the phases 0. However, in general,

equation 4-13 has no solution since it represents order N 2 equations for the order N unknown O's, where N

is the total number of Fourier modes. Instead we will require that equation 4-13 be satisfied approximately.

This problem is encountered in optics, seismology, and signal analysis (Bartelt, Lohmann, and Wirnitzer,

1984; Matsuoka and Ulrych, 1984), and a variety of solution techniques have been proposed. For the results

presented in section 5, equation 4-13 was solved in a weighted least-squares sense, where the weights are

taken to be the magnitude of the bispectrum of at (Bol). However, for the two-dimensional decomposition,

the phases were constrained to take on values of 0 or _r (see below).
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For two-dimensionaldecompositions(y andz), thesymmetriesof the flow result in a simplification

of the bispectrum. The symmetry of _ij shown in equations 2-5 and 2-6 implies in the two dimensional
case that

d);j(p,9',k,) = -I-_,;(9,9',k,) (4-14)

where the plus and minus signs are as in equation 2-6. This implies that D 0 is strictly real unless i = 3

rj = 3 (but not both), in which case it is pure imaginary. This in turn implies that the eigenfunctions

i(9, k,) are strictly real fori = 1,2 and pttre imaginary fori = 3. To compute the bispectrum of al, the

realizations of al must be determined from u. This is done by using equation 4-3a and the orthogonality

of the eigenfunctions to obtain

a,(k,) = f_,(_, k,)$_(_, k.) d9 (4-15)

It is easily shown that when equation 4-15 is used to compute 41 from the velocity field and at from the

z reflection of the velocity field (as discussed in section 2), the special properties of the eigenfunction just

discussed imply that

a,(k,) = a_'(k,) (4-16)

The bispectrum of 41 can be expressed

B,,,(k.,k'.) =< _(k.)a_ , A.(k,)al(k, + k',) > (4-17)

The ensemble in this average includes velocity fields and their z reflection as discussed in section 2, which

with equation 4-16 implies that the bispectrum B,1 is real. Referring to equation 4-12, it is easily seen
that if the phase of 1_ is 0 or Ir for all k, (i.e., f is real for all k,), then the bispectrum of g will also

be real for all k, and k;, as desired. Also, equation 4-13 implies that if 7k, is added to any solution

for 0(k,), it will remain a solution. This simply represents a shift of the characteristic eddy in the z

direction. Thus the problem of finding the phases 0(k,) of j} is reduced to finding the sign of f. In the

weighted least-squares solution of equation 4-13, the values of 0(k,) are restricted to be 0 or 7r, so that the

bispectrum of g remains real. The least-squares problem is reduced to determining the sign of.f(k,), such

that _j,. I,£ Bg( k,, k',)In,,1 ( k., k'.)/Bg(k., k',) I is maximum. This was solved by a discrete steepest-ascent

algorithm.

4.2 Phase determination from a compactness condition

Given the magnitude of )} as determined from equation 4-10, the phases can be determined by im-

posing a condition on _, rather than on 9- In particular, we use the fact that when we speak of an eddy

in a turbulent field, we mean a smacture that is compact in space. This requirement of spatial compact-

ness is one of the reasons the Fourier functions were rejected as characteristic eddies. The compactness

of the characteristic eddy is very sensitive to the phases 0, so a compactness requirement can be used to

determine the phases. This reasoning was employed by Herzog (1986). However, the compactness of a

structure in space is difficult to define precisely. Instead, we consider some quantity of interest (e.g., one

of the velocity components of the characteristic eddy) and determine the phases 0(k_, k,) to maximize the

maximum value of its integral over 9. Such a requirement leads to a structure that is compact in space. To

see why this is so, let I( x, z) be the integral of the quantity of interest in 9. We define an integral area scale

f 12 (x, z) dxdz/I 2 (0,0), which is a measure of the area in the :r and z directions over which I is signif-

icantly nonzero. The integral in the numerator is independent of the phases of the Fourier coefficients of

I, and is therefore independent of 0( k_, k,), if we consider quantities which are linear in the characteristic
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eddyvelocity.Therefore,whenthemagnitudeof I(0,0) is maximized, the area scale is minimized and

the characteristic eddy is compact.

It is easy to show that this compactness condition is satisfied when the Fourier coefficients of the

integral in _ of the quantity of interest are real and positive for all wave numbers. One could also define

a compactness condition based on the value of a quantity of interest at a given _ location. The integral

condition stated above is used to avoid the need to specify the _ location. In the results shown in section 5,

the compactness conditions based on both the streamwise velocity u and the normal velocity v were used.

In principle, the spanwise velocity w could also be used. However, the symmetries of _q (see sections 2

and 4.1) imply that for kz -- 0, either _3 or both _ and _2 are identically zero. For all cases considered,

_3 was zero, so a compactness condition based on w would have left the phases of the kz = 0 modes un-

determined. For some higher eigenfunctions, it is _1 and _2 which are zero, so a w compactness condition

would be appropriate for them.

4.3 Phase determination from wave-number continuity

Finally, we expect that if the wave numbers are continuous, corresponding to an infinite domain in

a: and z, then _( k_, k,) will be a continuous function of the wave numbers. Thus for the discrete wave

numbers in the computation, we expect that _( k_, k,) will not be very different for neighboring wave

numbers. This expectation can be enforced to determine the phases 0( k_, k,). For ease of exposition, the

procedure by which this is accomplished will be described for the two-dimensional (y and z) decompo-

sition in which 0 depends only on k_. A similar though more complicated procedure is possible in three

dimensions. The similarity of the eigenfunctions for neighboring wave numbers kzj and kz./+ 1 results in

the magnitude of the integral
^C

f _,(v, k,j)_?'(_, k_i÷_) @ (4-18)

_/),(k,;) ),(k,_÷ _)

being nearly unity. The phases 0(k,) are set such that the integral equation 4-18 will be real and positive,

which results in _ for neighboring wave numbers being as parallel as possible. This procedure leaves

an overall phase undetermined. This phase is set (except for an overall sign) by the requirement that

_( k, = 0) is real (i.e., 0(0) = 0), which is necessary for 6_ to be real. The result of this specification of

the phases will be called the zero-phase eddy because for all wave numbers, the phases of 4_ are the same

in the sense just described.

4.4 Overall algorithm

A step-by-step description of the algorithm that was used to obtain the characteristic eddy given the

two-point spectral density tensor is presented here. These steps are those required to implement the u

compactness criteria; the other phase recovery techniques are similar.

1. The matrix A (eq. 3-9) representing the numerical approximation of the integral in equation 4-1

is formed and symmetrized for each wave number.

2. The eigenvalues and eigenvectors of A are obtained.
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3. Foreachwavenumber,theeigenvectorassociatedwith thelargesteigenvalueis selected.

4. Theeigenvectoris scaledsothatits energy(computedasfo ¢_b_. dy, with the integral approxi-

mated by the trapezoidal rule) is equal to the associated eigenvalue.

5. The eigenvector is multiplied by the complex quantity 7"/1q¢1, where '1 = fD )pl dy. Again, the

integral is approximated by using the trapezoidal rule.

6. When steps 1-5 are completed for each wave number, the eigenvectors are treated as the Fourier

transform of a velocity field. The inverse Fourier transform in x and z is computed to obtain the physical

space representation of the eddy.

5 CHARACTERISTIC EDDIES IN MULTIPLE DIMENSIONS

In this section, the decomposition discussed in sections 3 and 4 will be applied in both two and three

dimensions. We consider the two-dimensional case separately because, as discussed in section 4.1, we

will require the bispectrum, and only in the two-dimensional case do we have a statistical sample that is

sufficient to obtain a reliable estimate of this quantity. In the two-dimensional case, we wish to extract the

dominant eddy as viewed in planes perpendicular to both the wall and the flow direction (y-z planes). The

relevant laboratory experiment would be to illuminate a y-z plane with a light source in a smoke-filled

channel flow and to identify characteristic eddies in this plane. For the two dimensional case, equation 4-1

reduces to

k "' k_)_(_, k,) (5-1)fy ¢_J(_, y', ,)_i(y, k,) dy = _(

where the two-dimensional ¢_i is the Fourier transform of P-i (eq" 2-1) with r_, = O. The eigenvalue

problems (eqs. 4-1 and 5-1) are solved numerically for each wave number by using the method outlined

in section 3. (Recall that the computation of the channel flow was done in a finite domain with a finite

resolution, so there are a finite number of discrete wave numbers.)

5.1 Contributions to second order moments

The properties of the inhomogeneous decomposition developed in section 3 can be extended immedi-

ately to the multiple-dimension case. In particular, the contributions of the eigenfunctions to second-order

statistics can be determined (independent of the phases).

and

(n) (n) d_(n) 1- _,h (n)*<,,,,,j>=Z:<,,, ,,; >=__,(kz,k.)., (k_,_,,.,,_.j (k_,_,k.)
n n ks k,

(5-2a)

E= _"_ __, __ )_(") ( kz, k,) (5-2b)
n k_ k,

For the two-dimensional case, the sums with respect to k, and the dependence on kx are not present.

In table 2, the contribution of the first three characteristic eddies to turbulent kinetic energy (E <'° =

_,,, k(") (k,, k,)) are shown for the same domains as in section 3, for both two- and three-dimensional

cases. Again, as an indicator of the contribution of the dominant eddy to turbulence production, the quantity
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Htl)/P (t) is alsotabulated,where

andp(O is defined in section 3.

(5-3)

Table 2. Contributions of the two- and three-dimensional eigenfunctions to energy and production.

Domain Dimensions E°) / E E(2) / E E( 3)/ E E( _)/ E (2) 1-I ( t) / P (0

0 < y'< 40 2 0.64 0.17 0.07 3.8 1.05

140 < y'< 180 2 0.46 0.24 0.18 1.9 1.55

0 __<y'< 180 2 0.38 0.16 0.09 2.3 0.77

0 __<y*< 40 3 0.76 0.12 0.06 6.0 1.04

140 < y" < 180 3 0.57 0.22 0.12 2.5 1.53

0 <___y*< 180 3 0.50 0.16 0.08 3.1 0.75

As in the one-dimensional case, the dominant eddy has a significant contribution to turbulent kinetic

energy and production. The contribution of the dominant eddy to turbulent kinetic energy is somewhat

higher than in the one-dimensional case, and is higher in three dimensions than in two dimensions. Note

also that, as in the one-dimensional case, the energy contribution of the dominant eddy is much greater for

the near-wall domain than for the same-size domain at the center of the channel. This again suggests that

the near-wall turbulence is more organized than that away from the wall.

The spectra of the first three eigenvalues for the wall layer (y" < 40) and the domain extending from

the wall to the centerline are shown in figure 4 for the two-dimensional case and in figures 5 and 6 for the

three-dimensional case. In both two and three dimensions, the z spectrum of the dominant eigenvalue in

the wall layer shows a pronounced peak at the nondimensional wave number ks6 = 7.5 which corresponds

to the wavelength ),_ = 150. The higher order eigenvalues have no such peak, and do not show a shift to

higher k, values as would have been expected if small vertical scales were associated with small horizontal

scales. The x spectra for the three-dimensional case fall off monotonically, similar to the streamwise

turbulent kinetic energy spectra Kim, Moin, and Moser (1987).

For the two-dimensional case, the contributions of the first two eigenfuncfions to turbulent kinetic

energy spectra,

E(,O ( k,, y) = ._ff,) ( kz, y)._(i ,_)*( k,, y) = ),(") ( k,) _'O ( y, k,) _")* ( y, k,) (5-4)

at selected y locations are shown in figures 7 and 8 for the near-wall and the wall-to-centerline domains,

respectively.

At most y locations the contribution of the dominant eddy is larger than the second eigenfunction at

low wave numbers and is smaller at high wave numbers. An exception is shown in figure 8(a) where the the
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Figure 4. Eigenvalue spectra for the two-dimensional case, --, first eigenvalue; ...... , second eigen-

value; - - -, third eigenvalue. (a) Near-wall domain and (b) wall-to-centerline domain.
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Figure 6. Eigenvalue z spectra for the three-dimensional case. _, first eigenvalue; ...... , second eigen-

value; - - -, third eigenvalue. (a) Near-wall domain and (b) wall-to-centerline domain.

second characteristic eddy is in fact more energetic than the dominant eddy at the lowest wave numbers.

The higher order eigenfunctions are associated with smaller scales in the y direction but not necessarily

with smaller scale motions in the z direction. Note that the decomposition theorem requires that, at any

wave number, the integral of E (1) over _ must be larger than that of E _2). These integrals are of course

equal to respective eigenvalues plotted in figure 4.

The spectra of the dominant eigenfunctions are broad banded, but as expected they are confined to

a narrower range of energetic wave numbers than the velocity spectra (Kim, Moin, and Moser, 1987).

Fourier decomposition of structures confined to a finite region in space leads to broad band spectra such

as those shown in figures 7 and 8. Spectra with very pronounced peaks result from distinct Fourier modes

which, in contrast to compact eddies, extend indefinitely in space.

The spectra in figures 7(c) and 8(b) turn up slightly at high wave numbers, while the spectra in fig-

ure 8(c) are very noisy at high wave numbers. The noise in figure 8(c) is caused by roundoff error. The

data used in these decompositions were stored with seven-digit accuracy, thus when spectra fall off by

more than six or seven orders of magnitude, noise as in figure 8(c) is expected. The up-turns in figures 7(c)

and 8(b) are caused by the finite resolution of the simulations. In the simulations, the dynamics of the

highest wave numbers are not well represented because of the presence of the resolution cutoff. These

anomalies in the spectra should have little or no effect on the simulations or the decompositions because

they represent an insignificant amount of energy.
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Figure 7. Contributions to the z energy spectrum of the first eigenfunction (t2), and second eigenfunction

(o) at (a) y+ = 1.5, (b) V+ = 10, and (c) V+ = 40 for the two-dimensional case in the near-wall domain

(_/+ < 40).
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domain (_/* < 180).
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5.2 Characteristic eddies in the y-z plane

We now turn to the problem of finding the two-dimensional characteristic eddy ¢_. The magnitudes

of the Fourier coefficients of f, as defined in equation 4-7, are found from equation 4-10, which in two

dimensions is reduced to

I.f(k,)l = _/),(t)(k,) (5-5)

To obtain the phases of ], we consider the three techniques discussed in section 4: the bispectrum, com-

pactness, and continuity in wave number space (zero-phase eddy).

The bispectrum of at (a real quantity) is plotted in figure 9(a) for the near-wall domain, the bispectra

(a)

I I I I 1 I I I I

I I I I ! I I I

Figure 9. Contours of the bispectrum in the near-wall domain (y" g 40). kz and k'z are zero in the center

of the plot. (a) the process al (eq. 4-3). Negative contours are dashed. Contour increment is 10-4. Note

the twelve-fold symmetry of the bispectrum function.

26



I I [ I I
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Figure 9. Concluded. (b) the process 9 (eq. 4-6). Contour increment is 0.05.

for the other domains are similar. In all three domains the bispectrum is positive over almost the entire

wave number domain, there are only small negative regions along the axes where either kz, k'z or kz + k', is

zero. Because the bispectrum of al is positive almost everywhere, the solution to the least-squares problem

discussed in section 4.1 is not significantly different from the zero-phase eddy on which the sign of B,_

is based. In fact the only difference between the zero-phase eddy and the bispectrum-derived eddy is for

the near-wall domain (0 < _* < 40), and it turns out that the difference occurs at only one wave number.

With f defined by the approximate solution of equation 4-13, the bispectrum of 9 can be computed, and is

shown in figure 9(b) for the near-wall domain. In all three cases, the bispectrum is again positive almost

everywhere, as we require.

Two compactness conditions have been used to determine the phases of .f. They require that for

i = 1 and 2 the integrals f _b,e(y, z) dlt obtain their maximum possible value somewhere in the domain;

27



in particular,wechoosethattheybemaximizedat z = 0. These are the u and v compactness conditions,

respectively. It is interesting that for the two domains including the wall (y+ < 40 and y" < 180), the

compactness condition is satisfied by the zero-phase eddy, although the v compactness condition is not. In

the other domain (140 < It+ < 180), the v compactness condition but not the u condition is satisfied by

the zero-phase eddy. Note, that the w compactness condition is not considered, as discussed in section 4.2.

We now turn to the structure of the characteristic eddies in two dimensions. Figures 10 and 11 show the

characteristic eddies with phases determined from the zero-phase condition. In the wall domain (IF < 40),

the characteristic eddy consists of a narrow intense region of low streamwise velocity, which is about 50

wall units wide. There is also a very narrow (25 wall-unit) region of intense velocity away from the wall.

The velocity vectors projected into the I#-z plane show that at the top of the domain there is a weak flow

away from the center of the jet, making a vortex.

In the wail-to-centerline domain (9 ÷ < 180) the characteristic eddy consists of low streamwise ve-

locity with normal velocity away from the wall, similar to the eddy in the near-wail domain. Near the wail,

the widths of these regions is the same as in the wall domain, and the velocity vectors reveal a pattern
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Figure 10. Two-dimensional zero-phase characteristic eddy in the near-wall domain (t/+ < 40). (a) Con-

tours of u and (b) velocity vectors projected into the y-z plane. Contour increment in (a) is 1. Negative

contours are dashed.
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similar to thenear-walldomain.However,thecenterof thecirculationregionis somewhathigherthanin
thenear-walldomain.Awayfrom thewall, theseregionsbecomediffuse.

In boththe near-wall domain (I/" < 40) and the wail-to-centerline domain, the characteristic eddy

consists of an ejection and the accompanying low-speed region. If the sign of _b_were reversed, the eddy

would represent high-speed fluid moving toward the wall (sweep). The overall sign of the eddies is chosen

for consistency with the bispectrum-derived eddy because the compactness conditions and the zero-phase

condition leave the overall sign undetermined. The results of quadrant analysis in this flow indicate that

ejections should be dominant far from the wall, while sweeps are dominant near the wall (Wallace, Eck-

elmann, and Brodkey, 1972). Quadrant analysis indicates that the cross-over point for the dominance of

sweeps and ejections is at/f "_ 12-15. The sign of the eddy is determined from third-order statistics,

which also indicate the change in dominance from sweeps to ejections. In particular, the skewness of

goes from positive to negative at Z/" _-. 15 (Kim, Moin, and Moser, 1987). Thus, even in the near-wall

domain (I/" _< 40 ), ejections are dominant for a majority of the domain, which explains the ejection char-

acteristic eddy in the near-wall domain. To test these arguments, the characteristic eddy was computed in

the domain _/" < 10. The resulting eddy represented sweep motion as expected.

Another interesting aspect of these characteristic eddies is that the magnitudes of the velocities are

quite large. For example, in the near-wall domain the maximum (most negative) u velocity is - 16 (normal-

ized by t_T), as compared to the maximum rms value of about 2.7. Note that the integral of the characteristic

eddy velocity over z is a substantial fraction of the rms velocity fluctuation, and the characteristic eddy is

confined to a relatively small region, resulting in the large local velocities observed.

I I ] 1 I 1 1 I ]

I

I

I

l

(a)
I i I i T f 1 ! t

Figure 11. Two-dimensional zero-phase characteristic eddy in the wall-to-centerline domain (_f < 180).

(a) Contours of u. Contour increment is 1. Negative contours are dashed.
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Figure 11. Concluded. (b) velocity vectors projected into the _/-z plane.

The characteristic eddies just considered satisfied one of the two compactness conditions discussed

before (the t_ condition) as well as the zero-phase condition. Characteristic eddies satisfying the v com-

pactness condition and the bispectrum condition have also been generated and are nearly indistinguishable

from figures 10 and 11. The main difference is that the maximum value attained by t_ is slightly smaller

(9% in the near-wall domain) and the maximum value attained by v is slightly larger (6% in the near-wall

domain). The reason for this similarity is that the differences between the criteria are either in the higher

wave numbers (k, > 50) where the spectrum has already fallen off significantly (see figure 4), or there is

a difference at only one or two wave numbers.

To evaluate the extent to which the characteristic eddy is observable, an instantaneous velocity field

has been examined for structures. To find the locations of events corresponding to the characteristic eddy,

sample functions of g(z) have been computed for the near-wall domain from the sample functions of ai
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by using equation 4-7b. An example obtained at a particular z location and time is shown in figure 12(a).

In this figure, there is a large, isolated positive excursion of g from zero at about z = 3.16, which should

correspond to a structure similar to the characteristic eddy. A vector plot of the velocity in the V-z plane

centered at this location is shown in figure 12(b) for comparison with figure 10(b). As in the characteristic

eddy, a large streamwise vortex is to the left of the domain, with a flow away from the wall at the cen-

ter of the domain. The shape of this vortex is somewhat different from the vortices in the characteristic

eddy. The major difference between the instantaneous structure and the characteristic eddy is the lack of

a counter-rotating partner in the instantaneous field. It is important to note that the appearance of pairs of
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Figure 12. (a) Sample functions of the g process (eq. 4-8) from the two-dimensional decomposition in the

near-wall domain. (b) Velocity vectors projected into the V-z plane of the instantaneous velocity in the

plane from which the sample function of g shown in (a) was taken. The plot domain is centered on the

large peak in g appearing at z = 3.18.
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counterrotatingvorticesin thecharacteristiceddyis aconsequenceof the symmetries in the statistics, and

the techniques by which the phases were determined, and it does not imply that such pairs are prevalent

in the instantaneous fields. Thus, the major difference in this case is caused by this "artificial" symmetry

imposed on the characteristic eddy (see section 6 for further discussion of this point).

5.3 Characteristic eddies in three dimensions

In three dimensions, we must determine the function f(x, z) as defined in equation 4-7. When 9

satisfies equation 4-8, the magnitude of the Fourier coefficients of f are

(5-6)

The phases of )_ were determined by the compactness conditions discussed in section 4 and the zero-phase

condition. The bispectrum is not used in the three-dimensional case because the statistical sample available

did not allow it to be accurately estimated. In the two-dimensional case, the compactness and bispectrum

conditions produce the same results, but it is not clear whether this would occur in three dimensions.

In addition to the zero-phase condition, the phases of .f have been chosen to make the maximum

values attained by f _b_(x, y, z) d!/as large as possible for i = 1 or i = 2 to obtain t_- and v-compactness

conditions. Unlike the two-dimensional case, the zero-phase characteristic eddy does not satisfy either

of these compactness conditions. There is very little difference in the structure of the characteristic eddy

between the two compactness criteria for the near-wall domain, but the magnitudes of the maximum values

of the velocities do differ. Some discernible differences between the zero-phase eddy and the eddies derived

from the compactness criteria in the wall-to-centerline domain will also be discussed.

Contours of the streamwise and normal velocity components for the zero-phase eddy are shown in

figures 13 and 14 for the near-wall (!/" < 40) domain. Shown are contours in the t/-z plane at x = 0, the

x-_/plane at z = 0, and the x-z plane at !i+ _-, 10. The location x = 0, z = 0 is where both the streamwise

and normal velocities attain their maximum values, and can therefore be regarded as the center of the eddy.

In the near-wall domain, the !/-z contours reveal a region of low streamwise velocity approximately 50

wall units wide that is coincident with a region of strong velocity away from the wall. This is consistent

with the two-dimensional results. The x-_/contours show that the low streamwise velocity region extends

250 wall units upstream of x = 0 near the wall, decreasing to as little as 60 wall units upstream at _" = 40.

In contrast, the downstream extent of the low velocity region (150 wall units) does not decrease away from

the wall. The region of intense vertical velocity has a streamwise extent of less than 100 wall units in the

upstream and downstream directions. This is also evident in the x-z contours in the plane at y" = 10.

Contours for the u-compactness condition characteristic eddy in the waU-to-centedine domain are

shown in figures 15 and 16. The v-compactness condition plots are similar, except for the magnitudes
of the velocities. As in the two-dimensional case, the near-wall region of the characteristic eddy in the

wall-to-centerline domain is remarkably similar to that in the near-wall domain. Contours in the _/-z plane

in figures 15 and 16 indicate that the region of low streamwise velocity and flow away from the wall are

diffuse far from the wall, having a z extent as much as three times that near the wall. However, in the x-y

plane, it is seen that these regions have smaller streamwise extents far from the wall than near the wall. Far

from the wall, the low streamwise velocity region has an extent of about 100 wall units, as does the region

of high vertical velocity. Contours of u and v in the x-z plane at If = 95 reveal that upstream of x = 0,
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Figure 13. Contours of t_ for the three-dimensional zero-phase characteristic eddy in the near-wall domain

(_/* _< 40). (a) _/-z plane at :r = 0, (b) x-_/plane at z = 0, and (c) :r-z plane at _/* = 10. Contour increment

is (a) 7, (b) 7, (c) 5. Negative contours are dashed.
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Figure 14. Contours of v for the three-dimensional zero-phase characteristic eddy in the near-wall domain

(y" < 40). (a) y-z plane at z = O, (b) z-y plane at z = O, and (c) a:-z plane at V" = 10. Contour increment

is (a) 1, (b) 1, and (c) 0.6. Negative contours are dashed.
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thehighest values of u and v occur off the z "- 0 axis. This is related to the pair of streamwise vortices in

the characteristic eddy, because above these vortices, the maximum normal velocity does not occur on the

midplane between them, but to the sides. The zero-phase characteristic eddy has also been computed; the

major difference between it and the u-compactness eddy in figures 15 and 16 is the vertical location of the

streamwise vortices (see below).

Figure 17 contains plots of the velocity vectors projected into y-z planes located at x" = 0 ,-t- 18 and

4-36 for the zero-phase eddy in the near-wall domain. The plane at x = 0 reveals a pair of counter rotating

vortices straddling the region of strong ejection from the wall. In the wall-to-centerline domain, a similar

set of streamwise vortices occur (not shown). The centers of the vortices in the near-wall domain at x = 0

are located at y" = 25 and are separated by 35 wall units. Upstream of x - 0, the centers are closer to the

wall, and downstream, they are farther away. At x ÷ -- 36, the centers are beyond the edge of the domain.

The y location of the vortex centers is plotted in figure 18. Note that the angle of inclination of the

vortex increases with downstream location. At x" = -36, the angle is 10 ° while at x ÷ = 18, the angle is

31 °. Upstream of x* = -54 (plots not shown), the vortices are so weak that they are not discernible. Thus,

in the wall region (y" < 40), the vortices have a streamwise extent of less than 100 wall units. This is

consistent with the observations of streamwise vortices in instantaneous velocity fields made by Moser and

Moin (1984), in which the vortices were observed to go beyond y" = 40 in a very short streamwise distance

(150 wall units). In contrast, the streamwise vortices in the decomposition performed by Herzog (1986)

were near the wall for a much longer streamwise distance (360 wail units), and had a nearly constant angle
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Figure 15. Contours of u for the three-dimensional u-compactness condition characteristic eddy in the

wall-to-centerline domain (y" < 180). (a) y-z plane at x = 0. Contour increment is 5. Negative contours
are dashed.
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of inclination of 5 °. The reason for this discrepancy is not known, but the poor streamwise resolution of

Herzog's measured correlation tensor for moderate to large separations (see section 1) is a potential cause.

Moser and Moin (1984) observed that there were many more solitary vortices than vortex pairs in

instantaneous flow fields. It may appear that a contradiction exists between the counterrotating pair of

vortices obtained by the decomposition and this prevalence of solitary vortices observed in instantaneous

velocity fields. This is not the case. The technique outlined in sections 3 and 4 yields symmetric counterro-

taring pairs of vortices, which are distributed through the homogeneous spatial directions by the sprinkling

process g (see equation 4-6). As was observed in figure 12, there is no difficulty in generating a solitary

vortex from a collection of vortex pairs when they are distributed by the appropriate g function. The fact

that vortices are obtained by the current method indicates the importance (as measured by energy) of these

vortices near the wall. Obtaining a pair of vortices, rather than a solitary vortex, calls for improvement in

the phase recovery technique.

Also shown in figure 18 are the vortex center positions for the characteristic eddies in the near-wall

domain based on the u- and v-compactness conditions, as well as vortex center positions in the wall-to-

centerline domain for all three phase determination methods. In the near-wall domain, the compactness

conditions result in very similar curves, while the curve for the zero-phase eddy is somewhat lower. In

the wall-to-centerline domain, the vortices are seen to be much farther from the wall than in the near-wall

domain. At x = 0, the vortex centers are at _/* = 40 to 80, depending on the condition that was used to

obtain the phase; while in the near-wall domain, the vortices were at y* = 20 to 30. The vortices resulting

(a)
I I I t I 1 I I I

Figure 16. Contours of v for the three-dimensional u-compactness condition characteristic eddy in the

wall-to-centerline domain (y+ < 180). (a) _/-z plane at _; = 0. Contour increment is 2. Negative contours

are dashed.
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Contour increment is (b-c) 2 and (d) 0.9.
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from the compactness conditions are farther from the wall than the vortices for the zero-phase eddy. As

in the near-wall domain, the vortices are inclined at about 10 ° upstream of z = 0. Downstream they

are inclined as steeply as 60 °. In agreement with the near-wall results, the vortices are not discernible far

upstream of x - 0, and are near the wall for less than 100 wall units. Note that in both domains the vortices

are far from the wall for z" > 30, but in figures 14(b) and 16(b), there is significant ejection near the wall

as far downstream as x ÷ = 180. Thus, the far downstream ejection is below the streamwise vortex pair but

is not straddled by them. Also, the inclined vortices observed here probably are related to, and certainly

are consistent with, the hairpin eddies investigated by Moin and Kim (1985).
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Figure 17. Velocity vectors for the zero-phase eddy in the near-wall domain (tY _ 40) projected into _/-z

planes at (a) z* = -36, (b) z" = -18, and (c) z" = 0.
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tance (x): o, zero-phase eddy; o, u-compactness eddy; O, v-compactness eddy. Upper curves are for the

wall-to-centerline domain (y" < 180), lower curves are for the near-wall domain (y* < 40).
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6 CONCLUSIONS

The proper orthogonal decomposition technique has been applied to one-, two-, and three-dimensional

decompositions of the turbulent channel flow. Velocity fields generated by direct numerical simulation

(Kim, Moin, and Moser, 1987) were used to compute the full two-point velocity correlation tensor,

P_j(r_, y, y', rz), for this purpose. The technique was used to extract energetic organized structures from

turbulence. Turbulent velocity fields were represented as a randomly weighted sum of the eigenfunctions

of/_j. The resulting characteristic eddies were found to contribute as much as 76% to the kinetic energy,

and even more to turbulence production. Thus the characteristic eddy indeed has special significance.

Several different techniques were used to determine the Fourier phase coefficients of the characteristic

eddy, including bispectral analysis and compactness conditions. The results were qualitatively similar for

all techniques; however, quantitative differences, such as the y locations of the centers of streamwise

vortices, were observed.

In the two-dimensional case (spanwise and normal to the wall), the characteristic eddies consisted of

a narrow ejection region accompanied by a region of low streamwise momentum. These were straddled by

a pair of weak counterrotating vortices. It was found that characteristic eddies computed in the near-wall

domain were very similar to the near-wall portions of the characteristic eddies that were computed in the

full wall-to-centerline domain.

Three-dimensional eddies were found to be similar to the two-dimensional eddies, in that they con-

sisted of an ejection that was straddled by weak streamwise vortices. The low speed streak accompanying

the ejection is about 400 wall units long and 50 wall units wide, while the region of strong vertical velocity

is less than 200 wall units long. The counterrotating vortices are inclined at 10 ° near the wall and as much

as 60 ° away from the wall, and they have a streamwise extent in the near-wall region (y" < 40) of less

than 100 wall units. It was noted that while the streamwise vortices occurred in pairs, this did not imply

that vortex pairs were in fact dominant in the instantaneous fields. The pairs resulted from symmetries in

the statistics and from the techniques by which the phases were determined. In fact, as noted in section 5,

solitary inclined vortices rather than pairs are most often observed near the wall in instantaneous velocity

fields (Moser and Moin, 1984).

The relationship of the characteristic eddies to structures observable in instantaneous flow fields is

not clear, although it was demonstrated that the instantaneous structure associated with a large peak in

the scattering function did have some qualitative similarity to the characteristic eddy. Presumably, the

characteristic eddy represents some average of the most energetic events. It is clear however, that if the

stochastic velocity field is composed of a single structure that is distributed in the homogeneous directions

by a scattering process that is known, then the technique would extract that structure. Also, if the proper

orthogonal decomposition eigenfunctions are indeed dominant, and if the scattering process is an impulse

process (see the appendix) with impulses not too densely spaced, then the characteristic eddies would be

visible in the flow.

The structures in the instantaneous velocity fields are evolving in time. Unfortunately the three-

dimensional characteristic eddy decomposition performed here does not recover these dynamics. An as-

sessment of the role of the structures in the physics of near-wall turbulence requires some knowledge of
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theevolutionof the structures. The treatment of the dynamics of structures obtained by characteristic eddy

decomposition is a topic of continuing research (Aubry, Holmes, Lumley, and Stone, 1988).

However, whether the characteristic eddy is actually found in the instantaneous flow field, and if so at

what frequency, may not be the important question. If the main objective of a study of coherent structures

is to find a decomposition of turbulence into deterministic and stochastic portions, the characteristic eddy

decomposition is certainly the most efficient method in the sense that energy and Reynolds stresses are

reproduced with the fewest number of terms ("eddies"). In addition, governing equations for the coeffi-

cients of the characteristic eddy eigenfuncfions can be derived from the Navier-Stokes equations, which is

a useful point for theoretical development. Other decompositions are also possible; for example, one could

easily find the structures that are the most efficient contributors to the magnitude of vorticity fluctuations

(Moser, 1988).
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APPENDIX

NOTES ON THE SHOT NOISE DECOMPOSITION

In section 4 it was shown that several quantities had to be specified to fully determine ¢,¢.in equa-

tion 4-6. In particular, the second-order moments of the stochastic process g were specified (eq. 4-8). To

determine the Fourier phases, we would have also liked to specify the third-order moments of g by re-

quiring the bispecmam Bg to be a real constant. In this appendix we examine the physical consequences

of these specifications of the statistics of the process g. These statistical properties (equation 4-8 and Bg,

a real constant) are shared by many stochastic processes with vastly differing characters. In particular,

processes which are independent on nonoverlapping intervals, satisfy these conditions. Two well-studied

examples of such processes in one dimension (x) are the Gaussian white noise process and the Poisson im-

pulse process. Gaussian white noise is a model for the velocity of a particle undergoing Brownian motion

(note that Bg is zero in this case). The Poisson impulse process is the g process used by Rice (1944) in the

"shot-noise" decomposition. The Poisson impulse process can be written

g(_)= _ti(x- zj) (A-I)
j

(Papoulis,1965),where xj arerandom locationswithuniformdensityalongthex axis.More specifi-

cally,thcspacingsbetweenpointsareindependentand exponcntiallydistributed(thisisneccssaryforthe

independentintervalsproperty).The samplefunctionsofthesetwo processeshave greatlydifferingchar-

acters.Thus thelowerorderstatisticalproperticsspecifiedforg do nottellusverymuch aboutthesample

functionsofg.

The Poisson impulse process is particularly interesting in connection with the current problem. If 9
in equation 4-8 is indeed an impulse process, then the stochastic process u_1) can be interpreted as the sum

of characteristic eddies ¢_ occurring at discrete random locations in the homogeneous directions. This
is attractive because if the eddies are not too close together, they would actually be observable in the

realizations of u_ l), and perhaps in u_. It would thus be appropriate to require that g be an impulse process;

that is, a process whose sample functions consist entirely of Dirac delta functions. An impulse process can

be considerably more general than the Poisson process; in one dimension, a more general impulse process
is

g(=)= _ bfi(x- _:j) (A-2)
].

where theb./arcnotnecessarilyindcpcndcntrandom variables,and thespacingsbetween neighboring

pointsxj areneitherindependentnor exponentiallydistributed.Ifitisarrangedso thatthisprocessis

homogeneous (aswe require),itstwo-pointcorrelationfunctionwould be givenas

< g(z)g(x + r_) >= _, < b2 > 8(r,) + S( r,) R#( r,) (A-3)

where v is the average density of points, S(r_) dr_ is the probability that there is a point in the interval

(r_, r_ + dry) given that there is point at 0; and R6(r_) is the correlation of the strength b of two impulses

separated by a distance r_. As was discussed in the previous paragraph, the statistical conditions (equa-

tion 4-8, and Bg, a real constant) are certainly not sufficient to guarantee that g is an impulse process, and

equation A-3 shows that they are also not necessary. Thus if our goal is to require that g be an impulse

process, these specifications are not appropriate.
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In general, it is not possible to require that g be an impulse process and satisfy equation 4-8, except

in the limit of impulses which are dense in x. It may be possible however, to ask that g be an impulse

process in some approximate sense. For example g in one dimension could be further decomposed to

g(x) = gl(x) + g2(x) where gl is an impulse process. This might be accomplished by requiring that

(A-4)

be a minimum. This was done by Chambers (1987) for a very restricted class of impulse processes gl.

There are difficulties with this minimization problem because it should always be possible to reduce the

error (eq. A-4) by increasing the average density of points in gl. However, allowing an arbitrarily large

density of points is undesirable since the structures would then significantly overlap. It is also not clear

how such a minimization might be accomplished in practice.

Because we are concerned that g be as close as possible to an impulse process, it is interesting to see

how well the sample functions of g that are determined from the conditions in section 4 approximate delta

functions. To this end, some sample functions of g(z) from the two-dimensional case were computed from

sample functions of al by using equation 4-7b. An example is shown in figure 12(a). The sample function

is certainly not made up of delta functions. However, it does exhibit regions of intense activity separated

by regions of relative calm, and there are occasional, very large, short-duration excursions. This gives

some indication that a decomposition of g into an impulse process and a remainder, as discussed before,

might be a viable approach.
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