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. Modeling of Rolling Element Bearing Mechanics Acerojet Propulsion Division

I. REPORTING PERIOD OF PERFORMANCE

This report covers the accounting month of February 1991. Beginning with this report, Version
2.0 of the program plan will be used as the schedule and fiscal reference. Further comments
relative to this revised plan are given in the following section of this report.

This is month 10 of the 18 month Phase I as given in Version 2.0 of the program plan. With the
revision, the overall program extends over 31 months.

Exact reporting period of performance is 01-19-91 to 02-15-91.
The program start date was 05-08-90.

II. PROGRAM STATUS vs. PLAN

PROGRAM PLAN REVISIONS

Beginning with this monthly report, the Version 2.0 program plan presented to the NASA
technical monitor, Steve Ryan, on January 15, 1991 will be used to track progress. It is
recognized that this replan has not been formally approved by NASA, especially in regards to the
accelerated funding required. However, the obsolescence of the original program plan warrants
use of this new plan.

The impact of switching to the Version 2.0 program plan on Phase I activities is minor.
Essentially, the duration has been shortened from 19 to 18 months, and some resources have
been reallocated.

It is imperative that a decision relevant to adopting the Version 2.0 program plan be made before
program month 15 (July 91). At this point, the replan program starts Phase II. If necessary, the
program can be stretched to avoid the overlap of development phases, however, an additional
replan exercise will be necessary to accommodate this event.

PROGRAM STATUS CHARTS

Program status charts for this month follow on the next three pages. The schedule and funding
profiles are for the Version 2.0 program plan. Page 2 contains the Milestone and Schedule
Chart. A spreadsheet summary of the program for both salary hours and material (ODC) is given
on page 3. Finally, page 4 displays the overall budget versus actuals. Only Phase I data are
given, as the other two phases have not started.
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Modeling of Rolling Element Bearing Mechanics Aercojet Propulsion Division

EXPLANATIONS OF SIGNIFICANT VARIANCES AND CORRECTIVE ACTION

Program Variances.

KHK120: A computer charge of $512 was made on this task during February. The code that
was used (MACSYMA) is only available on the VAX network, necessitating the
expenditure, although the amount was surprising.

ACTION: This expenditure will be covered with other ODC funds. No further use of the code
will be authorized.

KHK400: Replan activities associated with contract requirements resulted in 27 hours being
spent.

ACTION: It appears that with the replan effort, this activity may be underfunded. It will be
monitored over the course of the next few months to determine if the initial
estimates are adequate and what additional allocation will be needed to balance
expenditures with budget.
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Modeling of Rolling Element Bearing Mechanics Aerojet Propulsion Division

II. TECHNICAL PROGRESS

Work Package KHK110 (Literature Search)

We have obtained the remaining documentation on computer codes RAPIDREB and
SHABERTH, thus concluding this task. A complete list of references for the quasi-static
solution are given in the Appendix.

Work Package KHK120 (Formulate/Document Models)

The classical bearing mechanics work of Jones [1]* and Harris [2] were studied in detail,
primarily with reference to angular contact ball bearings. All of the equations related to bearing
geometry, relative motions of rolling elements, and internal rolling-element load distribution
were rederived to determine implicit assumptions in the formulations. These derivations were
facilitated by using the symbolic analysis code MACSYMA.

A preliminary assessment of some of the assumptions inherent in traditional bearing mechanics,
relative to structural flexibility analysis, is as follows:

1. Except for Hertzian contact between the balls and races, all the bearing components
(inner ring, outer ring and housing) are considered rigid. Elastic displacements of
these components, as well as local deformations of a hollow shaft, could
significantly change the quasi-static load distribution between the components.

2. The azimuth angle defining ball location (y;) is considered constant, and the rigid-
body small displacements of the inner ring are described by only five degrees of
freedom (DOF). With general elastic deformations of the bearing components,
small displacements could occur in the tangential (azimuth) direction, and the rigid-
body small displacements of the inner ring could require a sixth DOF at the
shaft/inner ring interface (i. ., y; not constant).

3. Some contributions to inner ring rigid-body motion, which may be of the same order
as elastic deflections, are neglected. These contributions become evident when the
coordinate system fixed at the shaft center line is allowed to move with the shaft
relative to inertial space. The use of the moving coordinate system will facilitate the
proposed study of enforced motion in Phase II.

4. The initial radial distance from the shaft center to the inner race curvature center (R)
is used as a constant to calculate the forces and moments at the bearing center for
comparison with the known applied forces and moments. The actual coordinates
from the ball/inner race contact points to the fixed point of force and moment
application should properly be used.

5. The inner race and outer race curvature centers necessarily move with their
respective races as part of a rigid body. These curvature centers, required to
determine normal force directions at the ball/race contact points, must be considered
part of the flexible inner and outer rings for the subsequent quasi-static analysis.

* . . .
Numbers in brackets denote references given in Section IV of the report
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Modeling of Rolling Element Bearing Mechanics Aerajet Propulsion Division

6. Traction forces applied to the ball by relative fluid motion are neglected. Only the
friction forces needed to react the gyroscopic moment are included in the force
equilibrium equations.

7. The concept of race-ball control utilized by Jones [1], in which spin occurs only at
the outer race or at the inner race, is not supported by subsequent work such as
Harris [2] and Walters [3]. According to these sources, inner-race control is
impossible but outer-race control can be approximated in certain situations. Usually
ball spin occurs at both races. We will formulate the bearing mechanics equations
without reliance on this assumption.

At the time these traditional formulations were developed, such assumptions were probably
necessary to obtain a timely solution with the computational power available. The figure on
page 8, taken from Harris [2] page 256, can be used to illustrate some of these common
assumptions in the kinematic analysis of ball bearings.

In the unloaded condition, the initial position of the inner and outer raceway groove curvature
centers and the ball center are collinear (and coplanar), separated by the distance BD. In terms
of the inner and outer raceway curvatures (f; and £,), BD may be expressed as:

BD =(f, + fi - )D (M

where D is the ball diameter. This dimension implies that the internal clearance in the bearing
has been absorbed by axial translation of the inner race.

Assuming a fixed outer raceway groove curvature center, the application of static load and
centrifugal force results in radial and axial (but not tangential) motion of the inner raceway
groove curvature center, denoted by quantities Ar and Az. In terms of the unknown rigid body
relative radial, axial, and angular displacements of the inner and outer rings, the motion is
expressed as:

Ar = &, cos;

2
Az

d; + OR; cos ;

The figure illustrates the key dimension R; the initial radius of the inner raceway groove
curvature center, which is used as a constant in the Jones and Harris force analyses. Note that
the figure and these equations express the relative motion of the inner and outer rings in terms of
three degrees of freedom. In actuality, both Jones and Harris utilize five degrees of freedom in
their complete analysis, resolving the motion into a Cartesian coordinate system with only the
angular position in the axial direction fixed (again, no tangential motion allowed).

Using the deflections due to load and speed given in equation (2), coupled with the unloaded
dimension BD from (1), the relative axial and radial motion of the loci of inner and outer
raceway groove curvature centers at any ball position is:

A]j = BDsina® + Az
3)
Ay = BDcosa® + Ar

where a© is the initial contact angle. Since the external forces and/or displacements exerted on
the inner race are known, and the internal forces generated by the ball rotation (centrifugal and
gyroscopic) can be calculated, the solution to equation (3) yields the full specification of the
displacement in the traditional bearing mechanics analysis.
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Ay 3y

Final position, 2
inner raceway groove
curvature center

Initial position,
inner raceway groove
curvature center

Ball center, final position Ay

Ball center, initial position

Outer raceway groove,
curvature center fixed

In order to obtain the relative curvature center displacements, the kinematic equations expressed
by (3) were reformulated by Jones and Harris for the ball center displacements X;; and X;; and
inner and outer ring contact angles «;; and o,; and solved using a Newton-Raphson iteration.
Actually, the contact angles are not obtained directly, the iterative solution obtains values for
X1p Xpj, yj, and d,;, where the latter two quantities are the inner and outer ring contact
deformations. Thesé hertzian deflections are the only flexibility in the analysis. As was
discussed in the work of Davis and Vallance [4], this limited compliance can result in significant
differences in contact angle and ball load distributions compared to a fully flexible ring analysis.

Once these four terms are obtained, forces and moments satisfying static equilibrium can be
computed, although both Jones and Harris use R; as the moment arm. This means that the
moments exerted by the inner ring on the shaft use a lever arm foreshortened by the Ar
displacement. The static equilibrium forces are combined with the solution for X ;;, X5, 8;;, and

. . . 2P, P
d,; to calculate the primary unknown relative displacements 8, 8, and 6 using’ iterative
refinement.

The Newton-Raphson iteration scheme used by Jones and Harris requires numerous partial
derivatives of some rather complicated expressions. If our analysis indicates that these terms
must be rederived, we found that the use of MACSYMA can significantly reduce the time and
labor required to obtain such quantities.
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Work Package KHK130 (Formulate/Document Solution Methodology)

We had intended to begin work on this task by examining the codes we have obtained. This
effort was deferred until we could adequately review the documentation obtained on the two
primary bearing mechanics programs, RAPIDREB and SHABERTH, which we received this
month.

Work Package KHK400 (Meetings/Technical Reporting)

The Version 2.0 program plan was formally submitted through contractual channels for approval
by NASA. D'Jack Klingler (Aerojet) sent Joyce Mallory (NASA) two memos, one describing
the revised program plan, and the other documenting a phone call in regard to personnel
changes.

Work Package KHK410 (Cost Reporting)

Monthly report and support of replan activities.

Work Package KHK420 (Program Management)

Support of replan activity.
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ITI. WORK FOR NEXT REPORTING PERIOD

Work Package KHK120 (Formulate/Document Models)

We will conclude work on the study of the theoretical aspects of ball and roller bearing
kinematics and dynamics as well as the development of theory to support the incorporation of
race flexibility into bearing mechanics software.

Work Package KHK130 (Formulate/Document Solution Methodology)

We will review the theoretical manuals obtained for the primary bearing mechanics analysis

codes, RAPIDREB and SHABERTH, primarily to determine the applicability of the codes to
support the incorporation of flexibility, enforced motion, and transient analyses. Where possible,

we will compare the quasi-static solution approach in the codes to the methodology we have
developed, in order to determine the amount of modification required.

Work Package KHK400 (Meetings/Technical Reporting)

Monthly report activity.

Work Package KHK410 (Cost Reporting)

Monthly report activity.

Work Package KHK420 (Program Management)

Monthly report activity.

Page 10 of 13



Modeling of Rolling Element Bearing Mechanics Aerojet Propulsion Division
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