@ https://ntrs.nasa.gov/search.jsp?R=19910012416 2020-03-19T18:50:34+00:00Z

WHO 1= 10 |

-

CU-CSSC-91-6 CENTER FOR SPACE STRUCTURES AND CONTROLS

=ﬂm

»
ANALYSIS, PRELIMINARY DEsIGN (/67
AND SOFTWARE SYSTEMS FOR
CONTROL-STRUCTURE INTERACTION
PROBLEMS

by
K. C. Park and K. Alvin

 (NASA-CR-188018) ANALYSIS, PRELIMINARY- N91-21729
DESIGN AND SIMULATION SYSTEMS FOR } _==THRU--

CONTROL-STRUCTURE INTERACTION PROBLEMS Final: /7&;4 N91-21732
Report (Colorado Univ.) 164 pS .LSCL. 098 unclas -

BE525C 63/61, 0001768

January 1991 COLLEGE OF ENGINEERING
UNIVERSITY OF COLORADO
CAMPUS BOX 429
BOULDER, COLORADO 80309

Analysis, Preliminary Design and Simulation Systems
. for
Control-Structure Interaction Problems

K.C. PARK AND K. F. ALVIN

Department of Aerospace Engineering Sciences and
Center for Space Structures and Controls
University of Colorado, Boulder, CO 80309-0429

Final Report on Grant NAG1-1021, funded
by NASA Langley Research Center

SUMMARY

" This is a final report on the tasks supported by NASA Langley Research Center un-
der Grant NAG1-1021, Analysis, Preliminary Design and Simulation Systems for
Control-Structure Interaction Problems. When the proposal was submitted, it was
intedned to be a three-year program, with its first-year effort to be concentrated on soft-
ware aspects of control-structure interaction(CSI) analysis. Due to the termination of the

- grant at the end of its first-year period, appropriate adjustments had to be made in order
to make most out of the grant. The accomplishments from the one-year effort include: 1)
tl.e delivery of a research-level CSI analysis software that runs both on SUN Workstations
as well as Alliant shared-memory parallel machines to Dr. W. K. Belvin of NASA /Langley
Research Center; 2) three presentations at conferences, one in a bound book publication,
the second in the 1990 AIAA Guidance and Control Conference Proceedings, and the
third to appear in a NASA/DOD/JPL proceeding on system identifications. Two of these
papers are being prepared for submittal to journal publications.

TABLE OF CONTENTS |

SUMMARY
ENCLOSED PAPERS

K. A. Alvin and K. C. Park
Implementation of A Partitioned Algorithm for
Simulations of Large CSI Problems

K. C. Park, W. K. Belvin and K. A. Alvin
Second-Order Discrete Kalman Filtering Equations for
Control-Structure Interaction Sxmulatlons

K. C. Park, W. K. Belvin and K. A. Alvin
Parallel Computations and Control of Adaptive Structures

\ |

T

é.‘,t,_és,,. _ j%?@/ . .S é,/

CU-CSSC-QI-% : CENTER FOR SPACE STRUCTURES AND CONTROLS

|

IMPLEMENTATION OF A

PARTITIONED ALGORITHM

FOR SIMULATION OF LARGE
- CSI PROBLEMS

Aby
K. F. Alvin and K. C. Park

== — e ————————————————————

. March 1991 COLLEGE OF ENGINEERING .

UNIVERSITY OF COLORADO
CAMPUS BOX 429
BOULDER, COLORADO 80309

Implementation of a Partitioned Algorithm
for Simulation of Large CSI Problems

K. F. Alvin and K. C. Park

Department of Aerospace Engineering Science and
Center for Space Structures and Controls
University of Colorado
Boulder, CO 80309-0429

March 1991

Report No. CU-CSSC-91-04

Research spnsored by NASA Langley Research Center
under grant NAG1-1021

Summary

This report summarizes reséarch work on the implementation of a partitioned numerical
algorithm for determining the dynamic response of coupled structure/controller/estimator
finite-dimensional systems. The partitioned approach leads to a set of coupled first and
second-order linear differential equations which are numerically integrated with extrapola-.
tion and implicit step methods. The present software implementation, ACSIS, utilizes par-
allel processing techniques at various levels to optimize performance on a shared-memory
concurrent/vector processing system. The current work also generalizes the form of state
estimation, whereby the Kalman filtering method is recast in a second-order differential
equation equivalent to and possessing the same computational advantages of the structural
equations. As part of the present implementation effort, a general procedure for the design
of controller and filter gains is also implemented, which utilizes the vibration character-
istics of the structure to be solved. Example problems are presented which demonstrate
the versatility of the code and computational efficiency of the parallel methods is exam-
ined through runtime results for these problems. A user’s guide to the ACSIS program,
including descriptions of input formats for the structural finite eloment model data and .
. control system definition, can be found in Appendix A. The procedures and algorithm
scripts related to gain design using PRO-Matlab are included in Appendix B. In Appendix
C, a stability analysis for the partitioned algorithm is presented which extends previous .
analysis to include observer dynamics, leading to a clearly definable stability limit. The
_source code for the parallel implementation of ACSIS is listed in Appendix D.

1.0 Introduction

The present work on the implementation of a partitioned transient analysis algorithm for
the simulation of linear Control-Structure Interaction (CSI) problems has concentrated
on four major areas. The initial software implementation emphasized the user-friendly
aspect and a structural dynamics-oriented interface for experienced practitioners of finite
element analysis programs. Another reason for a new implementation of the algorithm
was that the initial architecture of the CS3 software testbed developed by Belvin and Park
[1-2] had little provision for effective parallelization. CS3 also included extensive links to
optimization and optimal control algorithms which were not central to the current work
and proved to be a further hinderance. This new software implementation was designated
ACSIS, for Accelerated Control-Structure Interaction Simulation, and led to significant
improvements in speed for particular problems on conventional serial processors due to
simpler and more economical storage of primary variables. ACSIS is also versatile in its
usage of a general Timoshenko beam element with pin release capability and shear correc-
tion factor adjustment, and control system definition via a single data file. A preliminary
Users Guide was developed for ACSIS, and the input formats were made compatible with
pre/postprocessing software developed for Sun and Silicon Graphics computers so that

1

future versions using parallel techniques via element mesh domain decompositions can rely
on the same X-Window-based I/O utilities. Table 1 documents runtime comparisions of
ACSIS and CS3 on a sample 48 DOF problem simulated on a Sun 3/260 workstation using
a floating point accelerator. "

2.0 State Estimation via Second-Order Kalman Filtering

One restriction of the CS3 software testbed was the form of dynamic observer equations
used in the partitioned algorithm as developed in [2]. However, Belvin and Park [3] showed
that a general Kalman filtering type of state estimation was not only possible in the parti-
tioned solution, but could be implemented at a very small additional cost in computations
by a slight modification in the way the dynamical equations of the plant are cast into
first-order form for filter gain design. The methods employed in [3] have been successfully
implemented into ACSIS, thereby enhancing the code’s ahility to handle a wide variety
of state estimation schemes. This is important as the app!ication of optimal control tech-
niques to the state estimator problem leads to this more general form, and as the restric-
tions of the observer used in CS3 typically meant either discarding part of the observer
gain parameters, resulting in a loss in system performance.

ACSIS retains the option of using the more resricted observer form, as well as simple
full state feedback (no dynamic compensation). It is clear from examining the respective
equations, that for structures with stiffness-proportional damping, the only additional
‘calculations required for the Kalman filter is the multiplication of the L; gain matrix by the
predicted state estimation error vector v (see equations 25 of [3]). This is not a significant
portion of the computations required at each integratioL step, as the dimension of v is small
(number of sensors). By far the major costs are for computing an internal force of the
form Kq, and backsolving the factored integration matrix for the estimated displacement
- states. This is verified numerically in the ACSIS results of Table 1 (using a restricted form
of observer) and version (A1) of Table 2. The model used in Table 1 is roughly comparable
to the 54 dof truss in Table 2, and both show the additional simulation time due to state
estimation is roughly the same as an additional transient analysis. Finally, the Kalman
filtering equations do not lead to any additional complications in parallel implementation of
the overall algorithm as compared to the more restricted second-order observer developed

. for CS3.

3.0 Parallel Implementation of ACSIS

A primary emphasis in our work dealt with the optxmxzatxon of the software implemen-
tation on a concurrent processing system. The platform chosen (primarily due to avail-
ability, initially at CU and later at NASA LaRC) was the Alliant FX/8 shared memory
multiprocessor system with 8 parallel processing units and vectorization capabilities. Ver-
sions of the software have been ported to the Alliant and compiled using the Concentrix
FX/Fortran optimizing compiler, which has available options for automatic vectorization
and concurrency of standard, problem-independent parallel computations.

The partitioned CSI algorithm has three primary levels of parallelism in its numerics which
_can be exploited. At the highest level is the integration of the second-order dynamical plant
(structure) and filter (estimator) equations, which as designed are of roughly equivalent
size. Through the algorithm, these systems are effectively decoupled and independent
at each discrete time step, and thus may be handled in parallel by invoking a compiler
directive in the main program, which calls the respective subroutines simultaneously and
handles re-synchronization of the execution upon their return.

At a lower level of the algorithm, the structure and state estimator equations exhibit
. symmetric, second-order forms typical of linear structural dynamics problems. It is well
known that computations related to the formation of the internal force vector, Kq, can be
re-implemented at an element level [4], which, through decomposition of the element mesh
(5], can be handled in parallel within exclusive subdomains. This technique becomes par-
ticularly attractive for larger problems on more massively parallel systems; in the present
work, the element-by-element (EBE) technique was not as effective as other types of paral-
lelism. It should be noted here that the partitioned algorithm employs implicit integration
methods, leading to systems of algebraic equations which are factored and solved using di-
rect, rather than iterative, numerical methods. Therefore, formulation of the internal force
vector is needed only in the formation of the known (right hand side) vector for integration
of the plant and filter equations. The alternative to EBE computations is multiplication of
the relevant displacement vector with the global stiffness matrix stored in profile (skyline)
form. To “simulate” the advantages of local memory typical in large-scale parallel process-
ing systems, the computed element stiffnesses were saved in shared memory for the EBE
calculations, thus avoiding the need to recompute this data at each integration step. In
addition, a low-overhead automatic element domain decomposmon was provided for the
parallel EBE method.

. The final and lowest level of parallelism is obviously that of the basic matrix computations
such as addition, multiplication, etc. These numerical operations are inherent in nearly
all areas of the software implementation, including problem preprocessing. With the very
* capable optimizing compiler available on the Alliant system, this parallelism was exploited
through vectorization and concurrency of the nominal source code using the FX/Fortran
compiler run-time options -0 -DAS -alt. The performance of the resultant executable
code was examined using the Alliant’s profiling capabilities, and changes to the nominal

3

'source code, remaining compliant to F77, to maximize the identifiable concurrencs? and
thus enhance the resultant speed. This was particularly useful in the profile matrix/vector
multiply operation, whose speed is critical to the overall program performance.

4.0 Problem Descriptions

‘Three structural dynamics problems were developed for code testing at various levels of
complexity. All three problems have the following common features: simulations consisted
of 1000 integration steps and employed a stiffness-proportional damping. The damping
was not needed for algorithm stability, but to ensure consistency between the examples
and because the existence of damping in the plant equations has a strong influence on
program speed. The Kalman filter models were of second-order form (2] and equivalent in
size to their respective plant models. For controlled simulations, the control system began
operating after 100 integration steps, and all gain matrices were full (i.e. all model states

influence all -actuators and are influenced by all sensors). Additional specific information

for the problems follow.

A. Axial Vibration of Elastic Bar (Spring Model)

Nodes: 3 free, 1 fixed
Elements: 3
Degrees of freedom: 3
Actuators: 1
Sensors: 1
Disturbance: Initial displacement

B. Planar Vibration of Space Truss (Truss Model) |

Nodes: 18 free
Elements: 33
Degrees of freedom: 54
Actuators: 4
" # Sensors: 6
Disturbance: ~ Bang-bang type sinusoidal applied force

C. General 3D Vibration of EPS Satellite Reboost (EPS7 Model)

Nodes: 97 free
Elements: 256
Degrees of freedom: 582
Actuators: 18
Sensors: 18 _ :
Disturbance: Bang-bang type square wave applied force

4

As can be seen, the problem sizes are roughly three different orders of magnitude, with
corresponding increases in the sizes of the control systems. Appendix B includes routines
using Matlab for the design of control and filter gains which were used for the control
system design of all three example problems. An illustration of the EPS model is shown
in Figure 1. A

5.0 Performance Assessment

Table 2 compares CPU runtimes on the Alliant computer (using the UNIX "time” com-
mand) for distinct versions of the software. Version (Al) is the nominal F77 program code
compiled without any performance-enhancing options, while version (A2) invokes auto-
matic vectorization and concurrency of low-level, problem-independent computations such
as vector addition and inner products. The performance improvements are significant,
especially for the large EPS7 model, where the speed-up factor is 35-37.

Version (A3) also uses the compiler options from (A2), but in addition has a compiler
directive added to the main program which allows the plant and filter integration subrou-
tines to be called in parallel. This does not affect the transient response results as that
analysis option bypasses the altered code, but for controlled response there is some effect
on performance. If filtering is used, which results in a significant increase in computation,
the directive can lead to some increased speed as can be seen for the spring and truss prob-
lems. There can also, however, be a reduction in performance as compared to (A2) if the
finite amount of processors and vector units are used in a less efficfent way. This appears to
be the case for the large EPS problem, where the "overhead” introduced by the directive,
and its effect on processor assignment, is greater than the improvement generated by the
manually-invoked parallel construct.

Table 3 shows CPU run times for ACSIS using E-B-E computations; which, as mentioned
previously did not lead to better performance on the example problems using the Alliant
system. This appears to be due to the lack of effective vectorization of the individual
element computations when forming the internal force via the EBE method. To deter-
mine whether the EBE method effectively lead slower speeds through increased numbers
of computations, version (A2) (see above) was altered by removing compiler optimization
of the profile matrix/vector multiply routine (the alternate method to EBE). The resultant
runtimes matched almost exactly with those of version (A4), leading to the conclusion that
both methods require roughly the same amount of computations, but differ in how they
can be optimized on the Alliant system. The matrix/vector multiply operation, in this
environment, can exploit both vectorization and concurrency through the complier’s per-
formance options; this can be examined in the compiler output. The EBE computations,
at the element level, do not vectorize because the parts of the global displacement and force
vectors being operated on per element are not contiguous. In version (A5), the elements
within each subdomain of the mesh are computed in parallel, leading to some performance

5

- Qverall, versions (A2) and (A3) provide the best code performance for the hardware avail-
able. Parallelizing the observer and structure (A3) léads to mixed results; improvement
for the small spring and truss problems, but not for the large EPS model. Element-by-
element computations do not improve code performance over compiler optimization via
vectorization and concurrency for this platform. Reimplementation of the algorithm lead
to a 5:1 improvement over the CS3 testbed software on a serial computer (Table 1). Fur-
ther optimization of ACSIS on the Alliant FX/8 lead to an additional 30:1 improvement in
runtimes for large-order systems such as the 582 dof EPS model. Time history responses
of selected variables for the example problems are shown in Figures 2 through 10. For
Figures 8 through 10, the u,,u,,u, displacements plotted are located at node 45, which
is located at the vertex of the large antenna of the EPS model (see Figure 1).

. 6.0 Conclusions ' _ g

. The present work has demonstrated the efficiency of a streamlined simulation code for
the analysis of large-order CSI systems and the viability of the continuous second-order
Kalman filtering equations for state estimation. These methods show the versatility of
the partitioned CSI integration algorithm and the promise of its application to real-time
simulation. It is evident, however, that the use of element-by-element computational tech-
niques requires the development of innovative algorithms for effective implementation on
massively parallel processing systems. Future work in this area will include integrating
algorithms for on-hne system identification and applying these capabilities to the problem
of real-time control

Acknowledgements

The work reported hefein was supported by NASA /Langley Research Center through grant
NAG1-1021 with Dr. Ernst Armstrong as Langley’s technical monitor and by Air Force
Office of Scientific Research through grant F49620-87-C-0074 with Dr. Spencer Wu as the

AFOSR technical monitor. We thank them for their interest and encouragements.

Simulation CS3 . . ACSIS
Transient 439.2 98.8
Full State

Feedback 6882 1815
FSFB with

Observer 11567 282.3

Table 1: Comparison of Runtime Speeds for CS3 and ACSIS
‘on a Sun 3/260 System

(A1) (A2) (A3)

Problem Nominal Compiler Parallel

Model =~ Type Code Optimized = Observer
3 DOF Transient 6.6 2.1 2.1
Spring FSFB 8.0 3.3 3.3
K. Filter 12.3 3.5 3.3

54 DOF Transient 78.2 5.7 5.6
Truss FSFB 97.1 9.4 10.2
K.Filter 170.7 13.0 -10.7

582 DOF Transient 3506. - 98.6 100.3
EPS7 FSFB 7040. 190.2 294.5
K. Filter n/a 284.2 312.5

N

7

Table 2: CPU Results for Versions of ACSIS

(A4) (A5) (A6)

Problem. E-B-E Parallel Parallel
Model - Type Computation E-B-E Obs. & EBE
3DOF Transient 3.8 3.3 3.3
Spring FSFB 4.9 4.4 4.9
K. Filter 6.6 5.6 5.0
54 DOF Transient 31.7 - 13.0 13.0
Truss . FSFB 35.5 16.9 35.6
K.Filter 62.6 27.3 36.2
582 DOF Transient 391.7 153.9 n/a
EPS7 FSFB 485.9 245.9 . n/a
K. Filter n/a n/a n/a

Table 3: CPU Results for ACSIS with EBE Computations -

Geonstrio scale . Goonetrio scale
41,000
]

¥ Cocmetric sosle Geometrio sosle

Sl I AN '.

i

o Fal Sassion Manager
Session Creats Customize Print Screem

Messages

Figure 1: EPS Finite Element Model

ORIGINAL PAGE 1S
OF POOR QUALITY

OO —MOD

0.100

0.080

0.060

0.040

0.020

0.000

-0.020

=0.040

-0.060

-0.08

=-0.100

Spring Model: Opeﬁ Loop Transient Response

-

1 1 1 J L L L L

!

0.000 0.100 0.200 0,300 0.400 0.500 0.600 0.700 0.800

Time, sec

Node 3, ux

Figure 2: Spring Transient Response

10 -

0.900

1.000

DOLMA®~mOO

g.100
0.080
9.060
0.040
0.020
0.000
-0.020
=-0.040
-0.060
-0.080

-0.100

Spring Model: Full

State Feedback Respeonse

|
l
-‘U
L - .| 1 | ! 1 1 L
0.000 0.100 0.200 0.300 0.400 0.500 0.600 0,700 0.800 0,900
Time, sec
Node 3, ux

Figure 3: Spring FSFB Response

11

1.000

Spring Model: Controlled Response w/Kalman Filter

0.100

0.080 -
0.060 o
0.040 T 1
D
e 0.020 I+
) £ .
- 1
e .
c 0.000 -
t .
i
o -<0,020 2
" !
‘=0,040 -
-0.060 - V
-0.080 - “ i
-0.100 1 1 1 1 ! : 1]]

0.000 0.100 0.200 0.300 0.400 0.500 0.6C0 0.700 0.800 0.900 1.000

)

Time, sec ’

Node 3, ux

Figure 4: Spring Response w/Filter

OO r~mo

6.00000

$.40000

4.80000

4.,20000

3.60000

3.00000

2.40000

1.80000

1.20000

6.00000

0.000 .

-4

-4

e=4

=4

a-4

=4

[2L]

«=4q

a-4

a=-5

Truss Model: Open Loop Transient Response

1 1 — 1 1 !] - L

0.00¢ 0.100 0.200 0.300 0.400 0.500 0,600 0,700 0.800 0.500 1,000

Time, sec

Nede 9, uy

Figure 5: Truss Transient Response

13

20000

6.00000
5.40000
4.80000
4.20000
3.600&0
3.00000
2.40000
1.80000
1.20000

6.00000

[]
L)
e-4
e=4
.0-4
[oL]
e=q
=4
-4
e~5

0.000

Truss Model: Full

State Feedback Response

- ¥
-
A 1 L 1 —e]) L -l
0,000 0.100 0,200 0,300 0.400 0.500 0.600 0.700 0.800 0.%00 -

Node 9, uy

Time, sec

Figure 6: Truss FSFB Response

14

1.000

1

EX N e Y)

6.00000

$.40000

4.80000

4.20000

3.60000

3.00000

2.40000

1.80000

1.20000

6.00000

0.000

o4

=4

-4

e=q

-4

=4

e-4

a=4

[L]

a=-5

Truss Model: Controlled Response w/Kalman Filter

hlll-

1 1 | L ! i1 1

i -

0.000 0.100 0.200 0,300 0.400 0.500 0.600 0.700

Time, sec

Node 9, uy

Figure 7: Truss Response w/Filter

15

0.800

0.900

1.000

DO}D‘(’OONMDU .

2.00000
1.70000
1.40000
1.10000
8.00000
$.00000
2.06000
~1,00000
~4.00000
-7.00000

-1.00000

L2]
e=4
a=-4
a=4
=5
e=5
a=$
e‘-S
a=5
e=3

e-4

EPS7 Model: Operi Lodp Transient .Response

-

Padig

e veaa.
-

e

L T
PR

-
-

ce e

0.000

L L 1 ! — 1 1 J - o
1.000 2,000 3.000 4,000 5.000 6.000 7.000 8.000 9,000 10,000)
Time, sec
cee--+~ Node 45, ux v ====<- Node 45, uz

~———a———— Node 45, uy

Figure 8: EPS Transient Response

16

S0rTNOr~mo O

2.00000

1.70000

1.40000

1.10000

8.00000

5.00000

2.00000

~1.00000

-4.00000

-7.00000

-1.00000

4

=4

[l }

a=4

=5

-3

L]

=5

e-$

a5

-4

EPS7 Model: Full State Feedback Response

o

boon
n: N
' I
" "
et
SREEN
:",:.-': o
}‘."\‘Z") ',\&vu‘,’;.’-‘:—‘-q’;;—‘é.‘o—lﬂwusu-\-a-‘-“.-—-———-—..-—
LI I " P .
RS
:,‘ " R ::
v :: [DERTIEEN
R
[:. :, .
woaow
IR
. 4
L A { L I) i I i i
0.000 1.000 2.000 3.000 4,000 5,000 6.000 7.000 8,000 °9.000 .10.000
Time, sec,
e=e=-e> Node 45, ux e===~. Node 45, uz
~————— Node 45, uy

Figure.9: EPS FSFB Response

17

J0rANe Mmoo

2.00000
1.70000
1.40000
1.10000
8.00000
§.00000
2.00000
-1.00000
-4.00000
=7.00000

-1.00000

-4
e~4
a-4
-4
a-5
=5
e-5
e-5
0;5
e-5

a-q

EPS7 Model: Controlled Response w/Kalman Filter

\]

N

\
’
’ \l~‘*’\ SN

n
"
v
.

'.

PR Tl g

.

- .
AT

, RS i >
."__‘,.—;,':,~~-‘l"——d“ .,.a"-v-‘

“N.
(
i
A
\
‘.
a
)
)
"
!

0.000 1,000 2.000 3,000

----- <= Node 45, ux
Node 45, uy

4.000 S5.000 6.000 7.000 8.000

Tihe, sec

=~===: Node 45, uz

Figure 10: EPS Response w/ Filter

18

9.000 10,000

REFERENCES

Belvin, W. K., “Simulation and Interdisciplinary Design Methdology for Control-
Structure Interaction Systems,” PhD Thesis, Center for Space Structures and Con-
trols, University of Colorado, Report No. CU-CSSC-89-10, July, 1989.

Park, K. C. and Belvin, W. K., “Partitioned Procedures for Control-Structure Inter-
action Simulations,” Journal of Guidance, Control, and Dynamics, Vol. 14, No. 1,
Jan.-Feb. 1991, pp. 59-67.

. Park, K. C. and Belvin, W. K. and K. F. Alvin, “Discrete Second-Order Kalman

Filtering Equations for Control-Structure Interaction Simulations,” Report No. CU-
CSSC-89-08, Center for Space Structures and Controls, University of Colorado, April
1989 (Submitted for publication in J. Guidance, Control and Dynamics).

Farhat, C. and Crivelli, L., “A General Approach to Nonlinear FE Computations on
Shared Memory Multlprocessors, Comp. Methods in Applied Mecb Eng., Vol. 72,
No. 2, pp. 126-152 (1989)

Farhat, C., “On the Mapplﬁg of Massively Parallel Processors onto Finite Element
Graphs,” Report No. CU-CSSC-88-02, Center for Space Structures and Controls,
University of Colorado, April 1988

19

20_

APPEND DC A

ACSIS Ui S Manyg;

Accelerated
Control
Structure
Interaction
Simulation

Introduction

ACSIS is an analysis program for full-order simulation of control-structure interaction
(CSI) problems. The CSI simulation is carried out using a partitioned analysis pro-
cedure which treats the structure (or plant), the observer, and the controller/observer
interaction terms as separate entities. This procedure allows ACSIS to maintain rela-
tively small, sparse matrix equations when compared to the process of assembling the
computational elements into a single set of equations of motion and solving simultane-
ously. Although this software can also carry out modal analysis, the transient response
and CSI simulation are done in real space using the entire finite element model.' (For
' more information, see Ref. 2 of report, p. 14)

The ACSIS program is run using two previously prepared data input files and interactive

input of run options. The two data input files are the finite element input file and the
controller definition file.

21

- Interactive Options

The run options are as follows, note that no defaults exist, data must be input each
time it is requested for each item requested except during a background run. Files may

be given any names, example names are glven only to ma.tch the truss exa.mple at the
back of this manual.

Please input analysis type:

This option is for selecting modal analysis, CSI simulation or the transient response of
a structure. Not all interactive inputs are required for each analysis type.

Do you wish to save an input file? (y or n)

This option creates a file which saves all the interactive input options. ACSIS can be
background run with minor option changes by editing this file and then directing the
screen input to this file. This file is very different for each analysis type . (To do this
run with the example names after running acsis.exe once interactively, the command
would be: acsis.exe <INP.truss> ¢&.

Name of save input file? (fil'ename)

This question asks for the name under Wthh to save the interactive input. example
name: INP_truss

Finite Element Model Input File Name (ﬁlename):

This file should contain all the finite element nodes, mesh, materials, properties, lumped
inertias, fixations, and initial velocity and displacement conditions. It must be prepared
in advance in the card format specified later. example name: FEM_truss

Number of modes desired?-

This only appears in the modal analysis to request the number of modes to be output.
The actual analysis is carried out with double this number of modes for accuracy.

Controller Definition File Na.me

This only appears for the CSI simulation. The file should contain the actuator and
sensor locations, control gains, and observer gains. It also must be prepared in advance
in card format. example name: CON_truss

Please input type of control::

This option is for selecting the form of control law equations used in the CSI simulation.
Full state feedback uses the current states of the plant (structure) to determine the
control via constant gain matrices. Second-order observer uses only the L2 filter gain
matrix of a Kalman filtering type of state estimation where the state variables are
position and velocity. The Kalman filter option allows the use of a full set of filter
gains, but the gain design must come from a alternate variable casting using position
and generalized momenta. - '

22

Initial time, final time, control-on time, step size:

Data format is four columns for CSI, but only three columns for transient response since
the control-on time part is deleted.

Forcing function ID, scale factor, damping coeff- a,b:

In order for any time dependent forcing function to be easily implemented despite vari-
able time step sizes, the forcing functions must be entered into the subroutine forces.£.
The format is to assign each new forcing function an ID number in a elseif statement.
An example of forces.f is included at the back of the manual. Then forces.f must
- be recompiled into an object file and acsis.exe relinked. This is easily done by typing
make which detects changes to the fortran files and does only the necessary compiling.
‘A particular forcing function is chosen by entering its ID number in the first column,
in addition the force can be scaled by a constant using the scaling factor in the second
column. The Rayleigh damping coefficients a and b are the third and fourth columns.

Phase lag fix? (y or m):

Specifies whether to include an extra iteration of control and sensor state prediction
at each integration step to improve accuracy. Not generally needed unless the user is
investigating the source of instability in a simulation and needs to test the sensitivity
of the response to the partitioned algorithm’s extrapolation method.

Gain scale factors (4 total):

These scaling factors are, in order: the F1 control gain matrix (displacement), F2 control
gain matrix (velocity), L1 and L2 state estimator filter gain matrix. This question
appears only for CSI.

ACSIS has two types of output options. The first is the displacement or velocity motion
of up to twenty separate degrees of freedom. Interactive questions are, ‘Number of
displacement results to output (max 10)’ followed by as many ‘Input node #,
dof for displacement output #’ as necessary. Then these repeat for velocity results.
The name of the file where the output will be stored is requested by ‘Output file
name? (filename).’ example name: OUT.truss. The second output option saves
the displacement of all nodes at any time step where output is sent (see next entry).
The format is suitable for animation of the entire structure. Question asks ‘Animation
Output? (y or n)’ then for an animation filename if necessary.

Send output every how many steps?

This option affects both output options to reduce the size of the output and animation
files. It causes output to only be sent after a integer number of time step iterations. To
get output each time step, simply enter 1.

23

‘Finite Element Input File

The finite element input file consists of title cards followed by columns of data. The title

~cards can be in any order, but they must be all capitalized with the appropriate number
of columns of data for each card. The program reads rows of data until encountering
a new card. Data which represents an integer value may be entered with a decimal
point while real data may be entered without a decimal point as necessary. Any line
beginning with a * anywhere in the file is ignored and can be used to insert comments.
Any blank line will result in a read error.

NODES

Each node must be defined on a separate line. Columns can be separated by any number
of spaces or a comma. Data format is four columns: node number, x-coordinate, y-
coordinate, z-coordinate. o

TOPGLOGY

Each element must be defined on a separate line. Truss elements require two nodes then
two columns of zeroes. (Truss elements would also require pin releases in ATTRIBUTES
below.) Beam elements require two nodes then a third reference node representing a
point in the xz plane of the beam and then a column of zeroes. Element type refers to
finite elment formalation. (Currently only type 1 = timeshenko beam element is now.
available.) Data format is six columns: element number, element type, node #1, node
#2, node #3, node #4. |
-ATTRIBUTES

Each element is characterized by an ID number from each of the MATERIAL and PROP-.
ERTIES cards below. Each element also has six pin release codes. The first code is for
long:tudinal stiffness, the second code is for torsional stiffness, the third and fifth codes
are bending stiffness at each end in the y direction and must be the same value; and the
fourth and sixth codes are for bending stifiness in the z direction and also must be the
same. (0 is stiff, 1 is released.) Data format is nine columans: element number, material
type, property type, and six pin release codes. '

MATERIAL

The material data is formatted in four columns: material type, Young’s modulus, shear
modulus and density of the material.

PROPERTIES

The properties data is formatted in six columns: property type, cross sectional area of
the element,J, * I,, I, I;, shear shape factor SSF2, shear shape factor SSF3. .

FIXITY

Nodes with any fixations are defined here in the finite element file. The nodes must be
entered with the fixity of all six of their DOF’s, restrained or not. (1 is restrained, 0 is
free) Data format is seven columns: node number, x, ¥, z, ¢z, ¢y, @-

24

INERTIA

All lumped inertias must be entered with each separate DOF on an individual line.
Therefore a single node could take up to six lines to définé. - Data format is three
columns: node number, DOF number (1-6), and value of inertia.

INITIAL CONDITIONS

All initial displacement and velocity conditions are entered into the finite element file.
Data format is four columns: node number, DOF number (1-6), initial daspla.cement
and initial velocity.

END
End of file.

Controller Deﬂnitioh Cards

The controller defintion file also consists of title cards followed by data entry. Each card
must be followed by the appropriate number of columns of data and-in some.cases the

appropriate number of rows. Integers can be entered in real format and vice versa if
necessary. Any blank line will result in a read error.

NACT
Number of actuators in the entire control system.
BMAT

This entry creates the actuator position matrix or B matrix. There should be one
row for each actuator, data format is four columns: node number, DOF number (1-6),
actuator number, and sensitivity.

.NSEN
Number of sensors in the entire controls system.
.«"HDMA

This entry creates the matrix of displacement sensor locations. One row per displace-
ment sensor, data format is four columns: node number, DOF number (1-6), sensor
number, and: sensitivity.

HVMA

This entry creates the matrix of velocity sensor locations. One row per velocity sensor,
data format is four columns: node number, DOF number (1-6), sensor number, and
sensitivity.

F1GA

This is a list of the F1 or displacement control gains. The data format is four columns:
node number, DOF number (1-6), actuator number, and value of gain.

25

F2GA

This is a list of the F2 or velocity control gains. The data format is four columns: node
number, DOF number (1 6), actuator number, a.nd value of gain.

L1GA | | -

This is a list of the state estimator L1 filter gains. The data format is four columns:
node number, DOF number (1-6), actuator number, and value of gain.

L2GA

This is a list of the state estimator L2 filter gains. The data format is four columns
node number, DOF number (1-6), actuator number, and value of gain.

END
"End of file.

Examples

This section includes all the files and procedures needed to run all three analysis on a
simple elastic bar problem. The naming of the files is a simple and easy to remember
system, however no particular format is necessary.

The finite element file was created simply by typing the node locations, connectlwty
(topology), ete. with a text editor.

File: FEM.spring

MESH

x
NOGDES .

1 0.00 0.00 0.00

2 1.00 0.00 0.00

3 2.00 0.00 0.00

4 3.00 0.00 0.00
TOPOLOGY

1 1.1 2 0 0

2 1 2 3 0 0

3 1 3 4 00
ATTRIBUTES

i1 1 1 011111

2 11 011111
3 1 1011111
MATERIAL® :

i1 1000. 0.0 0.0
PROPERTIES

26

The modal analysis only requires the number of modes desired in addition to the finite
element file. The file INP_spring0 documents the interactive inputs used in the modal
analysis. The results are saved in file EIG_spring.

File: INP_spring0 -

-1
n ,) :
’ * ACSIS input file,two lines above are
*# analysis type and save input file. Do
* not change them by editing this file.
* Finite element input file?(filename)
FEM_spring
* Number of modes desired?

»

3 .
_ * Qutput file?(filename)
EIG_spring

File: EIG_spring

SUBSPACE ITERATION ROUTINE
¥B OF EIGENVALUES= 3
¥B OF VECTOR= 3
NB OF DOF= 3
TOLERANCE= 1.000E-04

NB OF RIGID MODES= 0

ITERATION NO 1

27 -

1.000E+00 1.000E+00 1.000E+00
ITERATION NO 2 .
1.297E-14 3.194E-14 3.899E-14
EIGEN ANALYSIS RESULTS: A
RADIAL - CYCLIC

MODE EIGENVALUE FREQUENRCY FREQUENCY
1 1980.6 44.504 . 7.0831
2 15550. 124.70 19.846
3 32470. : 180.19 28.679
EIGENVECTORS:
1 2.3305 1.8689 - =1.0372 " 0. 0.
2 1.8689 -1.0372 2.3305 0. 0.
3 1.0372 -2.3305 -1.8689 0. 0.
MASS MATRIX DIAGONAL:
2 1 3 1.0000000000000D-01
3 1 2 1.0000000000000D-01
4 1 1 1.0000000000000D-01

To run the transient response of the structure, a forcing function or initial condition
would be needed to excite the structure. An initial condition would be added to the
finite element file. A forcing function must be added to forces.f with a new ID number,
then this number given as interactive input. In this case, an initial displacement acts
on the second degree of freedom, which is defined in the finite element model input file.
The file INP_springl documents the interactive inputs used in the transient analysis.

File: 'INP.springl) .

-3
n
ACSIS input file,two lines above are
analysis type and save input file. Do
not change them by editing this file.
* Finite element input file?(filename)
FEM_spring :)

#* #* #*

* Initial, final, step size?
0.00000000 1.00000000 0.00100000
* Forcing function,scale f, damping a,b?
0 0.000000 0.00000000 0.00002000
* QOutput file name?(filename)
0UT._spring
* Number of displacement outputs?
1 .
3 1 ,
* Number of velocity outputs?

28

* Send output every how many steps?

* Send animation output?(y or n)
n

In addition to the finite element file, the interactive input, and an exéifé.tion, CSI
simulation requires a controller definition file. A full state feedback controller for the
truss structure is defined in CON_spring. :

File: CON_spring

NACT
1
BMAT . .
3111.0
F1GAIN
2 1 1 193.31415000000
3 11 1574.6315000000 i
4 1 1 ~-1669.0460000000
F2GAIN |
2 1 1 20.774256000000
3 1 1 27.790403000000
4 1 1 10.780212000000
NSEN
1
BVMAT
3111.0
L1GAIN
2 1 1. 8.7928909000000D-02
3 1 1 -4.8807901000000D-02
4 1 1 ' 3.0102735000000D-03
L2GAIN .
2 1 1 1.0380932000000D-01
3 1 1 6.1410130000000
4 1 1 -3.0608725000000
END

Then if acsis.exe is run interactively and the input is saved, the file INP_spring2 can
be produced. The file could be edited to change the input files, the output file, the
forcing function ID, the length of simulation, control-on time, etc. Then to run it again,
type acsis.exe<INP_spring2> scr &. The scris a scratch file which will store the
screen output. ‘

~

File: INP_spring2

-2

29

ACSIS input file,two lines above are
analysis type and save input file. Do
not change them by editing this file.
* Finite element input file?(filename)
FEM_spring
' @

%* * *

Controller file name?(filename)
CON_spring .
' * Please input type of coatrol:
3 : .
* Initial,final,control-on,step size?
- 0.00000000 1.00000000 0.10000000 0.00100000 -
* Forcing function,scale f, damping a,b?
0 0.000000 0.00000000 0.00002000
* Phase lag £ix?(y or n)

~ * Gain scale factors (4 total)?
1.00000000 1.00000000 1.00000000 = -1.00000000

_ * Output file name?(filenams)
OUT_spring -

* Number of displacement outputs?

1
3 1
* Number of velocity outputs?

* Send output every how many steps?

* Send animation'output?(y or n)

30

Matlab Proce e and Seripts
for Contro er an Kalman Filter
ain Dest

31 -

Introduction

In order to retain simplicity in the ACSIS code for parallel implementation purposes,
no control system design algorithms were included. Instead, using modal data out-
put from the eigenmode analysis module of ACSIS, a procedure was developed using
the Pro-Matlab and its Control System Toolbox, which includes algorithm scripts for
optimal control solutions via the solution of an algebraic Ricatti equation. In order to
accomodate large order dynamical systems, the design is accomplished in the uncoupled
normal modes domain, using the available lowest eigenmodes from ACSIS.

The procedure begins by copying and editing the mode data output from ACSIS (see

_ the listing for EIG_spring in Appendix A) into readable variables for input to Matlab.

The typical approach was to create one file as a Matlab script (i.e. a ”.m" file), with

the eigenvalues, eigenvectors, and mass/dof data from ACSIS at the beginning, followed

by actuator and sensor influence matrices (related to the physical degrees of freedom),
the objective function weighting matrices, and the function which calls other Matlab

scripts to determine the solution. An example of the above input for the spring problem

described in Appendix A is in file EIG.spring.m, which is listed below. Compare this

the the ACSIS mode data output shown in Appendix A to see how the editing was

accomplished, and the additional control design data added "

File: EIG_spring.m

lam = [1980.6

155850.
32470. 1;
vi=[1 2.3305 1.8689 =1.0372 0. 0.
2 1.8689 -1.0372° 2.3305 0. 0.
3 1.0372 -2.3308 -1.8689 0. - 0. 1;
m={ 2 1 3 1.000000000000D-01
3 1 2 1.0000000000000D-01

4 1 1 1.0000000000000D-01] ;
t=2{vi(:,2:4)];
qb=zeros(3,1);
qb(2,1)=1.0;
hd=zeros(1,3);
hv=zeros(1,3);
hv(1,2)=1.0;
qv=(1;.5;.1];
q=diag(lqv;qv]);
r=.0001*eye(1);
[(£1,£2]=mlqr(lam,t,m,qb,q,r,3);
qv={1;1;1];
q=diag([qv;qv]);
r3100%eye(l);
(x1,x2]-nkf(lam,t,n,hd,hv,q,r,3);
‘save flout fi /ascii
save f2out £2 /ascii

32

save kiout X1 /ascii
save k2out k2 /ascii

The scripts mlqr.m and mkf .m were written to accept as input the vector of eigenvalues,
the eigenvector matrix (orthogonal vectors stored in columns), a matrix of node, com-
ponent, d.o.f, mass data, and the actuator (or sensor) influence matrix and weighting
matrices. The scripts output the gain results in four-column arrays, with one gain per
row, and the corresonding node number, displacement component, and actuator (or
sensor) identification. The top-level problem script (listed above) then saves the output
in external files and the analysis is complete. The design scripts (listed below) also
include checks on controllability and observability of the system based on the modal
data and influence matrices defined, and produce plots of the closed loop poles resulting
from the gain design. This aids the analyst in assessing the expected performance (and
stability) of the exact system before moving the data back to ACSIS for simulation.
The script contrank.m finds the rank of the controllability matrix through iterative
rank calculations of submatrices so as to avoid the illconditioning experienced in the
full matrix. This is both' faster and more accurate for determining whether a particular
actuator placement has full control of the included structural modes.

File: mlqr.m

function[Flout, FZout]-mlqr(lam t,m,qb Q,R,nmode)
A

% Controller gain design for second-order

% structural system via given eigenmodes.

% Gains are transformed to be coefficents

% of structural variables (disp,velocity);

% i.e. plant is sacond-order, of size ndof.

% Arguments:

4 lam: vector of eigenvalues (nmode x 1)

% t: matrix of eigenvctors (ndof x nmode)

% m: mass diagonal and dof mapping info (ndof x 4)

% gqb: actuator position influence matrix (mact x ndof)

%A Q: optimal design state weighting matrix (2#*nmecde x 2*nmode)
% R: optimal design feedbk weight. matrix (mact x nact)

% Flout: F1 gain matrix for 2nd-order plant
% F2out: F2 gain matrix for 2nd-order plant

% Writtenm by K.F. Alvin

4

format short e
nmodmax=length(lam) ;
(ndof ,nact]l=size(qb);
%

% Variables:

% mass: mass matrix

33

% A: state transition matrix

% B: actuator influence matrix
% G: control gain matrix
%

massd(m(:,3))=m(:,4);

mass=diag(massd) ;

As[zeros(nmode) ,eye(amode) ;~1*diag(lam(1:nmode)) ,zeros (amode)] ;
Amax=[zeros(nmodmax) , eye (amodmax) ; ~1*diag(lam) ,zeros(nmodmax)];
B=[zeros (amode,nact) ; t(:,1:nmode) *qbJ ; .
Bmax=[zeros(nmodmax,nact);t’*qb]l;

disp(’Number of structural modes and actuators used:)
disp([nmode,nact])

disp(’Rank of the controllability matrix:')

disp(contrank(A,B))

disp(’Determining controller gains for given system...?)
G=1qr(A B,Q, R)n

wmax=1. 1mu(sqrt(lm)) ;

axis([-wmax,wmax,~wvmax,wnax]);

plot(eig(A-B*G), ')

grid

title(’Roots of cent: 2olled system)

hold

pause

%

% partition gain matrix

h

G1=G(:,1:nmoda);

G2=G(: ,mnode*i nmode+nmode) ;

% Transform resultant gain matrices for use in
% partitioned csi algorithm using second-order
% structure(plant) equatioms.

disp(’Mapping ga’'ns back to physical domain...’)
£1=G1*t(:,1:nmode) ' *mass;

£2=G2*t(:,1:nmode) ' *mass;

h

% <£ind modal damping ratios of contrcller for calulated gains:

%

Gmax=[f1ist,f2st];

lambda=eig(Amax-Bmax*Gmax) ;

plot(lambda,’*’)

pause

nfreq=sqrt(imag(lambda) .2 + real(lambda) =2);
mdamp=-real(lambda) ./nfreq;

disp(’Resultant modal damping ratios for controller:?’)

disp([’ Damping *,’ Damped Freq (rad/s) '])
.disp([mdamp,nfreq.*sqrt(i~-mdamp.~2),lambda])
bdamp=max(-2*mdamp./nfreq) ;

disp(’Estimated minimum stiffness damping coefficient necessary’)
disp(’ to stabilize residual modes due to gain roundoff accumulation:?’)
disp(bdamp)

disp(’Writing gains in node correspondence output form...’)

34

Flout=zeros(nactsndof,4);
F2out=zaros(nact*ndof,4):
for isi:pact;

xmina(i-1)sndof+1;

kmax=i*ndof;

Fiout(kmin:kmax,:)={m(:,1:2) .iiones(ndof,i) ,£1(i,m(:,3))°];
F2out(kmin:kmax,:)=(m(:,1:2),i*ones(ndof,1),£2¢i,m(:,3))’'];

end; .
disp(’Finished mlqr?’)

File: mkf.m

function[Liout,L2out)=mkf(lam,t,m,hd,hv,q,R,nmode)

4
%

4
% Kalman filter design for second-order
4 structural system via given eigenmodes
% and transformed to independent
4 displacement/gen. momentum variable
% casting for partitioned csi transient
% analysis. See Belvin/Park paper for
% filter variable definitions.
%
% Arguments:
4
% lam: vector of eigenvalues (nmode x 1)
4 t: matrix of eigenvctors (ndof x nmode)
% m: mass diagonal and dof mapping info (ndof x 4)
% hd: sensor position influence matrix (nsen x ndof) .
b4 hv: velocity position influence matrix (nsem x ndof)
% Q: optimal design state weighting matrix (2*nmode x 2*nmode)
% R: optimal design feedbk weight. matrix (nsen x nsen) '
Lo)
% Liout: L1 gain matrix for 2nd-order filter
% L2out: L2 gain matrix for 2nd-order filter
4
% Written by K.F. Alvin
4
format short e
nmodmax=length(lam) ;
‘[nsen,ndot]=size(hd);
%
% Variables:
% mass: mass matrix
% A: state transition matrix
4 G: noise influence matrix
% C: output influence matrix .
K: filter gain matrix ,

massd(m(:,3))=m(:,4);

mass=diag(massd);

A=[zeros(nmode) ,eya(nmode) ; ~1*diag(lam(1:nmode)) ,zeros(nmode)];
Amax={zeros(nmodmax) ,eye(nmodmax) ; -1*diag(lam) ,zeros(nmodmax)];

35

G=eye(nmode+nmode) ;

C=[hd#t(:,1:nmode) ,hv*t(:,1:nmode)];

‘Cmax=[hd*t ,hvet] ;

disp(’Number of structural modes and sensors used:?’)
disp([nmode,nsen])

disp(’Rank of the observability matrix:’)
disp(contrank(A’,C’))

diSp(’Determining fiiter gains for given system. oo ?)
K=1qe(A,G,C,Q.R);

9 .
é partition gain matrix

Ki=K(1:nmode,:); ‘

K2=K(amode+1 :nmode+nmode, :) ;

Kmax=[K1;zeros (nmodmax-nmode ,nsen) ;K2;zeros (amodmax-nmode nsen)]
%

% £ind modal damping ratios of filter for calulated gains:

4

lambda=eig(Amax-Kmax*Cmax) ;

plot(lambda,’+?)

- hold

pause :

ai=-real(lambda);

bi=imag(lambda);

disp(’Resultant modal damping ratios for filter:’)

disp([’ Damping ’,’ Freq (rad/s) ’])
disp([al./sqrt(al.~2+b1.72),b1])

~ % Transform resultant gain matrices for use in
% partitioned csi algorithm using second-order
% . Kalman filter approach.
v :
disp(’Mapping gains back to physical domain...’)
1i=t(:,1:nmode)*Ki; '
A 12=ma.ss*t(,1:nmode) *K2;
dzsp(’Hr:Ltmg gains in node correspondence output form...’)
Liout=zeros(nsen*ndof,4);
L2out=zeros(nsen*ndof,4);
for i=si:nsen;:
kmin=(i-1)»ndof+1;
kmax=isndof;
Liout (Xmin:kmax,:)={m(:,1: 2) i*ones(ndof,1),11(m(:,3),i)];
L2out (kmin:kmax, :)={m(:,1:2),i*ones(ndof,1),12(m(:,3),1i)];
end;
disp(’Finished mkf’)

File: contrank.m

function maxrankacontrank(a,b)
maxrank=Q;
[nstate,nact]=size(b);

i=0;

36

mat=b;
newranksrank(mat) ;
wvhile newrank > maxrank

maxranksnewrank;
i=i+l;

mat=[mat, (a~i)*b];
newranksrank(mat) ;-
if newranks=anstate

maxrank=newrank;

end
end

Unfortunately, the external files created from Matlab with the gain results are written
completely in terms of real numbers, whereas the first three columns are actually to be
read by ACSIS as integers (they are used as indices). A separate utility was written to
. convert the format of these files; the source code is listed below. On Unix systems, the
user simply assigns the standard input to be the current data file created by Matlab,
and gives another file name for the standard output. The code is basically just a filter to
chahge the three columns of indices to integers. The output can then be pasted directly

into the control definition file used by ACSIS.

File: convcont.f

100

200

300

program convcont

parameter (NMAX=100000)
real*8 f£(NMAX),v(4)
integer node(NMAX) ,dof (NMAX) ,act(NMAX)

néo

read (=*,*,arr=200,end=200) (v(i),i=1,4)
n=n+i . ’
node(n)=int(v(1))

dof(n) =int(v(2))

act(n). =int(v(3))

£(n) =v(4)

. goto 100

do 300 i=1i,n
print *, node(i),dof(i),act(i),f(i)
continue

end

37

APPENDIX C

Stability Analysis of a .'
. CSI Partitioned Simulation
Algorithm with State Estimator

38

The equa.txon of the open-loop plant without passive damping in moda.l second-order
form is ‘

j+uwiq=u | | @)

The controller uses a second-order observer to ‘estimate the plant sta,te, along with a
full-state feedback control gain des1gn

= (m? P+ (wp)
Pt+w p-u-l-f.‘y @)
y=z-p

. - z=gq

where ¢ and p are the plant and estimator states, respectively, u is the control force, ¥
is the state estimation error, z is the sensor output, and 7, (, £ are gain coefﬁc1ents for
position and velocity feedback, and the estimator filter.

-The partitioned analysis procedure uses a stabilized form of the control law and esti-
mation error determination to reduce inaccuracies associated with the extrapolation of -
variables in the controller force predxctxon A first-order ﬁltenng is achieved by taking
the time derivative of (2a,c),

U= -qwzp - (wp (3)
y=i-5

and then embedding the equations of motion through substitution for p. This leads
to the following two’coupled, first-order differential equations for the prediction of the
control force u and state error v. :

- Ju éw Céwl| ful _JO Cw? _ nw? ~

-{7}*'[1 5]{7}—{2}+{¢92 P10 J? ®
Time dxscretlza.txon of (4) using an implicit midpoint rule leads to the followmg coupled
difference equation:

146) n+} 0 §Cwd — 2 A+l n ey
[6Cw liagﬁ]{:nﬂ%{z:ﬁ%{<95w2nw }pp+;,{c{u}p (5)

where § = half-step size = !2‘- Solving this equation requires knowledge of the plant (to
obtain sensor output) and observer states. These values are extrapolated as:

+3% .
pp » =p"+6p" ©)
Z;H-% -"Ip+! =q"

39

Using these equations to obtain u™*% and 9**4 allows the plant and observer equations
to be solved independently. Midpoint time integration of (1) and (2b) leads to the
following equations:

1+ §2w?) qn+§ = §2u"tt 4 "+ 64"‘
(1+ 82w?) p~tt = §2untd 4 p° 4 5p™ + 626y

it =z (e -0)

. l1/a n
pn+§=:s_(p +}_p) , _ (7)
n+l _ zqn-i-} -q"

(]

ntl _ ggn+i _ gn

.

.n+1.= 2q-n+§ - q°n
4l — 2q'n+§ - q'n

3

Computational stability of the modal form of the CSI partitioned equations of motion:
using the aforementioned time discretization can be assessed by seeking a nontrivial
solution of

qn+l qn
n-+1 n
p
§n+1 =A " (8)
ptt p"
such that .
Al <1 (9)
for stability. Subtituting (8) into (5-7), we obtain
Jx=0 (10)
where
— [n+} n+i n+d on+d n 'n]:T
X1 = Py U p ' p pp
Xy = [z;“"‘} 7n+§ qn+§ q'n-i-’; q" q°n]T
Ju Ji]
J= 11
[321 J22 (1)

40

0

[1 - 0
(nw? - 6¢w®) (1+68w) -0
_ 0 -§2 (1+62w2)
Jll - . 0 0 -_»1
0 0 -2
S 0 0
. [0 0 0 0 O
0 6w 0 0 O
gy = 0 —6% 0 0 0
12710 —66 000
0 0 000
0 0 00O
T 0 0 00 0
-éw? & 0 0 O
Jor = 0 -6 000
710 0 000
0 6 000
. 0 G 000
[1 0 0 0
-1 (1+6¢) 0 0
] 0 0 (1+6%2%) 0
0 0 -2 0
| 0 0 0 -2
A nontrivial solution to (10) is found from
detJ =0

which leads to the characteristic eqﬁa.tion

(1-86)(1+ 83 ¢uwd — 5énw2) +686(1+ 62{.4)2)‘).24
+ (66w (1 = 8&) + 6€ (1 + 63Cuw® — 6%nw?)) 2®

where

0
0
0-1

A+1
-2

OO OO OO

-1 =6]
0 Cw
-8 .
b0
0 .
0 A+1]
-1

0

-6

0

0
A+1]

(1 = 66) (62w? + 6% nw?) + 8%w? (1 + §%¢w?® - 6% nw?)

+6¢ (6¢w + 8%w? + 6%w*))z?
(52w2 (6¢w) + 6¢ (8%w® + 6% qw?))z

- 41

+6%w? (62w2 + 6217w2) =0

| (12)

- (13)

(1)

(13)

(16)

(17

A=1T=, WS1 = Re(z)<0

- (18)

Thus, a test of the polynomial equation for possible positive real roots By the Routh-
Hurwitz criterion indicates that the partitioned approach as applied to the modal equa-
tions give a computationally stable solution for no velocity feedback ¢ = 0 provided

h <

>
IA
i

42

=R

(19)

(20)

APPENDIX D

ACSIS Source Code

o

43

File: Makefile

.SUFFIXES: .f .o
FFLAGS =

.£.0:
fortran -c $(FFLAGS) $s.f£

0BJS = acsis.o acsisout.o addstf.o

\
beam3d .o forces.o iaput.o \
pavmul.o prepfem.o profile.o \
read.o solvar.o - nephlag.o \
zerovect.o lu.o prepecon.o \
control.o - secorder.o 'measure.o \
eigens.o singeig.o animout.o A\
sciffrc.o estifvm.o renum.o \
kfilter.o

acsig.exe: $(0BJS)

fortran -o acsis.exe $(FFLAGS) $(0BJS)

File: shared.inc

" shared.inc (ACSIS database)

Argumenf definitions:
adamp: ,Rayleigh damping coefficient alpha

b: actuator location matrix (packed storaga)
brow: . <row number of corresponding real value in b
beol: column number of corresonding real valne in b
bval: number of nonzero values in b

bdamp: Rayleigh damping coefficient beta
confile: controller input file name
contype: id for type of coantrol
coxyz: array of the x,y, and z components of each node
delta: one-half time step
. delaq: one-~half time step squared

0GOQOQOQOOOGQQQQQQOQQGCIQOQOGO

ec: control prediction integration coefficient matrix
emat: array of element material types

(T H observer construct matrix S in vector form

eprop: array of element property types

os: structure construct matrix 5 (M+delta*D+delsq*K)
etype: array of element types

elnum: array of element numbers for domain decomposition
f: "vector of applied forces

f1: control gain matrix

OO0 00000000000000000000a00000000000000AAOO0N0CO0

£2:
femfile:
forceid:
gamma:
ge:

gr:

ga:

gs

hd'
hdrow:
hdcol:
hdval:
hv:

hvrow:

hvcol:
hvval:
id:

ix:]
inertia:
jdiag:
11

12:
mask:
mass:
mat:
mlen:
nact:
ncsi:
ndisout:
ndof:
ndomain:
nel:
neld:
anp:

. psen:

avelout:

" nolag:

outfile:

outlabel:

pin:
pivot:
prop:

control gain matrix

finite element input file name

identification number of forcing function

state correction force

RHS vector for control prediction module

RHS vector for Kalman filter momentum eqn

RHS vector for obsaerver modulse

RHS vector for structure module

time step size

displacement sensor location matrix (packed storage)
rov pumber of corresponding real value ian hd
column number of corresonding real value in hd
number of nonzero values in hd

velocity sensor location matrix (packed storage)
row number of corresponding real value in hv
column number of corresonding real value in hv
aumber of nonzero values in hv .

DOF mapping array: id(comp,node $)sGlobal DOF 2
array of element comnectivity and orientation
array of concentrated inertias or lumped masses

~ array of diagonal element addresses

State estimator filter gaim matrix
State estimator filter gain matrix

mass matriz M in reduced vector form

array of different materials

length of global matrices in profile vector storage
actual number of actuators

actual number of actuators and sensors
number of displacement results to output
actual number of degrees of freedom

actual number of element domains (for dom. decomp.)
actual number of elements

array of number of elements in-each domain
actual number of nodes

actual number of sensors

number of velocity results to output
logical flag to signal corrector loop in measurement
output file name

array of output data requestad

array of element pin release codes

Column pivaoting info from FACTA

array of different properties

generalized displacement vector

initial displacement condition

gain scale factor for fi

gain scale factor for 11

gain scale factor for 12

gain scale factor for 12

velocity vector

initial velocity condition

state estimator displacemeat vector

state estimator velocity vector

Solution vector of conmtrol module {u,gamma}
Scaling factor for forcing function
stiffness matrix K in reduced vector form
initial time

control-on time

final time

45

us vector of control forcaes

Parameter definitions :
MAXACT: max. # of actuators .
HMAXCSI: max. combined 8 of actuators and semsors
MAXDAT: max. # of materials and properties
MAXDOF:

max. 8 of degrees of freedom
HAXDOM: max. $ of decomposition domains
EAXELE: max. 8 of elements
BMAXMLEN: max. length of global vectors in reduced form
HAXNODE: max

oOaQaDOoOOa0OaQaOaO0n

. % of nodes

parameter(MAXDOF23000, MAXACT=50, MAXCSI=100)
parameter(MAXNODE=1000, MAXELE=3000, MAXDATs100)
parameter(MAXMLEN=200000, NAXDOM=§0, MAXNZVs200)

reals8 t0,tf,tc,h,delta,delsq,qalpha,qbeta,qalphao,gbetao

real*8 q(MAXDOF),qdot(MAXDOF),qe(MAXDOF),qedot(MAXDOF)

Teal*8 u(MAXACT),gamma(NAXACT),f(MAXDOF),r(XAXCSI)

real*8 os(MAXMLEN),eo0(MAXMLEN), ec(MAXCSI,MAXCSI)

reals8 gs(MAXDOF),go(MAXDOF),gc(MAXCSI),scalef,pe(MAXDOF)

re$1*8 mass (MAXMLEN) ,stif (MAXXLEN) ,adamp,bdamp, gk (MAXDOF)

real*8 coxyz(3,MAXNODE),mat(6,MAXDAT),prop(10,MAXDAT)

real»8 qO(G,HAXNODE),qdotO(B,HAXHODE),inertia(S.HAXNODE)

real*8 b(MAXNZV) ,hd(MAXNZV) ,hv(MAXNZV),eatifm(78,500)

real*8 £1(MAXACT,MAXDOF),22(MAXACT,MAXDOF)

real#*8 11(MAXDOF,MAXACT),12(MAXDOF,MAXACT) -

integer etype(MAXELE),ix(4,MAXELE),emat(MAXELE),forcaeid

integer eprop(MAXELE),pin(6,HAXELE),id(6,MAXNODE)

integer mask(MAXNGDE),contype,brow(MAXNZYV),bcol (MAXNZV)

integer hdrow(MAXNZV),hdcol(MAXNZV),hvrow(MAXNZYV) : |
integer hvcol(MAXNZV),bval,hdval,hvval

integer ndof,nact,nsen,ncsi,mlen,jdiag(MAXDOF),nnp,nel,neig
integer neld(MAXDONM),elnum(MAXELE,NAXDON),eldom(MAXELE) ,ndomain
integer outlabel(40),ndisout,nvelout,pivot(MAXCSI)

integer iadjcy(MAXMLEN),icount(MAXNODE+1), petm(HAXNODE)
inceger x1a(MAXNODE) :

logical animate,nolag

character*32 femfile,confile,outfile,animfile

COMMON /FILES/ femfile,confile,outfile,ocutlabel,ndisout,

. : nvelout,animfile,animate,nolag

COMMOR /TIMERS/ t0,tf,tc,h,delta,delsq

COMMON /STATES/ q,qdot,qe,qedot,s,gamma,f,r,pe

COMNON /FEMDAT/ mass,stif,adamp,bdamp,coxyz,mat,prep,q0,qdot0,
.) inertia,scalef

COMMON /INTEGR/ es,00,ec,g8,80,8¢,8k,pivot

COMMON /DIMENS/ ndof,nact,nsen,ncsi,mlen,jdiag,nnp,nel,neig
COMNON /CONDAT/ b,hd,hv,£1,£2,11,12,

. qalpha,qbeta,qalphao,gqbetao
COMMON /ELEDOM/ estifm,ndomain,neld,elnum,eldom
COMMON /INTGER/ forceid,etype,ix,emat,eprop,pin,id,mask,

. contype,brow,bcol,hdrow,hdcol ,hvrow,hvcol,
. bval,hdval,hvval

COMMON /RESEQN/ iadjcy,icount,perm,xls

File: acsis.f

46 ‘ . o~

CsProgram ACSIS

CsPurpose Accelerated CSI Simunlation
CsAuthor K. Alvin

CsDate NMay 15990

C=Block Fortran

c

program ACSIS

Purpose: 2ad Order Accelerated CSI Simulation .

" 100

200

Saanaaaa®

program ACSIS

GET SHARED DATA FILE
include ’shared.inc’

LOCAL VARIABLES

real»8 t,z(MAXACT)

integer a,m,runtype,outskip
LOGIC

call INPUT(runtype,outskip)
if (runtype) 100,200,300 o _ S
EIGENNODE ANALYSIS

continue

call PREPFEM

call EIGENS

goto 9989

CSI SINULATION

call PREPFENM
call PREPCOR

zs0
ms30 : -
print =,’Finished Preprocessing . . . starting simulation’
priant =,’Time =2’,t0
CALL ACSISOUT(t0)
do 250 t=t0,tf,h
call FORCES(t+h/2)

Predict CSI coupling variables u and gamma

47

if (¢ .ge. tc) then
call KEASURE(z)
call CONTROL(z)
if (nolag) then

call NOPHLAG(z)

ecall CONTROL(z)

endif
endif
c Structure and abserver set up for parallel executiocz
CVD$ CHCALL

do 275 i=1,2
c Integrate Observer Equations

if ((i .eq. 1).and.(t .ge. tc)) then
if (contype .eq. 0) then
¢all SECORDER(mass,stif ,adamp,bdamp,?,g0,90,q9e,qedot,
T delta,delsq, jdiag,ndot ,MAXDOF)
elgeif (contype .eq. 1) then
call KFILTER
endif

¢ Integrate Structure Equations

elseif (i .eq. 2) then
call SECORDER(mass,stif ,adamp, bdanp 2,88,08,9, qdot,
delta,delsq, jdiag,ndo? ,MAXDOF)
endif

275 continue
c- PRINT TINE EACH 100 iterations

nsn+ -

Es@a+l -

if (n .ge. 100) then
print », 'Time = ’,t+¢h
n=20
ondif '

. it (m .ge. outskip) then
call ACSISOUT(t+h)
write(2¢4,'(40£12.8)*) ¢,(z(i), 1=1.nson)
m=0

endif

250 continue
goto 999

c TRANSIENT RESPCNSE
300 call PREPFEM

n30

n3=0

print =,’Finished Preprocessing . . . starting simmlation’
print *,’Time = ’,t0

43

call ACSISOUT(t0)

do 350 t3t0,tf,h
call PORCES(t+h/2)
call ZEROVECT(gs,ndof)

call SECORDER(mass,stif,adamp,bdamp,?,gs,es,q,qdot,
. delta,delsq, jdiag,ndof ,XAXDOF)

c PRINT TINE EACH 100 iterations

n=an+1
z=2@m ¢+
if (n .ge. 100) then
print »,'Time = ?,t¢h
as0
endif
if (m .ge. outskip) then
call ACSISOUT(t+h)
n=0
endif

350 continue

899 stop
end

" File: acsisout.f

C=Module ACSISOUT

CsPurpose Write desired output from ACSIS for plotting, etc.
C=Author K. Alvin)

CzDate May 1990

C=Block Fortran :

Subroutine ACSISOUT

. Purpose:
This subroutine outputs formatted displacement and velocity

Tesults at a given time for plotting time histories. The
desired output variables are defined in outlabel().

Arguments
t - time

a0

subroutine ACSISOUT(t)

include ’shared.inc’
real*8 t

49

LOCAL VARIABLES
integer i
LOGIC

werite(13,7(40212.8)") t,(q(id(ountlabel(i+10) outlabel(i))),
. i=i,ndisout),(qdot(id(outlabel(i+30),0utlabel(i+20))),
. i=1 avelout) .

write(23,’(40£12.8)’) t,(qa(id(antlabel(i+10),0utlabel(i))),
. isi ndisout),(qedot(id(outlabel(i+30),0utlabel(i+20))),

. is1,avelout)

vrito(zs,f(40£12.8)') t,(u(i),i=1,nact),(gamma(i),i=1,nsen)
- if (animate) call ANINOUT(q,id,nnp,%,15)

roturn
end

w

File: addstf.f

C=Nodule ADDSTF '
C=Purpose Assemble Global stiffness matrix
C=Author who knows

C=Update January 1989, by E. Pramono
C=Block Fortran

a0 aQ

Q

+

subroutine ADDSTF(sk,lm,bk,jdiag,nseq) -

 PURPOSE: .
THIS SUBROUTINE ASSEMBLES THE ELEMENT STIFFNESS MATRICES
INTO THE COMPACTED GLOBAL STIFFNESS VECTOR.

ARGUMENTS:
sk . - ELEMENT STIFFNESS MATRIX
im - LOCATION VECTOR FOR ELEMENT STIFFNESS MATRIX
bk = COMPACTED GLOBAL STIFFNESS VECTOR

+

Cannaaanaanoan®

jdiag - VECTOR OF DIAGONAL ELEMENT ADDRESSES s
nseq =~ NUMBER OF DEGREES OF FREEDOM PER ELEMENT
ARGUMENTS

reals8 sk(nseq,nseq), bk(1)
integer 1m(18), jdiag(1)
integer 1m(18), jdiag(1), nseq

LOCAL ARGUNENTS
integer i, j, k, 1, m

ASSENBLE GLOBAL STIFFNESS AND LOAD ARRAYS
do 20 j ; 1, nseq)

k = 1n(j)
it (x .eq. 0) goto 20

50

1 = jdiag(k) - k

> 1l = jdiag(k+l) - Xk
do 10 1 = 1, nseq
a = 1n(i)
- if(m .gt. X .OR. m .9q. 0) goto 10
=s)l+n
bk(m) = bk(m) + sk(i,])
10 continue :
20 continue
c
-return
end

C=End Fottrag_

File: beam3d.f

=Module BEAM3D
=Purpose Construct 3-d Timoshenko beam eloment stiffness and lumped mass
C=Author K. Alvin
C=Date Nay 1990
_C=Block Fortran
subroutine BEAM3D(n,ni,nj,nk,xyz,emod,gmod,rho,area,ssf2,3sf3,

& jtor,i2,i3,ipin,sk,sm)
C ARGUMENTS:
c
c n Element ID Number
c ni Node ID Number at End i
c nj Node ID Number at End j
c xyz Node Location Array
c emod Material Elastic Modulus (Young’s Modulus)
c gmod Material Modulus of Rigidity (Shear Modulus)
c tho Material Nass Density
c " area Element Cross-sectional area
c ssf2 Shear shape factor in elament x2 direction
c ssf3 Shear shape factor in element x3 direction
c jtor Torsional constant J
Cc i2 Area moment of inertia about element x2 axis
c i3 Area moment of inertia about element x3 axis
c ipin Pin release codes: 0aFixed, i=Freed
c 1) Axial
c 2) Torsional
c (3) End A rotation about x2 axis
c (4) End A rotation about x3 axis
c (s) End B rotation about x2 axis
c) (s) End B rotation about x3 axis
c sk Element Stiffness Matrix
c so Element Mass Natrix

integer n,ni,nj,nk,ipin(1)
real*8 xyz(3,1),emod,gmod,rho,area,ssf2,ss£3,jtor,i2,i3
realss - sk(12,1),sm(12,1)

C LOCAL VARIABLES:

integer i,j
real*8 dc(3,3),length,rlength,kc(10),mc(3)

51.-

¢ LoGxc
¢ Find Element Length

length = 0.0d40

do 10 1 = 1,3
de(1,i) = xyz(i,nj) - xyz(i,ni)
leagth = length ¢ dc(1i,i)»=2-

10 coatiaue
J.m = sqrt(length)
if (lesgth .eq. 0.0d0) thea

pring ®, ’BAR2D: Zero element longth. a= ’,n
Teturn
endif

C Find dircctioi cosines for xi,x2,x3 element axes

do 15 i=1,3
de(1,i) = dc(1,i)/length
if (nk .eq. 0) then
de(2,i) = 0.0
else
dc(2,i) = xyz(i,nk) - xyz(i,ni)
endif
15 continuge
if (ak .eq. 0) dc(2 3) s 1.0
16 dc(3,1) = dc(1,2)*dc(2,3) - dc(2,2)%dc(1,3)
dc(3,2) = dc(2,1)*dc(1,3) - dc(1,1)*dc(2,3)
dc(3,3) = de(4,1)*dc(2,2) - dc(2,1)=dc(1,2)
rlength = sqrt(dc(3,1)%*2 + dc(3,2)*#2 + dc(3,3)»2)
if (rlength .ne. 0.) goto 17
C dc(2,2) = 1.0
de(2,3) = 0.0
goto 16

17 do 18 i=4,3
dc(3,i) = de(3, 1)/rlongth
18 continue .
de(2,1) = de(3,2)2de(1,3) - de(1,2)*dc(3,3)
de(2,2) = de(1,1)*dc(3,3) - dc(3,1)*dc(1,3)
dc(2,3) = dc(3,1)=dc(1,2) - dc(1,1)*dc(3,2)

c Compute various stiffness constants, accounting for pin codes

if (ipin(1) .eq. 0) then
Xc(1) = areasemod/length
olse
kc(1) = 0.0d0
endif '

if (ipin(4) .eq. 0) then
if (ipin(8) .eq. 0) then
kc(2) = areasgmod+ssf2/length

kc(8) = i3semod/length

ke(7) = kc(2)slength/2.0d40

xc(9) = kc(7)*length/2.040
eolse

print =,’BEAM3D: Pin code error, x3 direction, el 8’,n

52

endif
else
it (ipin(6) .eq. 0) thénm
print »,?BEAN3D: Pin code error, x3 direction, el 8’,n
olse

kc(2) = 0.0d0
kc(8) = 0.0d0
ke(7) = 0.0d0
kc(9) = 0.0d0
endif

-eundif

it (ipin(3) .eq. 0) then
it (ipia(5) .eq. 0) then
kc(3) » areasgmodsssf3/length
kXc(5) » i2eemod/length
xc(8) = ke(3)slength/2.0d0
kc(10) = kc(8)slength/2.0d0
else
print » ’BEAM3D: Pin code error, x2 direction, el 8’,n
endift
else
it (ipin(5) .eq. 0) then
print », 'BEAN3D: Pin code error, x2 direction, el 8’,n
slse
kc(3) = 0.040.
xe(5) = 0.0d0
xc(8) = 0.0d0
xc(10) = 0.040
endif
endif

iz (ipin(2) .eq. 0) then
kc(4) = jtorsgmod/length
else '
xc(4) = 0.0d40
endif

me(1) = areasrhoslength/2.0d0
mc(2) » i2erhoslength/2.0d0
mc(3) = i3srhoslength/2.040

8k(1,1) = Xc(1)»de(1,1)*dc(1,1) + kc(2)*dc(2,1)=dc(2,1)

. kc(3)edc(3,1)2dc(3,1)

sk(1,2) = Xxc(i)=sdc(l,1)*dc(1,2) + kc(2)*dc(2,1)*dc(2,2)
. xc(3)=dc(3,1)*dc(3,2) ’
.8k(1,3) = kc(4)*dec(1,1)*de(1,3) + kc(2)sdc(2,1)*dc(2,3)
. kc(3)#dc(3,1)=dec(3,3) ‘

8k(1,4) = kc(7)*dc(2,1)*dc(3,1) - kc(8)=sdc(3,1)*dc(2,1)
sk(1,5) ®» Xxc(7)edec(2,1)*dec(3,2) - kc(8)*dc(3,1)*dc(2,2)
8k(1,6) = kc(7)edc(2,1)*dec(3,3) - kc(B8)=dc(3,1)*dc(2,3)
sk(1,7) = -sk(1,1) -

sk(1,8) = -gk(1,2)

sk(1,9) = -gk(1,3)

sk(1,10) = gk(1,4)

sk(1,11) = 8k(1,8) O

sk(1,12) = sk(1,8)

8k(2,2) = xe(1)sdc(1,2)*dc(1,2) + kc(2)=dc(2,2)+dc(2,2)

xc(3)+dc(3,2)*dc(3,2)

53

ax(z.a):

8k(2,4)
8k(2,5)
8k(2,8)
sk(2,7)
sk(2,8)
8k(2,9) .
sk(2,10)
sk(2,11)
3k(2,12)
8k(3,3).

'-k(a,c)
sk(3,5)

sk(3,6)

skx(3,7)
8k(3,8)
8k(3,9)
sk(3,10)

sk(3,11)

8%(3,12)
sk(4,4)

"sk(4,5)
.ak(4,6)
.sk(4.7)
sk(4,8)

sk(4,9)
sk(4,10)

'.k(4.11)_

.sk(4,12)
.sk(S,S)
.sk(S,s)

sk(5,7)
sk(5,8)
sk(5,9)
sk(5,10)
sk(5,11)

.sk(5.12)
.-x(s.s)

sk(6,7)
8k(86,8)
ak(6,9)
ak(6,10)
'k(snli)
8k(6,12)

.sk(7.7)

L I B)

xc(1)*dc(1,2)2de(1,3) ¢ ke(2)*dc(2,2)%dc(2,3) +
xc(3)*dc(3,2)*de(3,3)

xc(T)*dc(2,2)#dc(3,1) = kc(8)*dc(3,2)*dc(2,1)
kc(7)sdc(2,2)2dc(3,2) = kc(8)*dc(3,2)*dc(2,2)
xe(7)»dec(2,2)*dc(3,3) ~ ke(8)#dc(3,2)=dc(2,3)

‘“(1 02)

°5k(202)

-gk(2,3)

8k(2,4)

8k(2,6)

sk(2,6)

xe(i)sde(1,3)#de(1,3) ¢ ke(2)#dc(2,3)2dec(2,3) +
kc(3)*dec(3,3)*de(3,3) '
ke(7)#dc(2,3)2dc(3,1) -~ ke(8)de(3,3)»dec(2,1) -
ke(7)*dc(2,3)*dc(3,2) ~ kc(8)»dc(3,3)*dc(2,2)
ke(7)*dc(2,3)*dec(3,3) =~ kc(8)=dc(3,3)»dc(2,3)
"k(’- 33)
-8k(2,3)
-5x(3,3)

sk(3,4)

sk(3,5)

8k(3,6) ')
ke(4)®de(1,1)ede(1,1)+(kc(10)+ke(5))*dc(2, 1)tdc(2 1)
+ (kc(9)+kc(8))sdc(3,1)*dc(3,1)
kc(4)sde(t,1)sdec(L,2)+(kc(10)+kc(5))=dc(2,1)#dc(2,2)
+ (Xc(9)+kc(8))*dc(3,1)*dc(3,2)

kc(4)*dc(1 1)»dc(1, 3)*(!6(10)*!6(5))*dc(2 1)#dc(2 3)
+ (kc(s)okc(S))'dc(3 1)*dc(3,3)

- -sk(1,4)

-8k(2,4)

- -gk(3,4)

-kc{4)sde(1,1)*dc(1,1)+(kc(10)-ke(5))*dc(2,1)*dc(2,1)
+ (kc(9)-kc(6))sdc(3,1)9dc(3,1)
-kc(4)»de(1,1)9dc(1,2)+(Xc(10)-kc(5))*dc(2,1)*dc(2,2)
+ (xc(9)-kc(8))»dc(3,1)*dc(3,2)
-kc(4)*de(1,1)*dc(1,3)+(kc(10)~kec(5))*dec(2,1)*dc(2,3)
+ (ke(9)-kc(6))=dc(3,1)*dc(3,3)

" xc(4)ede(1,2)*dec(1,2)+(xc(10) +ke(5))*dc(2,2)*dec(2,2)

+ (kc(9)+ke(6))*dc(3,2)*dc(3,2)
kc(4)*de(1,2)*dc(1,3)+(kc(10) +ke(5)) *dc(2,2)*dc(2,3)
+ (kc(9)+kc(6))*dc(3,2)*dc(3,3)
-sk(1,5)
-3k(2,5)
-sk(3,5)
sk(4,11)
-xc(4)=dc(1,2)*dc(1,2)+(Xc(10)-ke(5))*»dc(2,2)*dc(2,2)
+ (kc(9)-kc(6))*dc(3,2)*dc(3,2)
~kc(4)*dc(1,2)*dc(1,3)+(kc(10)-kc(5))*»dc(2,2)*dc(2,3)
+ (kc(9)=-kc(6))»dc(2,3)*dc(3,3)
kc(4)#dc(1,3)edc(1,3)+(kc(10)+kc(5))*dc(2,3)#dc(2,3)
+ (xc(9)+kc(6))*dc(3,3)*dc(3,3)
~sk(1,6)
~8k(2,6)
-sk(3,6)
sk(4,12)
8k(5,12)
~kc(4)*dec(1,3)*dc(1,3)+(kc(10)~kec(5))*»dc(2,3)*dc(2,3)
+ (kc(9)=-kc(6))*dc(3,3)*dc(3,3)
sk(1,1)

54

S5
80

8k(7,8)
sk(7,9)
sk(7,10)
.k(7911)
8k(7,12)
sk(8,8)
sk(8,9)
sk(8,10)
sk(8,11)
sk(8,12)
8k(9,9)
sk(9,10)
sk(9,11)
sk(9,12)
8k(10,10)
sk(10,11)
sk(10,12)
sk(11,11)
sk(11,12)
sk(12,12)

do 60 i =
do 55 j

1,
s

sm(i,j)

continue
continue

sk(1,2)
sk(1,3)
-sk(1,4)
-sk(1,5)
-lk(igﬁ)
sk(2,2)
sk(2,3)
-sk(2,4)
-sk(2,5)
-8k(2,6)
8k(3,3)
-8k(3,4)
-8k(3,5)
-sk(3,6)
sk(4,4)
sk(4,5)
sk(4,6)
8k(5,5)
sk(5,6)
sk(6,6)

12
1,12
= 0.d40

C Row~sum rotated mass matrix to re-diagonalize

aogaaaa

aooaoaaan

.sn(B.S)

sm(1,1)
sm(2,2)
sm(3,3)

sm(4,4)

.sn(c.s)
.sn(4.6)

"em(5,4)

fun(5.8)
.sn(s.é)
"sn(6,5)

..cn(s,e)

me(l)

me(1)

me(1)

me(2)*(de(1,1)*dc(1,1)+dc(2,1)*dc(2,1))
me(3)*(de(1,1)*dc(1,1)+dc(3,1)*dc(3,1))
mc(2)»(dec(1,1)=dc(1,2)+dc(2,1)*dc(2,2))
me{3)#(dec(1;1)=dc(1,2)+dec(3,1)*dc(3,2))
mc(2)»(dec(1,1)*dc(1,3)+dc(2,1)*dc(2,3))
me(3)»(dc(1,1)*dec(1,3)+dc(3,1)*dc(3,3))
mc(2)*(dc(L,1)*dc(1,2)+dec(2,1)*dc(2,2))
me(3)»(de(1,1)»dc(1,2)+dc(3,1)sdc(3,2))
me(2)s(dc(1,1)»dc(1,3)+dc(2,1)2dc(2,3))
me(3)*(dc(1,1)»dec(1,3)+dc(3,1)*dc(3,3))
me(2)*(de(1,1)»dec(1,2)+dc(2,1)2dc(2,2))
mc(3)*(dec(1,1)*dc(1,2)+dc(3,1)*dc(3,2))
me(2)»(dec(1,2)*dc(1,2)+dc(2,2)*dc(2,2))
mc(3)»(dc(1,2)sdc(1,2)+dc(3,2)2dc(3,2))
nme(2)*(dc(1,1)*dec(1,2)+dc(2,1)*dc(2,2))
mC(E)‘(dC(lo1)‘d¢(1.2)0dc(3.1)‘46(3.2))
me(2)*(de(1,2)2dec(1,3)+dc(2,2)*dc(2,3))
mec(3)*(dec(1,2)*dec(1,3)+dc(3,2)*dc(3,3))
mc(2)*(dc(1,2)*dc(1,3)+dc(2,2)+dc(2,3))
me(3)*(dec(1,2)*dc(1,3)+de(3,2)*dc(3,3))
mc(2)*(dc(1,1)*dc(1,3)+dec(2,1)*dc(2,3))
me(3)*(dc(1,1)*dc(1,3)+dc(3,1)*dc(3,3))
mc(2)*(de(1,2)2dec(1,3)+dc(2,2)*dc(2,3))
mc(3)*(de(1,2)*dc(1,3)+dc(3,2)*dc(3,3))
me(2)*(de(1,3)=dec(1,3)+dc(2,3)*dc(2,3))

_ mc(3)*(dc(1,3)*dec(1,3)+dc(3,3)*dc(3,3))

55

¢ ¢ ¢ 4+ ¢ + + + + ¢+ ¢+

+

+

mc(2)e(de{l,1)2dc(1,3)+dec(2,1)2dc(2,3)) +

° . .‘(3)‘(d5(191')‘dc(1-3)+d‘(3t1)‘dc(3u3)) +
. mec(2)»(de(1,2)*dc(1,3)+de(2,2)#dc(2,3)) +
. nc(3)a(dc(1,Z)fgc(i.3)¢dc(3.2)*dc(3.3))
s2(7,7) = me(l) .
m(aas) = me(i)
sa(8,9) = me(i)
s=(30,10) = sm(4,4) ’
¢ sm(i0,11) = sm(4,5)
¢ - sm(10,12) = sm(4,6)
¢ sm(11,10) & sm(5,4)
Miisw s ‘-(505)
¢ sm(11,12) = am(5,8)
¢ sm(12,10) = sm(6,4)
(4 sm(12,11) = sm(6,5)
su(12,12) = sm(6,8)
.do 100 i=1,12
do 200 j=i,i-1
sk(i,j) = sk(j,i)
200 continue
100 continue
returan
end

C=End Fortraa

Fﬂe:fo:ces.f

C=Module FQRCES .

C=Purpose Calculate applied force vector at given time
C=Author K. Alvin :
C=Date May 1990

C=Block Fortran

c
c
c Subroutine FORCES
¢
¢ Purpose:
c Returns force from stored fuaction at any given time.
c The forcing functions are hardwired by the user. The
c function is selectable at program excecution using the
€ forcing function ID, which by convention is the statement
c label used in branching.
¢
c .
¢
L .

subroutine FORCES(time) -

ianclude ’shared.inc’

real*8 time,pi
c LOGIC

pi = 3.1415926

56

4

call ZEROVECT(?,ndof)

101 if (forceid .eq. 101) then
if (time .le. .02) then
2(id(2,15)) = 100.3(1.-cos(2.*pistimae/.02))
endif .
102 elseif (forceid .eq. 102) then
it (time .1t. .1) then
2(4d(2,96)) = 10.
. elseif (time .eq.. .1) then
2(id(2,96)) = 0.
elseif ((time .gt. .1).and.(time .1t. .2)) then
2(i4(2,95)) = -10.
else
£(14(2,95)) = o0.
endif
<103 elseif (forceid .eq. 103) then
it (time .le. .01) thea
£(id(1,18)) = 100
endif
104 elseif (forceid .eq.104) then
iz ((time .gt. 0) .and. (time .1t. .17)) then
2(id(3,125)) = 10
elseif ((time .gt. .17) .and. (time .1lt. 1.0)) then
2(1d(3,128)) = -10
endif
106 = elseif (forceid .eq. 105) then
if (time .le. .01) then
£(id(2,9)) = 100.%(1.-cos(2.+pistime/.01))
elseif (time .le. .02) then
£(id(2,9)) = 100. t(col(z tp:'txne/ 01)-1)
ond;t
ondxt
do 10 i = 1, ndof
2(i) = scalef =» t(x)
- 10 continue
return
end
File: input.f
=Nodule INPUT

C=Purpose Input data paranotcrn for ACSIS
C=Author K. Alvin

s7

C=Dats May 1990
C=Block Fortran

annaaAanNaAanNOOOOOnNa

20
21

Subroutine INPUT

Argunent definitions

runtype - ID of amalysis run type » :
savin - variable to control creation of iaput file

runfile = variable indicates if rua is from input file °
comment - dummy name for commeat input lines
outskip - number of steps to skip before sending output

subroutine INPUT(runtype, outskip)
include ’‘shared.inc’

integer runtype, outskip
character*i savin,runfile,temp
character®48 comment,inpfile
PRINT AND READ START-UP

, '2nd Ordcr Accelerated CSI Simulation (ACSIS)?

print =

print = :

print =, ’'Please input analysis type:’

print =

print =, ? 1. Eigenmode Analysis’

print =, 2. CSI Simulation’

print =, ? . ° 3. Transient Response’

print = ‘

read *=, runtype '

RUN QPTIONS AND INPUT FILE SETUP

runfile = ’n’
if (runtype .1t.-0) then
Tuntype = -1 * ruatype
runfile = ’y?
endit .
print =, ’Do you wish to save an input file? (y or n)®
read 21, savin :
format (a32)
format (al)
iz (savin .eq. 'y’) then
print =, ’Name of save input file? (filename)’
read 20, inpfile '
open(16,file=inpfile)
runtype 3 -1 » runtype
vrite(16,’(i2)’) runtype
. runtype 3 ~1 * runtype
write(16,’(a1)’) ‘’n’) ’
write(16,’(a47)’) ’s ACSIS input file,tvo lines above are’
vwrite(16,’(a48)’) '+ analysis type and save input file. Do’
write(16,7(a48)’) ’s not change them by editing this file.’

end_it

58 .

30

100

200

runtype 3 runtype - 2

if (runfile .eq. ’y’) then
do 30 1 = 1,4
read 20, comment
continue
endif :
print =, ’'Finite Element Nodel Input File Name (filename)’
read 20, femfile
open(11,file=femfile)
if (savin .eq. 'y’) then ‘
write(16,’(a47)’) '+ Finite element input txle’(leename)'
write(16,’(a32)’) fomfile .
endif .

iz (ruatype) 100,200,300

EIGENMODE INPUTS

priat =,'Number of nodon desired:’

if (runtilc .eq. ’y’) vread 20, comment

read *, noig

if (rnntilo .eq. ’y’) read 20, commant

print =,’Cutput File Name:’

read 20, outfile .

open(13,file=outfile)

if (savia .eq. ’y’) then
write(16,’(a36)’) *s Number of modes desired?’
vrite(16,7(i4)’) neig
write(16,’(a33)’) '+ Output file?(filename)’
write(16,°(a32)’) outfile

endif

call READFEN

goto 1000

CSI INPUTS

print =,’Controller Definition File Name:’
if (runfile .eq. ’y’) read 20, comment
read 20, confile

open(12,file=confile)

print *», ’Please input type of conmtrol:’
print =

print =, ! 1. Full State Feedback’

print =, ° 2. Luenberger Obaserver (L1=0)’
print =, ? 3. Kalwan Filter’

print =

if. (xrunfile .eq. 'y’) read 20, comment
read *, contype :
contype = contype - 2

print =,’Initial timo, fipal time, control-on time, step size:’
i? (runfile .eq. 'y’) read 20, comment

read =, t0,tf,tc,h

print ' ,'Forcing function ID, scale factor, damping coeff- a,b:’
it (rnnleo .8q. ’y’) read 20, comment . :

road *, forceid,scalef,adamp,bdamp

print =, ’Phase lag fix?(y or n):’

if (runfile .eq. ’y’) read 20, comment

39

300

999

500

read 21, temp .

if (temp .eq. ’'y’) nolag ® .true.

if (temp .eq. ’n’) nolag s .false.

print =,’Gain scale factors (4 total):’

if (runfile .eq. ’y’) <read 20, cozment

read %,qalpha,qbeta,qalphao,qbstac

if (savin .eq. 'y’) thea
write(i16,’(ad2)?’) ’+ Controller file name?(filename)’
vrite(16,'(a32)’) confile
vrite(16,’(a42)’) ’+ Please imput type of comtrol:
write(16,7(110)’) contype ¢+ 2
write(16,’(a46)’) ’+ Imitial 1inal,eontrol-on.stop size?’
write(16,(4£14.8)’) t0,8f,tc,h
vrite(16,’(a49)’) '+ Forcing function,scale £, damping a,b?’
vrite(16,°(i4,£16.6,2£12.8)’) forceid,scalef adamp,bdamp
vrite(i6,’(a32)’) '+ Phase lag fix?(y or n)’
if (nolag) write(16,’(a1)’) ’y’
if (.mot. nolag) write(16,’(a1)’) ’n’
‘wxrite(16,°(aé0)?) ’+ Gaia scale factors (4 total)?’
write(i6,’(4£14.8)’) qalpha,qbeta,qalphao,qbetac ' !

endif :

call READFEX
goto 999
TRANSIENT RESPONSE INPUTS

print %,’Initial time, final time, step size:’
if (runfile .eq. ’y’) read 20. comment

- read =, t0,tf.,h

priat t » 'Forcing function ID, scale factor, damp:ng coeff- a,b:?
if (rnntilo .eq. ’y’) read 20, comment
read =, forceid,scalef,adamp,bdamp
if (savin .eq. ’y’) then
write(16,’(a48)’) '+ Initial, final, step size?’
write(16,’(3£14.8)’) %0,tf,h
write(16,’(a49)’) '+ Porcing function,scale £, damping a,b?’
write(16,’(i4,£15.6,2£12.8)*) forceid,scalef,adamp,bdamp
endif

call READFEM

goto 999

OUTPUT OPTIONS

priat =,’Output File Name:*
if (runfile .eq. ’y’) read 20, comment
read 20, outfile
open{13,file=outfile)
print *,’'Number of displacement results to output (max 10):’
if (runtzlc .-eq. ’y’) read 20, comment
read -.ndisont
do 500 is1,ndisout
print =,’Input node 8, dof for displacement ontputc',x
read * ontlabol(z) ontlab-l(;*io)
continue
print =,’Number of velocity results to output (max 10):’

60

£ "

if (runfile .eq. ’y’) read 20, comment
read *,avelout
do 600 isi,nvelout
print ®,’Input node 8, dof for velocity ontput#‘,x
read » outlabol(iozo).ontlabol(1+3o)
600 continue
print #,’Send output every how many steps?’
if (runfile .eq. ’y’) read 20, comment
read *, outskip
if (savin .eq. ’y’) then
vrite(16,’(a38)’) ’s QOutput file name?(filenama)’
write(16,’(a32)?) outfile
write(16,’(a42)’) ’+ Humber of displacement outputa"
write(16,’(i4)’) ndisout
do 650 i=1,ndisout
, vrite(16,7(2i8)’) outlabel(i),outlabel(i+10)
650 contiaue
orite(16,’(a38)’) ’+ Number of velocity outputs?’
urits(16,’(i4)’) avelout
do 660 i=si,avelout
write(16,?(2i8)?) outlabol(z#ﬁo) outlabel(i+30)
660 continue 3
write(16,’(a44)’) '+ Send output every hoe many stepi?’
write(16,7(i3)’) outskip
endif

c ANIMATION OPTION

print »,’Animation OQutput? (y or mn):’
if (runfile .eq. ’y’) vTead 20, comment
read 21, temp
if (temp .eq. 'y’) animate = .true.
iz (temp .eq. ’'n’) animate = .false.
ifz (animate) then
printe+,’Animation file name (filename)’
if (runfile .eq. 'y’) read 20, comment
read 20, animfile -
open (15, file=animfile)
endif
it (savin .eq. ’y’) then
write(16,’(a41)’) '+ Send animation output?(y or a)’
if (animate) write(16,’'(ai)’) 'y’
if (.not. animate) write(18,’(a1)’) 'n’
if (animate) then
vrite(16,'(a31)’) ’» Animation file name?’
vrite(16,’(a32)’) animfile
endif
endif

delta = h/2,
delsq = deltas=2

1000 returm
end

File: pmvmul . £

61

-

C=Nodule PNVMUL
CsAuthor K. 4lvia
C=Date May 1990
C=Block Pertran

¢

c

c Subroutine PMVNUL

c .

C Purpose:

c - This subroutine multiplies a matrix in vector form
c and a vector. '
c

c

¢

c Arguments

¢ . a = matrix in vector form

¢ b = wveector

€ € - result wvectar

c. neq - order of vector and square matrix
¢ jdiag = array of diagonal addresses for a
c subroutine PNVNUL(s,jdiag,b,neq,c)

recursive subroutine PNVMUL(a,jdiag,b,neq,c)

real=8 a(1), b(1), c(1)
integer jdiag(i), neq

do 100 i=1,neq
. e(d) = a(jdiag(i))=b(i)
100 continue

do 200 is2,neq]
do 300 jajdiag(i-1)+1,jdiag(i)-t
k= jdiag(i) - § -
c(i) = c(i) + a(j)*b(i-k)
300 continue
200 contingo

do 250 i=2,neq
do 400 j=jdiag(i~1)+1,jdiag(i)-t
X = jdiag(i) - j
c(i-k) = ¢{i-k) + a(j)*b(i)

- 400 continue

250 continue

retura
end

Subroutine PMVNAD

Purpose: .
Multiply .a matrix in vector form and a vector and add the
Tesultant vector multiplied by a comstant to a second vector

anaaaaan

62

Qa0 Q0

Q

100

300
200

400
250

multiplied by a second vector

Argunents -
a = matrix in vector form
b = vector to be multiplied with matrix
c = <resultant and vector to be added
factl - constant multiplier of matrix and first vector

faet2 - constant multiplier of second vector
jdiag - array of diagonal addresses for matrix
neq = order of vectors and matrix

subroutine PMVMAD(a,jdiag,b,neq,factl,c,fact2)
recursive subroutine PMVMAD(a,jdiag,b,neq,factl,c,fact2)

realws a{l), b{1),c(1),2actl fact2
integer jdiag(1), neq

do 100 isi,neq

c(i) = fact2sc(i) + tactita(deag(z))tb(x)
continue

do 200 i=2,neq
do 300 j=jdiag(i-1)+1,jdiag(i)-1
k = jdiag(i) - j
c(i) = c(i) + !actlta(J)tb(z-k)
coatinue
continue

do 260 ia2,neq
do 400 jajdiag(i-1)+1,jdiag(i)-t
"k = jdiag(i) - j
e(i-x) = c(i-k) + tacti‘a(])‘b(x)
continune
continue

return
end

File: prepfem.f

C=Module PREPFENM
- C=Purpose Preprocess Structure Finite Element module for ACSIS
C=4uthor K. Alvin
C=Date Nay 1990
=Block Fortran

aaaaaaan

Subrountine PREPFEN

Purpose:
This subroutine prepares the finite element mass,
stiffness, and S matrices in reduced profile vector form

63

o000

30
20

Local variables:

ek - Element Stiffnese matrix

8B Element Mass Natrix -
‘1m Local/Global DOF Kapping vector

nseq Number of e¢lement degrees of freedom
:em;ep Material and Propety id & for element

subroutine PREPFEN
include ’shared.inc’
LOCAL VARIABLES

parameter (MAXSEQ=24)
rsal=2 sk(MIXSEQ, xnxsxn).sn(xxxszn MAXSEQ) ,mc k¢
integer 1m(MAXSEQ),nseq,em,ep

call RENUM
Set up skyline storage profile for global matrices

call PROFILE(ix,id,jdiag,nnp,nel,4,6,mlen,ndof,nask)
Porform automatic domain decomposition

call DOMDEC
Check size of skyline profile against storﬁgo limitatioﬁ

if (mlen .gt. MAXNLEN) then ,
priate, ’'PREPFEN: error, global matrix exceeded max. size’
endif

Zoero Global Matrices prior to assembly

call ZEROVECT(stif,mlen)
call ZZBDVECT(naas,hlen)

ASSEMBLE EACE ELEMEKNT MASS AND STIFFNESS
do 100 n=1i,nel

do 20 k=1,4
j=ix(k,n)
iz ((etype(n).eq.1).and.(k.gt.2)) j = 0
do 30 i=1,6
kk=6=(k-1) + i
if (j .ne. 0) then
1m(kk) = id(i,j)
else
lm(kk) = 0
endif
continue
continue

64

iz (etype(n) .eq. 1) then
nseq = 12
en = emat(n)
ep = eprop(n) .
call BEANM3D(n,ix(i,n),ix(2,n),ix(3,n),coxyz,mat(1,em),
. mat(2,em) ,mat(3,em) ,prop(1,ep) ,prop(5,ep) ,prop(6,ep),
. prop(2,ep),prop(3,ep) ,prop(4,ep),pin(l,n),sk,sm)
elseif (ix(1,n) .me. 0) then
print#, ’PREPFEN:Element type not found,an=’,n,’etype=’,etype(n)
endif

C ADD ELEMENT TO GLOBAL MASS AND STIFFNESS

call ADDSTF(sk,lm,stif,jdiag,nseq)
call ADDSTF(sm,1lm,mass,jdiag,nseq)

C SAVE THE ELEMENT STIFFNESS FOR E-BY-E COMPUTATIONS
call SAVESK(sk,a,nseq) |
100 continue
C ADD LUMPED INERTIAS TQ GLOBAL MASS®
do 125 isi,nnp

do 130 j=1,6 :
it (id(j,i) .eq. 0) goto 130

xsjdiag(id(j,1))

mass(k) = mass(k) ¢ inertia(j,i)
130 continue
125 continue

€ ASSEMBLE AND FACTORIZE es (S MATRIX)

mc = 1. + deltasadamp
kc = deltasbdamp + delsq
do 200 i=1,mlen . :
e8(i) = mcemass(i) + kcwstif(i)
200 continue .

call SOLVER(es,gs,jdiag,ndof,1)
C INITIALIZE DISPLACEMENT AND VéiOCITY‘VECTOBS

do 300°i = 1, nnp
do 350 j = 1,6
if (id(j,i) .ne. 0) then
q(id(j,1)) = q0(j,i)
qdot(3d(j,i)) = qdoto(j,i)

endif
350 continue R
300 .continue
return

end
subroutine SAVESK(sk,n,nseq)

include ’'shared.inc’

real»8 sk(nseq,i)
integer n,nseq

k=0
do 10 j=i,aseq
do 20 i=i,j
ksked
. estifm(k,n)=ek(i,j)
20 continue
10 continue

return .
end

subroutine DOMDEC
include °* shared.inc’

logical nchk,ndchk(MAXNODE,NAXDOXM)
integer ndom

do 10 j=1,MAXDON
neld(j)=0
do 20 iei anp
-ndehk(i,j)=.2alse.

20 coatinue
10 continue
ndomain=0

do 100 n=1 . nel

ndoms0
nchk=0 :
do 200 while (nchk.eq.0)
ndom=sndome1
if (ndom.gt.ndomain)- ndomainsndom
nchk=1
if (ndchk(ix(1,a),ndom,) nchk=0
if (ndchk(ix(2,a),adom)) nckk=0
if (nchk.eq.1) then
esldom(n)=ndom
ndchk(ix(1,n),ndom)=.tzue.
ndchk(ix(2,n) ,ndom)=.true.

endif
200 continue
neld(ndom)=neld(ndom)+1
elnum(neld(adom) ,ndom)an
100 coantinue
return
end

" File: profile.f

- 66

e

" C=Module PROFILE :
CsPurpose Compute the number of equations and set profile for K
C=Author Bod Taylor
CsDate who knows
CaUpdate January 1989 by E. Pramono
CaBlock Fortran
subroutine PROFILE(ix,id,jdiag,nnp,nel,nen,ndof,nad,neq,mask)

+

PURPOSE:
THIS SUBROUTINE COMPUTES THE NUMBER OF EQUATIONS REQUIRED
TO SOLVE THE PROBLEM BY ELIMINATING RESTRAINED DEGREES OF
FREEDOM FROM THE SYSTEM OF EQUATIONS. KNOWING THE EQUATION
NUMBERS COORESPONDING TO THE NODAL DEGREES OF FREEDOM, THE
DIAGONAL ELEMENT LOCATIONS CAN BE COMPUTED FOR STORING THE
GLOBAL STIFFNES MATRIX IN COMPACTED VECTOR FORNM.

+

ARGUKENTS

nDaaaaacaaaoaaa

integer ix(aen,1), id(ndof,1), jdiag(1)
integer nnp, nel, nad, neq, mask(1)
integer nnp, nel, nen, ndof, nad, neq, mask(l)

.LOCAL ARGUMENTS

aaaa

integer i, j, X, 1, m, n, ji, ki, 11, m1

~SET UP EQUATION NUMBERS

aaaq

neq = 0
do 30 n = t, nnp
do 20 m = 1, ndof
" j = id(m,mask(an))
iz (j .eq. 1) goto 10
neq = neq + 1
id(m,mask(n)) = neq
jdiag(neq) = 0
goto 20
10 id(m,nask(n)) = 0
20 continue
30 continue

COMPUTE COLUMH HEIGHTS

aaaa

do 80 n 3 1, nel
do 70 m = 1, nen
mi = ix(m,n)
iz (m1 .le. 0) goto 70
do 60 1 = 1, ndof
11 = id(1,m1)
iz (11 .eq. 0) goto 60
do 60 kx = m, nen
x1 = ix(x,n)
iz (k1 .le. 0) goto 50
do 40 j =3 1, ndot
jt = id(j,x1)
it (j1. .eq. 0) goto 40

67

Saacaaanaa®

i = MAX0(11,j§1)
jdiag(i) = MAXO(jdiag(i), IABS(11-j1))

40 . continue
§0 .. continue
- 60 continue
70 continue
80 coatiamue
c
c
C CONMPUTE DIAGONAL POINTERS .
p)
nad = 4 .
jdiag(i) = 1

if (neq .eq. 1) return
do 90 n = 2, neq
jdiag(n) = jdiag(n) + jdiag(n-1) ¢ 1
90 continue
nad s jdiag(neq)

return
end
C=End Fortran

File: read.f

C=Module READ
C=sAuthor K. Alvin
C=Date Nay 1990 -
C=Block Fortran

Subroutine READFEN
Purboaoﬁ
This subroutine reads the data file for the finite
element model.
Arguments
ctype -~ stores code for type of line
subroutine READFEN
c GLOBALS
include ’shared.inc’
c LOCALS

integer j,n,ctype,GETTYPE
character*132 aline
real*8 in -

c INITIALIZE SI2ZE OF PROBLEN

68

anp = 0
nel = 0
ndof = 0
ndomain = 0

c IDENTIFY CARD TYPE AND ASSIGHN INPUT

10 read(11,1000,end=9999) aline -

100 ctype = GETTYPE(aline)
if (ctype) 10,10,150

150 _ if (aline(1:4) .eq. 'KODE’) goto 200
if (aline(1:4) .eq. 'TOPO’) goto 300
if (aline(i:4) .eq. ’ATTR’) goto 400
if (aline(1:4) .eq. ’'MATE’) goto 500
if (aline(1:4) .eq. 'PROP’) goto 600
i (aline(1:4) .eq. 'FIXI’) goto T00
if (aline(1:4) .eq. 'INIT’) goto 800
it (aline(1:4) .eq. 'INER’) goto 900 .
if (aline(1:4) .eq. 'END ’) goto 10
iz (aline(i:4) .eq. ’'MESH’) goto 10
print =, 'READFEH: Unrecognized card type; ’,aline(1:4)
goto 10

¢ READ NQODES

200 read(11,1000,end=9999) aline
ctype = GETTYPE(aline)
it (ctype) 200,260,100 ‘
250 read(aline,*) n,(coxyz(j,n),j=1,3)
iz (a .gt. nop) mup = n
goto 200 ~ ’

c READ TOPOLOGY

300 read(11,1000,end=9999) aline
ctype = GETTYPE(aline)
if (ctype) 300,350,100 .
350 read(aline,*) n,etype(n),(ix(j,n),j=1,4)
if (a .gt. nel) nel = n .
goto 300

c READ ATTRIBUTES

400 read(11,1000,end=9999) aline
ctype = GETTYPE(aline)
it (ctype) 400,460,100
450 read(aline,*) n,emat(z),eprop(a),(pin(j,n),j=1,6)
iz (eldom(n).gt.ndomain) ndomain=eldom(n)
goto 400

c ‘READ MATERIAL

500 read(11,1000,end=9999) aline
ctype = GETTYPE(aline)
it (ctype) 600,550,100

§50 read(aline,*) n,(mat(j,n),j=1,3)
goto 500

c READ PROPERTIES

69

600

680

700

780

800

8560

900

950

1000

9999

read(11,1000,end=9999) aline
ctype ® GETTYPE(aline)

if (ctype) 600,660,100
read(aline,®) n,(prop(j,n) j=1,8)
gote 800

READ FIXITY

read(1i,1000, end=98999) aline
ctype = GETIYPE(aline)

if (ctype) 700,750,100
read(aline,*) n,(id(j,n),j=1,6)
goto 700

READ INITIAL CONDITIONS

read(11,1000,end=9999) aline

ctype ® QEITYPE(aline)

if (ctype) 800,850,100
road(llino.‘) n,J.qO(j.n).qdoto(j a)
goto 800

READ IBiRTIA

read(11,1000,end=9999) aline
ctype = GETTYPE(aline)

if (ctype) 900,950,100
read(aline,*) n,j,in
inertia(j,n)sinertia(j, n)*in
goto 900

format(a132)
continue

return
end

Subroutine READCON

Purpose:
This subroutine reads the actunator.and sensor
locations and the gazns for the control system

aooaooaoaaaoaoooo0n0aa0aa00000000Q0

Arguments
ctype = stores code for type of linme

Abbreviations
BACT - number of actuators
NSEX - onumber of sensors
BMAT =~ locations of actuators
HDMA - array of displacement sensor locations
HVMA - array of velocity sensor locations
F1GA - control gain matrix

70

F2GA =~ control gain matrix
L1GA =~ stats estimator filter gain matrix
L2GA =~ state estimator filter gain wmatrix

ann

subroutine READCON
include ’shared.inc’
c LOCALS

real*8 val')
integer j,n,ctype,GETTYPE
character+132 aline

bval 2 0

hdval = O
hvval = 0
hdbval 8 O
hvbval = 0

c IDENTIFY CARD TYPE AND ASSIGN INPUT

10 read(12,1000,end29999) aline
100 ctype » GETTYPE(aline)
if (ctype) 10,10,150
150 . if (aline(1:4) ~.eq. ’NACT’) goto 200
it (aline(1:4) .eq. 'NSEN’) goto 300
i- (aline(1:4) .eq. 'BMAT’) goto 400
i? (aline(1:4) .eq. ’HDMA’) goto 500
iz (aline(1:4) .eq. 'HVMA') goto 600
it (aline(1:4) .eq. ’F1GA’) goto 700
it (aline(1:4) .eq. ’'F2GA’) goto 800
it (aline(1:4) .eq. ’L2GA’) goto 900
if (aline(1:4) .eq. ’L1GA’) goto 1100
it (aline(1:4) .eq. ’END ’) goto 10 ,
print »,’READCON: Unrecognizad card type; ’,aline(1:4)
goto 10 .

c READ INPUT CARDS

200 read(12,1000,end=9999) aline
ctype = GETTYPE(aline)
if (ctype) 200,250,100

250 read(aline,*) nact

" gote 200

300 read(12,1000,end=9999) aline
ctype = GETTYPE(aline)
if (ctype) 300,350,100

350 read(aline,*) nsen
goto 300

400 read(12,1000,end=9999) aline
ctype @ GETTYPE(aline)
- if (ectype) 400,450,100
460 read(aline,*) i,j,n,val
bval = bval + 1
b(bval) = val
brow(bval) = id(j,i)

71

§00

5580

600

650

700

750

800

850

900

. 950

- 1100

1150

1000
9999

beol(bval) = n
goto 400

read(12,1000,end=9999) aline
ctype = GETTYPE(aline)

if (ctype) 500,550,100
read(aline,®) i,j.n,val
hdval = hdval + &

" hd(hdval) = val

hdrow(hdval) s a

‘hdcol(hdval) = id(j,i)

goto 500

read(12,1000,end=9999) aline o
ctype ® GETTYPE(aline)

i2 (ctype) 600,650,100

read(aline,*) i,j,n,val '

- hvval = hvval + §

tv(hvenl) = val
hvrow(hvval) = n
hvcol(bwvval) = id(j,i)
goto 600

read(12,1000, end=9999) aline

" ctype ® GETTYPE(aline)

it (ctype) 700,750,100
read(aline,s) i,j,n,val
£1(n,id(j,i)) = qalphasval
goto 700

read(12,1000,end=9999) aline
ctype ®= GETTYPE(aline)

iz (ctype) 800,850,100
read(aline,s) i,j,n,val
£2(n,id(j,i)) = qbeta%val
goto 800

read(12,1000,end=9999) aline
ctype = GETTYPE(aline)

if (ctype) 900,950,100
read(aline,*) i,j,n,val
12(id(j,i),n) = gbetaosval
goto 900

read(12,1000,end=9999) aline
ctype = GETTYPE(aline)

it (ctypo) 1100,1150,100
read(aline,*) i,j,n,val

.11(id(j,i),n) = qalphaosval

goto 1100

format(a132)
continue
return

end

72

ooaaoanaaa

100 -

Function GETTYPE

Purpose:)
This function identifies whether a line is a character
input, data input or comment.

function GETTYPE(string)
GLOBALS'

character*132 string
LOCALS

integer GETTYPE,ctype(10)
character*1l head(10)

data. head /)!a.:gv.l'n.lgn,sx;')&:.n‘n.')cr.xc:.: :/
data ctype /-1,-1,-1,-1,-1,-1,-1,-1,-1,0/

LOGIC

GETTYPE=1

do 100 i=i,10
if (string(1:1) .eq. head(i)) GETTYPE=ctype(i)
continue

return
end

File: solver.f

C=Module SOLVER
C=Purpose Solves the system of linear symmetric equations
C=Author who knows

C=Date

C=Update January 1889 by E. Pramono
=Block Fortran .

c

SUBROUTINE SOLVER(BK,BR,JDIAG,NEQ,IFLAG)
recursive SUBROUTINE SOLVER(BK,BR,JDIAG,NEQ,IFLAG)

+

o000 a00O00O0a0a00

 PURPOSE:

THIS SUBROUTINE SOLVES THE SYSTEM OF LINEAR SYMMETRIC
EQUATIONS IN VECTOR FORM USING THE CROUT REDUCTICN
NETHQD.

ARGUMENTS:
BK
BR
JDIAG
NEQ
IFLAG

GLOBAL STIFFNESS EQUATIONS IN VECTOR FORX
GLOBAL LOAD VECTOR , '
LOCATION VECTOR FOR DIAGONALS IN [BK]
NUMBER OF EQUATIONS
FLAG INDICATING WHICH FUNCTION IS TO BE PERFORMED
1 -> FORWARD REDUCTION
2 ~> BACKVARD SUBSTITUTION

73

+

nnonaaoanacaanan®

aon

aacaa

aQaan

Qanoan

naoaoa

Qaagan

[¢]

ARGUKEHNTS

INTEGER JDIAG(L), NEQ,.IFLAG

" LOCAL VARIABLES '

REAL*8 ZERO, EZERO, TOL, DAVAL, DOT, D, RDD, DD
INTEGER LDFLAG, JR, J, JD, JE, IS, IE, K, JDT
- INTEGER JJ, ID, I, IR, IH

Jieé

T e O o e

NEW PARAMETERS
2ER0 = 0.0D0
EZERG = 0.3D-14 .
TOL = 0.5D=7 —
LDFLAG = 0

FACTOR BK TO UT+D=U OR REDUCE R

JR = 0

DO 70 J = 1, NEQ
JD = JDIAG(I)
JE=s JD - JR . :
ISaJ-JB +2 ’ .
IF (JH - 2) 60, 30, 10

IF (IFLAG .NE. 1) 60‘1'0 50
IE=J -1

KaJR +2

ID = JDIAG(IS-1) -

- IF DIAGONAL IS 2ZERO COMPUTE A NORM IL-'DB. SINGULARITY TEST

JDOT = JDIAG(IE) + 1

IF (BK(JD) .EQ. ZERO .AND. IFLAG .EQ. 1) THEN
CALL DATEST (BK(JDT), JH-2, DAVAL)

END IF

REDUCE ALL EQUATIONS EXCEPT FIRST ROV AND DIAGONAL

DO 20'I = IS, IE
IR = ID
ID = JDIAG(I)
IH = NINO(ID-IR-1,I-IS+1) .
IF (IB .GT. 0) BK(K) = BK(K) - DOT(BK(XK-IH), BK(ID-IH) be:9)
KaK+1

CONTINUE

REDUCE FIRST ROW AND DIAGONAL

74

30 IP (IFLAG .NE. 1) GOTO 50
IR s JR ¢+ 1
IE=JD -1
K=J-J
DD = BEK(JD)
DO 40 I = IR, IE
ID = JDIAG(K+I)
IF (BK(ID) .EQ. 0.0) GOTO 40
D = BR(I1) ‘
BE(I) = BK(I)/BR(ID)
BK(JD) = BK(JD) - DsBK(I)
o COKTINUE

CHECX FOR POSSIBLE ERRORS AND PRINT WARNINGS

a0 e

RDD = BK(JD)

IF (DABS(RDD) .LT. TOLeDABS(DD)) WRITE (JJ,2000) J
IF (DD .LT. 2ERO .AND. RDD .GT. ZERO) WRITE (JJ,2001) J
IF (DD .GT. ZERO .AND. RDD .LT. ZERO) WRITE (JJ,2001) J

IF (DABS(RDD) .LT. EZERO) WRITE (JJ,2002) J
-
c
C COMPLETE RANK TEST FOR A ZERO DIAGONAL TEST
C
IF (DD .EQ. ZERO .AND. JH .GT. O0) THEN _
IF (DABS(RDD) .LT. TOL*DAVAL) WRITE (JJ,2003) J
END IF .
c
c .
C REDUCE RIGET HAND SIDE
c e .
50 IF (IFLAG .EQ. 2) BR(J) = BR(J) - DOT(BK(JR+1), BR(IS-1), JH-1)
60 JR = JD

70 CONTINUE
IF (IFLAG .NE. 2) RETURN.

DIVIDE BY DIAGONAL TERMS

DO 80 I = 1, KEQ
ID = JDIAG(I)
IF (BK(ID) .NE. 0.0) BR(I) = BR(I)/BK(ID)
IF (BR(I) .NE. ZERO) LDFLAG = 1
0 CONTINUR

CHECK FOR ZERO LOAD VECTOR

IF (LDFLAG .EQ. 0) WRITE(JJ,2004)

BACK SUBSTITUTE . ®

J = NEQ

JD = JDIAG(J)
90 D = BR(J)

J=sJ-1

73

IF (J .LE. 0) RETURN
JR = JDIAG(J) :
IF (JD - JR .LE. 1) GOTO 110
IS2J-JD+JR+2
KsJR=1IS+1
DO 100 I= IS, J °
BR(I) = BR(I) - BK(I*K)=D
100 CONTINUE
110 Jp=JB
GOTO 90

~

c

c .

C VARNING FORNATS
c

2

000 FORMAT(/’!! WARNING !! i - IN SOLVER, LOSS OF AT LEAST 7 DIGITS’

+ /18X, 'IN REDUCING DIAGONAL OF EQUATION;’,4X,IS)

2001 FORMAT(/’t! WARNING !! 2 - IN SOLVER, SIGN OF DIAGONAL CHANGED’
+ /18X, 'WHEN REDUCING EQUATION;’,15X,IS) v

2002 FORMAT(/?!! VARNING !! 3 - I¥ SOLVER, REDUCED DIAGONAL IS ZERQ’
+ /18X, 'FOR EQUATION;’,25X,I5)

2003 FORMAT(/’!! WARNING !! 4 - IN¥ SOLVER, RANK FAILURE FOR A ZERO’
+ /18X, 'UNREDUCED DIAGONAL IN EQUATION;®,7X,IS)

2004 FORMAT(/’!! VARNING !! § - IN SOLVER, ZERO LOAD VECTOR?)
c . .
END
C=End Fortran
C=Module DATEST
C2Block Fortran
c SUBROUTINE DATEST(A,JH,DAVAL)
recursive SUBROUTINE DATEST(A,JH,DAVAL)

+
&

TEST FOR RARK

INPUTS; .
A(J) - COLUMR OF UNREDUCED ELEMENTS IN ARRAY
JH ~ NUMBER. OF ELEMENTS IN COLUMN

OUTPUTS; . ;
DAVAL - SUM OF ABSOLUTE VALUES

+
+

aanoaaaoaaaoaaaaoon

ARGUNENTS

REAL*8 A(1), DAVAL
INTEGER JH

* ¢ LOCAL ARGUMENTS.

INTEGER J

DAVAL = 0.0D0

DO 10 J =1, JBE »

DAVAL = DAVAL + DABSCA(J))

10 CONTINUE

RETURN

~ END

76

Sqdnanaaaana®

.y

c

Cc

CsEnd Fortran

C=Kodule DOT

C=Block Fortran

c FUNCTION DOT(A,B,N)
recursive FUNCTION DOT(A,B,N)

c+ .
¢ PURPOSE:
c THIS FUNCTION SUBROUTINE PERFORMS THE DOT PRODUCT OF TWO
C VECTORS. :
¢
c - ABGUMENTS: : :
[A - FIRST VECTOR INVOLVED IN DOT PRODUCT
c B - SECOND VECTOR INVOLVED IN DOT PRODUCT.
¢ ¥ - NUMBER OF ELEMENTS IN EACH OF THE TWQ VECTORS
¢
BEAL=8 .DOT, A(1), B(1)
INTEGER N
¢
INTEGER I
c .
DOT = 0.0

DO 10Isyt, N
DOT = DOT + A(I)=B(I)
10 CONTINUE

RETURN
EXD
C=2End Fortran

TSnnaocaaaa®

File: nophlag.f

C=Module NOPHLAG
C=Author K. Alvin
=Date July 1990

C=Block Fortran

c

c

c Subroutine NOPHLAG

[.

¢ Purpose:)

c This subroutine solves for the strmctural displacement
c and velocity vectors at the half-step for the phase lag
(o correction loop, and gets new measurement

c .

c

c

c Argunents

c delbeta - delta * bdamp

c

" subroutine NOPHLAG(zp)

real*8 zp(1)
include ’shared.inc’

7

io.

100

200

250

LOCAL VARIABLES

integer i
realeS v(MAXDOF) delbsta

LoeIc
4DD APPLIED FORCES TO RHS AND PREPARE MASS MULTIPLIER

‘'do 10 iei,ndof

gs(i) = gs(i) + 2(i)
v(i) =B (1. ¢ dolta‘adnlp)tq(i) * doltu°q§ot(i)
coatinue

SOLVE FOR RIGHT HAND SIDE, gs

do 77 i = i,6ndof
gs(i) = delsqegs(i) ¢ v(i)wmass(jdiag(i))
continge

if (bdamp .ne. 0.) thea
delbeta = deltasbdamp
call PNVNAD(stif, jdiag q,adof ;delbeta,gs,1.d0)
endif :

SOLVE FOR DISPLACEMENT, q, USING RHS AND MATRIX S

 call SOLVEn(os,gs,jdiag,ndot,2)

do 100 i=1,ndof
v(i) = (gs(i)-q(i))/delta
continue

call ZEROVECT(zp,nsen)

‘do 200 jj = 1,hdval

i = hdrow(jj)

j = hdcol(jj)

zp(i) = zp(i) + hd(jj)*ga(j)

continune o
do 250 jj = 1,hvval

i = hvrow(jj)

j = Bveol(jj)

zp(i) = zp(i) + hv(jj)ev(i)

continue

return
end _ M

File:.zerovect.f

C=Nodule ZEROVECT

C=Purpose Initialize vector of givea length to zero
C=Author K. Alvin

CsDate Nay 1990

C.

8

Subroutine ZEROVECT

Qaaaoaa

subroutine ZEROVECT(v,n)

real*8 v(i)
integer n

do 100 i=i,n
v(i) s 0.d0
100° continue

return
end

File: 1u.f

SUBROUTINE LUFACT(A,N,PIVOT,DET,IER,NMAX)

SUBROUTINE FACTOR USES GAUSSIAN ELIMINATION WITH
PARTIAL PIVOTING AND IMPLICIT SCALING TO DETERMINE

THE L+U DECOMPOSIOF OF A SQUARE HATRIX "A" QF

ORDER N. THE ALGORITHM ALSO FINDS TRE DETERMINENT

OF "A". UPON COMPLETION, THE ELEMENTS OF THE UPPER
TRIANGULAR MATRIX "U" ARE CONTAINED IN THEIR RESPECTIVE
LOCATIONS IN MATRIX "A". THE ELEMENTS OF MATRIX "L"
ARE CONTAINED IN THE LOWER TRIANGULAR PORTION OF "A",
BUT ARE SCRAMBLED WITH RESPECT TO "U" BECAUSE OF ROW
INTERCHANGE OPERATIONS NOT PERFORMED ON THE ELEMENTS

OF “L". THE VECTOR PIVOT (SEE BELOW) MUST BE USED TO
UNSCRANMBLE "L" IF IT IS TO BE USED FOR OTHER OPERATIONS.

VARIABLES: A=FULL SQUARE MATRIX (DOUBLE PRECISION)
N=0RDER OF MATRIX A (INTEGER)
PIVOTSVECTOR CONTAINING A RECORD OF
ROV INTERCHANGES. THE INTEGER
VALUE PIVOT(X) IS THE ROW WHICH
VAS INTERCHANGED WITH ROW K AT
FORWARD ELIMINATION STEP K. (INTEGER)
DET=DETERMINENT OF MATRIX A (DOUBLE PRECISION)
IER=ERROR FLAG. IF IER=i, THE MATRIX A WAS FOUND
10 BE SINGULAR, AND THE ROUTINE WAS EXITED. . IF
IER=0, THE DECOMPOSITION WAS SUCCESSFUL.

a

QOO0 a000aaaaO00a0aQ0a00000000

INTEGER PIVOT(1),IER,N,I,J,K,I0,NMAX
REAL+8 A(NMAX,1),S(1000),C(1000),DET,TENP
DET=1.0D0

FIND THE ROV BORMALIZING COEFFICIENTS S(I) FOR IMPLICIT SCALING.
EXIT ROUTINE IF ANY S(I)=0.0

anoaa

79

[z 2]

DO 100 I=i,N
S$(1)=0.0D0
DO 110 J=i X
" IP (ABS(A(X,J)).GT.S(I)) S(I)=ABS(A(I,J3))
110 COBTINUE :
IP (S(1).2Q.0) THEN '
IER=g
" DET=0.0D0
RETURN
END IF
100 CONTINUE

START FORWARD ELIMINATION STEP K

Qaaaaah

DO 120 X=i N~1

DETERMINE PIVOT ELEMENT A(I0,K) BY FINDING THE RCW I0
BETWEEN K AND ¥ COLTAINING THE MAXINUK NORMALIZED
VALUE IN COLUME K. SET PIVOT(K)=I0

aaaQaaOaaaQa

C(K)=0.0D0
DO 130 Is=K,N
TEMP=ABS(A(I,K)/S(I))
IF (TEMP.GT.C(K)) THEN
C(K)=TEMP
10=I
END IF
130 CONTINUE
PIVOT(K)=I0

EXIT ROUTINE IF ALL VALUES IN COLUMN K AT OR BELOW
THE MAIN DIAGONAL ARE EQUAL TO 0.0

aaoanoaaaq

IP (C(X).EQ.0.0) THEN
IER=t ’
DET=0.0D0 ,)
RETURN

_ END IF

INTERCHANGE ROWS IO AND K FOR COLUMNS K TO N. SKIP IF IO=K.
SET DET=-DET IF ROWS ARE INTERCHANGED.

aagcaooaaq

IF (10.EQ.K) GOTO 150
DET=~1.0DO=DET
DO 140 J=K N
Tm'l(!..l)
A(K,J)=A(10,3)
A(IO0,J)=TENP
140 CONTINUE

80

ELININATE COLUMN X BELOW MAIN DIAGONAL BY NULTIPLYING

ROW K FROM COLUMN K TO N BY A(I,K)/A(K,K) AND SUBTRACTING .

FROM ROV I. STORE THE NULTIPLIER FOR ROV I IN THE ELIMINATED

COLUME X. NULTIPLY THE RUNNING PRODUCT DET BY DIAGONAL ELEMENT A(K,K).

agQaoaacaooaoann

150 DO 160 I=K+i,N : ' «
A(T,K)=A(T . K)/A(K,K)
DO 170 JsK+i,N ,
ACT,3)=ACT,3)-A(CI,K)*A(K,J).

170 CONTINUE . '
160 CONTINUE
DET=DET*A(K,K)

120 CONTINUE

anaoaanNnaa

' CHECKX LAST ROW/COLUMN FOR SINGULARITY. IF THERE IS NO ERRDR,
COMPLETE CALCULATION OF THE DETERMINENT, SET THE ERROR FLAG
TO INDICATE NORMAL COMPLETICN, AND E;IT.

IF (A(N,N).EQ.0.0) THEN
IER=1
DET=0.0D0
RETURN
END IF
DET=DET=A(N,N)
IER=0 .
RETURN
END v

SUBROUTINE LUSOLVE(A,N,B,PIVOT,NMAX)

aaaaa

SUBROUTINE SOLVE

FTTI LS

INTEGER PIVOT(1),N,I,J,K,NMAX
REAL#8 A(NMAX,1),B(1),TEXP
DO 100 K=1,N-1
IF (PIVOT(K).EQ.X) GOTO 110 .
TENP=B(X)
B(K)=8(J)
B(J)=TENP
110 DO 120 I=K+i,N
B(I)=B(I)-A(I,K)*B(K) .
120 CONTINUE)
100 CONTINUE
B(N)=B(N)/A(N,X)
DO 130 I=N-1,1,-1
DO 140 JsI+i,N :
B(I)=B(I)-A(I,J)=B(J)
140 CONTINUE
B(I)=B(I)/4(I,I)
130 CONTINUE
RETURN
END

81

C=END FORTRAN - % ’ -

c¢3DECK FACTA 4
c=PURPOSE - Factors the A matrixz as L U = A, with pm:.a.l pivoting
¢sAUTEOR ¥ K BELVIN, Sept. 24, 1987

Input

np-»--problon gsize

Cutput
amat~---contains the LU decomposition

ON 0N 06 0o6n 80

amat-=--{n X n] matrix to be factorod, dutroyod on output

subzoutine FACTA(amat,np,arew,lp)

i 4]
\

reals8 amat(®),eta
integer 1p(s)

do 50 i=1i,np
80 1p(i)=i

4]

Find largest pivot.

do 100 k=i,ap-1
amaxks30. '
nmaxs0
do 200 m=k,np
if (abs(amat(lp(m)+(k-1)snrow)) .gt. amaxk) then
mxksa.bs(mt(lp(m)#(ko!.)tnrow))
omax=m
endif
200 continue

1s1p(k) -
1p(k)slp(mmax)
1p(mmax)sl

do 400 isk+i,np
estazamat(1p(i)+(k=1)*nrow)/amat(1p(k)+(x-1)»nrow)
anat(1p(i)+(x-1)»nrow)seta
do 500 j=k+i,np
amat (1p(i)+(j~1)*nrow)=amat(1p(i)+(j~1)*nrow)-
. etasamat(1p(k)+(j=~1)*nrow)

500 _ continune
400 continue

100 continue

return
end

C END FORTRAN

¢sDECK LUSOLV

c=PURPOSE ~ Solve L U x = b, .
¢=AUTHOR W K- BELVIN, Sept. 24, 1987
< ’

c

82

[Firat solves Ly = b, than Ux = y

c

c Input -

c amat~---[n I n] matriz factored by FACTA

c ap=—-===-problem size

c ip -=pointer vector based om pivoting

c rhs-~-~RHES of equation

c

c Output

¢ amat~---contains the LU decomposition .

c x= the solution vector

¢

c y :
subroutine LUSOLV(amat,np,nrow,lp,rhs,x)

c

reals8 amat(s),x(*),rhs(*) .
integer 1p(»)

do 50 im1,mp
x(i)srha(i)
50 continue
c .
c Sclve Lower System

cx#»»s Outer loop

. do 100 k=1,np
rhs(k)=x(1p(x))
iz (rhs(k) .eq. 0.) go to 100
€
css»=s Inner loop
¢
do 200 isk+i,np

x(lp(:))=x(1p(z))-;nat(lp(z)+(k-1)-nrov)*rhs(k)

200 continne
100 continue
C.

e Solve Upper System=-
c

do 300 k=mp,i,-1

x(x)srha(k)/me(lp(k)+(k-1)-nrow)
do 400 i=g, k-1
rhu(1)=rhl(1)-x(k)*anat(lp(1)¢(k-1)*nrow)

400 continue
300 contiaune

return

oend

File: prepcon.f

CsNModule PREPCON

C=Purpose Preprocess control analysis module for ACSIS
C=Author K. Alvin

C=Date June 1980

C=Block Fortran

c
c
c Subroutine PREPCON

83

Purpose: !
This subroutine prepares ec, the control prediction integration
matriz and so, the observer construct matriz S (M+deltasmD+delsq+k)

OO OODOON

subroutine PREPCUN
ineclude ’shared.inc’
C LOCAL VARIABLES

reals8 mc . kc

integer ier
€ L06Ic

call READCON
C ! Form Control Predictien Intigratioa Coofficient Matrix
P
c contyps = =1 .: Full State Feedback
c contype = 0 : Luenberger Observer
c contype & ¢+1 : Kalman Filter

do 10 i = {,nact ¢ nsen

de 20 j = i,nact + nsen
ec(i,j) = 0.do

20 continue
10 continue

iz (contype) 100,200,400
100 ncsi = nact

do 110 i = 1, nact
de 120 jj = i,bval
j ® beol(jj)
X ® brow(jj)
oc(i,j) = ec(i,j) + deltas£2(i,k)*b(jj)/mass(jdiag(k))

120 continue
110 continue
goto 600

200 ncsi = nact + nsen

do 210 i = {,nact
do 220 jj = 1,bval
j = beolljj)
k = brow(jj)
oc(i,j) = ec(i,j) * delta»£2(i,x)*b(jj)/mass(jdiag(x))
220 continue
do 240 j = nact+i,ncsi
do 250 k = 1,ndof
ec(i,j) = ec(i,j) + deltasf2(i,kx)*12(k,j-nact)

84

250 continue
240 continue
210 continue
do 260 ii = 1, ,hvval
i = nact + hvrow(ii)
do 270 jj = 1,bval
3 = beol(jj)
k = brov(jj)
it (hvcol(ii). .ne. k) goto 270
oc(i,j) = ec(i,j) + deltashv(ii)*b(jj)/mass(jdiag(k))
270 coatinue
do 290 j = nact+i,ncsi
k = hveol(ii)
oc(i,j) = ec(i,j) + dolcathv(xx)clz(k.J-nact)
290 continue
260 continue

goto 600
400 ncsi = nact ¢+ nsen

do 470 i = 1,nact
do 480 jj = 1,bval
j = beol(jj)
x = brow(jj)
oc(i,j) = ec(i,j) + delta»£2(i k)*b(JJ)/nass(deag(k))
480 continue
do 500 j = nact+i,ncsi
do 610 k = {,ndof
ec(i,j) = ec(i,j) + deltas£2(i,k)=12(k,j-nact)/

. mass(jdiag(k))
510 continue

600 continue

470 continue)

do 520 ii = {,hvval
i = nact + hvrow(ii)
do 530 jj = 1,bval
j = beol(jj)
x = brow(jj)
iz (hvcol(ii) .nme. k) gote 530
ec(i,j) = ec(i,j) ¢ deltashv(ii)*b(jj)/mass(jdiag(k))
530 continue ' '
do 550 j = nact+l,ncsi
kx = hvcol(ii)
ec(i,j) = ec(i,j) + deltashw(ii)*12(k,j-nact)/
. mass(jdiag(k))
560 continue
520 continue

600 continue
do 1100 i = 1,ncsi
ec(i,i) = ec(i,i) ¢+ 1.40
1100 continue

c FACTORIZE ec

call FACTA(ec,ncsi,MAXCSI,pivot)

85

if (ier .eq. 1) then
print ®,’PREPCON: Singular Matrix for Comtrol Iategratiom’
endif

€ Form Obsarver Integration Coefficient Ratrixz, eo
B 8 i, ¢ deltasadaxp A
ke = deltasbdamp + delsg
do 1200 isi . mlen
e0(i) = mcrmass(i) ¢ kcestif(i)
1200 contianue
¢ FACTORIZE oo
cgll SOLVER(eo0,g0,jdiag,ndot,1)
"¢ Initialize Observer States
call ZEROVECY(ge,adaf)
cell ZEROVECT(qedot,ndof)
call ZEROVECT(pe,ndof)

retuza
end

File: ‘control .£

C=Module CONTROL
CsAuthor K. Alvin
C=Date May 1990
- C=Block Fortran

c

° o
C - Subroutine CONTROL

c

c Purpose:

c This subroutine carries out the numeric integration of one time
c step of the control system.

¢

¢

c .

C Arguments. ,

c qep - estimated displacement vector at half time step

c qedotp - estimated velocity vector at half time atep

c PP - generalized momentum (f-D*qedotp~K*qep)

¢ z = measured sensor output

subroutine CONTROL(z)

include ’shared.ingc’
real*8 z(1)

c LOCAL VARIABLES

real*8 qep(MAXDOF),qedotp(MAXDOF),pp(MAXDOF),v(XAXDOF)

86

c LOGIC

c Form RHS of Control Prédiction Equation Set

c .

c contype ®= -1 : Full State Feadback

c coatype = 0 : Luenberger Observer with L1 =0

c contype = +i - : Kalman Filter w/generalized momentum variable

L]

call ZERAOVECT(gc,ncsi)
if (contype) 100,200,300
100 continue

do 110 i = {,ndot
qe(i) = q(i)
qedot(i) = qdot(i)
110 continue .

200, coatinue

do 210 i = 1 ,adot
qep(i) = qe(i) + delta*qedot(i)
qedotp(i) = qedot(i)
pp(i) = £(i) - mass(jdiag(i))=adamp*qedotp(i)
v(i) = qep(i) -+ bdampe*gedotp(i)
210 continue :

call PNVMAD(stif,jdiag,v,ndof,-1.40,pp,1.40)

do 220 i=i,nact
do 230 j = 1,ndot
gc(i) = ge(i) = £1(i,j)*qep(j) - 22(i,j)»(qedot(j) +
. delta*pp(j)/mass(jdiag(j)))
230 continue
220 continue

if (necsi .eq. nact) goto 600

do 240 isnact+i,ncai
k 3 i - nact
ge(i) = z(x)
240 continue
do 2456 ii = { ,hdval
i = hdrow(ii) ¢+ nact
j = hdeol(ii) ’
ge(i) s ge(i) - bd(ii)=qep(j)
245 continue .
do 250 ii = {,hvval
i = hvrow(ii) ¢ nact
j = hveol(ii)
ge(i) = ge(di) - hv(ii)»(qedot(j)+delta=pp(j)/mass(jdiag(j)))
260 continue ’

goto 600
300 continue

do 310 i = 1,ndot

87

qep(i) = qe(i)

pp(i) = £(i) - mass(jdiag(i))»adamp*qep(i)/delta
: v(i) = (1 + bdanp/dolta)'qep(z)
310 contiane

call PNVMAD(stif,jdiag,v,adof,~1.d0,pp,1.d0)

de 320 ie1,nact
do 330 j = 1,adof
ge(d) = ge(d) = 21(i,j)*qep(j) - £22(i,j)s(pe(j) ¢
. deltaspp(j))/mass(jdiag(j))
330 - comtiane
320 continue .
do 340 i=nact+i,ncsi
k-2 i ~ pact
ge(i) = =(x)
340 continue
do 346 ii = 1, hdval
i = hdroe(ii) + aact
j ® hdeol(ii)
~ 8s(1i) = ge(i) - nd(ii)=qep(j)
345 - continne
do 360 ii = 1,hvval
i ® hvroe(ii) + nact
j = hveol(ii)
ge(i) = ge(i) - hv(ii)»(pe(j) + deltaspp(j))/mass(jdiag(j))
350 continue

c FIND r, CONTROL AND STATE CORRECTION FORCES
600 call LUSOLV(ec,ncsi,MAXCSI,pivot,gc,z)

do 610 j=i,nact
.ou(i) = z(j)
810 continue
do 620 j=nact+i,ncsi
gamma(j-nact) = r(j)
620 continue

c FIND CONTROL CONTRIBUTION TO RHS VECTOR FOR
c OBSERVER AND STRUCTRE

do 710 i=1,ndof
gs(i) = 0.40
go(i) = 0.40
gk(i) = 0.d0
710 continue
do 720 jj=i,bval
i = brow(jj)
j = beol(jj)
gs(i) = gs(i) + b(jj)*u(j)
go(i) = go(i) + b(jj)*u(j)
gk(i) = gk(i) + b(jj)*u(j)
720 continue
© it (coatype .sq. 0) then
do 725 i = {,ndot
do 730 j=1i,nsen
go(i) = go(i) ¢+ nals(;d;ag(;))‘12(1 j)*gamma(j)
730 continue

88

725 continue
elseif (contype .eq. 1) then
do 735 i = 1,ndot
do 740 j=i,nsen
go(i) = go(i) + (12(i,j)*mass(jdiag(i))*11(i,j)/delta)

. wgamma(j)
gk(i) = gx(i) + 12(i,j)*gamma(j)
740 continue -
7386 continue
endif
return
end

File: secorder.f

C=Module SECORDER
C=Author K. Alvin
C=Date May 1980
C=Block Fortran

Subroutine SECORDER

Purpose:
Solves the second-order dynamical equation:
Mx" ¢ Dx’ + Kx 2 £ ¢+ g

at time (n+1) given f£(a+1/2), g(a+1/2) and x,x’ at n by
the midpoint implicit integration rule.
Step size is 2»delta. .~

D is of the form (alphasM + betasK), f is an applied force,
and g is assumed to be other applied force from a feedback
control loop. The matrix E is the factored form of the
integration coefficient matrix: E=(M + delta*D + delta"2+#K).

Arguments:
o - matrix X
X . = matrix K
alpha = scalar alpha
beta - scalar beta
£ - Force vector f£(a+1/2)
g ~ Feedback force vector g(a+1/2)
. - martiz B
x - Variable vactor x(n)
xd - Variable vector x’(n)

delta - Half of integration time step

delsq = delta®2

jdiag - Diagonal location pointer for M,K,E matrices
ndot - Number of equations and length of q

oonNnaoanonooooooaa0O0OQ0OOOO0NO0OOO0O0a000a0nNaaO0nn0O00000

89

aQn

oo’

10

100

v < mass multiplier for RHS preparation
delbeta = delta * beta '

subroutine SECORDER(m,k,alpha,beta,f,g,e,x,xd,
. delta,delsqg,jdiag,adof ,MAXDOF)

recursive subroutine szcnnnza(n,k.alpha.boti;f,g.o.x,xd;
. dolta,delsq, jdiag,ndof ,MAXDOF) '

ARGUMENTS

real+s m(1),k(1),alpba,beta,£(1),g(1),e(1)
reals8 x(1),xd(1),delta,delsq

integer jdiag(1),ndof,MAXDOF

LOCAL VARIABLES

- iateger i

reals8 v(3000).delbeta

LOGIC
ADD APPLIED FORCES TO RHS AND PREPARE MASS MULTIPLIER

do 10 i=1,ndof
g(i) = g(i) + 2(4)
v(i) = (1. ¢ delta=alpha)+x(i) + delta=xd(i)
continue

SOLVE FOR RIGHT HAND SIDE, g
do T7T is1,ndof
g(1) = delsqeg(i) + v(i)*m(jdiag(i))

continue

if (beta .ne. 0.) then.
-delbeta = deltasbeta

Activate EBE computations ior internal force by using STIFFRC
subroutine. Otherwise use PMVNAD (profile matrix/vector mult-add -

call PMVMAD(X,jdiag,x,ndof,delbeta,g,1.d0)
"call STIFFRC(x,delbeta,g) '
endif
SOLVE FOR DISPLACEMENT, q, USING RHS AND MATRIX E

call SOLVEn(o.k.jdiqg.ndot.2)

" do 100 i=1,ndof

xd(i) = 2.#(g(i) - x(i))/delta - xd(i)
(i) = 2.eg(i) - x(i)
coantinue

Teturn
end

File: measure.f

90

CzModule MEASURE
Csiduthor K. Alvin
C=Date May 1990
C=Block Portran

Subroatine MEASURE

Purpose:
This subroutine stores new measured semsor data by using the
previous displacement and velocity vectors at the sensor
locations

Arguments
Zp - measured sensor data array

anoaagaaaaoaaaaaoaoan

subroutine NEASURE(zp)

include ’shared.inc’
Teal*8 zp(1)

call ZERGQVECT(zp,nsen)

do 100 jj = 1,hdval
" i = hdrow(jj)
j = hdeol(jj)
zp(i) = zp(i) + 1rd(jj)=q(j))
100 continue
do 200 jj = 1,hvval
i = hvrow(jj)
j = hveol(jj)
zp(i) = zp(i) * hv(jj)»qdot(j)
200 continue

retura
end

File: eigens.f

C=Module EIGENS

C=Purpose Find Eigenmodes given Mass, Stiffness Natrices
C=Author K. Alvin '

Cz=Date Narch 1990

' . C=Block Fortran

[
C
subroutine EIGENS
c
c
c .
C COMMON AND GLOBALS

91

inqlndo ’shared.inc’
C LOCAL VARIABLES

parameter(NVEa100 , MNNVH=NAXDOF+KVH NXCNV=NVN+(NVN+1)/2)
integer isl(MAXDOF),avec,i,j, X, Xk out

real®*8 v1(MNNVN),vr(MNNVK),akk(MXCNV),;amm(MXCHV)
reals8 xx(NVN,NVK),eigv(NVN),eigold(NVK)

Teals8 toleig,toljac,omega,fhz

toleige=.0001
out = 13

toljac = toleig
nvec = minO(2%neig,100)
avec ® minO(nvec,ado?f)

C SET UP ISL VECTOR.

"is1(1) = 1 -
do 50 j=2,adof , ‘
i81(j) = j -~ jdiag(j) ¢+ jdiag(j~1) + 3 .
80 continue

€ CALL EIGENSOLVER

)

call SSPACE(stif,mass,vl,vr, akk,amm,xx,eigv,eigold,isl,
jdiag,neig,nvec,ndot ,toleig,toljac,out)

C WRITE OUTPUT

write(out,») ’EIGEN ANALYSIS RESULTS:’

write(out,s) ? RADIAL cYCLIC
write(out,s) * NODE EIGENVALUE FREQUENCY FREQUENCY?
sriteout,s) ? -
write(out,s)

do 100 i=i,neig
omega = dsqrt(eigv(i))
thz = omega/(2+3.141592664)
_ write(out,’(i5,3(3x,g12.5))’) i,eigv(i),omega,zhz
100 - coantinue ‘

write(out,») ’BIGENVECTORS:’
do 200 j=1,neig,5 .
write(out,*)
do 300 i=1,ndof
k = ndof*(j-1) + i
_ vrite(out,’(i5,5(1x,812.5))’) i,(vr(xk),xk=k,k+4*ndof,ndot)
300 continue
' 200 continue
write(out,*) ’MASS MATRIX DIAGONAL:’
do 400 i=1,nnp ’
do 460 j=1,8
iz (id(j,i).ne.0) then
write(out,») i,j,id(j,i),mass(jdiag(id(j,i)))
endif '
450 continue

92

400 continune

return
end
c;zpd‘Fortran

File: singeig.¢

SUBROUTINE SSPACE (AK,AN,VL,VR,AKK,AMM,XX,EIGV,EIGOLD,ISL,
1 IDIAG,NEIG,NVEC,NDOF,TOLEIG,TOLJAC,EW)

input :

AK : stiffness matrix (profile values) (NDOF)

AN : consistent mass matrix (profile values) (NDOF)

ISL : stores in powition ®i® the Tov ¢ of tip of.
column “i* (NDOF)

IDIAG : position of diagonal terms in. protzlo (NDOF)

NEIG ‘: # of required eigenvalues

NVEC : 3 of subspace vectors

NDOF : 8 of degrees of freedom

TOLEIG : tolerance for eigemvalues convergenca

TOLJAC : tolerance for Jacobi convergence

NW : logical unit number for output
output:

VL(NDOF ,NVEC) _: working array :

- VL(.,1..NRMOD) : AM times rigid modes

- VL(.,NRMOD..NVEC) : subspace at the previous step
VR(NDOF ,NVEC) : eigen-vectors

- VR(.,1..NRMOD) : rigid modes

=~ VR(.,NRNOD" .NVEC) : subspace at this step (e;genvectors)
AKK(NVEC*(NVEC + 1)/2) : stiffness matrix in the subspace
AMM(NVEC»(NVEC + 1)/2) : consistent mass matrix in the subspace
IX(BVEC*HVEC) : subspace eigenvectors
EIGV(NVEC) : current eigenvalues

- EIGV(L..NRNOD) : 0 eigen-values

-~ EIGV(NRMOD..NVEC) : following eigenvalues > 0
EIGOLD(NVEC) : same as EIGV

000000000000 0000000000600 0000000000000

INPLICIT REAL#8 (A-H,0-2)
DIMENSION AK(1),AM(1),VL(NDOF, mc) VYR(NDOF ,NVEC) ,AKX(1),
1 AMM(1),XX(NVECSNVEC),BIGV(1),EIGOLD(1),ISL{1),IDIAG(L)

WRITE (NV,1003) NEIG,NVEC,NDOF,TOLEIG
CALL INVECT (AK,AM,VL,VR,IDIAG,NDOF,NVEC)

 CALL FACT (AK,IDIAG,ISL,NDOF,NVW)
CALL NULL (AK,AM,VL,VR,IDIAG,ISL,NDQF,NRMOD)

93

QOO0

anoa

11

10

21

20

30

NRMOD : 8 of rigid modes

HRITE (NW,1004) NRMOD
FSUBsNVEC-NRXOD

CALL ORTHQ (VR,VL,EDOF,N¥RKOD,NVEC)

KIT=0
HS¥HAZ=18
KITEAX=16
BVECiaNVEC-1
DO § I=1 ,BVEC
EIGOLD(I)=0.0

NIT=2BIT+1
VRITE (¥W,1000) HIT

CALL SOLVES (AK,VL(1 NREODe1),YR(1,NRNOD+1),IDIAG,ISL,NDOF,NSUB)

CALL ORTHO (VL,VR,NDOF,NRMOD,NVEC)

IJ=0 . -
DO 10 J=NBLOD+1,NVE

CALCULATE THE UPPER PART OF AKX (SYMMETRIC)

DO 10 I=NRMOD+1,J
TR=0.0
DO 11 K=1,NDOF
TR=TR+VL(K,I)*VR(K,J)
1321341
AKK(IJ)=TR
CONTINUE

CALL NULT (AM,VR(1,NRMOD+1),VL(1,NRMOD+1),ISL,IDIAG,NSUB,NDOF)

1J=0 ,
DO 20 J=NRMOD+1,NVEC

CALCULATE THE UPPER PART OF AMM (SYMMETRIC)

DO 20 I=NRMOD+1,J
TR=20.0
DO 21 X=1,NDOF
TR=TR+VL(K,I)»VR(K,J)
, 1JaIJet
AMN(II)=TR
CONTINUE

CALL JACOBI (AKK,ANN,XX,EIGV(NRNOD+1),NSNAX,TOLJAC,NSUB,NW)
ORDER EIGEHVALUES & EIGENVECTORS

1S=0
DO 40 I=NRMOD+1,NVECL
IF (EIGV(I+1).GE.EIGV(I)) GO TO 40
IS=t .
TR=EIGV(I+1)
EIGV(I+1)aBIGV(I)

94

EIGV(I)=TR
DO 41 J=1 NSUB
TB:XX(J*(I-NR!OD)'NSUB)
IX(J+(I~NRMOD)*NSUB)=XX(J+(I-NRNOD~1)*NSUB)
41 IX(J+(I~NRMOD-1)*NSUB)=TR
40 CONTINUE
IF (IS.EQ.1) GO TO 30

SUBSPACE CONVERGENCE TEST

ana

. ICOHV=0
DO 50 IsNANOD+1i,NVEC _
TR=DABS((EIGOLD(I)-EIGV(I))/EIGV(I))
EIGOLD{I)=EIGV(I)
EIGV(I)=TR
IF (TR.GT. ronxxe AND.I.LE.NEIG) ICONVs1
50 CONTINUE
WRITE (NW,1001) (z:cv(r).r-z.xvzc)
IF (ICONV.EQ.0) GD ID 100

IF (NIT.LE.NITNAX) GO TO 70
WRITE (NW,1002)
GO TO 100

UPDATE EIGEN VECTORS

a0

70 DO 80 I=i,NDOF
DO 80 J=i,NSUB
TR=0.0
DO 81 K=1,NSUB
81 TR=TR+VR(I, K+HRHOD)*XI(K+(J-1)tNSUB)
" VL(I,J+NRMOD)=TR
80 CONTINUE
DO 90 I=1,NDOF
DO 90 J=NRMOD+1,NVEC
90 VR(I,3)avL(I,J])
GO TO 500

aQaQ

CALCULATE FINAL EIGENVECTORS

100 DO 110 I=1,NDOF
DO 110 J=1,NSUB

TR=0.0
' DO 111 K=1,NSUB
111 TBSTR#VL(I K*HRKOD)'XX(K*(J-)ONSUB)
YR(I,J+NRMOD)=TR
110 CONTINUE

DO 112 I=1 ,NVEC
112 BIGV(I)=EIGOLD(I)

RETURN

1000 FORMAT (5X,12HITERATION KO,I5)

1001 FORMAT (6(2X,1PE10.3))

1002 FORMAT (5X,24HWE ACCEPT CURRENT VALUES)

1003 FORMAT (//20X,’SUBSPACE ITERATION ROUTINE’//’ NB OF EIGENVALUES=’,
1 15/ ¥B OF VECTOR=’,15/' NB OF DOF=’,I15/' TOLERANCE=’,1PE10.3/)

1004 FORMAT (' NB OF RIGID MODES=’,I6//)

95

CCCCCCCCCCCCCCC&CCCéCC

10

30

40

C
20
c

SUBROUTINE INVECT (AK,AN,VL,VR,IDIAG,NDOF,NVEC
INPLICIT REAL»*8 (A-H,0-2))
DINENSION AK(1),AN(1),VL(1),VR(NDOF,HVEC),IDIAG(1)

HD=NDOP/RVEC

DG 10 I=1 ,NDOP
IIsIDIAG(I)
VR(I,1)=AK(II)
YL(I)=AK(IX)/AK(II)
DO 10 J=2,KVEC

VR(I,J)=0.0

" CONTIRUE

LLaNDOF-KD

00 20 J=32,WVEC

TR=0.0

DO 30 I=1,LL
IF (VL(I).LT.TR) GO TO 30
TR2VL(I) '
IJ=1

COBTINUE

DO 40 IsLL,NDOF
IF (VL(I).LE.TR) GO TO 40
TR=VL(I)
13=1

CONTINUE

VL(13)=0.0

LLSLL-¥D

VR(IJ,J)=1.0
CONTINUE

RETURN
END

ceeeeeeceeecceeceeecececceeceeececececeeececcceeccececceeececceecceeceececece

110

SUBROUTINE NULT (AM,VR,VL,ISL,IDIAG,NVEC,NDOF)
INPLICIT REAL+*8 (A-K,0-2)
DIMENSION AM(1),VR(NDOF,NVEC),VL(NDOF,NVEC),ISL(1),IDIAG(1)

DO 500 IV=1,NVEC
DO 100 I=1 NDOF

TR=20.0

IJ=IDIAG(I)

IK=ABS(ISL(I))

KKal

DO 110 K=IK,I
TR=TR+AN(IJ)=VL(KK,IV)
IJall-1
KK=sKK~1

CONTINUE

IF (1.EQ.NDOF) GO TO 99

96

L} \ »
IKsI+4
DO 120 KaIK,NDOP
IP (I.LT.ABSCISL(K))) GO TO 120
IJsIDIAG(K)-K+I
TR=TR+AN(IJ)»VL(K,1IV)
120 CONTINUE
© 99 VR(I,IV)sTR
100 CONTINUE
500 CONTINUE
RETURN
END

CCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCECCCCCCCeCceeeecee
SUBROUTINE JACOBI (AK,AM,XX,EIGV,NSMAX,TOL,N,NW)
INPLICIT REAL*8 (A-H,0-2)
DIMENSION AK(1),AM(1),XX(N,N),BIGV(1)

c
¢ INITIALIZE
€

. ZER0=0.0

TW0a2.0

DO 10 Is1,N

IIals(I-1)/2+1 :
IF (AK(II).LE.ZERO.OR.AM(II).LE.ZERQ) GO TO 900
BIGV(I)=AK(II)/AN(II)
DO 20 J=i,K
XX(I,J)=ZERO
20 CONTINUE
xX(1,1)=1.0
10 CONTINUE

SET CQUNTER

aaa

NSWEEP=0
NR=N-1
§00 NSWEEP=sNSWEEP+1

c CHECX IF ZEROOING IS REQUIRED

EPS=0.01»sNSWEEP
EPSSEPS*EPS
DO 150 J=i,NR
IIK=Jl+1
DO 160 K=IIK.¥
JImJe(J~1)/24]
KK=Ke(K-1)/2+K
JR=K*(K-1)/2¢]
EPSAK=(AK(JR)*=AK(JK))/(AK(3J)*AK(KK))
EPSAN=(AN(JKR)=AN(JIK))/(AM(II)=AN(KK))
IP (EPSAK.LT.EPS.AND.EPSAM.LT.EPS) GO TO 150

CALCULATE ROTATION ELENMENTS

aon

AKK=AK(KK)*AM(JK)-AM(KK)*AK(JK)
AJI=AK(JI)#AN(IK)~AM(IT)*AK(IK)
AB=(AR(JJ)*AM(KK)-AK(KK)*AN(JJ))/TVO"
CHECK=AB*AB+AKK*1J]

IF (CHECK.LT.ZERO) GO TO 900
SQCH=DSQRT(CEECK)

97

D1=AB+SQCH
D2=48-5GCH
DENaD1
IP (DABS(D2).GT.DABS(D1i)) DENsD2
I (DEN.NE.ZERO) GO TO 45
CASZERD 4
CGs~-AK(JX)/AK(KK)
G0 7O 50
45 . Ch=AKK/DEN
CGe=AJ/DEX

Q00

PERFORN GENERALIZED ROTATION

50 b STRLY]
JK1sJ=1
KPi=K+1
KNiaK-1
IF (Jui.LT.1) GO TO 70
D3 80 I=1 . JM1
Ij=3eIN1/2+1
IR=K*KN1/2¢1
AKJI=AR(1J)
_ AKK=AK(IK)
ANJ=AK(IJ)
AMR=AN(IK)
AR(IJ)=AKJ+CG*AKK
AN(IJ)=AMI+CG=ANK
AK(IK)=AKK+CA®AKJ
AMCIK)SAMK+CA=ANS
60 CORTINUE
70 IF (XP1.GT.N) GO T0 90
DO 80 I=KP1,¥ '
JisIe(I=1)/2+]
KIals(I-1)/2+K
AKJI=AR(JI)
AMJI=AN(JI)
AKK=AK(KI)
AKK=AM(XI)
AK(JI)=AKJ+CG#AKK
ANCIT)=ANT+CGANK
AK(KI)=AKK+CA®AKJ
AN(KI)=AMK+CA=AN]
80 CONTINUE
90 IF (JPL1.GT.KM1) GO TO 110
DO 100 IsJP1,KN1
JIsIn(I-1)/2¢] -
IR=K»(X-1)/2+1
ARI=AR(JI)
ANIaAN(JII)
AKK=AK(IK)
AMK=AN(IK)
AR(JI)=ARI+CG#AKK
AM(JI)=AMI+CG=AMK
AK(IK)SAKK+CA®AK]
: AN(IK)=ANK+CA®AN]
100 CONTINUE '
110 - AKK=AK(KK)
-AMK=AM(KK)
ARJ=AR(JJ)

QOO

120
150

aaaa

160

aaa

170
179

180

499

ANI=AN(IY)
AK(KK)=AKK+TWO*CAsAK(JK) +CA%CA®AKT
AM(KR)sAMK+TWOsCA*AM(JK) +CA=CASANT
AK(JJ)SAKI+TWOsCGeAK(JK) +CG*CGSAKK
AN(JJ)=AMI+TUO=CG#AN(JK) +CG*=CGoANK
AX(JK)=aZERD

AR(JK)=ZERO

UPDATE EIGENVECTOR FOR THIS ROTATION

DO 120 I=i,¥
XxJ=Xx(1,J)
XXKsIX(1,K)
XX(I,J)=XXJ+CG#XXK
XX(1,K)=IXK+CA*XXJ

CONTINUE

CONTINUE

UPDATE EIGENVALUES & CHECK CONVERGENCE

NT=N=(N+1)/2

ICONV=0

DO 160 I=1,F
II=Is(I=-1)/2+1

IF (AK(II).LE.ZERO.OR.AM(II).LE.ZERO) GO TO 900

TR=AK(II)/AM(II)
DER=(TR-EIGV(I))/TR
EIGV(I)=TR
IF (DABS(DEN).GT.TOL) ICONV=1
CONTINUE
IF (ICONV.EQ.1) GO TO 499

CHECK OFF DIAGONAL TERNS

EPSaTOL*TOL
DO 170 J=1,HR
IIKaJ+1
DO 170 K=IIK N
JI2Jw(J-1)/2+3
KKaK»(K-1)/2+K
JK=K=(K-1)/2+3 _
EPSAK=(AK(JK)*AK(JK))/(AK(JI)=AK(XK))
EPSAM=a(AM(JK)#AN(JK))/(AM(JI)=AM(KK))

IF (EPSAK.LT.EPS.AND.EPSAM.LT.EPS) GO TO 170

GO TO 499
CONTIHUE

SCALE EIGENVECTORS

DO 180 I=1,N
ITaI»(I-1)/2¢1
AKK=DSQRT(AM(II))
po 180 J=1,N

xx(J, I)=XX(J I)/4KK

CONTINUE

RETURN

IF (NSWEEP.LE.NSMAX) GO TO 500

99

YRITE (EW,1000)
GO TO 179
¢ S
© 900 WRITE (NW,1001)
' STOP -
¢
1000 FORMAT (5X,34HNO CONVERGENCE AT NSMAX ITERATIONS)
‘1001 FORMAT (5X,46HERROR IN JACOBI : MATRIX NOT POSITIVE DEFINITE)
[d] .
m . . N .
CCECCCCEEEECECCECCCCCCCCECCCCCCCCCCCCCCCCCCCCECCECECCCCCecCCCCCeeees
SUBROUTINE SOLVES (AK,VL,VR,IDIAG,ISL,NDOF,NVEC)

PURPOSE : SOLVES THE SINGULAR PROBLEM : AK x VL = VR
THE SINGULAR COLUMNS INTC AK ARE INDEXED BY
THE NEGATIVE VALUES OF ISL, THE CORRESPONDING
TERNS OF THE SOLUTICN ARE PUT T0 0

OO n

IMPLICIT REAL»8 (A-H,0-Z)
DINENSION AK(i),VL(NDOF,NVEC),VR(NDOF,NVEC),IDIAG(1),ISL(1)

DO 500 IVei NVEC

DO 60 I=1,NDOF
80 VL(I,IV)sVR(I,IV)

c . BACKSUBSTITUTE

DO 100 IC=2,NDOF
TR=0.0
IC1=IC-1
IN1=IDIAG(IC)-IC
IK=ISL(IC)
IF (IK.LE.0) THEN
VL(IC,IV)=0.
GOTG 100 .
ENDIF
IP (IK.GT.IC1) GO TO 100
DO 120 K=IK,IC1
, TR=TR+AK(INL1+K)*VL(K,IV)
120 '~ CONTINUE
VL(IC,IV)=avL(IC, Iv)-rn
100 CONTINUE

c 'SOLVE DU=U
DO 160 IC=1,NDOF
VL(IC,IV)=VL(IC,IV)/AK(IDIAG(IC)) ’
150 CONTINUE

BAKSUBSTITUTE

Qa0

IIC=RDOP
DO 200 IC=2,KDOF
. TRsVL(IIC,IV)
ICi=IIC-1
IX=ISL(IIC)
IN1sIDIAG(IIC)-IIC

100

IF ((IK.GT.IC1).O0R.(IK.LE.0)) GO TO 221 .
DO 220 KsIK,IC1
VL(K,IV)aVL(K,IV)-AK(IN1+4K)*TR
220 CONTINUE :
221 1ICsIIC-1 '
200 CONTINUE
500 CONTINUE
4 RETURN
END .
CCECCCCCCCCCCeceeececece
SUBROUTINE FACT (AK,IDIAG,ISL,NDOF,NW)

PURPOSE : LDLT DECOMPOSITION OF THE POSITIVE SEMI-DEFINITE
MATRIX AK, THE SINGULAR COLUMNS OF AK ARE INDEXED
BY A HEGATIVE VALUE OF IDIAGY

aaocaaa

INPLICIT BEAL#8 (A-B,0-Z)
DINENSION AK(1),IDIAG(1),ISL(1)

c DETERNINE NIN & MAX

TR=DABS(AK(1))

ANIN=TR

AMAXSTR

DO. 10 IL=1,NDOP
TR=DABS(AK(IDIAG(IL)))
IF (TR.LT.AMIN) AMIN=TR
IF (TR.GT.AMAX) AMAX=TR

10 CONTINUE
ZERO=(AMAX+AMIN)*1.0D-10

LOOP QVER COLUMN

aana

DG. 100 IC=1,NDOF
MIC=ISL(IC)
IC1=IC-t .
KIC1=MIC+4
IN2=IDIAG(IC)-IC
IF ((MIC.LT.1).0R.(MIC.GT.IC)) GO TO 901

CALCULATE GS

aaa

‘IF (MIC1.GT.ICL) GO TO 150
DO 120 IL=MIC1,ICL
IF (IDIAG(IL).LT.0) THEN
~ AK(IN2+IL)=0
GOTO 120
ENDIF
MIL=ISL(IL)
IL1=IL-1
NIN=MAXO(MIL,MIC)
. IN1sIDIAG(IL)-IL
TR=0.0
IF (MIN.GT.IL1) GO TO 120
N DO 130 K=MIN, IL1 _
TR=TR+AK (IN1+K)=AK(TH2+K)
130 CONTINUE

101

IN=IN2+IL
AK(IN)=AK(IN)-TR
120 CONTINUE

[+ W2}

CALCULATE L&D

180 TR=0.0 _
IF (MIC.GT.ICL) GO TO 201
DO 200 IL=HIC,ICi
IF (IDIAG(IL).LT.0) GOTO 200
AG=AK(IN2+1L)
AL=AG/AR(IDIAG(IL))
AR(IN2+I1)=AL
' TRaTR+AL#AG
200 CONTINUE
201 INsIDIAG(IC)
AK(IN)=AK(IN)-TR
. IF (AK(IN).LT.ZERO) IDIAG(IC)=-IDIAG(IC)
100 CONTINUE
RETURN

901 WRITE (NW,1001)
STOP i

1601 PORMAT (5X,29H«»+STOP ERROR IN IDIAG VECTOR) :
1010 FORMAT (8X,'CONDITIONING OF THE STIFFNESS MATRIX'/2X,
i 'MIN DIAG TERN=’,1PE10.3,’ MAX DIAG TERN=’,E10.3)

- END
cgeececceeececeecceccecececececceceeecececceeeccecceccceccecececcececcecccececcccececccee
SUBROUTINE NULL (AK,AM,VL,VR, IDIAG,ISL,NDOF,NRMOD)

c
¢ PURPOSE : CALCULATE THE NULL SPACE OF AK AND PUT AN
c ORTHONORMALISED BASE OF THIS SPACE INTO THE
c NRMOD FIRST VECTORS OF VR.
c VL = AM x VR AFTER EXECUTION
¢ .
c
IMPLICIT REAL#8 (A-H,0-2)
DIMENSION AK(1),AM(1),IDIAG(1),ISL(1),VL(NDOF,*),VR(NDQF,*)
c
c STORE THE SINGULAR COLUNNS INTO THE BEGINNING OF VR
c
c TEE SINGULAR EQUATION ARE NOW INDEXED BY NEGATIVE VALUES
c INTO ISL INSTEAD OF IDIAG
c

NRNQD=0
DO 1 IC=t,NDOF

IF (IDIAG(IC).GT.0) GOTO 1

IDIAG(IC)=-IDIAG(IC)

KRNODsNRXOD+1

MIC=ISL(IC)

IN=IDIAG(IC)-IC

DO 2 K=1,MIC-1

2 VR(K,NRNOD)=0.

DO 3 KsNIC,IC-1
VR(K,NRMOD)=AK (IN+K)
AK(IN+K)=0.

3 CONTINUE

102

ISL(IC)=-ISL(IC)

VR(IC,NRMOD)=-1.

AK(IDIAG(IC))=1.

DO 4 K=IC+1,5DOF
4 VR(K ,HRNOD)s=0.
1 CONTINUE

c BAKSUBSTITUTE

DO 200 Nai,NRMOD
TICaNDOP
DO 200 IC=2,KDOF
TR=VA(IIC.N)
ICialIC-1
IRaISL(IIC)
IN1=IDIAG(IIC)~IIC
IP ((IK.GT.1C1).0R.(IK.LE.0)) GO TO 221
DO 220 K=IK,IC1 .
vn(tvl)-vn£x.13-1x(1l1+x)c=n
220 . CONTINUE
221 IICaIIC-1
200 CONTINUE '
c _
¢ ORTHOGONALISATION. o
c
DO 10 Nai,NRNOD
DO 20 K=1,N-1
TR=0.
: DO 30 Isi,NDOF
30 TRSTR+VL(I,K)»VR(I, n) .
S DO 40 I=1,NDOF (
40 - VRCI,N)=VR(I,N)~TR*VR(I,K)
20 CONTINUE
CALL MULT(AM,VL(1,N),VR(1,XN), ISL IDIAG,1,NDOF)
TRa0.
DO 50 Ist,NDOF
50 TR=TR+VR(I,N)*VL(I.X)
TR=1/SQRT(TR) :
DO 60 I=1,NDOF
VR(I,N)aVR(I,N)»TR
VL(I,R)aVL(I,N)*TR
60 CONTINUE
10 'CONTINUE

RETURN

END
CCC

SUBROUTINE ORTHO(VL,VR,NDOF,NRMOD,NVEC)

PURPOSE : ORTHOGONALISE THE NSUB LAST COLUMNS OF VL (LAST
EVALUATED SOLUTION) WITH RESPECT TO0 THE NULL SPACE
OF A, FOR THE AM SCALAR PRODUCT

[+ Rr R ErNe N2

INPLICIT REAL*8 (A-E,0-2) e
INTEGER NDOF,NRMOD,NVEC :
DINENSION VL(NDOF ,RVEC) ,VR(NDOF ,NVEC)

NSUB=NVEC-NRMOD

103

DO 1 J=1,NSUB
DO 2 I=i,NRMOD
$=0.
DO 3 Kei,NDOF
S=S+VL(K,I)*VL(K,NRMOD+J)
DO 4 L=1,NDOP
VL(L,BRNOD+J)=VL(L,FRNGD+J)-S+VR(L,I)
CONTINUE ,
CONTINUE

(2]

= 23 o

'RETURN
END

CCC

File: animout.?

C=Module ANINMOUT
CsAuthor K. Alvin
C=Date June 1990
C=Block Fortran

subroutine ANINOUT

Purpose:
This subroutine produces an output file to be used to
visualize the simulation using MESH. '

QOO N

subroutine ANIMOUT(q,id,nnp,time,out)
real*8 q(1),time,v(3)
integer out,id(6,?),nnp,i,x
write(out,’(g16.5)?) time
do 100 i=si,anp. ‘
do 200 k=1,3
it (id(x,i) .ne. 0) then
v(X) = q(id(k,i))
elae
v(k) = 0.
endif
200 continune
wvrite(out,1000) (v(k),k=t,3)
100 _continue '
1000 format(3gi5.5)
return
end

File: stiffrc.f '

c subroutine STIFFRC(v,fact,kq)

104

recursive subroutine STIFFRC(v,fact,kq)
reals8 v(1),fact,kq(1)
include ’shared.inc’
c ASSEMBLE EACH ELENENT MASS AND STIFFNESS
do 100 iis1,ndomain
CVD$ CNCALL
do 110 jj=1,neld(ii)
n = elnum(jj,ii)
_ call ELEFRC(v,fact,kq,n)
110 coatinue
100 conﬁinuo

return
end

c subroutine ELEFnc(v;tact.kq.n)

recursive subroutine ELEFRC(v,fact,Xkq,n)

reals*8 v(1),fact,kq(1)
integer n

'includo 'shared.inc’ -
c LOCAL VARIABLES

parameter(MAXSEQ=24)
reals8 sk(MAXSEQ,MAXSEQ)
integer 1m(MAXSEQ),nseq

do 20 k=1,4
j=iz(k,n)
12 ((etype(n).eq.1).and.(k.gt.2)) j = O
do 30 i=1,8 : »
xk=6+(x-1) + i
if (j .ne. 0) then
ll(kk) = id(i,j)
else
1m(xk) = 0
endif
30 continue
20 continue

nseq=i2
call LOADSK(lk,n.nnoqj

call ESTIFVN(sk,lm,nseq,v,kq,fact)

return
end

105

¢ subroutine LOADSK(sk,n,nseq)
recursive subroutine LOADSK(sk,n,ns0q)
include ’shared. i.nc"

reals8 uk(nsoq,i) . - .
integer n,nseq . .

k=0
do 10 j=1,nseq
do 20 isi,j
kakej
8k(i,j)zestitm(k, n)
sk(j,i)=sk(d,j)

20 continue

10 continue ‘
TetUrn
end

File: estifvm.f

¢ subroutine ESTIFVM(sk,1lm,nseq,v,kq,fact)

recursive subroutine ESTIFVM(sk,lm,nseq,v,kq,fact)

C ARGUNENTS

real=8 sk(nseq,1i),v(1),kq(1),fact
integer 1m(1),nseq

do 20 j = 1, nseq
k = 1ma(j)
iz (k .eq. 0) goto 20
do 10 i = 1, nseq
B = lm(i)
if (m .eq. 0) goto 10 - ‘
xq(m) = xq(m) + |k(1,3)‘v(k)ttnct

10 cont;nno
20 continue
Teturs
end

C=End Fortran

File: renum.f

C=DECK RENUNM

C=PURPOSE- RENUMBERS THE GRID POINTS TO MINIMIZE PROFILE STORAGE

C=AUTHOR ¥ K BELYIN and DUC NGUYEN 7-5-90

c .
subroutine RENUN : ’

c
include ’shared.inc’

106

¢
¢

Initialize vector

zaxtrys2sanp/3 +1

Ceovsene

22

10

RteIMS=ANP*BAXETY
do 22 j=i,nterns

iadjey(j)=so
do 10 i=i, anp
icount(i)=0

do 1 isi,nel
nodea=ix(1,i)
nodebsix(2,i)

if ((nodea .eq. 0).or.(ncded .eq. 0)) go to 1

icount(nodea)sicount(nodea)+1
icount(nodeb)sicount(nodedb)+1
iamicouns(nodea)
ibsicount(nodeb)
if(ia.gt.maxtry .or. ib.gt.maxtry) go to 345
locates(nodea~1)*maxtry+ia
‘adjcy(locate)snoded
locates(nodeb~1)*maxtry+id
iadjcy(locate)=nodea

continue

37

iiso .
do 37 isi ,nterms
if (iadjey(i) .eq. 0) go to 37
~iisiisd
iadjey(ii)siadjcy(i)
continue

345
586
566

last=0
do 2 i=i,nnp -
last=last+icount(d) ’
continue
jj=icount(1)
icount(1)st
do 3 is=2,nnp+i
kksicount(i)
icount(i)micount(i=~1)+jj
ji=xk
continue
go to 6566
write(8,565)
format(2x,’error in dimension for MAXTRY !! ')
continue ;

call GENRCN(nnp,icount,iadjcy,perm,mask,xls)
retura - .

snd
SALALARLAXLLLLLLLLLL

subroutine gcn:cn(noqpl.xldj,adjnc;.porn.mask.xls)

€......reference: computer solution of large sparse positive definite
Covnnne systams, alan george & joseph w-h liu
Cevvnnn (prentive-hall,inc.,englewood cliffs NJ 07632)

integer adjncy(1),mask(1),perm(1),x1s(1)

]

107

1ntog.r xzadj(1),ccasize,i,neqns,nlvl,num, zoot ’
do 100 i=i,neqns :
mask(i)=si
100 continue
- num=i
do 200 i=i,neqns
i2(mask(i).eq.0) go to 200
rootsi
c¢all faroot(root,xadj,adjncy,mask,nlvl, xls.perm(num))
. eall rem(root,xadj,adjancy.mask,perm(num),ccsize,xls)

DUBSAURTCCEiZe

if(aum.gt. noqnl) go to 987
200 continune
c.,....porn(nov'nodo)sold node
€......00w, mask(old node)s new node

987 ' contizume
do i1 new=1,neqns
iold=perm(new)
zask(iold)=new
c write(6,*) ’iold mask(;old) = ?,iold, mask(iold)
11 - continue
retura
end
c%%%%%.112%21%211%2%2%11%2ZZXZZ%ZZZ%ZZZZY77717177777%71
subroutine fnroot(root,xadj,adjncy,mask,nlvl,xls,ls)
integer adjmncy(1),ls(1),mask(1),zls(1)
integer xadj(i),ccsize,j,jstrt, Xk, kstop,katrt,
.8 mindeg,nabor,ndeg,nlvl,node,nunlvl,root
call rootls(root,xadj,adjncy,mask, nlvl xls,13)
ccsizesxls(nlvlei)~1-
if(nlvi.eq.1 .or. nlvl.eq.ccsize) return
100 jstrtaxls(alvl)
mindegaccsize
Tootals(jstrt)
if(ccsize.eq.jstrt) go to 400
do 300 j=jstrt,ccsize
nodesls(j)
ndeg=0
katrtaxadj(node)
. kstop=xadj(noda+1)-1
do 200 k=kstrt,kstop
nabor=adjncy(k)
if(mask(nabor) .gt. 0) ndeg=ndeg+i
200 continune
if(ndeg.ge.mindeg) go to 300
root3node
mindeg=ndeg
300 continue '
400 call rootls(root,xadj,adjncy,mask,nunlvl,xls,ls)
if(aunrlvl.le.nlvl) return
alvli=nunlvl
if(nlvl.1lt.ccasize) go to 100
Tetura .
end
cZZZ%Z%ZZZ!121111111111111ZZZZZ%ZZXZZZXZ
subroutine rem(root,xadj,adjncy,mask,perm,ccsize,deg)
integer adjncy(1),deg(1),mask(1),pern(1)

integer xadj(1),ccsize,fabr,i,j,jstop,jstrt,k,1,1lbegin,

: labr,lperm,lvlend,abr,node,root

108

e
i

100

300

400

500

600

700

call degree(root,xadj,adjncy,mask, dcg,ecszzo.porn)
sask(root)=0
if(ccsize.le.i) returm
1lvlend=0
lnbrei
lbaginslvlendel
lvlendslnbr
do 600 islbegin,lvlend
nodespernm(i)
jstrtsxadj(node) .
jstopszadj(node+i)=1
2abr=labr+l .
do 200 jsjstrt,jastop
abrsadjney(j)
if(mask(abr).eq.0) go to 200
labr=labretl
mask(abr)=0
perm(lnbr)snbr
continue
if(fabr.ge.lndbr) go to 600
¥afabr '
1=k
k=k+l
nbrapern(k)
i£(1.1¢.£abr) go to 500
lpermsperm(1)

. i2(deg(lperm).le.deg(abr)) go to 500
pern(1+1)slpern
1al-1
go to 400
perm(1+1)=nbr
if(kx.1lt.1nbr) go to 300
continue

i2(1nbr.gt.lvliend) go to 100

k=ccsize/2

lzccsize

do 700 i=t,k
lpermsperm(l)
pern(1l)sperm(i)
perm(i)slpern
1al-1

continue

return

end

J

CRLARARANRARLRRLRAARAL LA AN LLLRLLAALL

200

subroutine rootls(root,xadj.adjncy.mask,nlvl,xls.ls)

integer adjncy(l) 1s(1) ,mask(1),x1s(1)

integer xadj(1),i,j,jstop,jstzt,lbegin, ccsxze ,lvlend,
lvsize,nbr,alvl,node,root

mask(root)=0

1s(1)=root

alvls0

lvlend=0

ccsizest

lbeginslvlend+i

lvlendsccsize

alvlsnlvley

xls(alvl)=lbegin

do 400 i=zlbegin,lvlend

109

nodesls(i)
jstrtaxzadj(node)
jstopszadj(node+l)~1
if(jstop.1t.jstrt) go to 400
do 300 j=jstxrt,jstop
nbrsadjncy(j)
i£(mask(nbr).eq.0) go to 300
cesizesccsizeri
18(cesizo)=nbr
sask(abr)=0
300 -contiaue
£00 continae
lvsize=ccsize~lvlend
i£(lvsize.gt.0) go to 200
x1ls(nlvli+1)slvliend+l
do 500 i={,ccsize
nodesls(i)
mask(node)=1
500 ceatiave
retura
end
CARLALANALIALLRLAALLLLY
subroutine degree(root,xadj,adjacy,mask, deg,ccszze 1s)
integer adjncy(1),deg(1),1s(1),mask(1)
integer xadj(1),ccsize,i,ideg,j,jatop,jstre,
$ lbegin, 1v1¢nd lvsize,nbr,node,root
1s(i)sroot
-xadj(root)s-xadj(root)
lvlends0
ccsize=1 :
100 lbegin=lvlend+i
lvlendsccaize
do 400 i=lbegin,lvlend
node=1s(i)
jstrt=-xadj(node)
jstop=iabs(xad](nodo#t)) -1
ideg=0
if(jstop.1lt.jstrt) go to 300
do 200 j3jstrt,jstop
nbr=adjncy(j)
i2(mask(nbr).eq.0) go to 200
idegsideg+1l
if(zadj(abr).1t.0) go to 200
xadj(nbr)=-xadj(nbr)
ccsizeszccsizetl
1s(ccsize)=nbr
200 continue
300 deg(node)=ideg
400 continue “
lvsizesccsize-lvlend
’ if(lvsize.gt.0) go to 100
. do 500 i=1,ccsize
node=1s(i)
_ xadj(node)=~xadj(node)
500 continue
retura -
end

File: kfilter.f

110

10

100

subroutine KFILTER

Tecursive snbréntino KFILTER

include ’shared.inc’

d; 10 i = 3 ,ndot

-go(i) = delsqe(£(i)+go(i))+deltaspe(i)+mass(jdiag(i))=qe(i)
gk(i) = deltas(2(i)e+gk(i))+pe(i) '
continune

call SOLVER(eo,go,jdiag,ndof,2)

Activate EBE computations for intermal force by using STIFFRC
subroutine. Otherwise use PMVMAD (profile matrix/vector mult-add

call PNVHAD(stif,jdiag,go,adotf,~delta,gk,1.d0)

call STIFFRC(go,-delta,gk)

do 100 i = i,ndof
ge(i) = 2.2go(i) - qe(i) k
pe(i) = 2.»gk(i) - pa(i)
continue

o

‘return

end

111

| v L 30 /u _ iz -G f
B N91 217312
A\ P25
CU-CSSC-91-5 CENTER FOR SPACE STRUCTURES AND CONTROLS

SECOND-ORDER DISCRETE KALMAN

FILTERING EQUATIONS FOR

' 'CONTROL-STRUCTURE
INTERACTION SIMULATIONS

s ——————————
————

. by

"K. C. Park, W. K. Belvin
and K. F. Alvin

March 1991 ' COLLEGE OF ENGINEERING .

UNIVERSITY OF COLORADO
CAMPUS BOX 429
BOULDER, COLORADO 80309

Second-Order Discrete Kalman Filtering Eqixations
for A
Control-Structure Interaction Simulations*

K. C. Park! and K. F. Alvin?
Center for Space Structures and Controls
University of Colorado, Campus Box 429

Boulder, Colorado 80309

and

W. Keith Belvin?
Spacecraft Dynamics Branch
NASA Langley Research Center
Hampton, Virginia 23665

Abstract

"A general form for the first-order representation of the continuous, second-order linear
structural dynamics equations is introduced in order to derive a corresponding form of
first-order continuous Kalman filtering equations. Time integration of the resulting first-
order Kalman filtering equations is carried out via a set of linear multistep integration
formulas. It is shown that a judicious combined selection of computational paths and the

undétermined matrices introduced in the general form of the first-order linear structural -

systems leads to a class of second-order discrete Kalman filtering equations involving only
symmetric, sparse N x N solution matrices. The present integration procedure thus over-
comes the difficulty in resolving the difference between the time derivative of the estimated
displacement vector (4r#) and the estimated velocity vector (2) that are encountered when
one attempts first to eliminate () in order to form an equivalent set of second-order fil-
tering equations in terms of (%a‘:). A partitioned solution procedure is then employed to
exploit matrix symmetry and sparsity of the original second-order structural systems, thus
realizing substantial computational simplicity heretofore thought difficult to achieve.

* An earlier version of the present paper without numerical experiments was presented at
the AIAA Guidance and Control Conference, Portaland, Ore., 20-22 August 1990, Paper

No. AIAA 90-3387. '
! Professor of Aerospace Engineering, University of Colorado. Associate Fellow of AIAA.
2'Graduate Research Assistant Structural Dynamics Division, NASA Langley Research
Center. Member ATAA.

Introductlon

Current practice in the design, modehng and analysis of flexible large space structures
is by and large based on the finite element- method and the associated software. The
resulting discrete equations of motion for structures, both in terms of physical coordi-
nates and of modal coordinates, are expressed in a second-order form. As a result, the
structural engineering community has been investing a considerable amount of research
and development resources to develop computer-oriented discrete modeling tools, analysis
" methods and interface capabilities with design synthesis procedures; all of these exploiting
the characteristics. of second-order models.

On the other hand, modern linear control theory has its roots firmly in a first-order form
‘of the governing differential equations, e.g., (Kwakernaak and Sivan, 1972). Thus, several
investigators have addressed the issues of interfacing second-order structural systems and
control theory based on the first-order form (Hughes and Skelton, 1980; Arnold and Laub,
1984; Bender and Laub, 1985; Oshman, Inman and Laub, 1987; Belvin and Park, 1989,
1990). As a result of these studies, it has become straightforward for one to synthesize’
' non-observer based control laws within the framework of a first-order control theory and
then to recast the resulting control laws in terms of the second-order structural systems.

Unfortunately, controllers based on a first-order observer are difficult to express in a pure
second-order form because the first-order observer implicitly incorporates an additional
filter equation (Belvin and Park, 1989). However a recent work (Juang and Maghami, 1990)
has enabled the first-order observer gain matrices to be synthesized using only second-order
~ equations. To complement the second-order gain synthesis, the objective of the present
paper is to develop a second-order based simulation procedure for first-order obser zrs. |
The particular class of first-order observers chosen for study are the Kalman Filter based
state estimators as applied to second-order structural systems. The procedure permits
simulation of first-order observers with nearly the same solution procedure used for treating
the structural dynamics equation. Hence, the reduced size of system matrices and the
computational techniques that are tailored to sparse second-order structural systems may
be employed. As will be shown, the procedure hinges on discrete time integration formulas
to effectively reduce the continuous time Kalman Filter to a set of second-order difference
equations. '

The paper first reviews of the conventional first-order representation of the continuous
second-order structural equations of motion. An examination of the corresponding first-
order Kalman filtering equations indicates that, due to the difference in the derivative of
the estimated displacement (5";5:) and the estimated velocity (z), transformation of the
first-order observer into an equivalent second-order observer requires the time derivative
of measurement data, a process not recommended for practical implementation.

2

v

Next, a transformation via a generalized momentum is introduced to recast the structural
equations of motion in a general first-order setting. It is shown that discrete time numerical
integration followed by reduiction of the resulting differerice équations circumvents the need
for the time derivative of measurements to solve Kalman filtering equations in a second-
order framework. Hence, the Kalman filter equations can be solved using a second-order
solution software package. |

Subsequently, computer implementation aspects of the present second-order observer are
presented. Several computational paths are discussed in the context of discrete and con-
tinuous time simulation. For continuous time simulation, an equation augmentation is
introduced to exploit the symmetry and sparcity of the attendant matrices by maintain-
ing state dependant control and observer terms on the right-hand-side (RHS) of the filter
equations. In addition, the computational efficiency of the present second order observer
as compared to the first order observer is presented.

Continuous Formulation of Observers
for Structural Systems

Linear, second-order discrete structural models can be expressed as
Mi+Di+Kz=Bu+Guw, z(0)=zo, #(0)=2, @)
u=-2,z — 2z

with the associated measurements

z=Hiz+ Hyz+v) : (2)

where M, D, K are the mass damping and stiffness matrices of size (N x N); z is the
structural displacement vector, (N x 1); u is the active control force (m x 1); B is a
constant force distribution matrix (N x m); z is a set of measurements (r x 1); H; and H;
are the measurement distribution matrices (r x N); Z; and Z, are the control feedback gain
matrices (m x N); w and v are zero-mean, white Gaussian processes with their respective
covariances Q) and R; and the superscript dot designates time differentiation. In the present
study, we will restrict ourselves to the case wherein @Q and R are uncorrelated with each
other and the initial conditions z¢ and z; are also themselves jointly Gaussian with known
means and covariances.

The conventional representation of (1) in a first-order form is facilitated by
1 =2 :
{ T =T =1 ‘ (3)
Mig =M5=BU+GU)—D22 —K.'l:l
3

which, when cast in a first-order form, can be expressed as

{Eq:Fq+Bu+éw, q=<$1 Zg)T (4)
z=Hq+v .

where - E=[é 1?4, | Fé[_(}{ _ID],
{3}, o-(2) e

It is well-known that the Kalman filtering equations (Kalman, 1961; Kalman and Buéy, :
1963) for (4) can be shown to be (Arnold and Laub, 1984):

Ej=F§+.Bu+ EPHTR 'z - (6):

;_ N _ U ST .; Z _ T
o DL) o

in which U and L are positi.ve definite matrices and the matrix P is determined by the
Riccati equation (Kwakernaak and Sivan, 1972; Arnold and Laub, 1984)

where

EPET = FPET + EPFT - EPHTR'HPE" + GQGT (8)

The inherent difficulty of reducing the first-order Kalman filtering equations given by (6)
to second order form can be appreciated if one attempts to write (6) in a form introduced

in (3):
k>
b)
c)

Ly =(HU+H,S)'R™, Ly =(H,ST+ H,L)TR™

i‘ L12 (9)
ng - K.’tl + Bu + MLgZ

l‘)) il Il
|

Lo

where

Note from (9b) that 2, # #1. In other words, the time derivative of the estimated dis-
placement (%) is not the same as the estimated velocity (z); hence, £, and #, must be _
treated as two independent variables, an important observation somehow overlooked in

Hashemipour and Laub (1988).

Of course, although not practical, one can eliminate &, from (9). Assuming Z, and Z, are |
differentiable, differentiate (9b) and multiply both sides by M to obtain

Mz, = M3, 4+ MLy% ' (10)

4

Substituting Mz, from (9¢c) and #, from (9b) in (10) ﬁelds
M2z, = ~D(%;) — L[1Z) — K%, + Bu+ ML,z + ML, 3 (11)
which, upon rearrangements, becomes

M, + D, + K&, = Bu+ MLz + ML 2+ DL,z (2
There are two difficulties with the above second-order observer. First, the numerical
solution of (12) involves the computation of #, when rate measurements are made. The
accuracy of this computation is in general very susceptible to errors caused in numerical
differentiation of ;. Second, and most important, the numerical evaluation of z that
is required in (12) assumes that the derivative of measurement information is available
which should be -avoided in practice. We now present a computational procedure that
circumvents the need for computing measurement derivatives and that-enables one to
construct observers based on the second-order models. '

Second-Order Transformation of
Continuous Kalman Filtering Equations.

This section presents a transformation of the continuous time first-order Kalman filter to
a discrete time set of second-order difference equations for digital implementation. The
procedure avoids the need for measurement derivative information. In addition, the spar-
sity and symmetry of the original‘ mass, damping and stiffness matrices can be maintained.
Prior to describing the numerical integration procedure, a transformation based on gener-
alized momenta is presented which is later used to improve computational efficiency of the
equation solution.

Generalized Momenta

Instead of the conventional transformation (3) of the second-order structural system (1)
into a first-order form, let us consider the following generalized momenta (Jensen, 1974;
Felippa and Park, 1978): '
a) ©1=¢
'{ b) Ty = AM.’L’I + C:L‘l (13)

where A and C are constant matrices to be determined. Time differentiation of (13b)
yields

£y = AME, + Ci, . (14)

5

Substituting (1) via (13a) into (14), one obtains
z3 = A(Bu + Gw) — (AD - C)z, — AKz, (15)

Finally, pa.iriﬁg of (13b) and (15) gives the fc;llowing first-order form:
AM 0| [# + C -I|f=z)| _
AD-C I 1.:2 AK 0 Ta -

0
[A(Bu + Gw)} S (16)
- The associated Kalman filtering equation can be shown to be of the following form:

AM o) f&a) [C ~IV[&)_[0\,
AD~C I|\%:J [4AK 0%~ \4Bu

soE e

where :
Li=EU+H,8TR™, Ly=(&ST+HL)TR!

and H; and H; correspond to a modified form of measurements expressed as
z = HISL' + ng = I?lzl + I_Igzz v (18)

- where

Hy =H, - H.M™'A™'C, Hy = HoM™1A™Y

Clearly, as in the conventional first-order form (9), %, and %, in (17) are now two inde-
pendent variables. Specifically, the case of A = M~! and C = 0 corresponds to (3) with
z9 = z;. However, as we shall see below, the Kalman filtering equations based on the
generalized momenta (13) offer several computational advantages over (3).

Numerical Integration

At this juncture it is noted that in the previous section one first performs the elimination
of %) in order to obtain a second-order observer, then performs the numerical solution
of the resulting second-order observer. This approach has the disadvantage of having to
deal with the time derivative of measurement -data. To avoid this, we will first integrate
numerically the associated Kalman filtering equation (17). A

6

The direct time integration formula we propose to employ is a mid-point version of the

trapezoidal rule: .
. 2 n+1/2 21" é n+1/2
o {a} {5} (i}
52 n+1 52 n+1/2 25 n (19)
o {5} ={at &)
) z2 T2

where the superscript n denotes the discrete time interval ¢ = nh, h is the time increment

and 6 = h/2. _
Time discretization of (17j by (19a) at the n + 1/2 time step yields

AM 0] f&7H/2 —gp P A D o

AD-C I | 3zt*'/% _3n AK 0 [| zp*'2
_ AM 0} [L1] .at1/2 0 '
—G{AD c I] [L,]z ! +6{ABu"+1/2} (20)

The above difference equations require the solution of matrix equations of 2N variables,
namely, in terms of the two variables z"“/ 2 and 2]*7'/?, each with a size of N. To
reduce the above coupled equations of order 2N into the corresponding ones of order N,
we proceed in the following way by exploiting the nature of parametric matrices of A and
C as introduced in (13). To this end, we write out (20) as two coupled difference equations
as follows:

AM(“"‘“”) + 5(C—n+1/2 .n+1/2)
=6AML,z"+1/? - (21)
(AD - C’)(““"’l/.z) + (.n+1/2) + 6AK5:;‘+1/2
=8§(AD - C)L1z™*/? 4 §L,3" /2 4 §ABu™+!/? | (22)
Multiplying (22) by § and adding the resulting equation to (21) yields
A(M + 6D + 82K)2T* /% = (AM + 6(AD — C))i? + 62
+{6AML, + 6*(AD — C)L, + 6°L,}3"*/% 4 §2ABun+'/2 (23)
Of several possible choices for matrices 4 and B, we will examine

{) A=I, C=D (24)

b) A=M-l, C=0

7

The choice of (24a) feduées (23) to:
(M +6D + 521()*““/2 = M3} + 63} + §2Bu™t1/?
+6{ML, + 51‘;.4,}2"“/2 (%)
so that once #7+'/% is computed £7+1/? is obtained from (22) rewritten as
| S AR < (26)

where

én = Bun+l/2 + i2§ﬂ+1/2 ’ _ (27)

which is already computed in order to construct the right-hand side of (25). Hence,
Kz '"'H/ 2 is the only additional computation needed to obtain z"'H/ 2, It is noted that
: nexther any numerical differentiation nor matrix inversion is required in computing z"+ /2,
This has been achieved through the introduction of the general transformation (13) and

the particular choice of the parameter matrices given by (24a).
On the other hand, if one chooses the conventional representation (24b), the solution of
5:;'“/ ? is obtained from (23)

(M +6D + 62K)z"*/% = (M + 6D)i? + 6M32}

+6{(M +6D)L, + §ML,}z"t1/2 4 §2Bynt1/2 © (28)

n+1/2 n+1/2

Once £, is obtamed z, can be computed either by

£;+1/2 — (i;:+l/2 N i;’)/& _ z12"+1/2. : (29)

which is not accurate due to the numerical differentiation to obtain :;'Z';H/z, -or by (22)
5t = 39 4 65" — SMTIKETH/
M= DT — 2P) + M DLz (30)

which involves two additional matrix-vector multiplications, when D # 0, as cbmpa.red-
with the choice of A = I and C = D. Thus (24a) is the preferred representation in a
first-order form of the second-order structural dynamics equations (1) and is used in the
remainder of this work.

Decoupling Of Difference Equations

- We have seen in the previous section, instead of solving the first-order Kalman filtering
equations of 2n variables for the structural dynamics systems (1), the solution of the im-
plicit time-discrete observer equation (25) of n variables can potentially offer a substantial
computational saving by exploiting the reduced size and sparsity of M, D and K. This
assumes that 2"+!/2 and u"*+!/2 are available, which is not thecase since at the n** time

step
wrtl/2 = _ 7,304 _ 7, gn) | (31)
E"+l/2 = gn+1/2 _ E1£;'+1/2 _ E25;+1/2 (32)
requires both 27*/% and 22+/? even if z*+1/2 is assumed to be known from measurements

or by solution of (1). Note in (32), the control gain matrices are transformed by
Zy=21- ZM7ATIC, Zy=Z,MT'AT

There are two distinct approaches to uncouple (25) and (26) as described in the following
sections. ' '
Discrete Time Update _
Equations (31) and (32) can be approximated using

T2 o o T — HyaD (33)
u™t/2 ~ 7,30 — 7,38 ‘ (34)

This approximation leads to a discrete time update of the control force and state correction
terms which is analogous to that which exists in experiments where a finite bandwidth of
measurement updates occurs. For discrete time approximation, the step size h = t*+1 —¢»
should be chosen to match the time required to acquire, process and output a control
update.

Discrete time simulation is quite simple to implement as the control force and state cor-
rections are treated with no approximation on the right-hand-side (RHS) of (25) and (26).
Should continuous time simulation be required, a different approach is necessary.

Continuous Time Update

To simulate the system given in (25) and (26) in continuous time, strictly speaking, one

must rearrange (25) and (26) so that the terms involving 27*/? and 22*"/? are augmented

9

to the left-hand-side (LHS) of the equations. However, this augmentation into the solution
matrix (M +8D+6§2K) would destroy the computational advantages of the matrix sparcity
and symmetry. Thus, a partitioned solution procedure has been developed for continuous
time simulation as described in (Park and Belvin, 1991). The procedure, briefly outlined
herein, maintains the control force and sta.te correction on the RHS of the equa.tlons as

 follows.
First, z"'H/ ? and 5:;“/ 2 are predicted by

“n+1/2 _ an an+1/2 _ ap ' ,
Zip, =y, Tap =22 (35)

However, instead of direct substitution of the above predicted qua.ntxty to obtain u,+1/ 2

- and 7 ‘"+1/ ? based on (31) and (32), equation augmentations are introduced to improve the

nt+1/2 z7+1/2 | Of several augmentation procedures that are applicable
to construct discrete ﬁlters for the computations of u®+!/2 and z*+1/2, we substitute (26)

/into (31) and (32) to obtain 4

accuracy of up and z

u™t1/2 = _ZI£;-+1/2 _ Zz(iz 5K.n+1/2+
§Bu™/2 1 T34/ |
FHL2 = /2 _ |3 .n+1/2 | (36)

Hy (23 - 6K~n+1/2 + 6Bu"+1/2 + 5L22n+1/2)
Rearranging the above coupled equations, one obtains

(I +_6ZzB) ‘ (522;2_ un+1/2 _
§H,B (I+6HLy) | | zn+1/?

Z"+1/2 szz - (H1 - 6H K)‘n+1/2

which corresponds to a first order filter to reduce the errors in computing Z; = M. i+ D3.

A second-order discrete filter for computing u a.nd Z can be obtained by dlfferentla.tmg u
and 7 to obtain

{Z—Z—Hl.'tl Hzl‘z ()

and then substituting Z, and Z, from (17). Subsequently, (19) is applied to integrate the
equations for u and Z which yields

I+§ZZB +§221M—IB 8(22Ly + 21 Ly + 82, M L,) u™t/z)
§(H:B +§HM™'B) I+6H,(Ly +6M™'Ly) +6H,L, | | 21/

ut | _ Z1M"l(z2 K&M? _ pantif?y gz, gt/ 0
" M-1(zp '5K“"+"2Dii'“’2) + H K32 + /2 (39)

10

The net effects of this augmentation are to filter out the errors committed in estimating
both #; and ;. Solution of (39) for u™*1/2 and z"+!/2 permits (25) and (26) to be solved
in continuous time for £ 172 and 2 ‘"'H/ 2, Subsequently, (20b) is used for £2+* and £2+1,

The preceding augmentation (39) leads to an accurate estimate of the control force and
observer error correction at the (n+1/2) time step. Although (39) involves the solution of
an additional algebraic equation, the equation size is relatively small (size = number of
actuators (m) plus the number of measurements (r)). Thus, (39) is an efficient method
for continuous time simulation of the Kalman filter equations provided the size of (39) is

* significantly lower than the first order form of (4). The next section discusses the relative
efficiency of the present method and the conventional first order solution. More details on
the equation augmentation procedure (39) may be found in Park and Belvin (1991).

Fma.lly, it is noted that by following a similar time discretization procedure adopted for
computing z"'H/ ? and '""fl/ 2, the structural dynamics equation (1) can be solved by

{ (M + 8D + 8K)z™/? = Mzp + 623 + 62 Bum+1/2 (4'0)

n+1/2 _ z5 + §Bun+1/2 _ 5Kx;'+1/2

o

Thus, numerical solutions of the structural dynamics equation (1) and the observer equa-
tion (20) can be carried out within the second-order solution context, thus realizing sub--
stantial computational simplicity compared with the solution of first-order systems of equa-
tions (4) and the corresponding first-order observer equations (6).

It is emphasized that the solutions of both the structural displacement z and the re-
constructed displacement Z employ the same solution matrix, (M + 6D + §2K). The
computational stability of the present procedure can be examined as investigatéd in Park
(1980) and Park and Felippa (1983, 1984). The result, when apphed to the present case,
can be stated as

& /\ma.x <1 (41)

where Amax is the maximum eigenvalue of
(MI+AZ;B+Z,M'B)y=0 (42)

Experience has shown that |[Amax| is several orders of magnitude smaller than pmax of
the structural dynamics eigenvalue problem:

pMy = Ky | . (43)

Considering that a typical explicit algorithm has its stability limit gmax - b < 2, the
maximum step size allowed by (42) is in fact several orders of magnitude larger than
allowed by any explicit algorithm.

D

Computatlonal Efficiency

Solution of the Kalman filtering equations in second-order form is prompted by the po-
tential gain in computational efficiency due to the beneficial nature of matrix sparcity and .
symmetry in the solution matrix of the second-order observer equations. There is an over-
head to be paid for the present second-order procedure, that is, the additional computations
introduced to minimize the control force and observer error terms on the right-hand-side of
. the resulting discrete equations. The following paragraphs show the second-order solution
is most advantageous for observer models with sparse coefficient matrices M, D and K.

Solution of the first order Kalman filter equation (6) or the second-order form (25-26, 39) -
may be performed using a time discretization as given by (19). For linear time invariant
(LTT) systems, the solution matrix is decomposed once and subsequently upper and lower
triangular system solutions are performed to compute the observer state at each time step.
Thus, the computations required at each time step result from calculation of the RHS
~ and subsequent triangular system solutions. For the results that follow, the number of
floating point operations per second (flops) are estimated for LTI systems of order O(N).
In addition, it is assumed that the mass, damping and stiffness matrices (M, D and K)
are symmetric and banded with bandwidth aN, where 0.< a < (0.5 — 35).

The first-order Kalman filter equation (6) requires (4N2? + 2Nr + O(N)) flops at each
time step. The discrete time second-order Kalman filter solution (25-26, 33-34) require
~ (8a®?N?+2aN?+3Nm+4Nr+O(N)) flops and the continuous time second-order Kalman
filter (25-26, 39) require (8aN? + 2aN? + 5Nm + 6Nr + (r + m)? + O(N)) flops at each
time step. To examine the relative efficiency of the first-order and second-order forms,
several cases are presented as follows.

First, a worst case condition is examined whereby M, D and K are fully populated (a =
0.5 — 7y) and r = m = N. For this condition, the number of flops are:

First Order _ 6N% + O(N)
‘Second Order Discrete 10N2 + O(N)
Second Order Continuous 18N2 + O(N)

Thus, for non-sparse systems with large numbers of sensors and actuators relative to the
system order, the first order Kalman filter is 300 percent more efficient than the second-
order continuous Kalman filter solution presented herein.

For structural systems, M, and K are almost always banded. In addition, the number
of sensors and actuators is usually small compared to the system order N. Hence, the
value of a for which the second-order form becomes more computationally attractive than
the first order form must be determined. If the assumption is made that the number of

12

actuators (m) and the number of measurements (r) is proportional to the bandwidth (
r = m = aN), the value of a which renders the second-order solution more efficient is
readily obtained. For the ‘second-order discrete Kalman ﬁfter, when a < 0.394 the second-
order form is more efficient. Similarly, the second-order continuous Kalman filter form is
more efficient when o < 0.279. Since a obtains values approaching 0 when a modal based
structural representation is used with few sensors and actuators, the second-order form
can be substantially more efficient than the classical first-order form. A more detailed
discussion can be found in Belvin (1989).

Implementation and Numerical Evaluations

The second-order discrete Kalman filtering equation derived in (25) and (26) have been
implemented along with the stabilized form of the controller u and the filtered measure-
ments Z in such a way the observer computational module can be interfaced with the
partitioned control-structure interaction simulation package developed previously (Belvin,
1989; Belvin Park, 1991; Alvin and Park, 1991). Table 1 contrasts the present CSI simula-
tion procedure to conventional procedures. It is emphasized that the solution procedure of
the present second-order discrete Kalman filtering equations (25) and (26) follows exactly
the same steps as required in the solution of symmetric, sparse structural systems (or the
plant dynamics in the jargon of control). It is this attribute that makes the present discrete
observer attractive from the simulation viewpoint.

The first example is a truss beam shown in Fig. 1, consisting of 8 bays with nodes 1 and
2 fixed for cantilevered motions. The locations of actuator and sensor applications as well
as their directions are given in Table 2. Figures 2, 3 and 4 are the vertical displacement
histories at node 9 for open-loop, direct output feedback, and dyna.mjcally compensated
feedback cases, respectively. Note the effectiveness of the dynamically compensated feed-
back case by the present second-order discrete Kalman filtering equations as compared
‘with the direct output feedback cases. Figure 5 illustrates a testbed evolutionary model
of an Earth-pointing satellite. Eighteen actuators and 18 sensors are applied to the sys-
tem for vibration control and their locations are provided in Tables 3 and 4. Figures 6,
7, and 8 are a representative of the responses for open-loop, direct output feedback, and
dynamically compensated cases, respectively. Note that u, response by the dynamically
compensated case does drift away initially even though the settling time is about the same
as that by the direct output feedback case. However, the sensor output are assumed to
be noise-free in these two numerical experiemnts. Although the objective of the present
Apa.f>er is to establish the computational effectiveness of the second-order discrete Kalman
filtering equations, we conjecture that for noise-contaminated sensor output for which one
would apply dynamic compensated strategies, the relative control performance may turn

13

out to be the opposite. Further simulations with the present procedui‘e should shed light
on the performance of dynamically compensated feedback systems for large-scale systems
as they are computationally more feasible than heretofore possible.

Table 5 illustrates the computational overhead associated with the direct output feedback
vs. the use of a dynamic compensation scheme by the output present Kalman filtering
equations. In the numerical experiments reported herein, we have relied on Matlab software
package (Wolfram, 1988) for the synthesis of both the control law gains and the discrete
Kalman filter gain matrices. It is seen that the use of the present second-order discrete
Kalman filtering equations for constructing dynamically compensated control laws adds
computational overhead, only an equivalent of open-loop transient analysis of symmetric
sparse systems of order N instead of 2N x 2N dense systems. '

Summary

The present paper has acldressed the adva.nté,geous features of employing the same direct
‘time integration algorithm for solving the structural dynamics equations also to integrate
the associé.ted continuous Kalman filtering equations. The time discretization of the re-
éulting Kalman filtering equations is further facilitated by employing a canonical first-order
form via a generalized momenta. When used in conjunction with the previously developed
stabilized form of control laws (Park and Belvin, 1991), the present procedure offers a sub-
stantial computational advantage over the solution methods based on a first-order form
when computing with large and sparse observer models.

Computational stability of the present solution method for the observer equation has been
assessed based on the stability analysis result of partitioned solution procedures (Park,
1980). To obtain a sharper estimate of the stable step size, a more rigorous computational
stability analysis is being carried out and will be reported in the future.

Acknowledgements

~

The work reported herein was supported by a grant from Air Force Office of Scientific
Research, F49620-87-C-0074 and a grant from NASA/Langley Research Center, NAG1-
1021, The authors thank Drs. Anthony K. Amos and Spencer Wu of AFOSR for their
interest and encouragement and Dr. Jer-Nan Juang of NASA /Langley Research Center
who has encouraged us to work on second-order observers. A

14

=

10.

11.

12.

13.

References

K. A. Alvin and K. C. Park, “Imﬁlementation of A Partitioned Algorithm for Simu-
lations of Large CSI Problems,” Center for Space Structures and Controls, University
of Colorado at Boulder, CO., Report No. CU-CSSC-91-4, March 1991.

Arnold, W. F. and Laub, A. J. (1984), “Generalized Eigenproblem Algorithms and
Software for Algebraic Riccati Equations,” Proceedmg.s of the IEEE, Vol. 72, No. 12, .
pp. 1746-1754.

Belvin, W. K. (1989), “Simulation and Interdisciplinary Design Methodology for
Control-Structure Interaction Systems,” PhD Thesis, Center for Space Structures and
Controls, University of Colorado at Boulder, CO., Report No. CU-CSSC-89-10, July
1989. : '
Belvin, W. K. and Park, K. C. (1989), “On the State Estimation of Structures with
Second Order Observers,” Proc. the 30th Structures, Dynamics and Materials Con-

_ ference, AIAA Paper No. 89-1241.

Belvin, W. K. and Park, K. C. (1990), “Structura.l Tailoring and Feedback Control
Synthesis: An Interdisciplinary Approa.ch J. Guidance, Control and Dynamics, Vol.
13, No. 3, pp. 424-429.

" Bender, D. J. and Laub, A. J. (1985), “Controllabilty and Observability at Infin-
ity of Multivariable Linear Second-Order Models,” IEEE Transactions on Automatic
Control, Vol. AC-30, pp. 1234-1237. '

Felippa, C. A. and Park, K. C. (1978), “Computational Aspects of Time Integration

. Procedures in Structural Dynamics, Part 1: Implementation,” Journal of Applied

Mechanics, Vol. 45, pp. 595-602.

Hashemipour, H. R. and Laub, A. J. (1988), “Kalman filtering for second-order mod- :
els,” J. Guidance, Control and Dynamics, Vol. 11, No. 2, pp.181-185. ‘

- Hughes, P. C. and Skelton, R. E. (1980), “Controllability and observability of linear

matrix second-order systems,” J. Applied Mechanics, Vol. 47, pp.415-420.
Jensen, P. S. (1974), “Transient Analysis of Structures by Stiffly Stable Methods,”
Computers and Structures, Vol. 4, pp.67-94.

Juang, J. N. and Maghami, P. G. (1990), “Robust Eigensystem Assignment for Second-
Order Estimators,” Proc. of the Guidance, Navigation and Control Conference, AIAA

_ Paper no. 90-3474.

Kalman, R. E. (1961), “On the General Theory of Control Systems,” Proc. 1st Inter-
national Congress on Automatic Control, Butterworth, London, Vol. 1, pp. 481-491.

Kalman, R. E. and Bucy, R. S. (1961), “New results in linear filtering and prediction
theory,” Trans, ASME J. Basic Engineering, Vol. 83, pp. 95-108.

15

14..

15.

16.

17.

18.

19.

20.

Kwakernaak, H. and Sivan, R. (1972), Lmear Opt:mal Conirol Systems, Wiley-

Interscience, New York.

Oshman, Y., Inman, D. J. and Laub, A. J. (1989), “Square-Root State Estimation
for Second-Order Large Space Structures Models,” Journal of Guidance, Control and
Dynamics, Vol. 12, no. 5, pp.698-708. :

Park, K. C.(1980), “Partitioned Analysis Procedures for Coupled-Field Problems:
Stability Analysis,” Journal of Applied Mechanics, Vol. 47, pp. 370-378.

Park, K. C. and Felippa, C. A. (1983), “Partitioned Analysis of Coupled Systems,” in

" Computational Methods for Transient Analysis, T. Belytschko and T. J. R. Hughes
- (eds.), Elsevier Pub. Co., pp. 157-219.

Park, K. C. and Belvin, W. K. (1989), “Stability and Implementation of Pa.rtxtxoned
CSI Solution Procedures,” Proc. the $0th Structures, Dynamics and Materzals Con-
ference, AIAA Paper No. 89-1238. :

Park, K. C. and Felippa, C. A. (1984),“Recent Developmenfs in Coupled-Fi:ld Analy-
sis Methods,” in: Numerical Methods in Coupled Systems, Lems, R. W. et al(editors),
John Wiley & Sons, pp. 327-352.

Wolfram, S., MathematicaT™, Addison-Wesley Pub. Co., 1988.

16

'(Structure: a) M§a+Dq+Kq=f+Bu+Gw
90)=q,, 4(0)=4,

Sensor Qutput: b)) z=Hx+v

{ Estimator: ¢) Ma+D§+Kg=f+Bu+MLyy

40)=0, 0)=0

Control Force: d) a+F;M™'Bu=F;(M~'p+Lz7)+Fi§

\ Estimation Error: e) ¥+ H,Lyy=%z-H,M™}(p - Bu) — Hyq
Table 1a Partitioned Control-Structure Interaction Equations

¢ Structure: a) x = Ax+ Ef + Bu+ Gw ‘
A= a0)=d
Sensor Output: b)) =z=Hx +' v

| Estimator: ¢) x=A%+Ef+Bu+Ly
x(0) = 0 |

Control Force: d) u=-Fx .
\ Estimation Error: e¢) y=2z-(H4q+ H,q)

where . 3
=={3} =-{i}
q ' q
and : L' 0
— — 1 —_ :
e we[s] e[t
0 I = 0
A= [_M—IK _M—ID] ’ B= [M—IB]) F= [Fl F2]

Table 1b Conventional Control-Structure Interaction Equatioons -

17

TABLE 2a:
Actuator Placement for Truss Example Problem

Actuator Node Component

1 2 y

2 18 y

3 9 y

. 4 -9 z
TABLE 2b:

Sensor Placement for Truss Example Problem

Sensor Type Node Component

1 Rate 2 y
2 Rate 18 Yy
3 Rate 9 y
4 Rate. 9 T
5 Position 9 y
6 Position 9 z

18

TABLE 3:
Actuator Placement for EPS Example Problem

Actuator Node Component
1 97 z
2 97 z
3 96 T
4 96 z
5 - 65 Y
6 - 68 Y-
"7 59 y -
8 62 Yy
9 45 vy .
10 45 z
11 70 Y
12 70 z
13 95 z
14 95 y
15 95 z
’ 16 95 ¢»
17 95 by
18 95 b

19

TABLE 4: ,
Sensor Placement for EPS Example Problem

Sensor Type . Node Component
1 Rate -~ 97 z
2 Rate 97 z
3 Rate 96 z

4 Rate 96 z

5 Rate 65 y

6 Rate - 68 y

7 Rate 59 y

8 Rate - 62 v

9 Rate 45 y
10 Rate 45 z
11 Rate 70 y
12 Rate 70 z
13 Position =~ 95 'z
14 Position 95 y
15 Position 95 z
16 Position 95 Oz
17 Position 95 by
18 Position 95 &

20

TABLE 5:
‘CPU Results for ACSIS Sequential and Parallel Versions

Problem :

Model Type Sequential Parallel
54 DOF Transient 4.5 5.6
Truss FSFB ’ 9.4 10.2

K. Filter 13.0 - 10.7

582 DOF Transient 98.6 100.3
EPS7 FSFB 190.2 294.5
K. Filter 284.2 321.5

21

(&4

>

3

Figure 1: Truss Beam Problem

Deflection

Deflection

6.0 x 10—4
4.8 x 104
3.6 x 104
2.4 x 104
1.2x 104

0.000 -

———— Node 9, uy

6.0 x 104
4.8 x 101
3.6 x 10—4
2.4 x 10—
1.2 x 104

0.000

Truss Model: Open Loop.Tra.nsient Response

'l L L i 1

0.000

0.200

0.400

1.000

0.600 0.800

Time, sec

Figure 2: Truss Transient Response

Truss Model: Full State Feedback Response

A

. il 1 "l i A

0.000

Node 9, uy

~0.200

0.400

0.600 0.800 1.000

Time, sec

Figure 3: Truss FSFB Response

23

Truss Model: Controlled Response with Kalman Filter

6.0 x 10—4

4.8x 104

3.6 x 10—4

2.4 x 104

]
-
8
=
[
=)

T 1.2x 104

2 N 1 L L

L i bl L

0.000 , . _
0.000 0.200 0.400 0.600 0.800 1.000

Time, sec

Node 9, uy

Figure 4: Truss Response with Filter

24

14

s 38
r A
85 7

by
7271 183

AB_G_@ - .‘*\.u%.h.. a4
I ST AN e
o 77 287 93

N3 V 99 .
926

Figure 5: Evolutionary Earth-Pointing Satellite

Deflection

V

EPS7 Model: Open Loop Transient Response

2.0 x 10—
/ L
1.4 x 10—4
"8.0 x 10-3

2.0 x 10—5

—-4.0 x 10~5

-1.0x 1074 —it—i—t—
0.000 2.000 4.000 6.000 8.000 10.000

Time, sec

----- Node 45, ux — — — — Node 45, uz
Node 45, uy ’

Figure 6: EPS Transient Respoh_se

26

EPS7 Model: Full State Feedback Response

2.0 x 10~4
1.4 x 104
§ 8.0x107%
- Y
g .
% 2.0x10-8
= O x . —_—
~4.0 x 105
‘1'0 x 10_4 ' — L A 1 i 1 1 1
0.000 2.000 4.000 6.000 8.000 10.000
Time, sec
--= - - - Node 45, ux ‘ — — — — Node 45, uz
Node 45, uy
Figure 7: EPS FSFB Response
. Model: Controlled Response w/Kalman Filter
2.0 x 10—4 ’
1.4 x 10~4
§ 8o0x1075
-d
3
%
A 20x10~%
—-4.0 x 1075
~1.0 x 10—4 P S S S T S T

0.000 2.000 '4.000 6.000 . 8.000 10.000

Time, sec
----- Node 45, ux - — — — — Node 45, uz
Node 45, uy ’

Figure 8: EPS Response with Filter

27

«

,.
-

55536y

gof m-¢f

N91-2174%7/
| T
INTELLIGENT STRUCTURES

Edited by
K. P. CHONG, S.C. LIU

National Science Foundation, USA

and.

J. C. L

National Central University, Taiwan)

ELSEVIER APPLIED SCIENCE
LONDON and NEW YORK

-

PRECEDING PAGE BLANK NOT FILMED

439

PARALLEL COMPUTATIONS AND CONTROL
OF ADAPTIVE STRUCTURES

K. C. Park and Kenneth Alvin
Department of Aerospace Engineering Sciences and
Center for Space Structures and Controls
University of Colorado, Campus Box 429
Boulder, Colorado 80309

and

W. K. Belvin
Spacecraft Dynamics Branch
NASA /Langley Research Center
Hampton, VA 23665

ABSTRACT

The equations of motion for structures with adaptive elements for vibration control
.are presented for parallel computations to be used as a software package for real-time
control of flexible space structures. A brief introduction of the state-of-th »art parallel
computational capability is also presented. Time marching strategies are developed for
an effective use of massive parallel mapping, partitioning and the necessary arithmetic
operations. An example is offered for the simulation of control-structure interaction on
a parallel computer and the impact of the approach presented herein for applications
in other disciplines than aerospace industry is assessed.

q

1. Introduction

Active suppression of structural vibrations or active control of flexible structures has
made considerable progress in recent years. As a result, it is now possible to actively
. suppress vibrations in mechanical systems emanating from machine foundations, in
robotic manufacturing arms, truss-space structures and automobile suspension sys-
tems. A common characteristic to these applications of active control theory has been
its discrete actuators and discrete sensors, ranging from proof mass actuators and gyro

440

dampers to strain gages and accelerometers. Because most available discrete actuators
are inertia force-oriented devices, actuation often triggers coupling between the actu-
ator dynamics and structural transients. A practical consequence of such coupling is
a limitation of achievable final residual vibration level if both the actuator and struc-
ture possess insufficient passive damping level. It is noted that structures made of
high stiffness composite materials have very low intrinsic damping, hence limiting the
achievable residual vibration level for space maneuvering and space disturbance rejec-
tion purposes. This has been a motivating factor for the development of distributed
actuators and sensors which are often embedded as an integral part of the structure
so that control force can be effectively maintained by strain actuation, thus alleviating
the undesirable actuator dynamics associated with inertia-force actuation.

Various activities that are being pursued by many investigators on the subject of
adaptive structures may be categorized into three major thrusts: device developments,
control laws synthesis and experimental demonstrations, and hardware/software im-
plementation. The device developments effort has been the objective of many material
scientists [1-3]. As the applications needs increase it is expected that functionally more
reliable electrostrictive and magnetostrictive elements will be available for use in active
control/strain damping with improved product quality.

The study of control laws synthesis and demonstration employing adaptive ele-
. ments has been one of the predominant activities in recent years. As scientists accu-
mulate experience in the characterization of the coupling between the structure and
the adaptive element, the applications will then be expanded from the current beam-
like structures to the truss long beams, plates and shells. In order to effectively uti-
lize as many adaptive elements as necessary for actively controlling the vibration of
such large-scale structures in real-time operations, it will be imperative that the soft-
ware/hardware components in the real-time control loop must be able to process data
fast enough so that control commands and the measurements can be carried without
saturating 'and/or jamming the control system.

With the advent of new technology in distributed actuators and sensors (4-9], it ap-
- pears that a combination of decentralized/distributed and hierarchical control strategies
can be a viable alternative to conventional centralized control strategies. The real-time
computer control of such systems as well as design of such control systems through
iterating on simulations and hardware realizations thus will require the processing of a
vast amount of data from and to the distributed actuators and sensors. A significant
part of such data processing for the decentralized actuators and sensors is planned to be
self-managed, viz., there will be embedded microprocessors for each actuator and sensor
pair or for each group of them. However, the necessary links between the decentralized
control systems and the global control system as well as the necessary global control
strategy will still require computational power far in excess of presently available real-
time data processing capability. In addition, if one contemplates the performance of
neural-network control or adaptive control-for onboard real-time control of large-scale.
space structures, the computational need will dramatically increase beyond the current
capability.. As a case in point, even for the control of 20-bay truss beam vibrations by

" 441

three proof mass actuators and six sensors, NASA /Langley is relying on CRAY-XMP
for adequate real-time data processing requirements.

The objective of this paper is thus to present a computational framework by which
one can bring the two emerging new technologies together, namely, the distributed actu-
ators and sensors and the parallel computing capability, toward the real-time control of
- vibrations in large structural systems such as space stations, space cranes and in-space

construction facilities. We will then discuss the potential for applying such a space
technology to mitigate and/or minimize the earthquake damage of ground structures
" such as high-rise buildings, bridges and lifeline equipment.

2. Models for Structures with Embedded Actuators and Sensors

The coupling between the structural behavior and an adaptive electrostrictive element,
whether it is embedded or surface-mounted, is primarily due to the following constitu-

tive relation [3,10-12):
(b= 4{ ®

where e and v are the electrical displacement (charges/unit area) and the electric field

_(volt/unit area), o and € are the stress and strain, and ¢, g and c are the constitutive
coefficient matrices, respectively. For magnetostrictive elements, one needs to replace
e and v by the magnetic field (H) and the magnetic induction (B), respectively, and
the subsequent derivations will hold without any loss of generality.

The coupled equations of mociog for the structure and the adaptive elements
can proceed by augmenting the standard procedure for the structure with the elec-
tric transient equations plus the appropriate modification of the structural equilibrium
equations that reflect the coupled constitutive equations (1). The resulting coupled
structural-piezoelectric equations of motion take the following form (13-13]:

(Structure: a) Mg +Dg+(K,+ K. q=f+Sa
q(0) =q, q(0) =

Sensor QOutput: b) y=H,q+H,q+H,a

Actuator: c) a+®a=B,u- gr { : }

Controller: d) u+ Gu=Ly
L .

where

442

In the preceding equations, M is the mass matrix, D is the damping matrix, K,
is the stiffness matrix due to structural strain-displacement relations and K, is the
stiffness matrix due to the strain actuation. f(t) is the applied force. S is the actuator
projection matrix. H,, H, and H, are the sensor calibration gain matrices, @ is the
actuator dynamic characteristics, B, is the gain matrix that translates the a.pphed
current/charge and voltage into the corresponding strain and strain rate where § is
the transducer conversion gain. q is the generalized displacement vector and and the
superscript dot denotes time differentiation, and u is the control law that consists of .
the applied current (or charge), I, and voltage across the electrostrictive devices, V),
G is the electric circuit characteristics, and L is the optimum direct feedback gain
matrix. The case of dynamic compensations can be augmented to (2) by introducing
an observer. But in subsequent discussions we limit ourselves to direct feedback cases

only.

) It is noted that the control laws, unlike conventional controi-structure interaction
systems, are not directly fed back into the structural equations. Instead, the controller
is simply a regulator controlling the electric charge, the voltage or the current. These
regulated electric quantities are then fed into the piezoelectric sensors and actuators.
Hence, it is the piezoelectric actuation that triggers feedback into the structures.

[y

3. Parallel Computations for the Dynamics of Adaptive Structures

The earliest recorded computational results in mechanics were the parabolic trajectory
calculations of a falling body by Galileo [16]. Since then, most scientific computations
have been carried out by anthropomorphic algorithms, viz.. step-by-step binary and/or
decimal arithmetics. To set the stage properly for the present objective, parallel com-
putations of the dynamic response of structures with distributed adaptive elements, we
recall a passage by Kepler to John Napier, the inventor of a logarithmic table:

Newton was essentially dependent upon the results of Kepler’s cal-
culations, and these calculations might not have been completed but
for the aid of that logarithms afforded. Without the logarithms, ...,
the development of modern science might have been very different

(17].

In terms of the present day data processing requirement, Napier's logarithmic
table in 1614 contained about 100 kilobytes, which was perhaps the most important
computational aid to Kepler and Newton. Three and one-half centuries later we are
witnessing gigabytes of tables being stored and retrieved at our disposal [18]. But
these tables complement the weakness of the human mind and computational speed:
long term memory and buman arithmetic speed. In addition, for problems requiring a
sequential nature of computations, i.e., ballistic trajectories which deal only with the
position and velocity of a single shell or quasi-static equilibrium equations of a building
structure, the computing activities do not interact with “time” and the computing
efficiency affects only the humanpower efficiency for completing the computatxonal
task. .

443

There are many important scientific and engineering endeavors whose computa-
tions must be fast enough for real-time delivery of the computed results. A classical
example was Richardson's lattice model for weather prediction by numerical process
in 1922 {19]. The motivation for adopting such a lattice concept was due to the fact
that the equation state at each lattice node takes on a different value set in time and
an efficient way of interchanging and transmitting the nodal values at each time step
was mandatory if the computations were to be carried out in real-time to predict the
weather. Indeed, this was the dawn of the parallel computing era, even though the basic
. idea had to wait for its validity for 60 years. Today, many controls engineering activi-
ties have been implemented by using computers so that their intended functions can be
monitored and controlled in real-time. These include chemical processing, autopiloting
and vibration control of simple structures. It is important to note that the computa-
tional framework employed for such applications is based on sequential architecture.
Hence, we believe that future improvements that can deal with large parameter models
and large parameter controls must adopt a parallel computational framework. One
such area is the dynamics and control of large structures with distributed/embedded
adaptive elements.

" In order to carry out the necessary parallel computations, there are three distinct
steps that must be addressed: discretizing the structure into appropriate partitions,
mapping the physical partitions onto the processors, and step advancing of the equatxon
states. These will be discussed below.

3.1 Partitioning and Mapping of Adaptive Structures

Ideally, if the sensor and actuator leads fall on the discrete nodes, no spatial interpola-
tion would be necessary. However, such a situation is either difficult to realize or may
prohibit the use of spatially convolving sensors {20] that are known to filter certain
harmonic signals for minimizing phase lag in the feedback loop. Hence, we will assume
that the sensor and actuator characteristics can be interpolated to the discrete nodes;
in this way the partition boundaries can be chose.: arbitrarily regardless of the physical
locations of the sensor and actuator leads. In addition. this approach can lead to a
natural embedding of the sensor and actuator characteristics into the finite element or
boundary integral structural models. Once the partitioning is accomplished. the next

" step is to map the discrete partitions for adaptive elements onto the corresponding
multiprocessors.

Consider an adaptive structure that has been modeled as a set of discrete elements
as shown in Fig. 1. In a sequential computing environment, in order to advance the
necessary computations for the present states, the arithmetic operations are carried
out step-by-step for each node at a time. Hence, each nodal-state computations is
performed in a manner similar to one courier delivering and picking up all the mails
throughout the entire routes. In a parallel computational environment, in contrast,
there can be as many couriers as necessary who comb through the routes concurrently
in order to pick up and deliver all the mail at once. One of the most popular concepts
in executing such tasks is the hypercube architecture (see Fig. 2) whose every node

444

Piéoelectric Elements

Structural Element

Fig. 1 Discrete Model of Adoptive Structures’

Fig. 2 Hypercube Interconnection Network of a
32-Processor
(each node represents a processor)

' 445

is associated with a processor. Thus, to process the necessary computations for an
adaptive structure with 19 partitions, one can assign the 19 adaptive elements to 19
processors as shown in Fig. 3. The procedure for assigning the physical domain (ele-
ments) to the parallel processors with minimal mterprocessor communications is ca.lled
mapping.

Of several techniques available for the processor mapping of the computational
domains {22], we will adopt a heuristic mapper developed by Farhat [23] since it can
accommodate both the synchronous and asynchronous cases with robust and accept-
" able complexities. An application. of this mapping technique for modeling a bulkhead
substructure for massively parallel computing is shown in Fig. 4. A similar mapping
can be used for parallel computations of adaptive structures.

3.2 Parallel Data Structure and Algorithms

We will assume that each processor is assigned to carry out all the necessary computa-
tions for at least one set of a sensor, an actuator, and a controller or a group of them.
Therefore, the word partition does not necessarily imply a finite element: it can be a -
substructure, an element or even a sublayer within the composite layer that includes a
sensor or an actuator. In carrying out the step-advancing in time. one may invoke an
implicit or explicit direct time integration algorithm. When an implicit algorithm is
employed, one needs to communicate not only the state variable vectors but also the
associated matrices, i.e., the stiffness matrix, among the processors. Although we wiil
show our results using implicit algorithms, we will, for illustrative purposes. restrict
ourselves to an explicit direct time integration algorithm as it is intrinsically parallel
and and the data structure aspects can be explained more succinctly via an explicit
algorithm. It should, however, be mentioned that the choice of the solution algorithm

can greatly influence the deszgn and xmplementauou of the necessary mapping and data
structure.

Consider the explicit integration of the equations of motion for the structure (2a)
as recalled here:

MG + Fine = £+ feone. - (3)
where fine and f on¢ are the internal and applied control forces. respectivel?, given by
fl'nt = Dq + (K: + Ka)q

feone = Sa

The use of the central difference a.lgomhm to integrate {3) leads to the following dif-
ference equations in time

qn'ﬁ-% = q 3 + hM-l(fn + fcont int)

qn+1 =q"+ hqn+“;

(Processor Configuration)

Fig. 3 Physical Domain and Its Mapping Onto
Hypercube Processors

Fig. 4 . Decomposition of the Structure with
“Finite Element Chips”

LyY

5147

‘R
Arl
S
g O
Y]
X
O p
v Il

Fig. 5 Partitioning and Communication

Requirement

q3wid LON WNYE 39vd HNIa303dd

450°
4. impleméntation and Tlustrative Example

The mapping, -partitioning and data structures above discussed have been imple-
mented based on a shared-memory concurrent machine (Alliant FX/8) by modifying
* the software framework developed for finite element computations [26] and the control-
structure interaction simulation and design software developed in (27, 28]. At present
the following specialized systems of equations are implemented:

_(Structure: a) Mq+Dq+Kq=f+Bu+Gw
q(0) = qo, q(0) = qo

Sensor Qutput: b) z=Hx+m o

Estimator: ¢) X=AX+ Ef + Bu + L(z — HR) ©

%(0) =0

\ Control Force: d) u=-Fx

where

and
L,

L], reim w

H=[H, H.|, L=[

It is noted that in the above implemented equations, we have merged the actua-
tor and the control law equations into one by neglecting the actuator and control law
dynamics. Instead. we have introduced an estimator equation as we do not have all
the measurements needed for complete feedback. In the above equations, B and 3
represent the input influence matrix for actuator locations whereas G and G represent .
the disturbance locations. The vector q is the generalized displacement, w is a distur-
bance vector and the vector m is measurement noise. In Eq. (6b); z is the measured
sensor output. The matrix Hy is the matrix of displacement sensor locations and H,
is the matrix of velocity sensor locations. The state estimator in Eq. (6c) may or may
not be model based. The superscript ~ and ° denote the estimated states and time
differentiation respectively. The input command, u, is a function of the state estimator
variables, @ and a, and F'; and F; are control gains. The observer is governed by A, -
the state matrix representing the plant dynamics, and L, the filter gain matrix. '

The software thus implemented was used to test its applicability to solve the
control-structure interaction design of a model Earth Pointing Satellite (EPS), shown
in Fig. 6, which is a derivative of a geostationary platform proposed for the study of
Earth Observation Sciences. Two flexible antennas are attached to a truss bus. Typ-
ical missions involve pointing one antenna to earth, while tracking or scaining with

451

Fig. 6 Earth Pointing Satellite Structure

PRECEDING PAGE BLANK NOT FILMED |

453
Table 1. EPS Vibration Frequencies (Hz.)
Mode No. Frequency
(1-6) . 0.000
) 0.242
(8) 0.406
(9) 0.565
(10) 0.656 ‘
(11,12) 0.888 : : -
(13) 1.438 '
(14) 1.536
(15,16) 1.776
(17,18) 3.026
(19) 3.513
(20) 3.5331

A small disturbance force was applied to the nominal EPS system in the form of a -

reboost maneuver. The force acted at the center of gravity in the Y-axis direction for
0. seconds at a 10 N force level and from 0.1 to 0.2 seconds the force level was -10 N.
The disturbance was removed after 0.2 seconds. Figure 7 shows the open-loop angular
response about the X-axis of the 15 m antenna. A small amount of passive damping was
assumed (D = 0.0002 K). The vibrational response produced more than 4.5 u radians
of RMS pointing error due to this small reboost disturbance. Although many modes
participate in the flexible body response, this particular reboost maneuver strongly
excites modes near 4 Hz. The following paragraphs present an integrated control and
structure design which seeks to lower the vibrational response of the EPS subject to
some additional constraints. Figure 8 shows the closed-loop angular response about the
X-axis of the 15 m antenna after design optimization. The pointing error is significantly
reduced from that of the open-loop system shown .

5. Future Work and Discussions

The example problem analyzed in the previous section used a set of lumped actuators
and localized sensors instead of distributed adaptive actuators and spatially integrated
sensors. While such a model at best capture the adpative elements used by Anderson
et al. {29}, Matsunaga (30], and Takanara {31], it can not simulate on a large scale
the distributed usage of piezoelectric actuators and sensors proposed by de Luis (32,

Rogers et al. (33|, and Burk and Hubbard [34]. Our immediate future work will "

concentrate on the implementation of distributed adpative elements and assess their
practical applicability beyond the currently reported beam-like structural components.
In this regard, we are exploring an adaptation of neural-network concepts {35] in the
modeling and parallel computations of controlled structures with adaptive elements.
Specifically, the limits of the applicability of distributed parameter modeling and control
theory and discrete structures with discrete actuators and sensors, and their cross-over

454
x1073
4 T T T
. 2 .
3
o m r]l‘ . '11 iR |H‘I T b
<
[—
]
£ .2 -
»
.41nLnlnL|Ll11_LzJ|_LL4
0 5 10 15 20
TIME, Sec.
Fig. 7 Open-Loop Response of EPS Structure.
. x10-4 EPS Antenna Pointing: Closed-Loop Response
3+
:. 1H l -
Q
: Wl\ﬁ'l‘#f.'.':.';::;:-w
5 i
Q a
2
4]
F - .
3k]
-4

Fig. 8

Closed-Loop Response of Structure EPS

455

performance must be investigated. Design, modeling, simulation and testing criteria
from such studies will provide greater insight into the eventual adoptions of adaptive
structures as viable choice for future space systems design alternatives.

The real-time simulation procedures presented herein may be applicable to the vi-
bration control of lifeline equipment, and secondarily in minimizing the damage of build-
ings during earthquakes. In this applications, the sensor measurements used herein can
be directly applicable to the vibration and earthquake-causing forces on the structures.
An idea that may prove to be crucial in this case is the use of earthquake-generated
natural force as vibration minimization actuatori forces. In other words, instead of
trying to mitigate the earthquake-generating forces, exploit the natural forces instantly
to activate certain vibration minimizing devices! Research along this line may in the
end lead to the design of actuators attachable to the columns and floors, if properly
triggered during earthquakes, can minimize damages based on the natural forces.

Acknowledgements

It is pleasure to acknowledge the support from NASA/Langley Research Center un-
der Grant NAG-1-1021 and by Air Force Office of Scientific Research under Grant
F49620-87-C-0074. We thank Dr. Spencer Wu of AFOSR and Dr. Ernst Armstrong
of NASA /Langley Research Center for their encouragement during the course of this
study. We thank Prof. Charbel Farhat for his assistance in data structures and imple-
meftation aspects employed in the present study. ‘

References

1. Jaffe, B., Cook, W. and Jaffe, H., Piezoelectric Ceramics, Academic Press, London
and New York, 1971.

(54

Zelenka, J., Piezoelectric Resonators and Thetr Applicatior s, Elsevier Science Pub-
lishing Co., Inc., New York, 1986.

3. Cross, L.E., Piezoelectric and electrostrictive sensors and actuators for adaptive
structures and smart materials. In Adoptive Structures, ed. B.K. Wada, ASME,
AD-Vol. 15, New York, 1989, pp. 9-17.

4. Fbrwa.rd, R.L., Electronic damping of vibrations in 6ptical structures. Journal of
Applied Optics, 1979, 18 (5), 690-697.

5. Crawley, E.F. and de Luis, J., Use of piezoelectric actuators as elements of intelli-
gent structures. AJA4 Journal, 1987, 25, (10), 1373-1385.

6. Bailey, T. and Hubbard, J.E., Distributed piezoelectric pol};mer active vibration
control of a cantilever beam. Journal of Guidance, Control,and Dynamics, 1985,
8, (5). '

10.

11.

12,

13.

14.

15.

16.
17.

18.
19.

456

Hanagud, S., Obal, M.W. and Calise, A.J., Optimal vibration control by the use
of piezoceramic sensors and actuators, AIAA Paper No. 87-0959, presented at the
28th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials
Conference, Monteray, CA, April 1987, pp. 987-997.

. Lee, C.K., Chiang, W.W., and O’Sullivan, T.C., Piezoelectric modal seﬁs;)rs and

actuators achieving critical damping on a cantilevered plate. Proc. the 30th
AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conf.,
AIAA, Washington D.C., 1989, pp. 2018-2026.

. Baz, A. and Poh, S., Performance of an active control system with piezoelectric

actuators. Journal of Sound and Vibration, 1988, 126, (2), 327-343.

Newnham, R.E., Skinner, D.P. and Cross, L.E., Connectivity and piezoelectric-
pyroelectric composites. Mat. Res. Ball., 1978, 13. 325.

Lee, C.K., Piezoelectric laminates for torsional and bending modal control: theory
and experiment. Ph.D. Thesis, Cornell University, [thica NY, 1987.

de Luis, J., Crawley, E.F. and Hall, S.R., Design and implementation of optimal
controllers for intelligent structures using infinite order structural models. Report
No. 3-89, Space Systems Laboratory, M.I.T., Cambridge, MA, 1989.

Tzou, H.S. and Tseng, C.1., Distributed piezoelectric sensor/actuator design for
dynamic measurement/control of distributed parameter systems: a finite element
approach. Journal of Sound and Vibration 1990, 137, (1).

Nailon, M., Coursant, R.H. and Besnier, F., Analysis of piezoelectric structures by
a finite element method. ACTA Electronica, 1983, 25, (4), 341-362.

Hagood, N. and von Flotow, A.; Modelling of piezoelectric actuator dynamics
for active structural control. AIAA Paper No. 90-1087, Proceedings of the 31st
AJAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials
Conference, Long Beach, CA, April 1990, pp. 2242-2256.

Galileo, G., Two New Sciences, Dover Publication, New York, 1954, pp. 284-288.

Napier, M., Memoirs of John Napier of Merchiston, William Blackwood, Edin-
burgh, 1834, p. 501.

Anonymous, Mathematica, Wolfram Résearch, Ipc., 1989.

Richardson, L. F., Weather Prediciton by Numerical Process, Dover, New York.
1922, p. 219. .

. Millgr, D., Collins, S. and Peltzman, S., Development of spatially convolving sen-

sors for structural control applications. AIAA Paper No. 90-1127, Pmc?edin!'.’
of the 31st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and
Materials Conference, Long Beach, CA, April 1990, pp. 2283-2297.

25.

30.

31

457

. Noor, A.K., Parallel processing in finite element structural analysis. In Parallel

Computations and Their Impact on Mechanics, ed. A.K. Noor, American Society
of Mechanical Engineers, New York, 1987, PP- 253-277.

. Bokhari, S.H., On the mapping problem IEEE Tranaactwm on Computers, 1981,

C-30, (3), 207-214. : ——-

. Fachat, C,, “On the mapping of massively parallel processors onto finite element
graphs,” Computers & Structures, Vol 32, No. 2, 347-354 (1989).

. Farhat, C., Felippa, C.A. and Park, K.C., “lmplementation Aspects of Concurrent

Finite Element Computations,” in Paralle]l Computations and Their Impact on
Mechanics, Amenca.n Society of Mechanical Engineers, \'ew York, 1987, pp. 310-
316.

Farhat, C., Sobh, N. and Park, K.C., “Transient Finite Element Computations
on 65,536 Processors: The Connection Machine,” Report No. CU-CSSC-89-01,
Center for Space Structures and Controls, University of Colorado, February 1989,
to appear in International Journal on Numerical Methods in Engineering, 1990.

. Farhat, C., A simple and efficient automatic finite element decomposer Computers

& Structures, 1988, 28.

. Park, K. C. and Belvin, W. K., “A Partitioned Solution Procedure for Control-

Structure Interaction Simulations,” to appear in J. Guidance, Control and Dy-
namics, 1990.

. Belvin, W. K. and Park, K. C., “Computer Implementation of Analysis and Opti-

mization Procedures for Control-Structure Interaction Problems,” Proc. the 1990
AIAA Dynamics Spacialist Conference, Paper No. AIAA-90-1194, Long Beach,
Calif., 3-6 Aprl 1990.

. Anderson, E., Moore, D., Fanson. J."and Ealey, M., Development of an active

member using piezoelectric and electrostrictive actuation for control of precision
structures. AIAA Paper No. 90-1083, Proc. of the 31st AIAA/ASME/ASCE
/AHS/ASC Structures, Structural Dynamics and Materials Conference, Long
Beach, CA, April 1990, pp. 2221-2233.

Matsunaga, S. Miura, K. and Natori, M., A construction concept of large space
structures using intelligent/adaptive structures. AIAA Paper No. 90-1128, Pro-
ceedings of the 31st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dy-
namics and Materials Conference, Long Beach, CA, April 1990, pp. 2298-2305.

Takahara, K, Kuwao, Shigeshara, M. Katoh, T., Motohashi, S.and Natori, M.,
Piezo linear actuators for adaptive truss structures. In Adaptive Structures, ed
B.K. Wada, -\S\/IE 1989, pp. 83-38.

32.

458

de Luis, J. and Cﬁwley, E., Experimental results 6f 4ctive control on a proto-
type intelligent structure. AIAA Paper No. 90-1163, Proceedings of the 31st

© AJAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials

33.

34.

35.:

Conference, Long Beach, CA, April 1990, pp. 2340-2350.

Rogers, C. and Ramaseshan, A., Investigation of embedded actuators using gener-
alized laminated plate theory. AIAA Paper No. 90-1168, Proceedings of the 31st
AJAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials
Conference, Long Beach, CA, April 1990.

Burke, S. and Hubbard, J.E., Active vibration control of a simply-supported beam
using a spatially distributed actuator. JEEE Control Systems Magazine, August
1987, 7,.(6), 25-30.

Arbib, M.A., Brains; Machines, and Mathematics, 2nd Edition, Springer-Verlag,
1987.

