
CU-CSSC-91-6

t

CENTER FOR

ANALYSIS,

SPACE STRUCTURES AND CONTROLS

PRELIMINARY DESIGN f '^ l

AND SOFTWARE SYSTEMS FOR

CONTROL-STRUCTURE INTERACTION

PROBLEMS

by

K. C. Park and

•-

K. Alvin

(NASA-CR-188018) A N A L Y S I S , PRELIHINARYj^^^^^fe N91-21729
DESIGN AND S I M U L A T I O N SYSTEMS FOR «^^^^^» __T H R U —
CONTROL-STRUCTURE I N T E R A C T I O N PROBLEMS Fina l fl&f N91-21732
Report (Colorado U n i v .) 164 p_«. CSCL 098 ,Unclas

\23^^1S~& G3/61 , 0001768)

January 1991

t

COLLEGE OF ENGINEERING
UNIVERSITY OF COLORADO
CAMPUS BOX 429
BOULDER, COLORADO 80309

https://ntrs.nasa.gov/search.jsp?R=19910012416 2020-03-19T18:50:34+00:00Z

Analysis, Preliminary Design and Simulation Systems
for

Control-Structure Interaction Problems

K.C. PARK AND K. F. AI,VTN

Department of Aerospace Engineering Sciences and
Center for Space Structures and Controls

University of Colorado, Boulder, CO 80309-0429

I

Final Report on Grant NAGl-1021, funded
by NASA Langley Research Center

SUMMARY

This is a final report on the tasks supported by NASA Langley Research Center un-
der Grant NAG1-1021, Analysis, Preliminary Design and Simulation Systems for

Control-Structure Interaction Problems. When the proposal was submitted, it was

intedned to be a three-year program, with its first-year effort to be concentrated on soft-

ware aspects of control-structure interaction(CSI) analysis. Due to the termination of the
grant at the end of its first-year period, appropriate adjustments had to be made in order
to make most out of the grant. The accomplishments from the one-year effort include: 1)

tLe delivery of a research-level CSI analysis software that runs both on SUN Workstations
as well as Alliant shared-memory parallel machines to Dr. W. K. Belvin of NASA/Langley
Research Center; 2) three presentations at conferences, one in a bound book publication,
the second in the 1990 AIAA Guidance and Control Conference Proceedings, and the

third to appear in a NASA/DOD/JPL proceeding on system identifications. Two of these
papers are being prepared for submittal to journal publications.

TABLE OF CONTENTS

SUMMARY

ENCLOSED PAPERS

K. A. Alvin and K. C. Park
Implementation of A Partitioned Algorithm for
Simulations of Large CSI Problems

K. C. Park, W. K. Belvin and K. A. Alvin
Second-Order Discrete Kalman Filtering Equations for
Control-Structure Interaction Simulations

K. C. Park, W. K. Belvin and K. A. Alvin
Parallel Computations and Control of Adaptive Structures

CTJ-CSSC-9H CENTER FOR SPACE STRUCTURES AND CONTROLS

IMPLEMENTATION OF A
PARTITIONED ALGORITHM
FOR SIMULATION OF LARGE
CSI PROBLEMS

by

K. F. Alvin and K. C. Park

March 1991 COLLEGE OF ENGINEERING
UNIVERSITY OF COLORADO
CAMPUS BOX 429
BOULDER, COLORADO 80309

Implementation of a Partitioned Algorithm
for Simulation of Large CSI Problems

K F. AJvin and K. C. Park

Department of Aerospace Engineering Science and
Center for Space Structures and Controls

University of Colorado
Boulder, CO 80309-0429

March 1991

Report No. CU-CSSC-91-04

Research spnsored by NASA Langley Research Center
under grant NAGl-1021

Summary

This report summarizes research work on the implementation of a partitioned numerical
algorithm for determining the dynamic response of coupled structure/controller/estimator
finite-dimensional systems. The partitioned approach leads to a set of coupled first and
second-order linear differential equations which are numerically integrated with .extrapola-
tion and implicit step methods. The present software implementation, ACSIS, utilizes par-
allel processing techniques at various levels to optimize performance on a shared-memory
concurrent/vector processing system. The current work also generalizes the form of state
estimation, whereby the Kalman filtering method is recast in a second-order 'differential
equation equivalent to and possessing the same computational advantages of the structural
equations. As part of the present implementation effort, a general procedure for the design
of controller and filter gains is also implemented, which utilizes the vibration character-
istics of the structure to be solved. Example problems are presented which demonstrate
the versatility of the code and computational efficiency of the parallel methods is exam-
ined through runtime results for these problems. A user's guide to the ACSIS program,
including descriptions of input formats for the structural finite element model data and
control system definition, can be found in Appendix A. The procedures and algorithm
scripts related to gain design using PRO-Matlab are included in Appendix B. In Appendix
C, a stability analysis for the partitioned algorithm is presented which extends previous
analysis to include observer dynamics, leading to a clearly definable stability limit. The
source code for the parallel implementation of ACSIS is listed in Appendix D.

1.0 Introduction

The present work on the implementation of a partitioned transient analysis algorithm for
the simulation of linear Control-Structure Interaction (CSI) problems has concentrated
on four major areas. The initial software implementation emphasized the user-friendly
aspect and a structural dynamics-oriented interface for experienced practitioners of finite
element analysis programs. Another reason for a new implementation of the algorithm
was that the initial architecture of the CSS software testbed developed by Belvin and Park
[1-2] had little provision for effective parallelization. CSS also included extensive links to
optimization and optimal control algorithms which were not central to the current work
and proved to be a further hinderance. This new software implementation was designated
ACSIS, for Accelerated Control-Structure Interaction Simulation, and led to significant
improvements in speed for particular problems on conventional serial processors due to
simpler and more economical storage of primary variables. ACSIS is also versatile in its
usage of a general Timoshenko beam element with pin release capability and shear correc-
tion factor adjustment, and control system definition via a single data file. A preliminary
Users Guide was developed for ACSIS, and the input formats were made compatible with
pre/postprocessing software developed for Sun and Silicon Graphics computers so that

1

future versions using parallel techniques via element mesh domain decompositions can rely
on the same X-Window-based I/O utilities. Table 1 documents runtime comparisons of
ACSIS and CSS on a sample 48 DOF problem simulated on a Sun 3/260 workstation using
a floating point accelerator.

2.0 State Estimation via Second-Order Kalman Filtering

One restriction of the CS3 software testbed was the form of dynamic observer equations
used in the partitioned algorithm as developed in [2]. However, Belvin and Park [3] showed
that a general Kalman filtering type of state estimation was not only possible in the parti-
tioned solution, but could be implemented at a very small additional cost in computations
by a slight modification in the way the dynamical equations of the plant are cast into
first-order form for filter gain design. The methods employed in [3] have been successfully
implemented into ACSIS, thereby enhancing the code's ability to handle a wide variety
of state estimation schemes. This is important as the application of optimal control tech-
niques to the state estimator problem leads to this more general form, and as the restric-
tions of the observer used in CS3 typically meant either discarding part of the observer
gain parameters, resulting in a loss in system performance.

ACSIS retains the option of using the more resricted observer form, as well as simple
full state feedback (no dynamic compensation). It is clear from examining the respective
equations, that for structures with stiffness-proportional damping, the only additional
calculations required for the Kalman filter is the multiplication of the LI gain matrix by the
predicted state estimation error vector 7 (see equations 25 of [3]). This is not a significant
portion of the computations required at each integration step, as the dimension of 7 is small
(number of sensors). By far the major costs are for computing an internal force of the
form Kq, and backsolving the factored integration matrix for the estimated displacement
states. This is verified numerically in the ACSIS results of Table 1 (using a restricted form
of observer) and version (Al) of Table 2. The model used in Table 1 is roughly comparable
to the 54 dof truss in Table 2, and both show the additional simulation time due to state
estimation is roughly the same as an additional transient analysis. Finally, the Kalman
filtering equations do not lead to any additional complications in parallel implementation of
the overall algorithm as compared to the more restricted second-order observer developed
for CSS.

3.0 Parallel Implementation of AC SIS

A primary emphasis in our work dealt with the optimization of the software implemen-
tation on a concurrent processing system. The platform chosen (primarily due to avail-
ability, initially at CU and later at NASA LaRC) was the Alliant FX/8 shared memory
multiprocessor system with 8 parallel processing units and vectorization capabilities. Ver-
sions of the software have been ported to the Alliant and compiled using the Concentrix
FX/Fortran optimizing compiler, which has available options for automatic vectorization
and concurrency of standard, problem-independent parallel computations.

The partitioned CSI algorithm has three primary levels of parallelism in its numerics which
can be exploited. At the highest level is the integration of the second-order dynamical plant
(structure) and filter (estimator) equations, which as designed are of roughly equivalent
size. Through the algorithm, these systems are effectively decoupled and independent
at each discrete time step, and thus may be handled in parallel by invoking a compiler
directive in the main program, which calls the respective subroutines simultaneously and
handles re-synchronization of the execution upon their return.

At a lower level of the algorithm, the structure and state estimator equations exhibit
symmetric, second-order forms typical of linear structural dynamics problems. It is well
known that computations related to the formation of the internal force vector, Kq, can be
re-implemented at an element level [4], which, through decomposition of the element mesh
[5], can be handled in parallel within exclusive subdomains. This technique becomes par-
ticularly attractive for larger problems on more massively parallel systems; in the present
work, the element-by-element (EBE) technique was not as effective as other types of paral-
lelism. It should be noted here that the partitioned algorithm employs implicit integration
methods, leading to systems of algebraic equations which are factored and solved using di-
rect, rather than iterative, numerical methods. Therefore, formulation of the internal force
vector is needed only in the formation of the known (right hand side) vector for integration
of the plant and filter equations. The alternative to EBE computations is multiplication of
the relevant displacement vector with the global stiffness matrix stored in profile (skyline)
form. To "simulate" the advantages of local memory typical in large-scale parallel process-
ing systems, the computed element stiffnesses were saved in shared memory for the EBE
calculations, thus avoiding the need to recompute this data at each integration step. In
addition, a low-overhead automatic element domain decomposition was provided for the
parallel EBE method.

The final and lowest level of parallelism is obviously that of the basic matrix computations
such as addition, multiplication, etc. These numerical operations are inherent in nearly
all areas of the software implementation, including problem preprocessing. With the very
capable optimizing compiler available on the Alliant system, this parallelism was exploited
through vectorization and concurrency of the nominal source code using the FX/Fortran
compiler run-time options -0 -DAS -alt. The performance of the resultant executable
code was examined using the Alliant's profiling capabilities, and changes to the nominal

source code, remaining compliant to F77, to maximize the identifiable concurrency and
thus enhance the resultant speed. This was particularly useful in the profile matrix/vector
multiply operation, whose speed is critical to the overall program performance.

4.0 Problem Descriptions

Three structural dynamics problems were developed for code testing at various levels of
complexity. All three problems have the following common features: simulations consisted
of 1000 integration steps and employed a stiffness-proportional damping. The damping
was not needed for algorithm stability, but to ensure consistency between the examples
and because the existence of damping in the plant equations has a strong influence on
program speed. The Kalman filter models were of second-order form [2] and equivalent in
size to their respective plant models. For controlled simulations, the control system began
operating after 100 integration steps, and all gain matrices were full (i.e. all model states
influence all actuators and are influenced by all sensors). Additional specific information
for the problems follow. ,

A. Axial Vibration of Elastic Bar (Spring Model)

Nodes: 3 free, 1 fixed
Elements: 3

Degrees of freedom: 3
Actuators: 1

Sensors: 1
Disturbance: Initial displacement

B. Planar Vibration of Space Truss (Truss Model)

Nodes: 18 free
Elements: 33

Degrees of freedom: 54
Actuators: 4

. # Sensors: 6
Disturbance: Bang-bang type sinusoidal applied force

C. General 3D Vibration of EPS Satellite Reboost (EPS7 Model)

Nodes: 97 free
Elements: 256

Degrees of freedom: 582
Actuators: 18

Sensors: 18 •
Disturbance: Bang-bang type square wave applied force

As can be seen, the problem sizes are roughly three different orders of magnitude, with
corresponding increases in the sizes of the control systems. Appendix B includes routines
using Matlab for the design of control and filter gains which were used for the control
system design of all three example problems. An illustration of the EPS model is shown
in Figure 1.

5.0 Performance Assessment

Table 2 compares CPU runtimes on the Alliant computer (using the UNIX "time" com-
mand) for distinct versions of the software. Version (Al) is the nominal F77 program code
compiled without any performance-enhancing options, while version (A2) invokes auto-
matic vectorization and concurrency of low-level, problem-independent computations such
as vector addition and inner products. The performance improvements are significant,
especially for the large EPS? model, where the speed-up factor is 35-37.

Version (A3) also uses the compiler options .-from (A2), but in addition has a compiler
directive added to the main program which allows the plant and filter integration subrou-
tines to be called in parallel. This does not affect the transient response results as that
analysis option bypasses the altered code, but for controlled response there is some effect
on performance. If filtering is used, which results in a significant increase in computation,
the directive can lead to some increased speed as can be seen for the spring and truss prob-
lems. There can also, however, be a reduction in performance as compared to (A2) if the
finite amount of processors and vector units are used in a less efficient way. This appears to
be the case for the large EPS problem, where the "overhead" introduced by the directive,
and its effect on processor assignment, is greater than the improvement generated by the
manually-invoked parallel construct.

Table 3 shows CPU run times for ACSIS using E-B-E computations, which, as mentioned
previously did not lead to better performance on the example problems using the Alliant
system. This appears to be due to the lack of effective vectorization of the individual
element computations when forming the internal force via the EBE method. To deter-
mine whether the EBE method effectively lead slower speeds through increased numbers
of computations, version (A2) (see above) was altered by removing compiler optimization
of the profile matrix/vector multiply routine (the alternate method to EBE). The resultant
runtimes matched almost exactly with those of version (A4), leading to the conclusion that
both methods require roughly the same amount of computations, but differ in how they
can be optimized on the Alliant system. The matrix/vector multiply operation, in this
environment, can exploit both vectorization and concurrency through the compiler's per-
formance options; this can be examined in the compiler output. The EBE computations,
at the element level, do not vectorize because the parts of the global displacement and force
vectors being operated on per element are not contiguous. In version (A5), the elements
within each subdomain of the mesh are computed in parallel, leading to some performance

Overall, versions (A2) and (A3) provide the best code performance for the hardware avail-
able. Parallelizing the observer and structure (A3) leads to mixed results; improvement
for the small spring and truss problems, but not for the large EPS model. Element-by-
element computations do not improve code performance over compiler optimization via
vectorization and concurrency for this platform. Reimplementation of the algorithm lead
to a 5:1 improvement over the CSS testbed software on a serial computer (Table 1). Fur-
ther optimization of ACSIS on the Alliant FX/8 lead to an additional 30:1 improvement in
runtimes for large-order systems such as the 582 dof EPS model. Time history responses
of selected variables for the example problems are shown in Figures 2 through 10. For
Figures 8 through 10, the ux ,uy ,u z displacements plotted are located at node 45, which
is located at the vertex of the large antenna of the EPS model (see Figure 1).

6.0 Conclusions

The present work has demonstrated the efficiency of a streamlined simulation code for
the analysis of large-order CSI systems and the viability of the continuous second-order
Kalman filtering equations for state estimation. These methods show the versatility of
the partitioned CSI integration algorithm and the promise of its application to real-time
simulation. It is evident, however, that the use of element-by-element computational tech-
niques requires the development of innovative algorithms for effective implementation on
massively parallel processing systems. Future work in this area will include integrating
algorithms for on-line system identification and applying these capabilities to the problem
of real-time control.

Acknowledgements

The work reported herein was supported by NASA/Langley Research Center through grant
NAG 1-1021 with Dr. Ernst Armstrong as Langley's technical monitor and by Air Force
Office of Scientific Research through grant F49620-87-C-0074 with Dr. Spencer Wu as the
AFOSR technical monitor. We thank them for their interest and encouragements.

Simulation

Transient

Full State
Feedback

FSFB with
Observer

CSS

439.2

68S.2

1156.7

ACSIS

98.8

181.5

282.3

Table 1: Comparison of Runtime Speeds for CSS and ACSIS
on a Sun 3/260 System

Model

3DOF
Spring

54DOF
Truss

582 DOF
EPS7

•

Problem
-Type

Transient
FSFB

K. Filter

Transient
FSFB

K.Filter

Transient
FSFB

K. Filter

(Al)

Nominal
Code

6.6
8.0

12.3

78.2
97.1

170.7

3506.
7040.

n/a

(A2)

Compiler
Optimized

2.1
3.3
3.5

5.7
9.4

13.0

98.6
190.2
284.2

(A3)

Parallel
Observer

2.1
3.3
3.3

5.6
10.2
10.7

100.3
294.5
312.5

Table 2: CPU Results for Versions of ACSIS

, 1

Model

3DOF
Spring

54DOF
Truss

582 DOF
EPS?

Problem
Type

Transient
FSFB

K. Filter

Transient
FSFB

K.FUter

Transient
FSFB

K. Filter

(A4)

E-B-E
Computation

3.8
4.9
6.6

31.7
35.5
62.6

391.7
485.9

n/a

(A5)

Parallel
E-B-E

3.3
4.4
5.6

13.0
16.9
27.3

153.9
245.9

n/a

(A6)

Parallel
Obs. & EBE

3.3
4.9
5.0

13.0
35.6
36.2

n/a
n/a
n/a

Table 3: CPU Results for ACSIS with EBE Computations

I ,

SAMCg-SACON ! Graphic af»«

1.000

'to
10.

Cnitt Customlii Print Scr**n

Figure 1: EPS Finite Element Model

ORIGINAL PAGE IS
OF POOR QUALITY

Spring Model: Open Loop Transient Response

0.000 0.100 0.200 0.300 0.400 O.SOO 0.600 0.700 0.300 0.900 1.000

Time, see

Node 3, ux

Figure 2: Spring Transient Response

10

Spring Model: Full State Feedback Response

o.ioo

0.080

0.060

0.040

0
a 0.020
t
1
• o.ooo
t
1
o -0.020
n

-0.040

-0.060

-0.080

-0.100

0.000 0.100 .0.200 0.300 0.400 O.SOO 0.600 0.700 0.300 0.900 1.000

Time, see

Node 3, ux

Figure 3: Spring FSFB Response

11

Spring Model: Controlled Response w/Kalman Filter

o.ioo

0.080

0.060

0.040

0
e 0.020
f
1
• o.ooo
t
1
o -0.020
n

-0.040

-0.060

-0.080

-0.100 1 I I

0.000 0.100 0.200 0.300 0.400 0.500 O.SCO 0.700 0.300 0.900 1.000

Time, sac

Node 3, UK

Figure 4: Spring Response w/Filter

12

•l'.

6.00000 «-4

5.40000 «-4

4.30000 «-4

4.20000 8-4

D
a 3.60000 o-4
£
1
• 3.00000 0-4

c
1
o 2.40000 «-4
n

1.80000 *-4

1.20000 a-4

6.00000 a-S

0.000

Truss Model: Open Loop Transient Response

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

Tin*, sec

Mod* 9, uy

Figure 5: Truss Transient Response

13

Truss Model: Full State Feedback Response

6.00000 e-4

5.40000 e-4

4.80000 o-4

4.20000 e-4

• 3.60000 e-4
f
1

* 3.00000 e-4

e
i
o 2.40000 e-4
n

1.80000 o-4

1.20000 e-4

6.00000 e-5

0.000
I I I I _1 i

0.000 0.100 0.200 0.300 0.400 O.SOO 0.600 0.700 0.800 0.900 1.000

Time, sec

Node 9, uy

Figure 6: Truss FSFB Response

14

Truss Model: Controlled Response w/Kalman Filter

6.00000 «-4

5.40000 «-4

4.80000 0-4

4.20000 «-4

a 3.60000 e-4
f
1
' 3.00000 e-4

t.
1
o 2.40000 e-4
n

1.80000 e-4

1.20000 «-4

£.00000 «-5

0.000

0.000 0.100 0.200 0.300 0.400 O.SOO 0.600 0.700 0.300 0.900 1.000

Tlm«, sac

———— Hod* 9, uy

Figure 7: Truss Response w/Filter

15

EPS? Model: Open Loop Transient Response

f
1
e
c
t
1
o%
n

2.00000 e-4

1.70000 e-4

1.40000 «-4

I.10000 «-4

8.00000 «-5

S.00000 «-5

2.00000 9-5

-1.00000 e-5

-4.00000 e-5

-7.00000 e-5

-1.00000 e-4

0.000 1.000 2.000 3.000 4.000 S.OOO 6.000 7.. 000 8.000 9.000 10.000

Tina, s*c

Nod« 45, ux

Hod* 45, uy

Hod* 45, uz

Figure 8: EPS Transient Response

16

EPS7 Model: Full State Feedback Response

D
e
t
i
a
c
t
1
o
n

2.00000 «-<

1.70000 «-<

1.40000 *-4

1.10000 «-4

3.00000 «-5

5.00000 *-S

2.00000 «-5

-1.00000 e-S

-4.00000 e-S

-7.00000 e-S

-1.00000 e-4

0.000 1.000 2.000 3.000 4.000 5.000 £.000 7.000 8.000 9.000 10.0CO

Tine, sec

Node 45, ux
Node 45, uy

Node 45, uz

.Figure-9: EPS FSFB Response

17

EPS7 Model: Controlled Response w/Kalman Filter

2.00000 0-4

1.70000 e-4

1.40000 e-4

1.10000 e-4

8.00000 e-5

5.00000 e-5

2.00000 e-3

-1.00000 e-5

-4.00000 e-5

-7.00000 e-5

-1.00000 a-4

0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000

Tine, sec

Mode 45, ux

Node 45, uy

Node 45, uz

Figure 10: EPS Response w/Filter

18

REFERENCES

1. Belvin, W. K., "Simulation and Interdisciplinary Design Methdology for Control-
Structure Interaction Systems," PhD Thesis, Center for Space Structures and Con-
trols, University of Colorado, Report No. CU-CSSC-89-10, July, 1989.

2. Park, K. C. and Belvin, W. K., "Partitioned Procedures for Control-Structure Inter-
action Simulations," Journal of Guidance, Control, and Dynamics, Vol. 14, No. 1,
Jan.-Feb. 1991, pp. 59-67.

3. Park, K. C. and Belvin, W. K, and K. F. Alvin, "Discrete Second-Order Kalman
Filtering Equations for Control-Structure Interaction Simulations," Report No. CU-
CSSC-89-08, Center for Space Structures and Controls, University of Colorado, April
1989 (Submitted for publication in J. Guidance, Control and Dynamics).

4. Farhat, C. and Crivelli, L., "A General Approach to Nonlinear FE Computations on
Shared Memory Multiprocessors," Comp. Methods in Applied Mech. Eng., Vol. 72,
No. 2, pp. 126-152 (1989)

5. Farhat, C., "On the Mapping of Massively Parallel Processors onto Finite Element
Graphs," Report No. CU-CSSC-88-02, Center for Space Structures and Controls,
University of Colorado, April 1988

19

Accelerated
Control
Structure
Interaction
Simulation

Introduction

ACSIS is an analysis program for full-order simulation of control-structure interaction
(CSI) problems. The CSI simulation is carried out using a partitioned analysis pro-
cedure which treats the structure (or plant), the observer, and the controller/observer
interaction terms as separate entities. This procedure allows ACSIS to maintain rela-
tively small, sparse matrix equations when compared to the process of assembling the
computational elements into a single set of equations of motion and solving simultane-
ously. Although this software can also carry out modal analysis, the transient response
and CSI simulation are done in real space using the entire finite element model. (For
more information, see Ref. 2 of report, p. 14)

The ACSIS program is run using two previously prepared data input files and interactive
input of run options. The two data input files are the finite element input file and the
controller definition file.

21

Interactive Options

The run options are as follows, note that no defaults exist, data must be input each
time it is requested for each item requested except during a background run. Files may
be given any names, example names are given only to match the truss example at the
back of this manual.

Please input analysis type:

This option is for selecting modal analysis, CSI simulation or the transient response of
a structure. Not all interactive inputs are required for each analysis type.

Do you wish to save an input file? (y or n)

This option creates a file which saves all the interactive input options. ACSIS can be
background run with minor option changes by editing this file and then directing the
screen input to this file. This file is very different for each analysis type . (To do this
run with the example names after running acsis.exe once interactively, the command
would be: acsis.exe <INP_truss> &.

Name of save input file? (filename)

This question asks for the name under which to save the interactive input, example
name: INP.truss

Finite Element Model Input File Name (filename):

This file should contain all the finite element nodes, mesh, materials, properties, lumped
inertias, fixations, and initial velocity and displacement conditions. It must be prepared
in advance in the card format specified later, example name: FEM_tmss

Number of modes desired?-

This only appears in the modal analysis to request the number of modes to be output.
The actual analysis is carried out with double this number of modes for accuracy.

Controller Definition File Name:

This only appears for the CSI simulation. The file should contain the actuator and
sensor locations, control gains, and observer gains. It also must be prepared in advance
in card format, example name: CON.tniss

Please input type of control::

This option is for selecting the form of control law equations used in the CSI simulation.
Full state feedback uses the current states of the plant (structure) to determine the
control via constant gain matrices. Second-order observer uses only the L2 filter gain
matrix of a Kalman filtering type of state estimation where the state variables are
position and velocity. The Kalman filter option allows the use of a full set of filter
gains, but the gain design must come from a alternate variable casting using position
and generalized momenta.

22

Initial time, final time, control-on time, step size:

Data format is four columns for CSI, but only three columns for transient response since
the control-on time part is deleted.

Forcing function ID, scale factor, damping coeff- a,b:

In order for any time dependent forcing function to be easily implemented despite vari-
able time step sizes, the forcing functions must be entered into the subroutine f orces.f.
The format is to assign each new forcing function an ID number in a elseif statement.
An example of f orces.f is included at the back of the manual. Then f orces.f must
be recompiled into an object file and acsis.eze relinked. This is easily done by typing
make which detects changes to the fortran files and does only the necessary compiling.
A particular forcing function is chosen by entering its ID number in the first column,
in addition the force can be scaled by a constant using the scaling factor in the second
column. The Rayleigh damping coefficients a and b are the third and fourth columns.

Phase lag fix? (y or n):

Specifies whether to include an extra iteration of control and sensor state prediction
at each integration step to improve accuracy. Not generally needed unless the user is
investigating the source of instability in a simulation and needs to test the sensitivity
of the response to the partitioned algorithm's extrapolation method.

Gain scale factors (4 total):

These scaling factors are, in order: the Fl control gain matrix (displacement), F2 control
gain matrix (velocity), LI and L2 state estimator filter gain matrix. This question
appears only for CSI.

ACSIS has two types of output options. The first is the displacement or velocity motion
of up to twenty separate degrees of freedom. Interactive questions are, 'Number of
displacement results to output (max 10)' followed by as many 'Input node #,
dof for displacement output #' as necessary. Then these repeat for velocity results.
The name of the file where the output will be stored is requested by 'Output file
name? (filename).' example name: OUT .truss. The second output option saves
the displacement of all nodes at any time step where output is sent (see next entry).
The format is suitable for animation of the entire structure. Question asks 'Animation
Output? (y or n)' then for an animation filename if necessary.

Send output every how many steps?

This option affects both output options to reduce the size of the output and animation
files. It causes output to only be sent after a integer number of time step iterations. To
get output each time step, simply enter 1.

23

Finite Element Input File

The finite element input file consists of title cards followed by columns of data. The title
cards can be in any order, but they must be all capitalized with the appropriate number
of columns of data for each card. The program reads rows of data until encountering
a new card. Data which represents an integer value may be entered with a decimal
point while real data may be entered without a decimal point as necessary. Any line
beginning with a * anywhere in the file is ignored and can be used to insert comments.
Any blank line will result in a read error.

NODES

Each node must be defined on a separate line. Columns can be separated by any number
of spaces or a comma. Data format is four.columns: node number, x-coordinate, y°
coordinate, z-coordinate.

TOPOLOGY

Each element must be defined on a separate line. Truss elements require two nodes then
two columns of zeroes. (Truss elements would also require pin releases in ATTRIBUTES
below.) Beam elements require two nodes then a third reference node representing a
point in the xz plane of the beam and then a column of zeroes. Element type refers to
finite elment formalation. (Currently only type 1 = timeshenko beam element is now,
available.) Data format is six columns: element number, element type, node #1, node
#2, node #3, node #4.

ATTRIBUTES

Each element is characterized by an ID number from each of the MATERIAL and PROP-
ERTIES cards below. Each element also has six pin release codes. The first code is for
longitudinal stiffness, the second code is for torsional stiffness, the third and fifth codes
are bending stiffness at each end in the y direction and must be the same value, and the
fourth and sixth codes are for bending stiffness in the z direction and also must be the
same. (0 is stiff, 1 is released.) Data format is nine columns: element number, material
type, property type, and six pin release codes.

MATERIAL '

The material data is formatted in four columns: material type, Young's modulus, shear
modulus and density of the material. .

PROPERTIES

The properties data is formatted in six columns: property type, cross sectional area of
the element,Jy * I,, Jy, Jr, shear shape factor SSF2, shear shape factor SSF3.

FIXITY

Nodes with any fixations are defined here in the finite element file. The nodes must be
entered with the fixity of all six of their DOF's, restrained or not. (1 is restrained, 0 is
free) Data format is seven columns: node number, x, y, z, <j) z ,<j>y ,<j) z .

24

INERTIA

All lumped inertias must be entered with each separate DOF on an individual line.
Therefore a single node could take up to six lines to define. Data format is three
columns: node number, DOF number (1-6), and value of inertia.

INITIAL CONDITIONS

All initial displacement and velocity conditions are entered into the finite element file.
Data format is four columns: node number, DOF number (1-6), initial displacement,
and initial velocity.

END

End of file.

Controller Definition Cards

The controller defintion file also consists of title cards followed by data entry. Each card
must be followed by the appropriate number of columns of data and in some- cases the
appropriate number of rows. Integers can be entered in real format and vice versa if
necessary. Any blank line will result in a read error.

NACT

Number of actuators in the entire control system.

BMAT

This entry creates the actuator position matrix or B matrix. There should be one
row for each actuator, data format is four columns: node number, DOF number (1-6),
actuator number, and sensitivity.

.NSEN
i

Number of sensors in the entire controls system.

HDMA

This entry creates the matrix of displacement sensor locations. One row per displace-
ment sensor, data format is four columns: node number, DOF number (1-6), sensor
number, and- sensitivity.

HVMA

This entry creates the matrix of velocity sensor locations. One row per velocity sensor,
data format is four columns: node number, DOF number (1-6), sensor number, and
sensitivity.

F1GA

This is a list of the Fl or displacement control gains. The data format is four columns:
node number, DOF number (1-6), actuator number, and value of gain.

25

F2GA

This is a list of the F2 or velocity control gains. The data format is four columns: node
number, DOF number (1-6), actuator number, and value of gain.

L1GA ,

This is a list of the state estimator Ll filter gains. The data format is four columns:
node number, DOF number (1-6), actuator number, and value of gain.

L2GA

This is a list of the state estimator L2 filter gains. The data format is four columns:
node number, DOF number (1-6), actuator number, and value of gain.

END

End of file.

Examples

This section includes all the files and procedures needed to run all three analysis on a
simple elastic bar problem. The naming of the files is a simple and easy to remember
system, however no particular format is necessary.

The finite element file was created simply by typing the node locations, connectivity
(topology), etc. with a text editor.

File: FEM_spring

*
MESH

NODES
1
2
3
4

0.00
1.00
2.00
3.00

0.
0.
0.
0.

00
00
00
00

0
0
0
0

.00

.00

.00

.00
TOPOLOGY
1
2
3

1 1
1 2
1 3

2
3
4

0
0
0

0
0
0

ATTRIBUTES
1
2
3

1 1
1 1
1 1

0
0
0

1
1
1

1
1
1

1 1
1 1
1 1

1
1
1

MATERIAL
1 1000. 0.0 0.0

PROPERTIES

26

1 1.00 0.00 0.00 0.00 0.0 0.0
FIXITY
1 1 1 1 1 1 1
2 0 1 1 1 1 1
3 0 1 1 1 1 1
4 0 1 1 1 1 1

INERTIA
2 1 0.100
3 1 0.100
4 1 0.100

INITIAL
3 1 0.100 0.000

END

The modal analysis only requires the number of modes desired in addition to the finite
element file. The file INP-springO documents the interactive inputs used in the modal
analysis. The results are saved in file EIG-spring.

File: INP_springO

-1
n

* ACSIS input file,two lines above are
* analysis type and save input file. Do
* not change them by editing this file.
* Finite element input file?(filename)

FEM_spring
* Number of modes desired?

3
* Output file?(filename)

EIG.spring

File: EIG_spring .

SUBSPACE ITERATION ROUTINE

NB OF EIGENVALUES-
NB OF VECTOR- 3
NB OF DOF- 3
TOLERANCE- l.OOOE-04

NB OF RIGID MODES-

ITERATION NO 1

27 -

l.OOOE+00 l.OOOE+00 l.OOOE+00
ITERATION NO 2

1.297E-14 3.194E-14 3.899E-14
EIGEN ANALYSIS RESULTS: ,f

RADIAL CYCLIC
MODE EIGENVALUE FREQUENCY FREQUENCY

1 1980.6 44.504 7.0831
2 15550. 124.70 19.846
3 32470. 180.19 28.679

EIGENVECTORS:

1 2.3305 1.8689 -1.0372 0. 0.
2 1.8689 -1.0372 2.3305 0. 0.
3 1.0372 -2.3305 -1.8689 0. 0.

MASS MATRIX DIAGONAL:
2 1 3 l.OOOOOOOOOOOOOD-01
3 1 2 l.OOOOOOOOOOOOOD-01
4 1 1 1.00000000000000-01

To run the transient response of the structure, a forcing function or initial condition
would be needed to excite the structure. An initial condition would be added to the
finite element file. A forcing function must be added to f orces.f with a new ID number,
then this number given as interactive input. In this case, an initial displacement acts
on the second degree of freedom, which is defined in the finite element model input file.
The file INPjspringl documents the interactive inputs used in the transient analysis.

File: INP_springl

-3
n

* ACSIS input file,two lines above are
* analysis type and save input file. Do
* not change them by editing this file.
* Finite element input file?(filename)

FEM_spring
* Initial, final, step size?

0.00000000 1.00000000 0.00100000
* Forcing function,scale f, damping a,b?

0 0.000000 0.00000000 0.00002000
* Output file name?(filename)

OUT.spring
* Number of displacement outputs?

1 '
3 1
* Number of velocity outputs?

28

Send output every how many steps?

Send animation output?(y or n)

In addition to the finite element file, the interactive input, and an excitation, CSI
simulation requires a controller definition file. A full state feedback controller for the
truss structure is defined in COH_spring.

File: COH-spring

HACT
1

BMAT
3 1 1 1.0

F1GAIH
2 1 1
3 1 1
4 1 1

F2GAIN
2 1 1
3 1 1
4 1 1

NSEN
1

HVMAT
3 1 1 1.0

L1GAIN
2 1 1
3 1 1
4 1 1

L2GAIN
2 1 1
3 1 1
4 1 1

END

193.31415000000
1574.6315000000
•1669.0460000000

20.774256000000
27.790403000000
10.780212000000

8.7928909000000D-02
-4.8807901000000D-02
3.0102735000000D-03

1.0380932000000D-01
6.1410130000000
-3.0608725000000

Then if acsis.exe is run interactively and the input is saved, the file INP_spring2 can
be produced. The file could be edited to change the input files, the output file, the
forcing function ID, the length of simulation, control-on time, etc. Then to run it again,
type acsis.exe<INP_spring2> scr 4. The scr is a scratch file which will store the
screen output.

File: IHP_spring2

-2

29

n •
* ACSIS input file,two lines above are
* analysis type and save input file. Do
* not change them by editing this file.
* Finite element input file?(filename)

FEM_spring
* Controller file name?(filename)

CON_spring
* Please input type of control:
3
* Initial,final,control-on.step size?

.0.00000000 1.00000000 0.10000000 0.00100000
* Forcing function.scale f, damping a,b?

0 0.000000 0.00000000 0.00002000
* Phase lag fix?(y or n)

n ' • ,
* Gain scale factors (4 total)?

1.00000000 1.00000000 1.00000000 1.00000000
* Output file name?(filename)

OUT_spring
* Number of displacement outputs?

1
3 1
* Number of velocity outputs?

0
* Send output every how many steps?

1
* Send animation output?(y or n)

30

Gain

31

Introduction

In order to retain simplicity in the ACSIS code for parallel implementation purposes,
no control system design algorithms were included. Instead, using modal data out-
put from the eigenmode analysis module of ACSIS, a procedure was developed using
the Pro-Matlab and its Control System Toolbox* which includes algorithm scripts for
optimal control solutions via the solution of an algebraic Ricatti equation. In order to
accomodate large order dynamical systems, the design is accomplished in the uncoupled
normal modes domain, using the available lowest eigenmodes from ACSIS.

The procedure begins by copying and editing the mode data output from ACSIS (see
the listing for EIG_spring in Appendix A) into readable variables for input to Matlab.
The typical approach was to create one file as a Matlab script (i.e. a " .m" file), with
the eigenvalues, eigenvectors, and mass/dof data from ACSIS at the beginning, followed
by actuator and sensor influence matrices (related to the physical degrees of freedom),
the objective function weighting matrices, and the function which calls other Matlab
scripts to determine the solution. An example of the above input for the spring problem
described in Appendix A is in file EIG_spring.m, which is listed below. Compare this
the the ACSIS mode data output shown in Appendix A to see how the editing was
accomplished, and the additional control design data added

File: EIG_spring. m

lam » C 1980.6
15550.
32470.];

vl=[l 2.3305 1.8689 -1.0372 0. 0.
2 1.8689 -1.0372" 2.3305 0. 0.
3 1.0372 -2.3305 -1.8689 0. 0.];

m»[2 1 3 l.OOOOOOOOOOOOCD-01
3 1 2 1.00000000000000-01
4 1 1 l.OOOOOOOOOOOOOD-01];

t-[vl(:, 2:4)3;
qbazeros(3,l);

hd=zaros(l,3);
hv=zeros(l,3);

qv»Cl;.5;.l3;
qadiag([qv;qv3);

[fl,f23=nlqr(lan,t,m,qb,q,r,3);
qv=[l;l;l3;
q=»diag([qv;qv]);
rs»100*ey«(l);
Dsl,k2]=mkf (lam,t,m,hd,hv,q,r,3) ;
save flout fl /ascii
save f2out f2 /ascii

32

save klout kl /ascii
save 3c2out k2 /ascii

The scripts mlqr .m and mkf .0 were written to accept as input the vector of eigenvalues,
the eigenvector matrix (orthogonal vectors stored in columns), a matrix of node, com-
ponent, d.o.f, mass data, and the actuator (or sensor) influence matrix and weighting
matrices. The scripts output the gain results in four-column arrays, with one gain per
row, and the corresonding node number, displacement component, and actuator (or
sensor) identification. The top-level problem script (listed above) then saves the output
in external files and the analysis is complete. The design scripts (listed below) also
include checks on controllability and observability of the system based on the modal
data and influence matrices defined, and produce plots of the closed loop poles resulting
from the gain design. This aids the analyst in assessing the expected performance (and
stability) of the exact system before moving the data back to ACSIS for simulation.
The script contrank.m finds the rank of the controllability matrix through iterative
rank calculations of submatrices so as to avoid the iilconditioning experienced in the
full matrix. This is both.faster and more accurate for determining whether a particular
actuator placement has full control of the included structural modes.

File: mlqr.m

f vinct ion [F lout, F2out]=mlqr(lam, t ,m,qbfl ,R,nmode)
X
X Controller gain design for second-order
X structural system via given eigenmodes.
X Gains are transformed to be coefficents
f» of structural variables (disp,velocity);
7, i.e. plant is second-order, of size ndof.
* '
X Arguments:
'/•
X lam: vector of eigenvalues (nmode x 1)
X t: matrix of eigenvctors (ndof x nmode)
X m: mass diagonal and dof mapping info (ndof x 4)
X qb: actuator position influence matrix (nact x ndof)
'/. Q: optimal design state weighting matrix (2*nmoda x 2*nmode)
X R: optimal design feedbk weight, matrix (nact x nact)
x
ft Flout: Fl gain matrix for 2nd-order plant
X F2out: F2 gain matrix for 2nd-order plant
'/.
X Written by K.F. Alvin
X
format short e
TMnoHTnxTal oTiirt'.Vi ̂ 1 am^ j

[ndof,nact]8size(qb);
X
X Variables:
X mass: mass matrix

33

X A: state transition matrix
X B: actuator influence matrix
X G: control gain matrix
X
masad(m(:,3))»m(:,4)}
massadiag(massd) ;
A= [zeros (nmode) ,eye(nmode) j-l*diag(laB(l:nmode)) , zeros (amode)] ;

, eye(nmodmax) ; •"i*diag(lam) » zeros (nmodmax)J ;
B» [zeros (nmode.nact) ;t(: ,l:nmode)'*qb] ;
Bmaxa [zeros (nmodmax , nact) j t ' *qb] ;
disp ('Number of structural modes and actuators used:')
disp ([nmode ,nact])
disp ('Rank of the controllability matrix :')
disp (contrankCA ,B))
disp ('Determining controller gains for given system. . . ')
G=lqr(A,B.Q,R);
Hmax«l . l*max(sqrt (lam)) ;
axis ([-wnax .amax , -wmax , wmax]) ;
plot(eig(A-B*G),'*»)
grid
titleC 'Roots of controlled system')
hold
pause
y.
% partition gain matrix

: ,l:nmoda);
G2SG (: , nmode* 1 : nmode+nmode) ;
X
X Transform resultant gain matrices for use in
X partitioned csi algorithm using second-order
X structure (plant) equations.
X
dispC 'Mapping gar'ns back to physical domain...')
f laGl*t (:, 1 : nmode) ' *mass ;
f 2=G2*t (: , 1 : nmode) ' *mass ;
X
X find modal damping ratios of controller for calulated gains:
X
Gmax»[fl*t,f2*t];
lambdaaeig(Afflax-Bmax*Gmax) ;
plot (lambda,'*')
pause
nfreqosqrt (imag(lambda) ."2 + real (lambda) . ~2) ;
mdampa-r eal (lambda) ./nfreq;
disp ('Resultant modal damping ratios for controller: ')
disp([' Damping ',' Damped Freq (rad/s) '])
disp([mdamp,nfreq.*sqrt(l-mdamp.~2) .lambda])
bdampsmax(-2*mdamp . /nf req) ;
disp ('Estimated mTnimtTn stiffness damping coefficient necessary')
dispC to stabilize residual modes due to gain roundoff accumulation:')
disp(bdamp)
disp('Writing gains in node correspondence output form — ')

34

Flout=zeros(nact*ndof,4);
F2out=zeros(nact*ndof.4) ;
for i»l:nact;
kmin»(i-l)*ndof+l;
kmax3i*ndof;
Flout(kmin:kmax, :)"[m(: ,1:2) ,i*ones(ndof,1) ,fl(i,m(:,3))'] ;
F2outOniin:kmax, :) = Dn(: .1:2) ,i*ones(ndof ,1) ,f2(i.m(: ,3))'] ;

end;
disp('Finished mlqr')

File: mkf .m

functionD«lout ,L2out] «mkf (lam, t ,m,hd,hv, Q ,&,nmode)
X
X Kalman filter design for second-order
X structural system via given eigenmodes
X and transformed to independent
X displacement/gen, momentum variable
X casting for partitioned csi transient
X analysis. See Belvin/Parfc paper for
X filter variable definitions.
X
X Arguments:
X
X lam: vector of eigenvalues (nmode x 1)
X t: matrix of eigenvctors (ndof x nmode}
X m: mass diagonal and. dof mapping info (ndof x 4)
X hd: sensor position influence matrix (nsen x ndof)
X hv: velocity position influence matrix (nsen x ndof)
X Q: optimal design state weighting matrix (2*nmode x 2*nmode)
X R: optimal design feedbk weight, matrix (nsen x nsen) ;

X
X Llout: LI gain matrix for 2nd-order filter
X L2out: L2 gain matrix for 2nd-order filter
X
X Written by K.P. Alvin
X
format short e
^mnrfmaTal onarfeh O anO j

[nsen,ndof]=size(hd);
X
X Variables:
X mass: mass matrix
X A: state transition matrix
X G: noise influence matrix
X C: output influence matrix
X K: filter gain matrix >
X
massdCmC:,3))=m(:,4);
massadiag(massd);
Aa[zeros(nmode),aye(nmode);-l*diag(lam(l:nmode)).zeros(nmode)];
Amaxs[zeros(nmodmax),eye(nmodmax);-l*diag(lam) .zeros(nmodmax)] ;

35

G=eye(nmode+nmode) ;
C»Chd*t(: ,l:nmode) ,hv*t(: ,i:nmode)3 ;

disp ('Number of structural modes and sensors used:')
disp ([nmode ,nsen])
disp ('Rank of the observability matrix: ')
disp (eontrankU ' ,C '))
dispODeteraiaing fiiter gains for given system. . . ')

X
X partition gain matrix
X
Kl=K(l:nmode,:);
K2=K (anode* i : nmode+nmode , :) ;
Kmaxa [Kl; zeros (nmodmax-nmode,nsen) ;K2; zeros (nmodmax-nmode.ns en)] ;
X
X find modal damping ratios of filter for calulated gains:

lambdaaeig(Amax°Kmax*Cmax);
plot (lambda,'*')
hold
pause
als-real (lambda) ;
bl^imag (lambda) ;
disp ('Result ant modal damping ratios for filter:')
disp(C' Damping ',' Freq (rad/s) '])
disp([al ./sqrt (al . ~2+bl . "2) ,bl])
X
X Transform resultant gain matrices for use in
X partitioned esi algorithm using second-order
X Kalman filter approach.
X
disp ('Mapping gains back to. physical domain...')
ll»t (:,1: nmode) *Ki;
12=mass*t (: , 1 : nmode) *K2 ;
dispC Writing gains in node correspondence output form; . . ')
Lloutazeros(nsen*ndof ,4) ;
L2out3zeros(nsen*ndof ,4) ;
for ial:nsen;
kmin=(i-l) «ndof +1 ;
kmazai*ndof ;
Llout(kmin:kmax. :)»Cm(: ,1:2) ,i*ones(ndof ,1) ,ll(m(: ,3) ,
L2out(kmin:kmax. :)«Da(: .1:2) ,i*ones(ndof .1) ,12(m(: ,3) ,
end;
disp (' Finished mkf')

File: co&trank.m

function mazranlcacontranlc(a,b)
maxranksO ',
[nstate,nact]»size(b) ;

36

mat=b ;
newrank^raakGnat) ;
while nawraok > maxrank

mat* Dnat , (a"i) *b] ;
newrank«rank(mat) ;
if nevranka*nstate

maxrankanevrank ;
end

end

Unfortunately, the external files created from Matlab with the gain results are written
completely in terms of real numbers, whereas the first three columns are actually to be
read by ACSIS as integers (they are used as indices). A separate utility was written to
convert the format of these files; the source code is listed below. On Unix systems, the
user simply assigns the standard input to be the current data file created by Matlab,
and gives another file name for the standard output. The code is basically just a filter to
change the three columns of indices to integers. The output can then be pasted directly
into the control definition file used by ACSIS.

File: convcont.f

program convcont

parameter (NMAX=100000)
real*8 f(NMAX),v(4)
integer node(UMAX),dof(NMAX).act(NMAX)

n=0

100 read (*,*,err=200,end=200) (v(i),i=l,4)
nsn+1
node(n)=int(v(D)
dof(n) »int(v(2))
act(n) =int(v(3))
f(n) »v(4)
goto 100

200 do 300 i»l,n
print *, nodeCi).dof(i),act(i),f(i)

300 continue

end

37

APPENDIX C

Stability Analysis of a
CSI Partitioned Simulation ,

Algorithm with State Estimator

38

The equation of the open-loop plant without passive damping in modal second-order
form is ,

The controller uses a second-order observer to estimate the plant state, along with a
full-state feedback control gain design. . .

lp = v + fr (2)

j -z-p

where q and p are the plant and estimator states, respectively, u is the control force, 7
is the state estimation error, z is the sensor output, and 77, £,£ are gain coefficients for
position and velocity feedback, and the estimator filter.

•The partitioned analysis procedure uses a stabilized form of the control law and esti-
mation error determination to reduce inaccuracies associated with the extrapolation of
variables in the controller force prediction. A first-order filtering is achieved by taking
the time derivative of (2a,c),

ti = -rju*p - (up

and then embedding the equations of motion through substitution for p. This leads
to the following two* coupled, .first-order differential equations for the prediction of the
control force u and state error 7.

Time discretization of (4) using an implicit midpoint rule leads to the following coupled
difference equation:

B 3 2 C w \ . n ,-.iK (o)

where 6 = half-step size = j. Solving this equation requires knowledge of the plant (to
obtain sensor output) and observer states. These values are extrapolated as:

?*. r
39

Using these equations to obtain un+ * and 7"+ a allows the plant and observer equations
to be solved independently. Midpoint time integration of (1) and (2b) leads to the
following equations:

n + 6q

Sp

qn+l = - q

- q

- q

- q

Computational stability of the modal form of the CSI partitioned equations of motion
using the aforementioned time discretization can be assessed by seeking a nontrivial
solution of

pn
(8)n+l

such that

(9)

for stability. Subtituting (8) into (5-7), we obtain

Jx = 0 (10)

where

J =
J22

(11)

40

0
0
0
0

0

0
0
0

J12 =

'0
0
0
0
0
o

0
0
0
0

J22 =

• 1
-1
0
0
0

. 0

0
(1 +

0
0
0

' 0

"0 (1 +

0
0
5\

.-»
—2

0
^w
52£
•5f
0
0

0
5

-52

0
0
0

0
0

0
0
0
0
0
0

0
0
0
0
0
0

0

0
0
0
0
0
0

u2) 0

A

0 -1 -5
0 0 £0;
-1 -5
1 \ 0
+ 1 0
-2 0 A + l

0
0
0
0
0
0

0 0'
0 0
0 0
0 0
0 0
0 0.

0 0
0 1
0 0
0 0
0 0
0 0

-

-

0 0 -1 . •
0 0 0

+ 5V)

-1
-2
0

0 - 1 - 5
i 1 o
0 A + l 0

-2 0 A + l.

A nontrivial solution to (10) is found from

det J = 0

which leads to the characteristic equation

((1 -

((1 - 50 (52u;

(12)

(13)

(14)

(15)

(16)

(17)

where

41

Re(z)<Q .(18)

Thus, a test of the polynomial equation for possible positive real roots by the Routh-
Hurwitz criterion indicates that the partitioned .approach as applied to the modal equa-
tions give a computationally stable solution for no velocity feedback C = 0 provided

(20)

42

APPENDIX D

ACSIS Source Code

43

File: Makefile

.SUFFIXES: .f .o

FFLAGS *

.f.o:

OBJS

fortran -c $(FFLAGS) $*.£

aesis.o
b«aa3d.o
psvml.o
read.o
zaroveet.o
eoatrol.o
eigens.o
stiffre.o
klilter.o

acsisout.o
forces,o
prepfaa.o
solvar.o
lu.o
sacorder.o
singaig.o
•stifvm.o

addstf.o
input.o
profile.o
nephlag.o
prapeon.o
'measure.o
animout.o
renum.o

\
\
\
\
\
\
\
\

acsis.axa: $(OBJS)
fortraa -o acsis.axa $(FFLAGS) $(OBJS)

File: shared.inc

c

c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c.
c
c

sharad.inc (ACSIS database)

-

Argunent daiinitiono:
adamp:
b:
brow : .
bcol:
bval:
bdamp:
coafila:
contypa :
coxyz :
dalta:
dalaq:
•c:
•oat:
•o:
•prop :
••:
•typ«:
alana:
f:
21:

,Raylaigh danping coaflicient alpha
actuator location matrix (packed storage)
row number of corresponding real value in b
column number of correaonding real value in b
number of nonzero values in b
Raylaigh damping coefficient beta
controller input file name
id for type of control
array of the x,y, and z components of each node
one-half time step
one-half time step squared
control prediction integration coefficient matrix
array of element material types
observer construct matrix S in vector form
array of element property types
structure construct matrix S (M+delta*D+dels<i*K)
array of element types
array of element numbers for domain decomposition
vector of applied forces
control gain matrix

44

C 12: control gain matrix
C femfile: finite element input file nam«
C forceid: identification number of forcing function
C gamma: state correction fore*
C gc: RES vector for control prediction module
C gk: RES vector for Salman filter momentum eqn
C go: RHS vector for observer module
C go: RHS vector for structure module
C h: time step size
C ad: displacement sensor location matrix (packed storage)
C . hdrov: row number of corresponding real value in hd
C hdcol: column number of corresonding real value in hd
C hdval: number of nonzero values in lid
C hv: velocity sensor location matrix (packed storage)
C hvrov: row number of corresponding real value in hv
C hvcol: column number of corresonding real value in hv
C hwal: number of nonzero values in hv
C id: DOF mapping array: id(comp>node *)=Global OOF 9
C ix: array of element connectivity and orientation
C inertia: array of concentrated inertias or lumped masses
C jdiag: array of diagonal element addresses
C 11: State estimator filter gain matrix
C 12: State estimator filter gain matrix
C mask:
C mass: mass matrix M in reduced vector form
C mat: array of different materials
C mien: length of global matrices in profile vector storage
C nact: actual number of actuators
C ncsi: actual number of actuators and sensors
C ndisout: number of displacement results to output
C ndof: actual number of degrees of freedom
C ndomain: actual number of element domains (for dom. decomp.)
C nel: actual number of elements
C neld: array of number of elements in-each domain
C nnp: actual number of nodes
C nsen: actual number of sensors
C nvelont: number of velocity results to output
C nolag: logical flag to signal corrector loop in measurement
C outfile: output file name
C outlabel: array of output data requested
C pin: array of element pin release codes
C pivot: Column pivoting info from FACTA
C prop: array of different properties
C q: generalized displacement vector
C qO: initial displacement condition
C qalpha: gain scale factor for fi
C qalphao: gain scale factor for 11
C qbeta: gain scale factor for f2
C qbetao: gain scale factor for 12
C qdot: velocity vector
C qdotO: initial velocity condition
C qe: state estimator displacement vector
C qedot: state estimator velocity vector
C r: Solution vector of control module {u,gamma}
C scalef: Scaling factor for forcing function
C stiff: stiffness matrix K in reduced vector form
C tO: initial time
C tc control-on time
C tf: final time

45

C u: vector of control forces
C ' j
C Parameter definitions
C MAXACT: max. t of actuators
C MAXCSI: max. combined t of actuators and sensors
C MAIDAT: max. * of materials and properties
C HAZOOF: max. * of degrees of freedom
C HAXBOM: max. * of decomposition domains
C HAZELS: max. * of elements
C MAXMLEH: max. length of global vectors in reduced form
C KAZHQDE: max. * of nodes
C

parameter(MAXDOF»3000, HAXACT»SO, MAXCSI»100)
parameter(HAXHODE=1000, MAXELE=3000. MAIDAT=100)
parameter(MAXMLEHs200000. HAXDOM«50, HAXNZV=200)

real<*8 tO.tf ,tc,h.delta,dalaq.qalpha.qbeta.qalphao.qbetao
real*8 q(MAXDOF).qdot(NAZDQF).qe(NAXDOF).qedot(MAXDOF)
real*8 u(MAXACT),gamma(MAXACT),f(HAXDOF).r(MAXCSI)
real*8 es(MAXMLEH),eo(MAXMLEH),ec(MAXCSI,MAXCSI)
real*8 gs(MAXDOF).go(NAZDOP).gc(MAXCSI),scale*.pe(MAXDOF)
real*e mass(!UXl!LEH),stif(MAXMLEH).adamp,bdampfgk(MAXDOF)
real*6 eoxyz(3,HAXHODE),mat(6.MAXOAT),prop(10,NAXOAT)
real*8 qO(6>HAXHOOE),qdotO(6>XAXNODE),in«rtia(6,HAXNQDE)
real*8 b(MAXNZV).hd(MAXHZV).hv(MAXirZV),aatifn(78,500)
real«8 fi(HAXACT.MAXDQF),12(MAXACT,MAXDOF)
real*8 11(HAXDOF,MAXACT),12(MAXDOF,MAXACT)
integer «t7peOfAXELE),ix(4,MAX£LE),emat(MAXELE),zorceid
integer eprop(MAZELE),pia(6,MAXELE),id(6,MAXNOOE)
integer mask(NAXHQDE),coatype.brOB(KAXN2V),bcol(MAXN2V)
integer hdro«(HAXHZV),adcol(MAXirZV).nvrovCHAXKZV)
integer hycol(NAZHZV),bval,hdval.nvval
integer ndof,nact,nsen,ncsi,mlen,jdiag(MAXDQF),nnp,n«l,neig
integer neld(HAXOOH) .elnumCXAXELE.NAXDOM) ,aldom(MAXELE) .ndomain
integer outlabel(40).ndisout.nvelout,pivot(MAXCSI)
integer iadjcy(MAXMLEH),Ieouat(MAXNODE+l).parmCMAXNODE)
integer xla(MAXNOOE)
logical animate,nolag
character*32 femfile.confile.outfile.aniofile

COMMON /FILES/ femfile,confile,outfile,outlabel,ndisout,
nvelout,animfile,animate.nolag

COKMOH /TIMERS/ tO.tf,tc,h,delta,delsq
COMMOH /STATES/ q,qdot,qe,q«dot.tt.gaauna.i,r,pe
COMMOH /FEMDAT/ masa.stif.adamp.bdamp,coxyz,mat,prop,qO.qdotO,
. inertia,scalef
COMMOH /IBTEGR/ es,eo,ec,gs,go,gc,gk,pivot
COMMOH /DIMEHS/ ndof.nact.nsen.ncsi,mien.jdiag.nnp.nel.neig
COMMOH /CONDAT/ b.ad.av.f1.22,11,12,

qalpha,qbetatqalphao,qbetao
COMMOH /ELEDOM/ estifm.ndomain.neld.elnum.eldom
COMMOH /IHTGER/ forc*id,»type,ix,9Bat.eprop.pia.id.maak,

cootype,brow,bcol.ndrow,hdcol,hvros,hvcol,
bval,ndval,hvral

COMMOH /RESEQH/ iadjcy.icount.perm.xls

File: acsis.f

46

CsPrograa ACS IS
Cspurpose Accelerated CSI Simulation
CsAuthor K. Alvia
C=Dat« May 1990
CsBlock Fortran

c c
C prograa ACSIS C
C C
C C
C Purpose: 2nd Order Accelerated CSI Simulation C
C C
C . C

program ACSIS

C GET SHARED DATA FILE

include 'shared.inc' ,

C LOCAL VARIABLES

real*8 t.z(NAZACT)

integer a,m,runtype,outakip

C LOGIC

call HIPur(runtype,outskip)

if (runtype) 100,200,300 • •

C EIGEHMODE ANALYSIS
s*

100 continue
call PREPFEM
call EIGEHS
goto 999

C CSI SIMULATIOH

200 call PREPFEH
call PREPCOH

n a 0
m a o
print *,'Finished Preprocessing . . . starting simulation'
print *,'Time a',tO
CALL ACSISODT(tO)

do 250 t»tO,tf,h

call FORCES(t+h/2)

C Predict CSI coupling variables u and gamma

47

i£ (t .'g«. tc) ta«a
call MEASOBE(z)
call COMTROL(z)
if (aolag) t&«a

call HOPHUUKz)
call COSTaOL(a)
«adif

•adif

C Strnctus* and observer >•« ap for parallel execution

C¥Q$ CHCALL
do 27S iai,2

C Iat«grat« Oba«rv«r Equation*

if ((i .«q. l).aad.(t .g«. te» th«a
if (eo&typ* .«q. 0) thca
Call SECORSERCaasv,stif (adaap .bdanip,f ,go, so,q«,q«doC,

. d«it»,d«l8q,jdiag,ndo£,«AIDOF)
•le«if (coatyp« .«q. 1) than
can K7ILTER
•adif

C Iat«grat« Structtir* EqnationB

•la«if (i .«q. 2) thw
call SECORDEE(ma«»,8tif,adaap.bdamp.f,gs,«B,q,qdot,

d«lta,d«l«q,jdiag,adof.HAXDOF)
endif

275 continue

c PRIHT TIME EACH 100 it.ration*

n a n + 1 '
B * B + 1

if (n .g«. 100) thra
print *, 'Tim« » ',t+h
n » 0
•ndif

if (m .g«. outskip) th«n
call ACSISOUT(t*h)
«rit«(24.'(40fl2.8)>) t,(z(i),i»l,ns<»n)
a a o

•ndif

250 contian*
goto 999

C TRAHSZEHT RESPOHSE

300 call PREPFEM

a a 0
a a o
print *,'Finished Preprocessing . . . starting simulation'
print *,'Tia« '» ',tO

48

call ACSXSOUT(tO)

do 360 t*tO,tf,a

can FOBCES(t+tt/2)

call1ZEROVECTCgs,ndof)

call SECQRDERCmass,stif.adamp,bdamp,f,gs,es.q.qdot,
delta,delsq.jdiag.adof.MAXDOF)

PaiBT TIME EACH 100 iterations

a « a * 1
B » m * 1
if (a .ge. 100) then
priat ».'Time » ',t*a
a • o

•ndif
if (a .g*. outskip) ta«n

call ACSISOUT(t»h)
a » 0
•ndif

350 continue

999 atop
•ad

File: acsisout.f

C=Modul« ACSISOUT
C=Purpo«« Writ* daairad output from ACSZS for plotting, etc.
CsAutaor K. Alvia
CaDate Hay 1990
CsBlock Fortran

C
C Subroutine ACSISODT
C
C . Purpose:
C This subroutine outputs formatted displacement aad velocity
C results at a given time for plotting time histories. Tne
C desired output variables are defined in outlabelQ.
C

C
C Arguments
C t - time
C

subroutine ACSISOOT(t)

include 'shared.inc'
real*8 t

49

C LOCAL VARIABLES

integer i

C LOGIC

srite(13.'(40*12.8)') t,(q(id(outlabel(i*10),ontlab«l(i)))(
. ial,adisout).(qdot(id(outlabel(i+30),outlabel(i*20))),

writ«<a3,' (40*12,8)') t^da
i»l.adisont),(qedot(id(ontlabel(i+30),oBtlabel(i+20))),

. i«l.av«loat)

«rite(2S,'(40212.8)') t,(u(i),i=l,aact),(gamma(i),i=l,B3en)

i£ (animate) call ANIMOUT(q,id,aap,t.lS)

•ad

File: addstf.f

ADDSTF
C=Purpose Assemble Global stixlaess matrix
CsAutaor who kaovs
CaUpdate January 1989, by E. Praaoao
C=Block Fortran

subroutine ADDSTF(sk,1m,bk,jdiag.aseq)

C+—r~——-—-—————-———————— — -+cC PURPOSE: C
C THIS SUBROUTINE ASSEMBLES THE ELEMENT STIFFNESS MATRICES C
C INTO THE COMPACTED GLOBAL STIFFNESS VECTOR. C
C C
C ARGUMENTS: C
C sk ELEMENT STIFFNESS MATRIX C
C 1m LOCATION VECTOR FOR ELEMENT STIFFNESS MATRIX C
C bk COMPACTED GLOBAL STIFFNESS VECTOR C
C jdiag - VECTOR OF DIAGONAL ELEMENT ADDRESSES '- C
C aseq - NUMBER OF DEGREES OF FREEDOM PER ELEMENT C

C ARGUMENTS

r«al*8 skCasaq.asaq), bk(l)
int«g«r lm(18). jdiag(l)

C iat«g«r lm(18)7 jdiag(l). ns«q

C LOCAL ARGUMENTS

int«g«r i. j, k, 1, a

C ASSEMBLE GLOBAL STIFFNESS AND LOAD ARRAYS

do 20 j » 1, na«q
k - lm(j)
if (k .«q. 0) goto 20

50

1 a jdiag(k) - k
C 1» jdiag(k+l) - k

do 10 i » 1, nseq
• a lad)
if(a .gt. k .OR. m .aq. 0) goto 10
• a l * a
bk(m) a bk(m) + ak(i.j)

10 continue
20 continue
C

return
•ad

C=Ead Fortran

File: beamSd.f

C=Module BEAM3D
C=Purpose Conatmct 3-d Tiaoshenko beam element stiffness and lumped mass
C=Author K. Alvin
C=Date Hay 1990
C=Block Fortran

subroutine BEAM3D(n,ni,nj,nk,xyz,emod,gmod,rho,area,ssf2,88f3,
It j tor, i2,i3, ipin.sk, an)

C ARGUMENTS:
C
C n Element 10 Number
C ni Hode ID Number at End i
C nj Hode ID Humber at End j
C xyz Node Location Array
C emod Material Elastic Modulus (Young's Modulus)
C good Material Modulus of Rigidity (Shear Modulus)
C rao Material Mass Density
C area Element Cross-sectional area
C ssf2 Shear shape factor in element x2 direction
C ssf3 Shear shape factor in element x3 direction
C jtor Torsional constant J
C • 12 Area moment of inertia about element x2 axis
C i3 Area moment of inertia about element z3 axis
C ipin Pin release codes: 0=Fixed, l=Fraed
C (1) Axial
C (2) Torsional
C (3) End A rotation about x2 axis
C (4) End A rotation about x3 axis
C (S) End B rotation about z2 axis
C (6) End B rotation about z3 axis
C sk Element Stiffness Matrix
C sm Element Mass Matrix

integer n.ni.nj,nk,ipin(l)
real*8 xyz(3,1),emod,gmod,rho, area, ssf2,ssf3,j tor,i2,i3
real*8 sk(12.1).sm(12,1)

C LOCAL VARIABLES;

integer i,j
real*8 dc(3,3),length,rlength,kc(10),mc(3)

51 -

C LOGIC

6 Find Elraut Leagta

length a O.OdO
de 10 i * 1,3

de(l.i) * xyzCi.aj) - xya(i.ai)
Icagta a length * dc(l,i)**2

10 coatiau*

if (leagta .«q. O.OdO) th«a
pria« *. '8AR2D: Z«ro alracat l«agti; &» »,a

•adi£

C Find direction co«ia«« for xi.z2.x3 «l«m«nt

do IS i»i,3
dc(i.i) » dc(l,i)/l«ngth
if (ak .«<£„ 0) ta«a

de(2.i) » 0.0
•Is*

dc(2,i) « xyz(i.ak) - xyz(i.ai)
0 . cadif
IS eaatiaae

If (ak .«q. 0) dc(2.3) » 1.0
16 de(3,l)

dc(3,2)
dc(1.2)*dc(2.3) - dc(2.2)*dc(l,3)
dc(2,l)*dc(l,3) - dc(l.l)*dc(2,3)
dc(i,i)*dc(2,2) - de(2,l)*dc(l,2)
sqrt(dc(3.1)**2 + dc(3,2)**2 * dc(3,3)*»2)

if (rleagta .ae. 0.) goto 17
dc(2,2) 1.0
dc(2,3) 0.0
goto 16

17 do 18 ial,3
dc(3,i) a dc(3.i)/rl«agta

18 continue
dc(2el) * dc(3,2)*dc(l,3) - dc(1.2)*dc(3,3)
dc(2.2) a dc(l.l)*dc(3,3) - dc(3,l)*dc(1.3)
dc(2,3) a dc(3.1)*dc(1.2) - dc(l.l)*dc(3,2)

C Coopute various stiffness constants, accounting for pin codes

if (ipia(l) .eq. 0) taea
kc(l) a area*emod/lengta

kc(l) • O.OdO
•adif

if (ipia(4) .*q. 0) tara
if (ipia(6) .«q. 0) ta«a

kc(2) a ar«a*gfflod*ssf2/l«agta
kc(6) * i3*«mod/l«agta
ke(7) • ke(2)*l«agth/2.0dO
kc(9) a ke(7)*l«agta/2.0dO

print *,'BEAB3D: Pia code error, x3 directioa, el »',n

52

s'

•adii

i* (ipia(6) .«q. 0) tkia
print *.'BEAM3D: Pia cod* «rxor. z3 direction, al *' ,n

kc(2) * O.OdO
ke(6) » O.OdO
kc(7) « O.OdO
kc(9) « O.OdO
•adif

it (ipia(3) .«q. 0) ta«a
it (ipia(5) .«q. 0) thra
kc(3) * ar«
kc(S) * i2*«aod/l«agth
ke(8) « kc(3)*l»agta/2.0dO
kc(lO) « kc(8)*l»ngth/2.0dO

priat *,'BEAH30: Pia cod* error. z2 diraction,
•adil

(ipia(5) .«q. 0) ta«a
priat *, 'BE1H3D: Pia cod* vrror, z2 direction,

«' ,a

«' ,n

kc(3) « O.OdO
kc(5) "O.OdO
kc(8) a O.OdO
kc(lO) a O.OdO
•adif

•adil

it (ipia(2) .eq. 0) th«a
kc(4) • jtor*gmod/l«agth

kc(4) "O.OdO
•ndif

mc(l) » ar«**rao*l«agta/2.0dO
mc(2) • i2*rao*l«agta/2.0dO
oc(3) a i3*rao*l«agta/2.0dO

kc(l)«dc(l
kc(3)*dc(3
kc(l)*dc(l
kc(3)*dc(3
kc(i)*dc(l
kc(3)*dc(3
kc(7)*dc(2
kc(7)*dc(2
kc(7)*dc(2
-•k(l.l)

Bk(1.3)

ak(l,4)
skCl.5)
8k(1.6)
8k(1.7)

,l)*dc(3.1)
.l)*dc(t,2)
,l)*dc(3.2)
,l)*dc(l,3)
,l)*dc(3.3)
,l)*dc(3,l)
,l)*dc(3,2)
,l)«dc(3,3)

- kc(2)*dc(2',l)*dc(2,l) +

+ kc(2)*dc(2,l)*dc(2,2) +

- kc(2)«dc(2,l)*dc(2,3) *

- kc(8)*dc(3,l)*dc(2,l)
- kc(8)»dc(3,l)*dc(2,2)
- kc(8)«dc(3,l)*dc(2,3)

8k(l,10)
Bk(l.ll) a

•k(t,4)

sk(2.2) kc(l)*dc(1.2)*dc(1.2) * kc(2)*dc(2,2)*dc(2,2) +
kc(3)*dc(3.2)*dc(3.2)

53

sk(2.3) » kc(l)*dc(l,2)*d6(i,3) * kc(2)*dc(2,2)*dc(2.3) *
ke(3)*dc(3,2)*de(3,3)

8k(2,4) » kG(7)*dc(2,2)*de(3,l) - kc(8)*dc(3,2)*dc(2,l)
8k(2.5) « kc(7)*dc(2.2)*de(3,2) - kc(8)*dc(3.2)*dc(2,2)
•k(2,6) » ke(7)*dc(2,2)*dc(3.3) - kc(8)*de(3.2)*dc(2.3)
sk(2,7) « -sk(l,2)
8k(2,8) • -sk(2,2)
8k(2,9) a -sk(2,3)
8k(2.10) a sk(2,4)

» 8k(2.S)
* •k<2,6)

sk(3,3) « kc(i)«de(l,3)<*de(l,3) * ke(2)«dc(2,3)«dc(2,3) *
kc(3)*dc(3.3)*dc(3,3)

8k(3,4) » ke(7)«de(2,3)*de(3.i) - kc(8)*dc(3.3)*dc(2,l)
8k(3.S) « ke(7)«de(2,3)«dc(3,2) - kc(8)*dc(3.3)*dc(2,2)
8k(3,6) » kc(?)*dc(2,3)*dc(3.3) - kc(8)*dc(3.3)*dc(2,3)
•k(3.7) » -ak(l,3)
«k(3.8) « -sk(2,3)
Bk(3,9) « -sk(3,3)
sk(3,iO) » Bk(3,4)
8k(3.11). « sk(3,5)
8k(3.12) » sk(3,6)
sk(4,4) » kc(4)*dc(l,l)«<ic(t.l)*(kc(10)*kc(5))*dc(2.1)*dc(2.l)

* (ke(9)*kc(6))*dc(3,l)*dc(3.1)
ak(4,5) » kc(4)*dc(l,I)*dc(l,2)+(kc(10)+kc(S))«dc(2,l)*dc(2,2)

* (kc(9)*kc(8))*dc(3,l)*dc(3.2)
•k(4,8) » ke(4)»dc(l,l)*dc(l,3)*(kc(10)+kc(5))*dc(2.1)*dc(2,3)

* (kc(9)+kc(6))*dc(3.1)*dc(3,3)
•k(4.7) 3 -8k(l,4)
8k(4,8) » -sk(2.4)
sk(4,9) « -sk(3,4)
8k(4.10) » -kc(4)«de(l,l)*dc(l,l)+(kc(10)-kc(S))*dc(2,l)*dc(2,l)

* (ke(9)=kc(6))«dc(3,l)*dc(3,l)
8k(4.H) « -ke(4)*dc(l,l)*dc(1.2)+(kc(10)-kc(5))*dc(2,l)*dc(2,2)

+ (kc(9)-kc(6))»dc(3,l)*de(3.2)
sk(4,12) a -kc(4)*dc(l,l)*dc(l,3)+(kc(10)-kc(5)>dc(2.1)*dc(2,3)

* (kc(9)-kc'(8))«dc(3,l)*dc(3,3)
8k(5,S) a kc(4)«dc(l,2)*dc(1.2)+(kc(10)*kc(5))*dc(2,2)*dc(2.2)

+ (kc(9)+kc(6))»de(3,2)*de(3,2)
8k(5.8) a kc(4)*dc(l,2)«dc(l,3)+(kcUO)+kc(5))*dc(2.2)*dc(2,3)

* (kc(9)+kc(6))*dc(3.2)*dc(3,3)
sk(5,7) a -«k(l.S)
8k(B,8) » -8k(2.S)
5k(S,9) a -sk(3,S)
8k(S,10) a sk(4.ii)
8kCS.ll) a -kc(4)*dc(1.2)*dc(1.2)*(kc(10)-kc(5))*dc(2,2)*dc(2,2)

+ (kc(9)-kc(6))*dc(3,2)*dc(3,2)
8k(5,12) a -kc(4)*dc(l,2)*dc(l,3)+(kc(10)-kc(5))*dc(2,2)*de(2,3)

* (kc(9)-kc(6))*dc(2.3)*dc(3,3)
ak(8,6) a kc(4)*dc(l,3)*dc(l,3)*(kc(10)+kc(5))*dc(2,3)*dc(2,3)

* (kc(9)*kc(8))*dc(3,3)*dc(3,3)
8k(6.7) a -sk(1.6)
ak(6,8) a -Bk(2,6)
sk(8,9) a -Bk(3,6)
8k(8.10) a 8k(4,12)
8k(6,ll) a sk(5,12)
8k(6.12) = -kc(4)»dc(1.3)*dc(l,3)*(kc(lO)-kcCS))*dc(2,3)*dc(2.3)

4- (kc(9)-kc(6))*dc(3,3)«dc(3,3)
sk(7,7) a sk(l.l)

54

8k(7.8) :
8k(7.9)
ak(7.10)
8k(7,ll)
ak(7,12)
8k<8.8)
ak(8,9)
ak(8.10)
8k(8,ll)
ak(8.12)
»k(9,9)
8k(9.10)
ak(9,ll)
ak(9,12)
skClO.10)
akUO.ll)
ak(10,12)
akCll.ll)
ak(ll,12)
ak(12,12)

do 60 i a j
do 56 j •
sa(i.j)

56 contini
50 coatiau*

' ak(1.2)
8k(1.3)
-ak(1.4)
-ak(l,6)
-ak(l,8)
ak(2.2)
ak(2.3)
-ak(2,4)
-ak(2,6)
•8k(2.6)
8k(3,3)
-ak(3,4)
-ak(3,5)
-8k(3.6)
8k<4,4)
ak(4,6)
ak(4,6)
ak(S,6)
8k(5,6)
ak(8.6)

L.12
• 1,12
a O.dO

!•

C Row-sum rotatod mass matrix to ra-diagoaaliza

C
C
C
C
C
C

C
C
C
C
C
C

sm(l,l)
8B<2,2)

SB<3.3)
8B(4.4)

.

.

.

.

.
sm(4,5)
.
8B(4,6)
.

8B(5,4)
,

8B(5,S)
.

.

.

.

.

SB<5,6)
.

8B(6,4)
,

BB(6,5)
.

8B(8,6)

.

a BC(1)

8 BC(1)

a BC(I)

a ac(2)»(dc(l,l)*dc(l.l)+dc(2,l)*dc(2,l))
ac(3)*(dc(l.l)*dc(l,l)+dc(3,l)*dc(3,l.))
Bc(2)*(dc(i,l)*dc(l,2)*de(2,l)*dc(2,2))
Bc(3)*(de(l;l)»dc(l,2)+dc(3,l)*dc(3,2))
ac(2)*(dc(l,l)*dc(l,3)+dc(2,l)*dc(2,3))
Bc(3)*(dc(l,l)*dc(1.3)+de(3,l)*dc(3,3))

a BC<2)*(dc<l.l)*dcU,2)+dc<2.1)*dc(2,2))
ac(3)»(dc(l,l)»dc(l,2)*dc(3,l)*dc(3,2))

a ac(2)*(dc(l,l)*dc(l,3)+dc(2.1)*dc(2,3))
ac(3)*(dc(l,l)*dcU,3}+dc(3.1)»dc(3.3))

a ac(2)*(dc(l.l)*deCl,2)*de(2,l)*dc(2,2))
Bc(3)*(dc(l.l)«dc(l.2)>dc(3,l)«dc(3,2))

a Bc(2)*(dc(1.2)*dc(1.2)*de(2,2)«dc(2,2))
Bc(3)*(dc<1.2)«dcCl.2)*dc(3,2)*dc(3.2))
Be(2)*(dc(l.l)*dc(1.2)*dc(2.1)*dc(2,2))
Bc(3)*(dc(l,l)*dc(1.2)+dc(3,l)*dc(3,2))
ac(2)*(dc(l,2)«dc(l,3)+dc(2,2)*dc(2,3))
ae(3)*(dc(1.2)*dc(1.3)*dc(3,2)*dc(3.3))

a ac(2)*(dc(l,2)«dc(l,3)+dc<2,2)*de(2,3))
ac(3)*(dc(l,2)*dc(1.3)*dc(3,2)*dc(3,3))

a Bc(2)*(de(l,l)«dc(l,3)+dc(2,l)*dc(2,3))
ac(3)*(dc(l,l)«dc(l,3)+dc(3,l)*dc(3.3))

a ac(2)*(dc(l,2)*dc(l,3)+dc(2,2)*dc(2,3))
ac(3)*(dc(l,2)»de(l,3)*dc(3,2)«dc(3,3))

a ac(2)«(dc(l,3)«de(1.3)+dc(2.3)*dc(2,3))
Bc(3)«(dc(l,3)*dc(l,3)+dc(3,3)*dc(3,3))

55

c
c
c

c
c
c

200
100

sa(7,7)
s»(8,8)
s»(9,9)
sa(iO.iO)

88(12,10)
SH(12,li)
sm(12,12)

»c(2)*(de(l,l)*dc(1.3)*de(2,l)*dc(2.3))
•c(3Wdc(i,l)*dc(i.3)*dc(3,i)*dc(3,3))
«c(2)*(dc(i,2)*dc(l,3)+dc(2.2)*dc(2,3))
»e(3)*(dc(i,2)*de(1.3)*dc(3,2)*de(3,3))
»c(i)
»c(l) V-

>(6,4)
(6,5)
(6,6)

do 100 iBl,12
do 200 j»i,i-l
•k(i.j) * «k(j,i)
coatinn«

return
«ad

C=Ead Fortraa

File: forces.f

C=Kodal« FORCES
C=Purpo«« Calculate applied force vector at given time
C=Author K. llvin
C=Date Hay 1990
C=Block Fortran

c
c
c
c
c
c
c
c
c
c
c
c

Subroutine FORCES

Purpose:
Returns force froa stored function at any given time.
The forcing functions are hardwired by the user. The
function is selectable at program excecution using the
forcing function ID, which by convention is the statement
label used in branching.

subroutine FORCES(time)

include 'shared.inc'
real*8 time,pi

LOGIC

pi * 3.1415928

56

can ZEaOVECT(f ,ndof)

101 if (forcaid .«q. 101) than

if (tin* .!•. .02) than
f(id(2,15)) • 100.«(l.-coa(2.*pi*tima/.02))

andif

102 al«aif (foreaid .a<j. 102) than

if (tiffl* .It. .1) than
f(id(2.96)) • 10.

al«aif (time .aq. .1) than
f(id(2.96)) a 0.

•Iscif ((tiffl* .gt. .1). and. (tin* .It. .2)) than
f(id(2.95)) > -10.

f(id(2.9S)) • 0.
•ndif

103 •ls«if (forccid .«q. 103) than

if (tin* .!•. .01) than
fCid(i.lS)) a 100

andif

104 ala«if (forcaid .aq.104) than

if ((time .gt. 0) .and. (tima .It. .17)) than
f(id(3,12S)) « 10

alaaif ((tima .gt. .17) .and. (tima .It. 1.0)) than
f(id(3,12S)) « -10

andif

105 alsai* (forcaid .aq. 105) than

if (tima .la. .01) than
f(id(2,9)) • 100.*(l.-coB(2.*pi*tima/.01))

alaaif (tima .la. .02) than
f(id(2.9)) • 100.*(co«(2.*pi*tim«/.01)-l.)

andif

andif

do 10 i » 1, ndof
f(i) » scalaf * f(i)

10 continna

raturn
and

File: input.f

C=Hodula
C=Purpo«« Input data paramatars for ACSZS
CsAuthor K. Alvin

57

C=Date May 1990
C=Block Fortran
C -
C
C Subroutine INPUT
C
C
C -
C
C Argument definition*
C
C runtype - ID of analysis ran type
C savin - variable to control creation of input file
C runfile - variable indicates if run is from input file
C consent - dusBsay naae for comment input lines
C ontskip - number of steps to skip before sending output

subroutine INPUT(runtype,outskip)

include 'shared.ine'
integer runtype, out skip .
character*! savin, runfile, temp
character«48 eoment.inpfile

C PRZHT USB READ START-UP

print *, '2nd Order Accelerated CSX Simulation (ACSXS)'
print * •
print *, 'Please input analysis type:'
print *
print *, ' 1. Eigennode Analysis'
print *, ' 2. CSI Simulation'
print *, ' 3. Transient Response'
print *
read *, runtype

c RUV OPTIONS AND INPUT FILE SETUP

runfile » 'n'
if (runtype .It. 0) then

runtype •» -1 * runtype
runfile a »y»

endif
print *, 'Do you vish to save an input file? (y or n)'
read 21, savin

20 format (a32)
21 format (ai)

if (savin .eq. 'y') then
print *, 'Name of save input file? (filename)'
read 20, inpfile
open(16 , f ileainpf ile)
runtype = -1 * runtype
vrite(16,'(i2)') runtype

. runtype » -1 * runtype

Trite(16,'(a47)') '* ACSIS input file.tvo lines above are'
vrite(16,'(a48)') '<* analysis type and save input file. Do'
vrite(16.'(a48)') '* not change them by editing this file.'

endif

58

runtype » runtype - 2

if (mnfil* .eq. '7') then
do 30 i a 1,4

read 20, comment
30 continue

endif
print *, 'Finite Element Modal Input File Haae (filename)'

, read 20, femfile
op«n(ll,fil«sfeafile)
if (savin .«q. 'y') then
«rite(16,'(a47)') '* Finite element input file?(filename)'
writ«(18,'(a32)') fwnfilr

endif ,
if (ruatyp*) 100,200,300

C EIGEHKODE INPDTS

100 print *,'lhnnb«r of mod«« d«»ir«d:'
if Cruafil* .«q. 'y') read 20, comment
read *, aeig
if (rualile .eq. 'y') read 20, comment
print »,'Output File Name:'
read 20, outfil*
open(13,file=oatfile)
if (eavin .«q. 'y') than
vrita(16,'(a3S)') '* Humber of modes desired?'
vrit«(l6,'(i4)') neig
writ»(16,'(a33)») '* Output file?(fileaam«)'
write(16,'(a32)') outlile

•adif

call READFEX '

goto 1000

C CSI INPUTS

200 print *,'Controller Definition File Name:'
if (runfile .eq. 'y') read 20, comment
read 20, confile
open(l2,file=confile)
print
print
print
print
print

'Please input type of control:'

1. Full State Feedback'
2. Luenberger Observer (Ll=0)
3. Kalman Filter'

print
if (runfile .eq. 'y') read 20, comment
read *, contype
contype * contype - 2
print *,' Initial time, final time, control-on time, step size:'
if (runfile .eq. 'y') read 20, comment
read *, tO,tf,tc,h
print *, 'Forcing function ID, scale factor, damping coeff- a,b:'
if (runfile .eq. 'y') read 20, comment
read *, forceid,scalef ,adamp,bdamp
print *,' Phase lag fix?(y or n):'
if (runfile .eq. 'y') read 20, comment

59

read 2i, temp
if (tesp .eq. '7') aolag • .true.
if (trap .eq. 'a') aolag • .false.
priat «,'6aia seal* factors (4 total):'
if (raafile .eq. '7') read 20, cosawat
read *^qalpaa,qbeta,qalphao,qbetao
if (sa*ia .eq. 'y') taea
B?ite(ie,'(a42)') '*" Coatroller file aame?(filename)'
reit«(16„'(a32)') eoafil«
reit«(i6,'(a42)') '* Please iapitt type of control: '

eoatyp* * 2
'* Zaitial.fiaal.eontrol-oa.stap size?'

8?it«(16,'(4fi4.8)') tO.tf,tc,a
reit4(i6,'(a49)') '* Forciag fvactioa.scal* f. damping a.b?'
nsita(tSl)'(i4,fiS.6,2fi2.8)') fo««id,scal»f .adamp.bdanp
wit«(16.'(a32)') '* Paas« lag fix?(y or a)'
if (aolag) erit«(16.'(ai)') >j»
if (.not. aolag) vrit«(16,'(ai)') 'a'
writ«U6,'(**0)') '« 6aia seal* faetaxs (4 total)?'
B7it«(i6,'(4fl4.8)') qalpha,<|b*ta,qalpnao,qb«tao

•adif

call RE1DFEM

goto 999

C TEAHSIEHT RESPONSE ISPUTS

300 priat *,'Initial tia«, final tim«, st«p size:'
if (runfil* .«q. '7') read 20, eoamant
read *, tO.tf.h
priat *,'Forcing function ID, seal* factor, damping coeff- a,b:'
if (ruafilc .«q. '7') r«ad 20, coomcat
read *, forc«id,scal«f.adamp.bdamp
if (savin .«q. '7') then
vrit«(16.'(a48)') '<• Initial, final, stap size?'
writ«(l6,'(3f!4.8)') tO.tf.a
vrit«(16,'(a49)') '* Forcing function,scale f, damping a.b?'
vrit«(i6,'(i4.flS.6.2fl2.8)') forcaid.scalef.adamp.bdamp

endif

call REAOFEN

goto 999

C OUTPUT OPTIONS

999 print *,'Output File Hame:'
if (runfile .eq. '7') read 20, comment
read 20, octfile
opea(13,file»outfile)
print *', 'Number of displacement results to output (max 10):'
if (runfile .eq. '7') read 20, comment
read *,ndisout
do 600 isl.ndisout
priat *,'Input aode *, dof for displacement outputs',!
read *,ontlabel(i),oatlabel(i-»-10)

500 continue
priat *,'Number of velocity results to output (max 10):'

60

if (runfile .eq. 'y') read 20. comment
read »,avelout
do 600 i»l,nvelout
print •.'Input nod* «, do* for velocity output* ',i
read *.outlabel(i+20) ,outlabel(i+30)

600 continue
print *,'Send output every no* many steps?'
if (runfile .eq. 'y') read 20, comment
read *, out skip
if (savin .eq. 'y') than
vrite(16,'(a38)') '« Output tilt naiae?(f ilename) '
teite(16,'(a32)') outfile
vrit«(16,'(a42)') '* Suab«r of displacsnant outputs?'
«rit«(16,'(i4)') ndisout
do 650 i»l .ndisout

»rit«(16.'(2i8)') outlab«l(i).ontlab«l(i+10)
650 continue

Rit«(16,'(a38)') '* Humbar of velocity outputs?'

do 660 ial,nv«lout
vrit«(16,'(2i8)>) outlab«l(i+20),outlab«l(i+30)

660 continue
vrit«(16.'(a44)') '* S«ad output every hoa many stepj?'
Brite(16.'(i3)') out skip

endif

C AHDUTIOH OPTZOH

print * , ' animation Output? (y or n) : '
if (runfile .eq. 'y') read 20, comment
read 21, temp
if (temp .eq. 'y') animate » .true.
if (temp .eq. 'n') animate » .false.
if (animate) then
print*, 'Animation file name (filename) '
if (runfile .eq.' 'y') read 20, comment
read 20, animfile
open (IS, file>animfile)

endif
if (savia .eq. 'y') then
vrite(16,'(a41)') '* Send animation output? (y or n)'
if (animate) vrite(16,'(al)') 'y'
if (.not. animate) vrite(l6,'(al)') 'n'
if (animate) then
vrite(16,'(a31)') '* Animation file name?'
vrite(16,'(a32)') tnimfile

endif
endif

delta a h/2.
deleq a delta**2

1000 return
end

File: pmvmul.f

61

CsModule PM7MOL
CsAntaor X. Alvia
CsDate May 1990
CsBloefe Fortran

C
C Subroutine PMVMDL
C
C Purpose:
C Taie subroutine multiplies a matrix in vector form
C aad a vector.
C •

C -—-;
C
C Arguments
C a - matrix in vector fora
G b vector

C a«q - order of rector and equar* matrix
C J4i&g " array of diagonal address** for a
C

C ettbrontine PH7HUL(ft,jdiag.b,n«q,e)

recaraî e subroatiae PltyM0L(«,jdiag,b,a»q,c)

real*8 a(l)
integer jdiag(l). a«q

do 100 isl.neq
c(i) » a(jdiag(i))*b(i)

100 continue

do 200 i«2,neq
do 300 jajdiag(i-l)+l.jdiag(i)-l
k » jdiag(i) - j

300 continue
200 continue

do 250 i°2,a«q
do 400 j«jdiag(i-l)+l.jdiag(i)-l
k « jdiag(i) - j
c(i-k) « c(i-k) + a(j)*b(i)

400 continue
250 continue

return
end

C

C
C Subroutine PMVHAO
C •
C Purpose:
C Multiply a matrix in vector form and a vector aad add the
C. resultant vector multiplied by a constant to a second vector

62

C multiplied by a aecoad vector
C
C -mm——••••••̂ •» —»•••••••••••••••• •••••̂ •--r»»-i-n»̂ »»TTi r» •mo ••.=,•-» ••••cm.

C
C Irgumenta
C a matrix ia vector form
C b vector to be multiplied with matrix
C e resultant aad vector to be added
C factl - coaataat multiplier of matrix aad first vector
C faet2 - coaataat multiplier of aecoad vector
C j<*iag - array of diagonal addresses for matrix
C aeq - order of vectors aad matrix
C .

C subroutine PMVMAD(a,jdiag,b,aeq.factl,c,fact2)

recursive subroutine PMVMAD(a,jdiag,blaeq,factl,c,fact2)

xeal«8
iateger jdiag(l). aeq

do 100 i»i,n«q
c(i) » fact2»c(i) * factl*a(jdiag(i))*b(i)

•100 continue

do 200 i«2,neq
do 300 j=jdiag(i-l)+l,jdiag(i)-l
k » jdiag(i) - j
c(i) a c(i) + factl«a(j)*b(i-k)

300 coatiane
200 continue

do 250 i»2,neq
do 400 jajdiag(i-l)+l.jdiag(i)-i
' k » jdiag(i) - j
e(i-k) » c(i-k) * factl*a(j)*b(i)

400 coatiane
250 coatiane

return
end

File: prepfem.f

C=Module PREPFEH
C=Purpo8e Preproceaa Structure Finite Element module for ACSIS
C=Author K. Alvia
C=Date May 1990
C=Blocx Fortran

C
C Subroutine PREPFEH
C
C Purpose:
C Taia subroutine preparea tae finite element mass,
C stiffness, aad S matrices ia reduced profile vector form

63

c

c
C Local variable*:
C
C «k Element Stiffness aatriz
C am Elemeat Ka» Matrix
C la Local/Global DOF Mapping vector
C aa«q Hnaber of elemeat degrees of freedom
C es.ep Material and Propety id * for eleaeat
C

subroutine PBEPm

iffidude

LOCAL VARIABLES

paraa«t«r (MAISEQ»24)

iateger la(MAXSEp) ,as«q,w8,«p

call REHUM

C Set up akyliae storage profile for global matrices

call PROFXLE(ix.id,jdiag,aap,ael,4,8,Blea,2dof,aask)

C Perfora automatic domain decomposition

call DOMDEC

C Caeck sis* of skyliae profile against storage limitation

if (alea .gt. MA1MLEH) taea
priat*. 'PREPFEM: error, global matrix exceeded max. size'
eadif

C Zaro Global Matrices prior to assembly

call ZEROVECTCstif ,mlen)
call ZEROVECT(mass ,mlea)

C ASSEMBLE EACH ELEMEBT MASS AJTO STIFFNESS

do 100 n»l,nel

do 20 k>t,4
j-ix(k.n)
if ((etype(a).eq.l).and.(k.gt.2)) j » 0
do 30 iol,6
kk=6*(k-l) * i
if (j .ne. 0) then
lm(kk) « id(i.j)

else
la(kk) « 0
eadif

30 continue
20 continue

64

if («typ«(a) .«q. 1) ta«a
n««q • 12
•a • «mat(n)
•p * •prop(n)
call BEAM3D(a,ix(l.a).ix(2.a).ix(3,a),coxyz,nat(l,eni).

mat(2,«a),mat(3,«a),prop(l.«p),prop(5,ep),prop(6,ep),
prop(2,»p) ,prop(3,«p) ,prop(4,«p) ,pia(l,a) ,sk,sm)

•ls«ii (ijc(l.n) .a«. 0) than
print* , 'PREP FEM: Element typ« sot Jtouad.aa'.n.'etypes' .etype(a)

•ttdil

iDD ELEMENT TO GLOBAL MASS 1HD STIFFNESS

c&ll lDDSTF(ak,lffl,atil ,jdiag,as«q)
call lDDSTF(§m,lm,in&««, jdiag,n»«q)

SAVE THE ELEM2HT STZFFSSSS FOR E-B7-E COXPOTATIOITS

100 contiau* ,

C ADD LUMPED IHERTIAS TO GLOBAL MASS}:

do 125 i=l,nap
do 130 j»l,6
i* (id(j.i) .eq. 0) goto 130

naas(k) > maas(k) *• iaartia(j.i)
130 eoatian*
125 continue

C ASSEMBLE AND FACTORZZE •• (S MATRIX)

me » 1. * delta*adamp
kc a d«lta<*bdanp + d«lsq
do 200 i=l,ml»n
•s(i) a mc«masa(i) + kc*atif(i)

200 coatiau*
»

call SOLVER(«8,g8,jdiag,ndo«,l)

C INITIALIZE DISPLACEMENT AND VELOCITY VECTORS

do 300 i a 1 , aap
do 350 j a 1,6
it (id(j.i) .a«. 0) thwx
q(id(j,i)) = qO(j.i)
qdot(id(j,i)) » qdotO(j.i)
•ndii

350 coatiaa*
300 coatiaa*

return
•ad

subroutia* SAVESK(sk,a,as«q)

iaclud*

65

rcal*8 »k(as«q,l)
a,a««q

do 10 j«i,a0«q
do 20 i»i,

20 eoatiaac
10 eoatiauc

•ad

anbroutia* DOHDEC

iaelnda '•aar«d.iac'

logical acak.ndcakdUIHODE.lUXDOM)
iat«g«r adoa

do 10 j-l.JUXDOM
a«ld(j)«0
de 20 i«isaap

. false.
20 eoatian*
10 eoatian*

do 100 a»l,n«l

adoa«0
achkaQ
do 200 shilt (acak.«q.O)

it (adoa.gt.adonaia)- adomaiaaadom
acak*>l
if (ndchk(ix(l,n), adorn/) nchk=0
if (adcak(ix(2,a),adoB))
if (achk.aq.l) th«a
•ldoa(a)"adon
adcak(ix(1 , a) , adoa) a . tm« .
adeak(ix(2,a) ,adom)a.tru«.
•ndif

200 coatian«

a«ld(adoa)«a«ld(adoa)̂ l
•laiuB(a«ld(adoa) ,adoa)>a

100 coatian*

r«tum
•ad

File: profile.f

66

CaKodule PROFILE
CaPurpose Compute the number of equations and set profile for K
CaAuthor Bob Taylor
CaDate VAO knovs
CaUpdate January 1989 by E. Praaono
CaBlock Fortran

subroutine PROFILE(iz,id,jdiag,nnp,nel,nen,ndof,nad,neq.mask)
«•»•
C
C
C
C
C
C
C

C
C
C

PURPOSE:
THIS SUBROUTINE COMPUTES THE NUMBER OF EQUATIONS REQUIRED
TO SOLVE THE PROBLEM BT ELIMINATING RESTRAINED DEGREES OF
FREEDOM FROM THE SYSTEM OF EQUATIONS. KNOWING THE EQUATION
NUMBERS COORESPONDING TO THE NODAL DEGREES OF FREEDOM, THE
DIAGONAL ELEMENT LOCATIONS CAN BE COMPUTED FOR STORING THE
GLOBAL STIFFNES MATRIX IN COMPACTED VECTOR FORM.

ARGUMENTS

C
C
C
C
C
C
C

integer iz(nen.l), id(ndof.l), jdiag(i)
integer nnp, nel, nad, neq, mask(l)

C integer nnp, nel, aen, ndof, nad, neq, mask(l)
C
C .LOCAL ARGUMENTS
C

integer i. j. k, 1, a, n, jl. kl, 11. ol

C
C SET UP EQUATION NUMBERS
C

neq a o
do 30 n • 1, nnp

do 20 n = 1, ndof
j « idCm.naskCn))
it. (j .eq. 1) goto 10
neq » neq •*• 1
id(a,aask(n)) • neq
jdiag(neq) » 0
goto 20

10 id(a.fflaakCn)) • 0
20 continue
30 continue
C
C
C COMPUTE COLUMN HEIGHTS
C

do 80 n a 1, nel
do 70 • » 1, nen

ml a iz(a.n)
it (ml .!•. 0) goto 70
do 60 1 » 1, ndof

11 * id(l.ml)
if (11 .eq. 0) goto 60
do 60 k • a, nen

kl * ix(k.n)
if (kl .le. 0) goto SO
do 40 j a 1. ndof

jl » id(j.kl)
if (jl. .eq. 0) goto 40

67

i s MAXOUl.jl)
jdiag(i) = KAXOCjdiag(i), lABS(ll-ji))

40 continue
SO .. continue
60 eoatiau*
70 eoatiaue
80 eoatiau*
C ' •'•
c
C COMPOTE DIAGONAL FOOTERS
C

nad * 1
jdiag(i) « 1
if (aeq .eq. 1) return
do 90 n » 2, n«q

jdiag(n) » jdiag(a) * jdiag(n-l) * 1
90 continue

aad a jdiag(aeq)
C

return
•ad

C=Ead Fortran

File: read.f

C=Modul« READ
CsAuthor K. ilvia
C^Dat* Hay 1990
C=Block Fortran

C
C Subroutine READFEM
C
C Purpose:
C This subroutine reads the data file for the finite
C • element model.
C

C
C Arguments
C ctype - stores code for type of line
C

subroutine READFEM

C GLOBALS

include ' shared. inc'

C LOCALS

integer j , n , ctype , 6ETT7PE
character* 132 aline
real*8 in

C IHITIALZZE SIZE OF PROBLEM

68

aap a o
nel a o
adof a o
ndomain • 0

C IDEHTIFY CARD TYPE AND ASSIGH IHPOT

10 read(11.1000.«nd°9999) alia*
100 ctyp« a GETTYPE(aline)

if (ctype) 10,10,150
150 . if (aline(l:4) .eq. 'HODE') goto 200

if (alia«(i:4) .eq. 'TOPO') goto 300
if (alia«(i:4) .eq. 'ATTR') goto 400
if (alia.(l:4) .eq. 'MATE') goto 500
if (alined :4) .eq. 'PROP') goto 600
if (alined: 4) .eq. 'Fill') goto 700
if (alin«(l:4) .eq. 'HOT') goto 800
if (alined: 4) .eq. 'DfER') goto 900 .
if (al4a«d̂ 4) .•*. >E3E> ') goto 10
it (alin«(l:4) .«q. 'KESH') goto 10
print *,'REAOFEM: Unrecognized card type; ',alined:4)
goto 10

C READ BODES ,.

200 readdl, 100Q.enda9999) aline
ctype a GETTYPE(aline)
if (ctype) 200,250.100

2SO read(aline,*) a,(cozyz(j,n),jal,3)
if (a .gt. nap) nap a n
goto 200 '

C READ TOPOLOGY

300 read(ll,1000,eada9999) aline
ctype a GETTYPE(aline)
if (ctype) 300.350.100 .

350 readCaliae.*) n.etype(n),(ix(j,n),j=l,4)
if (n .gt. nel) nel a a
goto 300

C READ ATTRIBUTES

400 readdl.lOOO,enda9999) aline
ctype a QETTYPE(aliae)
if (ctype) 400.460,100

450 read(alia*,*) n,amat(a),aprop(a),(pin(j,n),jsl,6)
if (eldoa(n).gt.ndooain) ndomain=eldom(n)
goto 400

C READ MATERIAL

500 readdl.lOOO,end*>9999) aline
ctype a GETTYPE(aline)
if (ctype) 600.550,100

SSO read(aline,«) n,(mat(j,n),j=l,3)
goto 500

C READ PROPERTIES

69

600 read(li,1000.ead39999) alia*
ctyp« • QETTYPE(aliae)
it (ctype) 600,650,100

660 re*d(«li»«,») a,(prop(j,a),j-l.
goto 600

c BEAD ram

700 reBd(il,1000,eada9999) alia*
ctype a aiTTYPE(aliae)
if (etype) 700,760,100

750 readCaliae,*) a,(id(j,a),j«l,6)
goto 700

c HEAD nrmAL COHDITIOHS

800 re&d(11.1000,ead<>9999) alia*

if (ctype) 800,860,100
850 r«*d(»lia«.*) a.j ,qO(j ,n),qdotO(j.a)

goto 800

C READ

900 r«ad(11.1000.«ad39999) aliaa
ctyp« * GETTfPE(alia«)
if (ctypc) 900,960,100

960 r«ad(alia«,«) a.j.ia
ia«reia(j ,a)aia«rtia(j ,
goto 900

1000 fora&t(a!32)
9999 coatian*

c

c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c

return
ead

Snbroatiae READCOH

Purpose:
This anbroutiae reads the actua
locatioas aad the gaias for the

* »• •»

Argumeats
ctype - stores code for type

Abbraviatioas
HACT - Bomber of actuators
HSEH - auaber of aeasors
BMAT - locatioas of actuators
EDNA - array of displacement
HVMA - array of velocity seas
PICA - coatrol gaia matrix

tor aad sensor
coatrol system

M ••*•••••.•**•«•*««»«•

of liae

seasor locations
or locatioas

70

C F2GA - control gain matrix
C L1GA - state estimator filter gaia matrix
C L2GA - state estimator filter gain matrix

subroutine RE10CQH

include ' shared. ine'

C LOCALS

real*8
integer j,n, ctype, GETTYPE
character*132 aline _

oval a o
hdval a 0
hwal • 0
hdbval * 0
nvbvml • 0

C IDENTIFY CAEO TYPE AND ASSIGN INPUT

10 read(12,1000,end>9999) aline
100 ctype » GETTYPE(aliae)

if (ctype) 10,10,150
ISO it (alined: 4) .oq. 'NACT') goto 200

if (aline(l:4) .eq. 'NSEN') goto 300
if (alined: 4) .eq. 'BNAT') goto 400
if (alined: 4) .eq. 'HDMA') goto 500
if (alined: 4) .eq. 'HVMA') goto 600
if (alined: 4) .eq. 'F1GA') goto 700
if (alined: 4) .eq. 'F2GA') goto 800
if (alined :4) .eq. 'L2GA') goto 900
if (alined: 4) .eq. 'L1GA') goto 1100
if (alined: 4) .eq. 'END ') goto 10
print »,'READCON: Unrecognized card type; ',aline(l:4)
goto 10

C READ INPUT CARDS

200 read(12,1000,and=9999) aline
ctype a GETTYPE(aline)
if (ctype) 200,250,100

250 r«ad(aline,*) aact
goto 200

300 r«add2,1000,«nd=9999) aline
ctype a GETTTPE(aline)
it (ctype) 300,380,100

350 read(aline,») naen
goto 300

400 read(12,1000.end39999) aline
ctype a GETTTPE(aline)
if (ctype) 400,450,100

460 read(aline,«) i,j,n,val
bval a bval •» 1
b(bval) 3 val
bro«(bval) a id(j.i)

71

bcol(bval) a &
goto 400

600 r*ad(12 , 1000 , «nd«9999) alia*
ctyp* • OETTYPECalia*)

- ii (ctyp*) 600,550,100
660 r*ad(alia*.«)

adval • fedval
hd(fldval)
ad?ov(adval)

goto BOO

600 r«*d(12,1000B«nda9999) alia*
ctyp« • G2TTYPE(*lia«)
if (etyp«) 600. 660.100

650 TcadCalin*,*) i.j.a.val
arval • hwal + 1
hvOtrol) » vml
hvro«(hvval) a a
av6ol(lnnr»l) » id(j,i)
goto 600

700 r«ad(12,1000.»nda9999) alia*
etTpc » GETTYPE(alin«)
if (etyp*) 700.750,100

750 r*ad(alia*.«) i.j.a.val
fl(a,id(j,i)) » qalpaa*val
goto 700

800 r*ad(12,1000,«ads9999) alia*
etyp* • GETTTPECalia*)
if (ctyp*) 800,860,100

850 r*a4(alia*,«) i.j.a.val
12(tt,id(j,i)) » qb«ta*val
goto 800

900 r*ad(12,1000,aada9999) alia*
ctyp* * GETTTPE(alia*)
if (ctyp*) 900,960,100

950 r«ad(alia*.«) i,j,a,val
12(id(j.i),a) « qbetao»val
goto 900

1100 r«ad(12,1000,«nd=9999) alia*
ctyp* * GETTTPE(alia*)
if (ctyp*) 1100,1150,100

1150 r*ad(alia*,«) i.j.a.val
ll(id(j,i),a) » qalphao*val
goto 1100

1000 format(a!32)
9999 coatian*

r*tara
•ad

72

C Function GETTYPE
C
C Purpose:
C This function identifies whether a line is a character
C input, data input or comment.
C

C
function GETTYPE(string)

C GLOBALS

character*132 string

C LOCALS

integer GETTYPE,ctype(lO)
character*! head(lO)

data head /•!'.'«• ,•«•.'$'.'»».•*','•».'C'.'c',' '/
data ctype /-!,-!,-1,-1.-1.-1.-1,-1,-1,0/

C LOGIC

GETTYPE*1
do 100 ial.10

if CstringCl:!) .eq. head(i)) GETTYPE=ctype(i)
100 continue

return
end

File: solver.f

C=Module SOLVER
CsPurpose Solves the system of linear symmetric equations
CsAuthor who knovs
C=Date
CsUpdate January 1989 by E. Pranono
C=Block Fortran
C SUBROUTINE SOLVER(BK,BR,JDIAG,HEQ.IFLAG)

recursive SUBROTJTIHE SOLVERCBK.BR.JDIAG.NEQ.IFLAG)

C PURPOSE: C
C THIS SUBROUTINE SOLVES THE SYSTEM OF LINEAR SYHMSTRIC C
C EQUATIONS IN VECTOR FORK USING THE GROUT REDUCTION C
C METHOD. C
C C
C ARGUMENTS: C
C BK GLOBAL STIFFNESS EQUATIONS IN VECTOR FORM C
C BR GLOBAL LOAD VECTOR C
C JDIAG - LOCATION VECTOR FOR DIAGONALS IN [BK] C
C HEQ - NUMBER OF EQUATIONS C
C IFLAG - FLAG INDICATING WHICH FUNCTION IS TO BE PERFORMED C
C 1 -> FORWARD REDUCTION C
C 2 -> BACKWARD SUBSTITUTION C

73

C ARGUMENTS

RIAL«8
JDIAG(l), HEQrvIFUO

LOCAL VARIABLES
REAL*8 ZERO, EZERO. TOL, DAVAL, DOT, 0, ROD, 00
INTEGER LDFLAG, JR, J. JD, JH, IS, IE. K. JOT
INTEGER 33, ID, I. IS, IB

JJ » 6
C
C «*«*•»—<£>««>.

C NEW PARAMETERS
C = ------

2E&G • 0.000
EZERO » 0. 30-14
TOL » O.SD-7
LBFLAG a 0

C

C FACTOR BK TO UT*D«tf OR REDUCE R

JR s 0
DO 70 J « 1, HEQ

JD • JDIAG(J)
JH « JD - JR
IS - J - JH * 2
IF (JH - 2) 60. 30. 10

C
10 IF (IFLAG .HE. 1) GOTO 50

IE » J - 1
K a JR * 8
ID * JDIAG(IS-l)

C
C
C IF DIAGONAL IS ZERO COMPUTE A HORN FOR SINGULARITY TEST

JOT « JDIAG(IE) +1
IF (BK(JD) .EQ. ZERO .AND. IFLAG .EQ. 1) THEN

CALL DATEST (BX(JDT), JH-2. DAVAL)
END IF

C

C REDUCE ALL EQUATIONS EXCEPT FIRST ROW AND DIAGONAL

DO 20 I a IS, IE
IR » ID
ID a JDIAG(I)
IH » MISO(ID-IR-1.
IF (IH .GT. 0) BK(K) * BK(K) - DOT(BK(K-IH) , BK(ID-IH), IH)
K a K * i

20 CONTINUE
C

C REDUCE FIRST ROW AND DIAGONAL

74

c

30 IF (IFLAG .HE. 1) GOTO 50
IE » JB + 1
IE » JD - 1
K » J - JD
DO » BK(JD)
DO 40 I * IB, IE

ID • JDIA6(K*I)
IF (BK(ID) .EQ. 0.0) GOTO 40
D » BK(I)
BK(I) « BK(I)/BK(ID)
BK(JD) * BK(JD) - D*BK(I)

40' CQHTIHUE
C
C •"• •••»-•••»-»».».•» a to • «••»«•>•«>«••«•••»*••«••••«•»

C CHECK FOE POSSIBLE ERRORS AHD PRIHT WARHIHGS

ROD * BK(JD)
IF (OIBSCBAO) OX. 10L*DAasaJD)) WRHE (JJ.2000) J
IF (DO .LT. ZERO .USD. ROD .CT. ZERO) WRITE (JJ.2001) J
IF (DO .GT. ZERO .AHD. ROD .LT. ZERO) WRITE (JJ.2001) J
IF (DABS(RDD) .LT. EZERO) WRITE (JJ.2002) J

C

C COMPLETE RAHK TEST FOR i ZERO DIAGONAL TEST

IF (DD .EQ. ZERO .AHD. JH .GT. 0) THEN
IF (DABS(RDD) .LT. TOL*DAVAL) WRITE (JJ.2003) J

EHD IF
C

C REDUCE RIGHT HAND SIDE

50 IF (IFLAG .EQ. 2) BR(J) » BR(J) - DOT(BK(JR*1) , BR(IS-l), JH-1)
60 JR a JD
70 CONTINUE

IF (IFLAG .HE. 2) RETURN.
C
c ----------------

C DIVIDE B7 DIAGONAL TERRS

DO 80 I = 1. HEQ
ID « JDIAG(I)
IF (BK(ID) .HE. 0.0) BR(I) « BR(I)/BK(ID)
IF (BR(I) .HE. ZERO) LDFLAG a 1

80 CONTINUE
C

C CHECK FOR ZERO LOAD VECTOR

IF (LDFLAG .EQ. 0) WRCTE(JJ.2004)

C BACK SUBSTITUTE
C -------

J » HEQ
JD a JDIAG(J)

90 D« BR(J)
J » J - I

75

IF (J .LE. 0) RETURN
JR ' JDIAG(J)
IF (JD - JR .LE. 1) GOTO 110

I » JR - IS * 1
DO 100 I* IS, J

BR(Z) » BR(I) - BK(I+K)*D
100 CONTINUE
110 JD a JR

GOTO 90
C

C ——=~i ~
C WARNING FORMATS

2000 FORMATC/'i! WARNING !! 1 - IN SOLVER, LOSS OF AT LEAST 7 DIGITS'
+ /18X, 'IN REDUCING DIAGONAL OF EQUATION;',4X,IS)

2001 FORMATC/'H WARNING 1 i 2 - IN SOLVER, SIGN OF DIAGONAL CHANGED'
+ /18X. 'WHEN REDUCING EQUATION;',15X,IS)

2002 FORMATC/'H WARMING JJ 3 - H SOLVER, REDUCED DIAGONAL IS ZERO'
* /18X. 'FOR EQUATION;',2SX,IS)

2003 FORMAT(/'H WARNING «! 4 - IN SOLVER, RANK FAILURE FOR A ZERO'
* /18X, 'UNREDUCED DIAGONAL IN EQUATION;',7X,IS)

2004 FORMATC/'M WARNING !! 5 - IS SOLVER, ZERO LOAD VECTOR')
C

END
C=Ead Fortran
C=Modul« DATEST
C=Block Fortran
C SUBROUTINE DATEST(A.JH.OAVAL)

rccarsiva SUBROUTINE DATEST(A,JH,DAVAL)
C4> *•*•«•««««**•»•«*«»«•«*••» vc»«*«««^*v«>aAB«««»aa <»«»•••«»»««• »M««ow««~*««»«v«4>r!

C C
C TEST FOR RANK C
C ' C
C INPUTS; C
C A(J) - COLUMN OF UNREDUCED ELEMENTS IN ARRAY C
C JH - NUMBER. OF ELEMENTS IN COLUMN C
C C
C OUTPUTS; . C
C DAVAL - SUM OF ABSOLUTE VALUES C
C C

C
C ARGUMENTS

REAL*8 A(l). DAVAL
INTEGER JH

' C LOCAL ARGUMENTS

INTEGER J
C

DAVAL » O.ODO
DO 10 J « 1, JH *

DAVAL * DAVAL + DABS(A(J))
10 CONTINUE
C

RETURN
END

76

c
c
CsEnd Fortran
CsModule DOT
C»Block Fortran
C FUNCTION DOTCA.B.N)

recursive FOHCTIOH DQT(A,B,H)

C PURPOSE: C
C THIS FUNCTION SUBROUTINE PERFORMS THE DOT PRODUCT OF TWO C
C VECTORS. C
C _ C
C ARGUMENTS: C
C A - FIRST VECTOR IHVOLVED IN DOT PRODUCT C
C B - SECOHD VECTOR IHVOLVED IH DOT PRODUCT C
C H - HUMBER OF ELEMENTS IH EACH OF THE TWO VECTORS C

9211*8 oar.
INTEGER H

C
INTEGER I

C
DOT * 0.0
DO 10 I » 1, N

DOT » DOT * A(I)*B(I)
10 CONTINUE
C

RETURN
END

CaEnd Fortran

File: xxophlag.f

CaHodule HOPHLAG
CaAuthor K. Alvin
C=Date Jolj 1990
Cafilock Fortran

C
C Snbrontin* NOPHLAG
C
C Purpose:
C Tnis subroutine solves for tae structural displacamant
C and Telocity vectors at the aali-stap for the phase lag
C correction loop, and gets nev Beasureaeat
C

C
C Arguments
C delbeta - delta * bdaatp
C

subroutine HOPHLAG(zp)

real*8 zp(l)
include 'shared.inc'

77

C LOCAL VARIABLES

iatcgcr i
?•*!*• v(lAZDOP) ,d«lb«ta

C L062C
e ABB APPLIED FORCES TO RHS AND PREPARE MASS MULTIPLIER

do 10 i»i,adof
gs(i) » gsU) * f (i)
v(i) « (1. * delta*adaap)*o/i) * d«lta«<|dot(i)

10 eoatiaae

C SOLVE FOR RIGHT HAHO SIDE, gs

do 77 i • i,adof
gs(i) » d«l*<i*g«(i) * v(i)*mac>(jdiag(i))

77

if (bdanp .a*. 0.) ta«a
d»lb«t» » d«lta*bdasp
e&ll PNVHAO(8tif,jdiag,(i,adof,d«lb«ta,g8,l.dO)
•adif

C SOLVE FOR DISPLACEMENT, <|, USIHG RHS AND MATRIX S

call SOLVER(«8,g«,jdiag,adof ,2)

do 100 iai.adof
v(i) » (g»(i)-<i(i))/d«lta

100 eoatian*

call ZEROVECT(zptaa«a)

do 200 jj » l.hdval
i » adro«(jj)
j » hdcol(jj)
zp(i) » zp(i) * hd(jj)*g«(j)

200 eoatian* . '
do 250 jj » l.hwal
i » avrow(jj)
j » hvcol(jj)
zp(i) « zp(i) * av(jj)*v(i)

250 coat inn*

ratura
•ad •

File:. zero vect. f

CaModol* ZERQVECT
C=Purpo«« laitializ* vector of giv«a Ittagtb to zaro
C=Author K. Alvia
C«Dat« May 1990

78

c
C Subroutine ZEROVECT
C

C

subroutine ZEROVECT(v.n)

real*8 v(i)
integer n

do 100 i«l.n
r(i) » O.dO

100 continue

return
end

File: lu.f

SUBROUTINE LUFACTU.N, PIVOT, DET.IER.NMAX)

C
C SUBROUTINE FACTOR USES GAUSSIAN ELIMINATION WITH
C PARTIAL PIVOTING AND IMPLICIT SCALING TO DETERMINE
C THE L*U DECOMPOSES OF A SQUARE MATRIX "A" OF
C ORDER N. THE ALGORITHM ALSO FINDS THE DETERMINE!!!
C OF "A". UPON COMPLETION, THE ELEMENTS OF THE UPPER
C TRIANGULAR MATRIX "U" ARE CONTAINED IN THEIR RESPECTIVE
C LOCATIONS IN MATRIX "A". THE ELEMENTS OF MATRIX "L"
C ARE CONTAINED IN THE LOVER TRIANGULAR PORTION OF "A" .
C BUT ARE SCRAMBLED WITH RESPECT TO "U" BECAUSE OF ROW
C' INTERCHANGE OPERATIONS NOT PERFORMED ON THE ELEMENTS
C OF "L". THE VECTOR PIVOT (SEE BELOW) MUST BE USED TO
C UNSCRAMBLE "L" IF IT IS TO BE USED FOR OTHER OPERATIONS.
C
C VARIABLES: A=FULL SQUARE MATRIX (DOUBLE PRECISION)
C . N=ORDER OF MATRIX A (INTEGER)
C PIVOTsVECTOR CONTAINING A RECORD OF
C RQV INTERCHANGES. THE INTEGER
C VALUE PIVOT(K) IS THE ROW WHICH
C WAS INTERCHANGED WITH ROW K AT
C FORWARD ELIMINATION STEP K. (INTEGER)
C DETaDETERMINENT OF MATRIX A (DOUBLE PRECISION)
C IER=ERROR FLAG. IF IER=1, THE MATRIX A WAS FOUND
C TO BE SINGULAR. AND THE ROUTINE WAS EXITED. . IF
C . IER=0. THE DECOMPOSITION WAS SUCCESSFUL.
C

INTEGER PIVOT(l).IER,H,I,J,X,IO.ffl!AX
REAL*8 A(NMAX.l) ,3(1000) .C(IOOO) .DET.TEMP
DETal.ODO

£****•*•**•*•»••**•*»•**•*«*•••••*•****•*••**•****•***»*«*•*»»***

C
C FIND THE ROW NORMALIZING COEFFICIENTS S(I) FOR IMPLICIT SCALING.
C EXIT ROUTINE IF ANT S(I)=0.0

79

DO 100 X»1,H
SCDsO.OOO
DO 110 Jei.I

IF <ABS(A(I.J)).GT.S(I)) S(I)«ABS(A(I,J))
ItO CQKTXBTJB

IF (S(I).Eq.O) TEEN

DITsO.OOO
RETURN
EBB IF

100 CONTINUE

C
C START FORWARD ELIMINATION STEP K
C

£0 120

C
C DETERMIHE PIVOT ELEKEHT A(IO.K) BY FODING THE ROW IQ
C BETHEEH K AHB I COIiTAIHIHG THE MAZIHUH NORMALIZED .
C VALUE IS COLUHH K. SET PIYOT(K)aXQ
C
C**

.C(K)»O.ODO
DO 130 I»K,H
TEMP«ABS(A(I,K)/S(I))
IF (TEMP.GT.C(K)) THEH
C(K)«TEMP
10=1
END IF

130 CONTINUE
PIVOT(K)=IO

C
C EXIT ROUTINE IF ALL VALUES IN COLUMN K AT OR BELOW
C THE MAIN DIAGONAL ARE EQUAL TO 0.0
C

IF (C(X).EQ.O.O) THEN
lERal
DETaO.ODO
RETURN
END IF

C
C INTERCHANGE ROWS 10 AND K FOR COLUMNS K TO M. SKIP IF IO=K.
C SET DET—DET IF ROWS ARE INTERCHANGED.
C
C**»******«**«***********«»**«*****«******«**i«*»*a*a****»«*a*****

IF (IO.EQ.K) GOTO ISO
DETs-1.0DO*DET
DO 140 J»K,H
TEMP»A(K,J)
A(K,J)»A(IO,J)
A(IO.J)sTEMP

140 CONTINUE

80

C
C ELIMINATE COLUMN K BELOW MAIN DIAGONAL B7 MULTIPLYING
C ROW K FROM COLUNH K TO H BT A(I.K)/A(K,K) AND SUBTRACTING
C FROM ROW I. STORE THE MULTIPLIER FOR ROW I IS THE ELIMINATED
C COLURH X. MULTIPLY THE RUNNING PRODUCT DET BY DIAGONAL ELEMENT A(K,K).
C
£******«***********«****«**«**«**«*** ****************************

ISO DO 160 laK-H.N
A(I.K)-A(I.K)/A(K,K)
DO 170 J»K+i,H
A(I.J)=A(I,J)-A(I,K)*A(K,J)

170 CONTINUE
160 CONTINUE

DET»DET*A<K,K)
120 CONTINUE

C
C CHECX LAST ROH/COL&MV FOR SHUHILA&IT7. IF THgBE IS NO ERROR.
C COMPLETE CALCULATION OF THE DETERMINENT. SET THE ERROR FLAG
C TO INDICATE NORMAL COMPLETION, AND EXIT.
C ' ' .
Cft***

IF (A(N,N).EQ.O.O) THEN

DET=O.ODO
RETURN
END IF

DET»DET-9A(H,H)
IER=0
RETURN
END

SUBROUTINE LUSOLVE(A.N.B, PIVOT, NMAX)

C
C SUBROUTINE SOLVE
C

INTEGER PIVOT(1},N,I,J,K,NKAZ
REAL*8 A(NMAX,1),B(1),TEMP
DO 100 Kal.N-l
IF (PIVOT(K).EQ.X) GOTO 110
TEMP=»B(K)
B(K)»B(J)
B(J)=TEMP

110 DO 120 I=K*1,H

120 CONTINUE
100 CONTINUE

B(N)aB(N)/A(N.N)
DO 130 IsN-1.1,-1
DO 140 J=I*1,N

140 CONTINUE

130 CONTINUE
RETURN
END

81

CsEHD FQRTRAH -
esBECIC FACTA
eaPURPQSE - Factors the A matrix as L U • A, with partial pivoting
e»AffSHOa i I 1EL7X», Sept. 24, 1987
e

e Input
e aaat-——[n Z n] satriz to be factored, destroyed on output
e np-~—-problea size
e
e Output
e aaat—- contains the LIT decomposition
e

subroutine FACTA(*mat,np,as>ow,lp)
e

real*8 «mat(*).«ta

e
do SO i"l,np

50 lp(i)-i
e
c Find largest pivot.
c

do 100 k"l,np-l

do 200 m«k,np
if (ab8(aBat(lp(a)«(k-l)*nroB)) .gt. amaxk) then

endif
200 continue

c
l-lp(k)
lp(k)alp(nmaz)
Ipdnmax)*!

do 400
•ta»ajnat(lp(i)*(k-l)*nrow)/amat(lp(k)+(k-l)*aroB)
aiaat(lp(i)*(k-l)*nrow)««t»
do 500 j=k*l,np

amat(lp(i)+(j-l)*nro«)samat(lp(i)+(j-l)*nrow)
•ta*amat(lp(k)*(j-l)«nroH)

500 continue
400 continue

c
100 continue

c •
return
end

C EHD FORTRAH
c=DECK LUSOLV
CSPURPOSE - Solve L 0 x « b,
COAUTHOR W K BELVIH, Sept. 24, 1987
c • »
C ™** —— *—*" —™ — >* —m™"™" *^^«»i««i««^««i»^^«i^^^^^«j*^^^«>"«

82

c
c
e
e

c
e
c
c
c

c
c. «•—

First solves

lapot
aaat—
ap— .-,

IP
rhs-—

Output
amat*̂ '

L y • b, then 0 x « y

— [n I n] matrix factored by FACTA

—pointer vector baaed on pivoting
-RES of equation

—contains the LU decomposition .

subroutine LUSOLV(aaat,np,nrow,lp,rh8,x)
c

real*8 anat(*),x(*),rhs(«) .
integer lp(*)

c
do 50 i»l.np
x(i)»rhs(i)

SO continue
c t-
c Solve Lover System————————————
c**«* Outer loop

do 100 k*l.np
rhs(k)=x(lp(k))
if (rhs(k) .eq. 0.) go to 100

c
c*«** Inner loop
c

do 200 i=k+l,np
x(lpCi))sx(lp(i))-amat(lp(i)*(k-l)*nrow)*rhs(k)

200 continue
100 continue

c.
c Solve Upper System————————————-
c

do 300 kanp,l,-l
x(k)«rhs(k)/amat(lp(k)+(k-l)*nro8)
do 400 ial,k-l
rha(i)3rhs(i)-x(k)*aoat(lp(i)+(k-l)*nrov)

400 continue
300 continue

return
end .

File: prepcon.f

C=Hodule PREPCOH
C=Purpo8« Preprocess control analysis module for ACSIS
C^Author K. Alyin
C=D&t» June 1990
C=Block Fortran

C
C Subroutine PREPCOH

83

c
C Purpose: '
6 Thim subroutine prepares ee, the control prediction integration
C aatslx and eo, the observer construct matrix S (M+d«lta»D+delsq*K)
C

C
C

subroutine PEEPCOS

iaelude 'saared.inc'

C LOCAL VARIABLES

real*8 ae.ke
ier

e WBSS

call READCQH

C .' Form Coatrol Predietioa latagratioa Coefficient Matrix
C
C contype » -1 : Foil State Feedback
C coatype • 0 : Lueaberger Observer
C coatjpe « *1 : Kalaaa Filter

do 10 i • t.aact * asea
do 20 j » i.nact * asea
ec(i.j) » O.dO

20 coatiane
10 coatiane

if (contype) 100.200.400

JOO acsi " nact ' -

do 110 i • i.nact
do 120 jj • l.bval
j • bcol(jj)
k • brow(jj)
•c(i.j) » ec(i.j) + delta*f2(i,k)*b(jj)/nassCjdiag(k))

120 continue
110 continue

goto 600

200 ncsi * nact + as en

do 210 i • i.nact
do 220 jj * l.bval
j » bcol(jj)
k » brow(jj)
ec(i.j) - ec(i.j) * delta*f2(i,k)*b(jj)/ma«s(jdiag(k))

220 continue
do 240 j • nact* 1, ncsi
do 250 k • l.ndof
ec(i,j) » ec(i.j) + delta*f2(i,k)*12(k,j-nact)

84

250 continue
240 coatiaue
210 coatiaue

do 260 ii • l.awal
i 3 nact + hvrov(ii)
do 270 jj 3 l.bval

j » bcolCjj)
k « bro«(jj)
if (hvcol(ii) .ne. k) goto 270
•c(i,j) - ec(i.j) * delta«hv<ii)*b(jj)/maas(jdiag(k))

270 continue
do 290 j » aact+l.acai
k 3 avcol(ii)
ec(i,j) « ec(i,j) + d«lt&*hT<ii)*12(k.j-ttac*)

290 coatinn*
260 continue

goto 600

400 acsi 3 nact * na«a

do 470 i a i.nact
do 480 jj » l.bval
j - bcol(jj)
k - broH(jj)
•c(i,j) a «c(i.j) + d«lta*f2(i,k)*b(jj)/mas8(jdiag(k))

480 coatiau*
do 600 j » aact+l.acai
do 610 k 3 i.ndol
•c(i.j) 9 «c(i,j) * d«lta*f2(i,k)*12(k,j-aact)/

ma88(jdiag(k))
510 coatiau*
500 coatiana
470 coatiau*

do 520 ii 3 l.awal
i s nact * hvros(ii)
do 530 jj 3 l.bval
j - bcolCjj)
k 3 brbw(jj)
it (avcoKii) .a«. k) goto 530
•c(i,j) » «c(i.j) * d«lta*h»(ii)*b(jj)/ma88(jdiag(k))

530 coatiau*
do 550 j 3 aact+i,acsi
k 3 avcol(ii)
ec(i.j) 3 .cCi.j) * d«lta*h»(ii)*12(k,j-nact)/

Baaa(jdiag(k))
550 coatiaua
520 continna

600 continue

do 1100 i 3 l.ncai
•c(i.i) 3 ac(i.i) + l.dO

1100 coatinue

C FiCTORIZE «c

call FACTKac,acsi.KA1CSX.pivot)

85

i£ (i«? .eq. 1) than
psist «,'PREPCOH: Singular Matrix for Control Integration'
eadif

C Form Ote«CT«? Integration Coefficient Matrix, «e

ae » I* » delta*adamp
lie « delt««bdamp * delsq
de 1200 isl.alen

e«(i) » ac<nu«>(i) * kc*Btif(i)
1200 eeatiam*

C FACTORIZS «o

e&U SOLT£E(«o.go,jdiag,adoz.l)

C laitializ* Ob««rv«r States

call ZEEOVECT(q«dot,ndof)
eaU ZEaQVECT(p«,adof)

•ad

File: control.f

COHTROL
CsAnthor K. Alvia
CaDate May 1990
CsBloek Fortran

C
C Subroutine COHTROL
C
C Purpose:
C This subroutine carries out the numeric integration of one time
C step of the control system.
C

C
C Arguments.
C qep - estimated. displacement vector at half time step
C qedotp - estimated velocity vector at half time atep
C pp generalized momentum (f-D*qedotp-K*qap)
C z - measured sensor output

subroutine COHTROL(z)

include 'shared.inc'
real*8

LOCAL VARIABLES

real*8 qep(MAZOOF),qedotp(MAZDOF) .pp(KAIDQF).v(MAIDOF)

86

C LOGIC

C Form BBS of Control Prediction Equation Set
C
C coatyp* • -i : Full State Feedback
C contype • 0 : Luenberger Observer with Li = 0
C coatype » +1 : Kalman Filtar v/generalized momentum variable

call ZZaQVECT(gc,nc8i)

if (contype) 100,200,300

100 continue

do 110 i » l.ndof
qe(i) - qCi)
qedot(i) > qdot(i)

110 contian*

200, continue

do 210 i • l.ndof
q«p(i) • qe(i) * d«lta*q«dot(i)
qadotp(i) • q«dot(i)
pp(i) a f(i) - maas(jdiag(i))»adamp*qedotp(i)
v(i) * q«p(i)•# bdanp*q«dotp(i)

210 continue

call PHVMAD(atif,jdiag.v,ndof.-l.dO,pp,l.dO)

do 220 i=l,nact
do 230 j » i.ndof
gc(i) » gc(i) - fl(i,j)*qep(j) - f2(i,j)*(qedot(j) +

d«lta*pp(j)/mas«(jdiag(j)))
230 continue
220 continue

if (ncai .eq. nact) goto 600

do 240 i=nact*l,ncai
k a i - nact
gc(i) = z(k)

240 continue
do 245 ii * l.hdval
i a hdrov(ii) * nact
j s hdcol(ii)
gc(i) « gc<i) - hd(ii)*qep(j)

245 continue
do 250 ii « l.hwal
i a hvTOB(ii) * nact
j • hvcol(ii)
gc(i) - gc(i) - hv(ii)*(qedot(j)-»-d«lta«pp(j)/ma8»(jdiag(j)))

250 continue

goto 600

300 continue

do 310 i a i.ndof

87

pp(i) » f(i) - ma»s(jdiag(i))*adanp*<i«p(i)/d«lta
T(i) « (1 + bdamp/d«lta)*q«p(i)

310 eoatisa*

e*U PHVHAD(«tif,jdiag,*,adof,-i.dO,pp,i.dO)

do 320 i»l,aac«
do 330 j » l.adof
gc(i) « gc(i> -

d«lta*pp(j))/»*s«(jdiag(j))
330 esatiaao
320

do 340
k » i r sact
ge(i) « z(k)

340 eoBtiane
do 34E ii • l.&dval
i « 3steow(ii) *
j « bdeol(ii)
gc(i) « gc(i) -

345 eoatiau*
do 380 ii » l.hwal
i • hvrow(ii) * aact

- j » hvcol(ii)
gc(i) « gc(i) - aT(ii)*(p«(j) + d«lta*pp(j))/mas8(jdiag(j})

350 continu*

C FXHD r, COHTROL AHD STATE CORRECTIOH FORCES

600 call LOSQLV(«c,nc«i,IAXCSI. pivot, gc.r)

do 610 j»l,nact
. u(j) « r(j)

610 continue
do 620 j*nact+l,ncsi

620 continue

C FIHI) COHTROL COHTRIB0TIOH TO RES VECTOR FOR
C OBSERVER AND STROCTRE

do 710 i»l,ndoi
g»(i) * O.dO
go(i) • O.dO
gk(i) • O.dO

710 coat inn*
do 720 jj»l.bval
i > brow(jj)
j » bcolCjj)

go(i) « go(i) *
gk(i) » gk(i) * b(jj)*n(j)

720 contian*
it (contjp* . «q. 0) ta«a
do 725 i » l.adof
do 730 j*l,as«n
go(i) « go(i) * BaM(jdiag(i))*12(i.j)*gamnia(j}

730 coatinn*

725 continue
elseif (contype .eq. 1) than
do 735 i « l.ndof
do 740 j>l,nsen
go(i) « go(i) * a2(i.j)*mass(jdiag(i))*ll<;i.j)/delta)

•gamma(j)
gk(i) - gk(i) * 12(i,j)*gamma(j)

740 continue
738 continue

endif

return
•nd

File: secorder.f

C=Hodule SECOROEE
C»Author K. Alvin
C=Date Kay 1990
CsBlock Fortran

C
C Subroutine SECORDER
C
C Purpose:
C
C Solves the second-order dynamical equation:
C
C MX" * Dx» * Kx » i * g
C
C at time (n+1) given f(n+l/2), g(n+l/2) and x.x' at n by
C . the midpoint implicit integration rale.
C Step size is 2<*delta.
C
C D is of the form (alpha«M + beta*K), f is an applied force,
C and g is assumed to be other applied force from a feedback
C control loop. The matrix E is the factored form of the
C integration coefficient matrix: E=(H + delta*D + delta"2*K).
C ,

C
C Arguments:
C
C m - matrix H
C x - matrix K
C alpha - scalar alpha
C beta - scalar beta
C f Force vector f(n+l/2)
C g - Feedback force vector g(n*l/2)
C e martix E
C x Variable vector x(n)
C xd Variable vector x'(n)
C delta - Half of integration time step
C delsq - delta'2
C jdiag - Diagonal location pointer for M.K.E matrices
C ndof - Number of equations and length of q

89

' t.

C v oass multiplier for RHS preparation
C delbeta - delta * beta

C subroutine SECORDER(m,k, alpha, beta, f,g,e,x,xd,
C . delta,del»«|,jdiag,adof,SAX80F)

recursive rabrontiac SECOEDER(»,k, alpha, b«ta.f ,g,e,x,x4,
dalta.dalsq.jdiag.ndof.MAXDOF)

C ARGUHEHTS

r«al*8 z(i).xd(l).d«lta,dalsq
iat«g«p jdiagCD.ndof.MAXDOF

LOCAL VARIABLES

•!*« T(3000)̂ t«lb«rt*

C LOGIC
C ADD APPLIED FORCES TO RHS AHD PREPARE MASS MULTIPLIER

do 10 ie

v(i) » (1. * d«lta«alpba)»x(i) * d«lta*xd(i)
10 eoatian*

C SOLVE FOR RIGHT HAHD SIDE, g

do 77 i«l,adof
g(i) » d«ls<i*g(i) * 7(i)*m(jdiag(i))

77 conti&a*

if (b«ta .n«. 0.) then
d«lb«ta * dalta*b«ta

C Activate EBE conpatatioai lor internal force by using STIFFRC
C subroutine. Otherwise use PHVMAD (profile matrix/ vector mult-add

C call PMVHADOc.jdiag.x.ndof .delbeta.g.l.dO)
call STIFFRCCx.delbeta.g)
endif

C SOLVE FOR DISPLACEMENT, q. USIHG RHS AND MATRIX E

call SOLVERCe.g.jdiag.ndof .2)

do 100 i»l,ndof
xd(i) - 2.*(g(i) - x(i))/delta - xd(i)
x(i) » 2.*g(i) -

100 continue

return •
end

File: measure.f

90

CsModule MEASURE
C=Author K. Alvin
C=Date May 1990
CsBlock Fortran

C
C Subroutine MEASURE
C
C Purpose:
C This subroutine stores new measured sensor data by using the
C previous displacement and velocity vectors at the sensor
C locations
C

C
C Arguments
C zp «• measured sensor
C

subroutine MEASURE(zp)

include ' shared.inc'
real*8 zp(l)

call ZERQVECT(zp,nsen)

do 100 jj « l.hdval
i » hdrov(jj)
j « hdcolCjj)
zp(i) - zp(i)

100 continue
do 200 jj • l.hwal

i a hvrow(jj)
j - hvcol(jj)
zp(i) > zp(i) * hv(jj)*qdot(j)

200 continue

return
end

File: eigens.f

C=Module EIGEHS
C=Purpose Find Eigenmodes given Mass, Stiffness Matrices
C=Author K. Alvin
C=Date March 1990
C=Block Fortran

subroutine EIGEHS
C
C
C
C COMMOH AHD GLOBALS

91

C-2.

'8har«d.iac'

LOCAL VARIABLES

,MSHVM»MAXDOF*HVM ,HXCNVsNVM*(NVM+l)/2)
iat«g«r islOUZOOP) ,&*•<:. i,j.k.kk,oitt

T],(lQnnni),7r(!QIHVM),aUc(MXCIIV).anni(]aCHV)
tt(NVH,HVH).eigv(NVM).«igold(NVM)

?e&l*8

%oleig*.000i
owe * 13

toljae • tol«ig
miaO(2*a«ig,100)
miaO(av«c,adof)

SSS Iff I5L ¥ECTDE

do 50 j«2tadof
i«l(j) = j - jdiagCj) + jdiag(j-l) +1

SO eontiau*

C CALL EIGEHSOLVEH

call SSPACE(stii,m**«,vl,irr,akJc,aaffli,xx,«igv,«igold,i3l,
jdiag,a«ig,av«c,ndof ,tol«ig,toljactout)

C WEXTE OUTPUT

100

vrit«(<rat.*) 'EIGEH ANALYSIS RESULTS:'
writ«(oat.») ' RADIAL
writ«(ont,*) ' MODE EIGENVALUE FREQUENCY

vrit«(out,*)
do 100 i=l,a«ig
OB«ga » deqrt(«igv(i))
tta a om«ga/(2»3. 141592654)
writ«(out,»(i5,3(3x.gl2.5))') i.eigv(i), omega, laz
coatiau*

writ«(out,*) 'EIGENVECTORS:'
do 200 j»l,a«ig.5

CYCLIC'
FREQUENCY'

300
200

450

do 300 i«l,adof
k « ndof*(j-l) * i
•rit«(oat,'(i5,S(lx,gl2.5))')
contiau*

continue

«rit*(ont,«) 'MASS MATRIX DIAGONAL:' '
do 400 i«l,aap
do 450 j»l,6
if (id(j.i).nc.O) than
wit.Cont.*) i.j,id(j,i).maei(jdiag(id(j,i)))
•ndif

coatiau*

,ado*)

92

400 continue

return
end

C=End Fortran

File: singeig.f

SOTROOTIHE SSPACE (AK,AI,VL,VR,AKK,AMM,XX,EIGV,EIGOLD,ISL.
1 IDXAG.HEIG.HVEC.HDOF,TOLEIG.TOLJAC.HW)

c-—c
e
c
c
c
e
c
e
c
c
c
c
c
c
e
c
e
e
c
c
c
c
c'
c
c
C '

c
e
e
c
c
c
e
c
c

input : (

AK stiffness matrix (profile values) (NDOF)
AH consistent mass matrix (profila values) (HOOF)
ISL store* in porrtion "i" the TO* * vt tip of

column "i" (HDOF)
IDIAG position of diagonal terms in profile (HOOF)
HEIG ' f of required eigenvalue*
HVEC * of subspace vectors
NDOF * of degrees of freedom
TOLEIG tolerance for eigenvalues convergence
TOLJAC tolerance for Jacobi convergence
HW logical unit number for output

output :

VL(NDOF,HVEC)
- VL(.,l..)J!UiOD)
- VL(.,NRMOD..HVEC)

VR(NDOF.HVEC)
- VR(.,1..HRMOD)
- VR(. .HRMOD'. .HVEC)

AXK(NVEC*(HVEC + l)/2)
AMM(NVEC*(HVEC * l)/2)
U(HVEC*HVEC)

EIGV(HVEC)
- EIGV(i..HRKOO)
- EIGV(MRNOD..HVEC)

EIGOLO(HVEC)

working array
AM times rigid modes
•ubspace at the previous step

eigen-rectors
rigid modes
subspace at this step (eigenvectors)

stiffness matrix in the snbspace
consistent mass matrix in the
subspace eigenvectors

current eigenvalues
0 eigen-values
follooing eigenvalues > 0

same as EZGV

subspace

C

c

IMPLICIT REAL'S (A-H.O-Z)
DIMEHSIOI AK(i) ,AM(1) ,VL(HDOF,NVEC) ,VK(NDOF.HVEC) .AKK(l) .
1 AMM(l),ZZ(BVEC*HVEC),EIGV(i),EIGOLO(l),ISL(l),IOIAG(l)

WRITE (HV.1003) HEIG.HVEC,HDOF,TOLEIG

CALL IHVECT (AK,AM,VL.VR.IDIAG,HDOF.HVEC)
CALL FACT (AK.IDIAG,ISL,HDOF,HW)
CALL HULL (AK.AM.VL.VR.IDIAG.ISL.HDOF.NRMOD)

93

c
C BBHQD : * of rigid modes
G

HRTTE (W, 1004) HRMOD
HSQBBIY8C-IRMOD

C
CALL ORTHO

'C

EVECiaOTBC-i
DO S X-1.B7BC

S ESGOLDOO.O
C

500 HXTaHXT*!
WRITS (H¥,1000) HIT

C
CALL SOL-YES (A*,'<n.(l 'BB1lflP*<),wtP .̂
CALL ORTHO (VL.VR.SDOF.HRHOD.HVEC)

C

DQ 10
C
C CALCOLAT2 THE UPPER PART OF AXK (S7MHETHIC)
C

DQ 10 X*HRMOD+1,J
TR»0.0
DO 11 Kal.HDOF

11 TR»ra*VL(K,I)*VK(K,J)
IJaIJ+1
AKK(IJ)aTa

10 CONTINUE
C

CALL MDLT (AM,VB(l.HBMOD+l),VL(l,inU!OD*l),ISL,IDIAO,NSUB.NDpF)
C

IJ=0
DO 20 JaHRHOD+1 ,SVEC

C
C CALCULATE THE UPPER PART OF AHM (SYMHETRIC)
C

DO 20 IsHRMOD+l.J
TRaO.O
DO 21 K»1,HDOF

21 TR»TR+VL(K,I)»VR(K,J)
, IJaIJ+1

AMH(IJ)=TR
20 COHTIHUE

C
CALL JACOBI (AKK,AMM,XI,EIGV(NRMOD+1),HSMAX,TOLJAC,HSUB(HV)

C
C ORDER EIGEHVALUES k EIOEHVECTORS
C
30 IS-0

DQ 40 X'HRHOD+l.HVECl
IF (EIGV(I*1).GE.EIGV(I)) GO TO 40

TR«EXGV(I+1)
EIGV(I+1)=EIGV(I)

94

EIGV(I)=TR
00 41 J-i.HSUB

TBsXX(J+(I-HRMOD)*HSUB)
U(J*(I-HRMOD)*HSUB)aXX(J+(I-HRMOD-l)*HSUB)

41 XX(J»(I-HRMOD-1)*HSUB)»TR
40 COHTIHUE

IF (IS.EQ.l) GO TO 30
C
C SUBSPAC2 COHVERGEHCE TEST
C

ICOHVaO
DO SO I»HBMOD*1,HVEC

TRsDABS((EIGOLD(I)-EIGV(I))/EIGV(Z))
EIGOLDU)sEIGV(I)
EI6V(I)sTR
IF (TR.GT.TOLEIG.AHD.I.LE.HEIG) ICONV'l

SO COHTIHUE
WRITE (BY, 1001) (EIGV(I),I«1,HVEC)
ZF (iourv.2q.fl) ao TO loo

C
IF (HZT.LE.HITN1Z) GO TO 70
WRITE (HV.1002)
GO TO 100

C
C UPDATE EIGEH VECTORS
C
70 DO 80 lal.HDQF

DO 80 J'l.HSUB
TR»0.0 •
DO 81 K=1,HSOB

81 TR»TR+VR(I,It*HRMOD)*XI(X+(J-l)*MSOB)
VL(ItJ*HRMOD)sTR

80 COHTIHUE
DO 90 Isl.HDOF

DO 90 JaNRMOD*! ,HVEC
90 VR(I,J)-VL(I.J)

GO TO SOO
C
C CALCULATE FIHAL EIGEHVECTORS
C
100 DO 110 I*1.HDOF

DO 110 J=1,HS0B
TRaO.O
DO 111 Kal.HSUB

111 TRaTR*VL(I,K+HRMOD)*XX(K+(J-l)«MSUB)

110 CQHTIHUE
DO 112 I=1,HVEC

112 EIG7(I)=EIGOLD(I)
C

RETURH
C
1000 FORMAT (SX.12HITERATIQH HO, IS)
1001 FORMAT (6(2X.1PE10.3))
1002 FORMAT (5X.24HVE ACCEPT CURREHT VALUES)
1003 FORMAT C//20X, 'SUBSPACE ZTERATIOH ROUTINE'//' HB OF EIGENVALUES* ' .

1 IS/' SB OF VECTORo'.IS/' SB OF DOF»',I5/' TOLERAHCE=' .1PE10.3/)
1004 FORMAT (' HB OF RIGID HODES=',I5//)
C

95

END
cc

SUBROUTINE IHVECT (AK,AH,7L,VR.IDIAG.NDOF,NVEC)
MPUCIT REAL'S (A-H.O-Z)
DIMENSION AKO.AKO.VLCn.VRCTOOF.NVEO.XDIAGU)

C

00 iO I"i,NDOF

DO 10 J«2,HVEC
_ ra(i.j)ao.o

10 COHTZHUE
C

LLaHDOF-HD
C

DO 28 Ja3,mS6
TE=0.0

C
DO 30 Jsl.LL

IF (VL(I).LT.TR) GO TO 30

30 CQBTXHOE
C

DO 40 I»LL,2TOOF
IF (YL(I).LS.Ta) GO TO 40
TR»VL(I)

40 COHTIHUE
C

VL(IJ)«0.0
U.3LL-HO
VR(IJ,J)»1.0

C - ' v
20 CONTINUE

C
RETURN
END

ccc
SUBROUTINE MULT (AM.VR.VL.ISL.IDIAG.NVEC.NDOF)
IMPLICIT REAL*8 (A-H.O-Z)
DIMENSION AI(1)>VR(NDOF.NVEC).VL(NDOF.NVEC),ISL(1),IDIAG(1)

DO SOO IVal.NVEC
DO 100 I«1,NDOF

TRaO.O
IJ»IDIAG(I)
IKsABSClSL(D)
KK»I
DO 110 K»IK,I

TR*TR*AM(I J) *VL(KK , IV)
IJaIJ-1
KX=KK-1

110 CONTINUE
C

IF (I.EQ.NDOF) GO TO 99

96

DO 120 KalX.HDOF
I? (I.LT.ABS(ISLCK))) CO TO 120
IJ«IDIAG(K)-K+I
TR«TR+AH(IJ)*VL(K,IV)

120 CONTINUE
99 VR(I.IV)-TR
100 CONTINUE
500 CONTINUE

RETURN
END

cc
SUBROUTINE JACOBI (AK,AH,XX,EIGV,HSHAX,TOL,N,NW)
IMPLICIT REAL*8 (A-H.O-Z)
DIMENSION iK(l),AM(l),ZX(N,N).EIGV(l)

C
c INITIALIZE
c

ZEROaO.O
TtfQs2.0
DO 10 I«1.H

IF (AK(II).LE. ZERO. OR. AK(II).LE. ZERO) GO TO 900

DO 20 J=1,H
XX(I,J)=ZEEO

20 COHTIHUE

10 CONTINUE
C
C SET COUNTER
C

NSVEEPaO
NR=H-1

SOO HSWEEP»HSWEEP*1
C
C CHECX IF ZEROOUfG IS REQUIRED
C

EPS=0.01**NSWEEP
EPS=BPS*EPS
DO 150 Jal.NR

DO 150 K=IIX,H
JJ»J*(J-1)/2*J
KK»K*(K-1)/2*K
JK«»K*(K-l)/2+J
EPSAK«(AK(JK)«AK(JK))/(1K(JJ)*AK(KK))
EPSAH«(AM(JK)«AM(JK))/(AM(JJ)*AM(KK))
IF (EPSAK.LT.EPS.AND.EPSAN.LT.EPS) GO TO 150

C
C CALCULATE ROTATION ELEMENTS
C

AKK3AK(KK)*AM(J1C)-AM(KK)*AK(JK)
AJJ»AK(JJ)*AM(JK)-AM(JJ)*AK(JK)
ABn(AK(JJ)»AJ!(ICK)-AK(JCK)*AM(JJ))/TWO
CHECK=AB*AB+AKX*AJJ
IF (CHECK. LT. ZERO) GO TO 900
SqCH»DSQRT(CHECX)

97

D1»AB+SQCH
02»AB=SQCH
DEHaDl
IF (DABS(D2).GT.DABS(D1)) DEH=D2
IF (D3. IB. ZERO) 60 TO 4S

60 TO SO
45 eisAH/DEH

668-AJJ/DES
C
6 PEBFOEM OEBEBiLZZED EOTiTIOH
C

50 JP1»J*1
Jll-J-1

KMi-K-1
IF (JI1.LT.1) GO TO TO
90 90 J»1 ĴM

IJaJ*JJ!l/2+I
IKaK*KMi/2*I
AIJ31K(IJ)

iK(IJ)=lKJ*CG*AKK

60 COHTIHUE
70 IF (KPi.GT.H) 60 TO 90

DO 80

AKJ«AK(JI)
ANJaAJf(JI)

AK(JI)aiKJ+CG*AKK
1H(JI)«AMJ+CG*AKK

80 COHTIHUE
90 IF (JPi.GT.KHl) GO TO 110

DO 100 I-JP1.KH1

IK»K*(K-1)/2»I
AKJ-AK(JI)
AMJaAM(JI)
AXKaAK(IK)

AK(JI)«1KJ*CG*AKK
AM(JI)«AJIJ*CG*AKK
AK(lK)oiKK*CA*4KJ
A«(IK)«1HK+CA*AHJ

100 COHTIHUE
110 AKKaAX(KK)

AXK»AM(KK)
AKJ"AK(JJ)

98

AMJ«AH(JJ)
AK(KK)»AKK+TVO*CA*AK(JK)+CA*CA*AKJ
AM(KX)«AHK+TtfO*CA*AH(JX)+CA*CA*AHJ
AK(JJ)aAKJ*TWO*C6*AK(JK)*-CG*CG*AKK
AM(JJ)»AMJ*TVQ*CG*AM(JK)*CG*CG*AMK
AI(JI)»ZERO
AH(JK)«ZERO

C
C UPDATE EI6EHVECTOR FOR THIS ROTATIOH
C

DO 120 I»l ,H

XX(I,J)aIXJ+CG*XHC
XX(I,K)=rXK+CA*UJ

120 COHTI1IUE
ISO COHTZHUE

C
C UPDATE 2ICEH1ULDES 4 CHECK QUIVEOCEHCE
C

ICQHV«0
DO 160

IF (AK(II).LE. ZERO. OE.AM(II) .LE. ZERO) GO TO 900
TR=AK(II)/AM(II)
DEH«(TR-EIGV(I))/TR
EIGV(I)«TR
IF (DABS(DEN).GT.TOL) ICOHV=1

160 CONTIBUE
IF (ICOHV.Eq.l) GO TO 499

C
C CHECK OFF DIAGONAL TERNS
C

EPS»TOI.*TOL
DO 170 J»1,HR

IIK»J*1
DO 170 K-IIK.H

JJaJ*(J-l)/2+J
KX»K*(K-l)/2+K
JKaK*(K-l)/2+J
EPSAK»(AK(JK)*AK(JK))/(AK(JJ)'»AK(KK))
EPSANa(AM(JK)*All(JK))/(AlI(JJ)*AN(KK))
IF (EPSAK.LT.EPS.AND.EPSAN.LT.EPS) GO TO 170
GO TO 499

170 COHTIHUE
C. •
C SCALE EIGEHVECTORS
C
179 DO 180 lal.R

AKK»DSQRT(AM(II))
DO 180 J=1.H

XX<J,I)»XX(J.I)/AKK
180 COHTIBtJE
C

RKTUHH
C
499 IF (NSVEEP.LE.HSXAX) GO TO 500

99

HRITE (HV, 1000)
CO TO 179

C
900 WRITE (IV, 1001)

STOP
C
1000 FORMAT (6X.34HHO CONVERGENCE AT NSMAX ITERATIONS)
1001 FORMAT (5X.46HERROR H JACOB! : MATRIX HOT POSITIVE DEFINITE)
e

END
eecceccecceccccecc

SOIROOTISE SOLVES (AI.VL.VR.IDIAS.ISL.NDOF.NVEC)
C -
C PURPOSE : SOLVES TBS SINGULAR PROBLEM : AK x VL a VR
C TEE SIHGULAR COLUMHS UTTO AK ARE INDEXED BY
C THE NEGATIVE VALUES OF ISL, THE CORRESPONDING
C TERMS OF THE SOLUTION ARE PUT TO 0
C
C

IMPLICIT REAL*8 (A-H.O-Z)
DIMENSION AK(1).VL(NDOF,NVEC).VR(NDOF,NVEC),IDIAG(1),ISL(1)

C
DO 600 IV'l.MVEC

DO 60 I*1,NDOF
SO VL(I.IV)»VR(I.IV)

C
C BACXSUBSTITUTE
C • '

DO 100 IC=2,NDOF
TRaO.O
IClaIC-1
IH1»IDIAG(IC)-IC
IK=ISL(IC)
IF (IK.LE.O) THEN

VLClC,IV)aO.
GOTO 100

ENDIF
IF (IK.GT.IC1) GO TO 100
DO 120 K*IK.IC1

TR»TR+AK(IN1+K)*VL(K , IV)
120 CONTINUE

VL(IC,IV)8VL(IC,IV)-TR
100 CONTINUE
C
C SOLVE DU»U
C

DO ISO ICal.NDOF
VL(IC.IV)3VL(IC,IV)/AK(IDIAG(IC))

ISO CONTINUE
C
C BAKSUBSTITUTE
C

IICsNDOF
DO 200 IC»2,NDOF

TRaVL(IIC.IV)

IKalSL(IIC)
INlaIDIAG(IIC)-IIC

100

IF C(iK.<rr.ici).OR.(iK.LE.o)) GO TO 221
00 320 K'IK.ICl

VL(K,IV)sVL(K,IV)-AIC(IJIl-HC)*TR '
220 CQHTXHUE
221 IICaIIC-1
200 COST2HOE
soo CQHTXHUE

RETURH
EHD

cc
SUBROUTISB FACT (AK.IDIAG.ISL.HDOF.Htf)

C
C PURPOSE : LDLT DECOMPOSITION OF IBB POSITIVE SEMI-DEFINITE
C MATRIX AK. TEE SINGULAR COLUMNS OF AK ARE INDEXED
C BY A NEGATIVE VALUE OF IDIAG>
C
C

3BLICXT 32AL«8 CA-l.O-Z)
DIMENSIOH AK(J),IDIAG(1),ISL(1)

C
C OETERMIHE HIH k MAX -
C

TRsDABS(AKd))
AMIH-TR
AXAX'TR
DO 10 XLal.roOF

TRaDABS(AK(IDIAG(IL)))
IF (TR.LT.AMXV) AMIM=TR
IF (TR.GT.AMAX) AKAX=TR

10 CONTINUE
ZERO=(AMAX+AMIH)*1.0D-10

C
C LOOP OVER CQLUMH
C

DO 100 IC=1,HDOF
MIC=ISL(IC)
IClaIC-1
MIC1MIC+1
IH2»IOIAG(IC)-IC
IF ((MIC.LT.l).OR.(KIC.GT.IC)) GO TO 901

C
C CALCULATE GS
C

IF (MIC1.GT.IC1) GO TO ISO
DO 120 IL»MIC1,IC1

IF (IDIAG(IL).LT.O) THEH
AK(I52+IL)aO
GOTO 120

EHD IF
HILalSL(IL)
IL1=IL-1
MIM=IUIO(MIL,MIC)
IHl»IDIAG(IL)-n.
TR»0.0
IF (MXX.GT.IL1) GO TO 120
DO 130 KaMIM.ILl

TR=TR+AK(IHl*K)*AK(Hr2*K)
130 CQHTXHUE

101

AK(IH)»AK(IH)~TR
120 CQHTDTOE
C
C CALCULATE LAO
e
ISO TR-0.0

IF (MIC.8T.ICi) GO TO 201
00 200 tLaMIC.ICi

IF (IDIAC(IL).LT.O) GOTO 200
A6«AKdH2+IL)
AL»A6/AE(IDIAG(IL))
AI(H2+IL)«>AL
TR»TR*AL*A6

200 CONTINUE
201 IHsIDIAGUe)

AK(IH)*AK(IH)-TR
JF (AK(IH).LT.ZERQ) IDIAG(IC)a-IDIAG(IC)

100 COSTIHOS
RETURH

901 WRITS (Htf.1001)
STOP

1001 FORMAT (SX,29H*«*STOP ERROR III IDIAG VECTOR)
1010 FORMAT (SX,1CONDITIONING OF THE STIFFNESS MATRIX'/2X,

1 'MM DIAG TERMs'.lFEiO.a,' MAX DIAG TERM='.E10.3)

EHD
cc

SOBROOTUTE HULL (AK.AMgVL,VR,IOIAG,ISL,NOOF,inUfOO)
C
C PURPOSE : CALCULATE THE HULL SPACE OF AK AND PUT AN
C ORTHONORNALISED BASE OF THIS SPACE INTO THE
C HRHOD FIRST VECTORS OF VR.
C VL • AM x VR AFTER EXECUTION
C
C

IMPLICIT REAL'S (A-H.O-Z)
DIMENSION AK(1),AM(1),IDIAG(1) ,ISL(1),VL(NDOF,*),VR(NDOF.»)

C
C STORE THE SINGULAR COLUMNS INTO THE BEGINNING OF VR
C
C THE SINGULAR EQUATION ARE NOW INDEXED BY NEGATIVE VALUES
C INTO ISL INSTEAD OF IDIAG
C

NRMOD-0
DO 1 IC'l.NDOF

IF (IDIAG(IC).GT.O) GOTO 1
IDIAG(IC)a-IDIAG(IC)
NRMOD»NRMOD+1
MICalSL(IC)
IH*IDIAG(IC)-IC
DO 2 Kal.MIC-1

2 VR(K,NBMOD)=0.
DO 3 K'MIC.IC-1

VR(K,NRMOD)»AX(IH>K)
AK(IN*K)»0.

3 CONTINUE

102

ISLUC)-ISL(IC)
VR(IC,HRHOD)«-1.
AX(ZDIAa(IC))-i.
DO 4 K-IOl.HDOF

4 VR(K.HBHOD)»0.
1 COBTZHUE

C
C BAKS0BSTITOTE
C

00 200 H»1,HRMOD
IXCaHDOF
DO 200 IC«2,HDOF

TR»VR(IIC,H)

KalSL(IIC)
IHiaIDIAG(IIC)-IIC
IP ((IX.GT.iei).OR.(IK.LE.O)) GO TO 221
DO 220 K-IK.IC1

220 COHTXHUB
221 IICaIIC-1
200 COBTIHUE
C
C OETHOGOHALISATIOH c;
C

DO .10 Hal.HRHOD
DO 20 K=1,H-1

TR»0.
DO 30 I=1,KDOF

30 TR»TR*V1.(I,K)*VR(I,H)
DO 40 I»1,HDOF

40 VR(I,M)»VR(IJH)-TR*VR(I,K)
20 COBTHT02

C1LL MULT(AJI.VI.(l.H).VR(l,H),ISL.IDiAG,l,HDOF)
TR»0.
DO 60 I=1,NDOF

SO Ta»Ta*VR(I,H)*VL(I-,H)
TR»1/SQRT(TR)
DO 60 1=1, HOOF

VR(I,H)-Vll(I,H)*TR
VL(I,H)»VL(I.H)«TB

60 CONT1HUE
10 COHTHfUE

RETURH

ccc
SUBROUTIMK ORTHO(VL,VR,HDOF,NIUIOD,IfVEC)

C
C PURPOSE : ORTHOGOHALZSE THE HSOB LIST COLOMHS OF VL (LAST
C EVALUATED SOLDTIOH) WITH RESPECT TO THE HULL SPACE
C OF A. FOR THE AM SCALAR PRODOCT
C
C

IHPLZCIT REAL*8 (A-H.O-Z) ,
IHTEGER HDOF.HRMOD.HVEC
DMEHSIOH VL(HDOF,HVEC),VR(HDOF,HVEC)

HSUBaHVEC-HRMOD '

103 '

DO l.J'l.HSUB
DO 2 Z»i,SRHOD

S»0.
DO 3 K81.IDOF

3 S»S+VX,(K.I)*VL(K.HBMOD+J)
00 4 Lal.HDOF

4 VL(L.HIUIOD+J)»tfI,(L,HRiraD+J)-S*Va(L,Z)
2 COHTXHUE
t COHTXHUS

ESTUBV
EHB

ccccccccccccccccecccccccccecc

File: aniaout.f

C=Module AHIMOOT
K. klvia.

Jaa« 1990

e
c
C subroutine AHZNOOT
C
C Purpose:
C This snbs-OBtin* produces an output file to be used to
C visualize the simulation using HESH.
C

subroutine AHmOUT(q,id,nnp,time,out)
real*8 q(i) ,time,v(3)
integer out,id(6,M,nnp,i,k
«rite(out.'(gtS.S)') time
do 100 iel.nnp
do 200 k»l,3
if (id(k.i) .ne. 0) then

els*
v(k) » 0.
endif

200 continue
wite(oot.iOOO) (v(k),k*1.3)

100 continue
1000 format(3gl5.5)

return
end

File: stiffrc.f

C subroutine STIFFRC(v,fact,kq)

104

rtcaniv* •nbroutia* STIFFRC(\r,faet,kq)

r«»l*8 T(i).fact.kqU)

includ* ' shared. iac'

C ASSEMBLE EACH ELEHEHT MASS AHD STIFFHESS

do 100 ii»l,adoBaia

CVDt CHCALL
do ilO jj»l,a«ld(ii)
a a •InnaCjj.ii)
call ELEFRC(7.f»ct,kq,n)

110 coatian*

100 continn*

rctora
•ad

C BUbroutiac ELEFRC(v,lact,kq,n)

r«cur»iv« snbrontia* EL£FRC(v,fact,kq,a)

r«al*8 v(l). fact ,kq(l)
iat«g«r a

iaelud* '•hartd.iae*

C LOCAL VARIABLES

paraB«t«r(HAXSEQa24)
r«al*8 .kdUISEQ.HAISEQ)
iat«g«r la(MAXSEQ) ,aa«q

do 20 k«l,4
j-ix(k.a)
it C(«typ«(a).«q.l).aad.(k.gt.2)) j » 0
do 30 i«l,6
kk»8*(k-l) * i
it (j .a*. 0) ta«a
lm(kk) • id(i.j)

la(kk)
•adif

30 eoatian*
20 coatiaa*

call LOADSK(ak,a.a>«q)

call ESTIFVH(«k,la,n»«q,T,kq,fa.ct)

r«tura
•ad

105

1 y

subroutine LOiDSK(sk,n,naeq)

recursive subroutine LOADSKCsk.n.nseq)

include ' shared. inc'

re«l*8 »k(naeq,i)
integer

k«0
do 10 j«l ,s»«q
do 20 i«i,j

sk(i,j)seatifH(k,n)

20 continue
10 eontina*

•nd

File: estifvm.f

C atibroatin* ESTIFVM(8k,lm,as«q,v,kq,fact)

r«cur»iv« aabroutin* ESTIFVM(sk,lm,a8oq,v,kq,iact)

C ARGOHESTS

r«al*8 tkCnseq.!),7(1).kq(l),fact
int«g«r Ia(l),a8«q

do 20 j » 1. a»«q
k - la(j)
if (k .«q. 0) goto 20
do 10 i a 1, B8«q

s a lffl(i)
ii (a .«q. 0) goto 10
kq(m) » kq(n) * «k(i,j)«v(k)*fact

10 continue
20 continue

return
end

CsEnd Fortran

File: reixum.f

C=DECK REHUM
C-PURPOSE- REHUHBEKS THE GRID POZ5TS TO MIHIHIZE PROFILE STORAGE
COAUTHOR V K BELflH and DUG HGUTEH 7-5-90
C

subroutine REHUM
C

include 'shared.inc'

106

c
C Initialize vector
C

maxtry»2*nnp/3 *1

atenu*aap*aaxtry
do 22 j«i,aterns

22 iadjcy(j)«0
do 10 i»l,anp

10 icount(i)«0
c************************

do 1 i»l,ael
nodea«ix(l,i)
nodeb«ix<2.i)

if (Ca.odea.eq. 0).or.(nodeb .eq. 0)) go to 1
icount(nodee)»icount(nod«a)+l
ieount(nodeb)«icount(nod«b)+l
iEarjcoTOt CaodeQ
ib»ieount(nod«b)
if(i».gt.naxtry .or. ib.gt.maxtry) go to 345
loeat •• (nodca- 1) *aaxtry*ia
ladjcy(loeat«)»nod«b
loeat«B(aod«b-l)*aaxtry+ib
iadjc7(locat«)"nod«a

1 coatiau*

do 37 i»l,atanu
i* (iadjcyU) .«q. 0) go to 37

iadjeyCii)»iadjcy(i)
37 continue
c *******•***«»•**»«*<•

lamt=0
do 2 ial,nnp

lact alast ticooat (4.)
2 coatiaa*

jjaiconat(i)
iconat(l)»l
do 3 i»2,nnp*l
kk'icouat(i)

3 continue
go to S66

348 «rito(6,S56)
555 £oraat(2x.' error ia dimension for MAXTRY !! ')
556 continne

call GEHKCH(nnp,icoTint,iadjcy,p«rn,ma8k,xls)
return
end

•ubroatine g enrca(neqne,xadj, ad jacy, para .mask, xls)
c refereaee: eoaputer solution of large sparse positive definite
c systems, alan george ft Joseph v-n liu
c (preative-hall.iac..engleaood cliffs.HJ 07632)

integer adjncy(i) ,ma»k(l) ,pera(l) ,xls(l)

107

integer *adj(l),ccsize,i,neqns,nlvl,aum,root
do 100 iai.aeqns ;

100 continue
nuim*l
do 200 i»l,neqns

ifC aask(i).eq.O) go to 200

call fnroot(root,xadj,&djncy,inask,nl7l,xl8,perm(aum))
call rca(root,xadj,adjacy, mask, pena(nun), ccsize.xls)

if(nun.gt.neqas) go to 987
200 continue
c pera(nev node) sold node
c nov, aaak(old node)a nev node
987 coat inn*

do 11 aee«l,noqn«
ield"pexa(nev)

e Brite(6,«) 'iold.mask(iold) a • .iold.maskUold)
ii continue

return
•ad

subroutine £nroot(root,xadj .adjncy, mask, nlvl.xls ,1s)
integer adjney(l) ,ls(l) .aaskCi) ,zls(i)
integer xadj(l) , ecsiza.j ,jstrt,k,k8top,k»trt,

$ aindeg .nabor.ndeg.nlvl, node .nunlvl, root
call root Is (root ,xadj .adjncy.mask.alvl.xla.ls)
cesi2«axle(nlvl+l)-'l
if(nlvl.eq.i .or. nlvl.eq.cciize) return

100 jstrtaxlaCnlvl)
mindegaccsize
root sis (jstrt)
if (ccsize.eq.jstrt) go to 400
do 300 jajstrt ,ccsiz«
node«ls(j)
ndegsO
kstrt̂ xadj (node)
kstopaxadj (node+l)-l
do 200 k=katrt .kstop
nabora&d j ncy (k)
if(nask(nabor) .gt. 0) ndegsndag>l

200 continue
ixCndeg.ge. aindeg) go to 300
root*node
aindeg«ndeg

300 continue
400 call rootls(root,xadj ,adjncy, mask, nunlvl.xls ,1s)

it (aunlvl.le.nlvl) return

ix(nlTl.lt.ccaize) go to 100
return
end

subroutine rcn(root ,xadj .adjncy, mask, perm, ccsiza.deg)
integer adjncy(l) ,deg(l) .oaskd) .pern(l)
integer xadj(l) ,ccsiz»,fnbr,i.j .jstop.jstrt.k.l.lbegin,

Inbr.lpera.lvlend.nbr, node .root

108

call dagr««(root,x&dj ,adjacy,iaa«k,d«g,ecsiz*,p«na)
Buk(root)"0
if (ccaiz«.l«.l) rotara
lTl«ad«0

lnbr»l
100 lb«gia»lrlrad+l

lvl«ad«labr
do 600 i»lb«gia,lvl«ad

aod««p«rm(i)
j «trt»xad j (nod*)
j stop*xad j (aod«+l) -1
fabr«labr>l
do 200 j»j«trt,jatop

abr»*djney(j)
il(ma«k(nbr).«q.O) go to 200
lnbr«labr+l

p«xa(labr) «nbr
"20Q eootiaa*

if (fabr.g«.labr) go to 600

300 l=k
k«k+l
abr»p«rm(k)

400 if(l.lt.fabr) go to 500
lp«npp«xm(l)
ii(d«g(lp«xm) . !• . dag(abr)) go to 500
p«rm(l+l)alp«rm
1-1-1
go to 400

500 p«ra(l»l)=ubr
if (k. It. labr) go to 300

600 eoatiau*
it (labr.gt.lvlcad) go to 100
k«cc«iz*/2

do 700 i=»l,k
lp«ra"p«rm(l)
p*m(l)«p«ZB(i)
p«rm(i)»lp«ra

700 coatian*
return
•ad

subrontia* rootla (root , zad j , ad j ncy .mask , alvl , rls , Is)
iat«g«r adjacy(l) ,1»(D .maak(l) .zls(i)
iat*g«r xadj(l),i,j ,j»top,j»trt,lb«gia.ccsiz»,lvl9nd,

$ lT«iz« ,abr, alvl ,&od«, root
aa>ak(root)aO
la (1) "root

lTl«ad«0
ceaiz«'l

200 lb«gia«lvlrad+l

zls(alTl)»lb«gia
do 400 i«lb«gia.lvl*ad

109

aod«8la(i)
jatrt»Mdj(node)
jatop>xadj (node+i)-i
i*(jatop.lt.jatrt) go to 400
do 300 j«jatre,jetop

if(aaafc(abr).e<i.O) go to 300

300 eoatianc
400 eeatinme

lvaize«ccaize-lvlend
if (lvaize.gt.0) go to 200
xla(alTl+l)»lvlead+l
do SOO ia

500 esotianc
r«tu
•ad

Bubroutia* d«gr««(root,xadj ,&djac7,m&ak,dag,cc8ize,ls)
integer adjncy(l) ,d«g(l) ,ls(l) ,oask(i)
iateg«r xadj(l) ,ec8iz«,i.id«g, j .J8top.J8trt.

lb*gin,lvl«nd,lv»iz«,abr, node, root
ls(i)*root
xad j (root) «-acad j (root)

100

do 400 i=lb«gin , lvl«nd
aod«ala(i)
jBtrts-zadj (nod«)
j«top*iab«(x&dj(nod«*l)) -1
id«g«0
if(jstop.lt.J8trt) go to 300
do 200 jajBtrt.jstop
ttbr«adjncy(j)
if(M8k(nbr).«q.O) go to 200

if(xadj(nbr).lt.O) go to 200
zadj (nbr)a-xadj (nbr)
cc8iz«*ccsiza*l
I»(cc8iz«)«mbr

200 eoatian*
300 d«g(nod«)=id«g
400 continue "

Iv8iz«»cc8iz«-lvl«nd
if (lv*iz«.gt.O) go to iOO
do SOO i»l,cc8iz«
nod«=ls(i)
zadj (node) a-xad j (node)

500 continue
return
end

File: kfliter.f
c

110

C subroutine KFILTER

recursive subroutine KFXLTER

include ' shared, inc'

do 10 i « l.ndof
go(i) « delsq*(f (i)+go(i))+delta*pe(i)+aass(jdiag(i))*qe(i)
gk(i) « d«lta*(«(i)+gk(i))*p«(i)

10 eoatian*

call SOLVEB(«o,go,jdiag,ndof ,2)

C Activate EBE computations for internal force by using STIFFRC
C subroutine. Otherwis« use PNVNAO (profile matrix/vector mult-add

C call
call STIFFRC (go, -delta, gk)

do 100 i a l.ndof
qe(i) a 2.«go(i) - qe(i)
pe(i) » 2.*gk(i) - pe(i)

100 continue

return .
end

111

CU-CSSC-91-5 CENTER FOR SPACE STRUCTURES AND CONTROLS

SECOND-ORDER DISCRETE KALMAN

FILTERING EQUATIONS FOR

CONTROL-STRUCTURE

INTERACTION SIMULATIONS

by

K. C. Park, W. K. Belvin
and K. F. Alvin

March 1991 COLLEGE OF ENGINEERING
UNIVERSITY OF COLORADO
CAMPUS BOX 429
BOULDER, COLORADO 80309

\

Second-Order Discrete Kalman Filtering Equations
for

Control-Structure Interaction Simulations"*"

K. C. Park1 and K. F. Alvin2

Center for Space Structures and Controls
University of Colorado, Campus Box 429

Boulder, Colorado 80309

and

W. Keith Belvin3

Spacecraft Dynamics Branch
NASA Langley Research Center

Hampton, Virginia 23665

Abstract

A general form for the first-order representation of the continuous, second-order linear
structural dynamics equations is introduced in order to derive a corresponding form of
first-order continuous Kalman filtering equations. Time integration of the resulting first-
order Kalman filtering equations is carried out via a set of linear multistep integration
formulas. It is shown that a judicious combined selection of computational paths and the
undetermined matrices introduced in the general form of the first-order linear structural
systems leads to a class of second-order discrete Kalman filtering equations involving only
symmetric, sparse N x JV solution matrices. The present integration procedure thus over-
comes the difficulty in resolving the difference between the time derivative of the estimated
displacement vector (jji) and the estimated velocity vector (x) that are encountered when
one attempts first to eliminate (x) in order to form an equivalent set of second-order fil-
tering equations in terms of (-fix). A partitioned solution procedure is then employed to
exploit matrix symmetry and sparsity of the original second-order structural systems, thus
realizing substantial computational simplicity heretofore thought difficult to achieve.

+ An earlier version of the present paper without numerical experiments was presented at
the AIAA Guidance and Control Conference, Portaland, Ore., 20-22 August 1990, Paper
No. AIAA 90-3387.
1 Professor of Aerospace Engineering, University of Colorado. Associate Fellow of AIAA.
2 Graduate Research Assistant 3 Structural Dynamics Division, NASA Langley Research
Center. Member AIAA.

Introduction

Current practice in the design, modeling and analysis of flexible large space structures
is by and large based on the finite element method and the associated software. The
resulting discrete equations of motion for structures, both in terms of physical coordi-
nates and of modal coordinates, are expressed in a second-order form. As a result, the
structural engineering community has been investing a considerable amount of research
and development resources to develop computer-oriented discrete modeling tools, analysis
methods and interface capabilities with design synthesis procedures; all of these exploiting
the characteristics, of second-order models.

On the other hand, modern linear control theory has its roots firmly in a first-order form
of the governing differential equations, e.g., (Kwakernaak and Sivan, 1972). Thus, several
investigators have addressed the issues of interfacing second-order structural systems and
control theory based on the first-order form (Hughes and Skelton, 1980; Arnold and Laub,
1984; Bender and Laub, 1985; Oshman, Inman and Laub, 1987; Belvin and Park, 1989,,
1990). As a result of these studies, it has become straightforward for one to synthesize
non-observer based control laws within the framework of a first-order control theory and
then to recast the resulting control laws in terms of the second-order structural systems.

Unfortunately, controllers based on a first-order observer are difficult to express in a pure
second-order form because the first-order observer implicitly incorporates an additional
filter equation (Belvin and Park, 1989). However a recent work (Juang and Maghami, 1990)
has enabled the first-order observer gain matrices to be synthesized using only second-order
equations. To complement the second-order gain synthesis, the objective of the present
paper is to develop a second-order based simulation procedure for first-order obsen 3rs.
The particular class of first-order observers chosen for study are the Kalman Filter based
state estimators as applied to second-order structural systems. The procedure permits
simulation of first-order observers with nearly the same solution procedure used for treating
the structural dynamics equation. Hence, the reduced size of system matrices and the
computational techniques that are tailored to sparse second-order structural systems may
be employed. As will be shown, the procedure hinges on discrete time integration formulas
to effectively reduce the continuous time Kalman Filter to a set of second-order difference
equations.

The paper first reviews of the conventional first-order representation of the continuous
second-order structural equations of motion. An examination of the corresponding first-
order Kalman filtering equations indicates that, due to the difference in the derivative of
the estimated displacement (j^x) and the estimated velocity (x), transformation of the
first-order observer into an equivalent second-order observer requires the time derivative
of measurement data, a process not recommended for practical implementation.

Next, a transformation via a generalized momentum is introduced to recast the structural
equations of motion in a general first-order setting. It is shown that discrete time numerical
integration followed by reduction of the resulting difference equations circumvents the need
for the time derivative of measurements to solve Kalman filtering equations in a second-
order framework. Hence, the Kalman filter equations can be solved using a second-order
solution software package.

Subsequently, computer implementation aspects of the present second-order observer are
presented. Several computational paths are discussed in the context of discrete and con-
tinuous time simulation. For continuous time simulation, an equation augmentation is
introduced to exploit the symmetry and sparcity of the attendant matrices by maintain-
ing state dependant control and observer terms on the right-hand-side (RHS) of the filter
equations. In addition, the computational efficiency of the present second order observer
as compared to the first order observer is presented.

Continuous Formulation of Observers
for Structural Systems

Linear, second-order discrete structural models can be expressed as

MX + Dx + Kx = Bu + Gw , x(0) = x0 , x(0) = x0 (1)

^_ *7 /«• *7 *i

with the associated measurements

where M, D, K are the mass damping and stiffness matrices of size (N x N); x is the
structural displacement vector, (N x 1); u is the active control force (m x 1); B is a
constant force distribution matrix (N x m); z is a set of measurements (r x 1); HI and #2
are the measurement distribution matrices (r x ./V); Z\ and Z2 are the control feedback gain
matrices (m x N); w and v are zero-mean, white Gaussian processes with their respective
covariances Q and R; and the superscript dot designates time differentiation. In the present
study, we will restrict ourselves to the case wherein Q and R are uncorrelated with each
other and the initial conditions x0 and x0 are also themselves jointly Gaussian with known
means and covariances.

The conventional representation of (1) in a first-order form is facilitated by

x\ = x

(3)
Mx2 = MX = Bu + Gw —

which, when cast in a first-order form, can be expressed as

f Eq = Fq + Bu + Gw, q = (x i X2)T /^

where . _

It is well-known that the Kalman filtering equations (Kalman, 1961; Kahnan and Bucy,
1963) for (4) can be shown to be (Arnold and Laub, 1984):

R-*z (6)

where ' '
r/T cTi f r, 1 (vl

- TT~ n I »•' " I " J *1 I J •*" I /T\z = z -Hq, P= \ c T \' 9 = } ~ f = } If (7)L" •" J L ^ z J L^J

in which U and L are positive definite matrices and the matrix P is determined by the
Riccati equation (Kwakernaak and Sivan, 1972; Arnold and Laub, 1984)

EPET = FPET + EPFT - EPHTR~l HPET + GQGT (8)

The inherent difficulty of reducing the first-order Kalman filtering equations given by (6)
to second order form can be appreciated if one attempts to write (6) in a form introduced
in (3):

a) x\ = x
b) x2 = x = Xi — LIZ (9)
c) Mx2 = —Dx2 — Kxi + Bu + ML2z

where
T / IT TT _i_ IT o^T p—1 r / IT cT _i tr r \T p—1Li\ — {tl\U T a.2J) ft , A/2 — ̂ -"l^ ~r O-'i'-i) •ft

Note from (9b) that x2 ^ x\. In other words, the time derivative of the estimated dis-
placement (x) is not the same as the estimated velocity (x); hence, Xi and x2 must be
treated as two independent variables, an important observation somehow overlooked in
Hashemipour and Laub (1988).

Of course, although not practical, one can eliminate x2 from (9). Assuming Xi and x2 are
differentiate, differentiate (9b) and multiply both sides by M to obtain

(10)

Substituting Afxa from (9c) and x-i from (9b) in (10) yields

Mxi = -D(x ! - LIZ) - Kxi +Bu + ML-iZ + MLiI (11)

which, upon rearrangements, becomes

' (12)

There are two difficulties with the above second-order observer. First, the numerical
solution of (12) involves the computation of x\ when rate measurements are made. The
accuracy of this computation is in general very susceptible to errors caused in numerical

• • •

differentiation of x\. Second, and most important, the numerical evaluation of z that
is required in (12) assumes that the derivative of measurement information is available
which should be avoided in practice. We now present a computational procedure that
circumvents the need for computing measurement derivatives and that- enables one to
construct observers based on the second-order models.

Second-Order Transformation of
Continuous Kalman Filtering Equations

This section presents a transformation of the continuous time first-order Kalman filter to
a discrete time set of second-order difference equations for digital implementation. The
procedure avoids the need for measurement derivative information. In addition, the spar-
sity and symmetry of the original mass, damping and stiffness matrices can be maintained.
Prior to describing the numerical integration procedure, a transformation based on gener-
alized momenta is presented which is later used to improve computational efficiency of the
equation solution.

Generalized Momenta

Instead of the conventional transformation (3) of the second-order structural system (1)
into a first-order form, let us consider the following generalized momenta (Jensen, 1974;
Felippa and Park, 1978):

(a) xi = x
6) X2 = AMii + Cx\

where A and C are constant matrices to be determined. Time differentiation of (13b)
yields

x2 = AM£i + Cxi (14)

Substituting (1) via (13a) into (14), one obtains

x2 = A(Bu + Gw) - (AD - Cfa - AKXl (15)

Finally, pairing of (13b) and (15) gives the following first-order form:

r AM o i f * ! re -m*!l =
[AD-C / J \ x 2 / + [AK- O] \ x 2 /

+ Gu,)] (16)

The associated Kalman filtering equation can be shown to be of the following form:

o rr AM o i f i i i re: -m*ii
[AD-C I \ \ x - i } ^ [A K O j \ x 2 j

r AM oi \LI
[AD-C i\ [L2

where

and HI and HZ correspond to a modified form of measurements expressed as

z = HIX + H2x = H1xl + H2x2 (18)

where

Clearly, as in the conventional first-order form (9), Xi and x2 in (17) are now two inde-
pendent variables. Specifically, the case of A = M~l and C = 0 corresponds to (3) with
x2 = x\. However, as we shall see below, the Kalman filtering equations based on the
generalized momenta (13) offer several computational advantages over (3).

Numerical Integration

At this juncture it is noted that in the previous section one first performs the elimination
of xi in order to obtain a second-order observer, then performs the numerical solution
of the resulting second-order observer. This approach has the disadvantage of having to
deal with the time derivative of measurement data. To avoid this, we will first integrate
numerically the associated Kalman filtering equation (17).

The direct time integration formula we propose to employ is a mid-point version of the
trapezoidal rule:

n+l/2 f * N n f I % n+1/2

a
X2

n+1/2 r . x n

r . \ n + l 2 f * N n

) I?1} =(?')
\ X 2 J \ X 2 J

(
. N n+1 /• . i2} =*{*;}

where the superscript n denotes the discrete time interval tn = nh, h is the time increment
and 6 = h/2.

Time discretization of (17) by (19a) at the n -f 1/2 time step yields

r AM 01 fa

2
re+1/2J

AM 01 r^ll-n+1/2 , cf 0

-C / i 2 + 6

The above difference equations require the solution of matrix equations of 2N variables,
namely, in terms of the two variables x2 ' and x" ' , each with a size of N. To
reduce the above coupled equations of order IN into the corresponding ones of order N,
we proceed in the following way by exploiting the nature of parametric matrices of A and
C as introduced in (13). To this end, we write out (20) as two coupled difference equations
as follows:

- x?)

(21)

/ ' / in r'V-t"*1/2 Z . n \ , (z n + l l l zn\ , C A T f z n + l / Z{ALf — GJ^Xj —Xj) -f- ̂ X2 — X2 J T 0,/Ln. Xj

— Xf A n f\T ^ n+ 1 / 2_l_Xf =«+l/2 • c A T>.,n+l/2 /oo^— v\J\JJ ~" */ \lj\Z ~T" t/X>2* ~t~ OflJJU \^£i&j

Multiplying (22) by 8 and adding the resulting equation to (21) yields

A(M + SD + 62K)x"+1/* = (AM + 6(AD - C))x? + 8x%

+{SAMLl + 62(AD - C)Li + 82L2}zn+1/2 + 62ABun+1/2 (23)

Of several possible choices for matrices A and B, we will examine

r a) A = J, C = D
\ 6) A = M- J , C = 0 W

The choice of (24a) reduces (23) to:

(M + 6D + 82K)x"+l/* = MX? + 6x% + *2#u

+S{MLl + SL2}zn+l^ (25)

so that once x"+1'2 is computed, x£+1'2 *s obtained from (22) rewritten as

x£+1/2 = x» + 6gn - 6Kx^+l/2 (26)

where
gn = Bun+lf2 + L2z

n+1/2 (27)

which is already computed in order to construct the right-hand side of (25). Hence,
Kx"+l'2 is the only additional computation needed to obtain x£+1'2. It is noted that
neither any numerical differentiation nor matrix inversion is required in computing z£ .
This has been achieved through the introduction of the general transformation (13) and
the particular choice of the parameter matrices given by (24a).

On the other hand, if one chooses the conventional representation (24b), the solution of
is obtained from (23)

(M + 6D + 82K)x"+l/2 = (M + 6D)xl +

+6{(M + 8D)Ll+6ML2}zn+1'2 + 6?Bun+1/2 (28)

Once x*+1' is obtained, x£+1'2 can be computed either by

(29)

which is not accurate due to the numerical differentiation to obtain xl , or by (22)

x? + 8gn -

M-lD(x"+1/2 - x?) + SM^DL^z^1'2 (30)

which involves two additional matrix- vector multiplications, when D ^ 0, as compared
with the choice of A = I and C = D. Thus (24a) is the preferred representation in a
first-order form of the second-order structural dynamics equations (1) and is used in the
remainder of this work.

8

Decoupling Of Difference Equations

We have seen in the previous section, instead of solving the first-order Kalman filtering
equations of 2n variables for the structural dynamics systems (1), the solution of the im-
plicit time-discrete observer equation (25) of n variables can potentially offer a substantial
computational saving by exploiting the reduced size and sparsity of M, D and K. This
assumes that £n+1/2 and u""1"1/2 are available, which is not the~case since at the ntk time
step

un+i/2 = .^y+i/a _ z^1/2 (31)

(32)

requires both x™ and x£ even if 2rn+1/2 is assumed to be known from measurements
or by solution of (1). Note in (32), the control gain matrices are transformed by

There are two distinct approaches to uncouple (25) and (26) as described in the following
sections.

Discrete Time Update

Equations (31) and (32) can be approximated using

r +1/2 ^ zn _ Si -n _ £2in (33)

(34)

This approximation leads to a discrete time update of the control force and state correction
terms which is analogous to that which exists in experiments where a finite bandwidth of
measurement updates occurs. For discrete time approximation, the step size h = tn+l — tn

should be chosen to match the time required to acquire, process and output a control
update.

Discrete time simulation is quite simple to implement as the control force and state cor-
rections are treated with no approximation on the right-hand-side (RHS) of (25) and (26).
Should continuous time simulation be required, a different approach is necessary.

Continuous Time Update

To simulate the system given in (25) and (26) in continuous time, strictly speaking, one
must rearrange (25) and (26) so that the terms involving x"+1' and x^+l are augmented

to the left-hand-side (LHS) of the equations. However, this augmentation into the solution
matrix (M +6D+82 K) would destroy the computational advantages of the matrix sparcity
and symmetry. Thus, a partitioned solution procedure has been developed for continuous
time simulation as described in (Park and Belvin, 1991). The procedure, briefly outlined
herein, maintains the control force and state correction on the RHS of the equations as
follows.

First, x"+l/2 and x£+1/2 are predicted by
_ _

Xlp — Xl > X2p — X2

However, instead of direct substitution of the above predicted quantity to obtain Up '
and Zp+l'2 based on (31) and (32), equation augmentations are introduced to improve the
accuracy of Up+l'2 and Zp+1'2. Of several augmentation procedures that are applicable
to construct discrete filters for the computations of un+1/2 and £n+1/2

) We substitute (26)
into (31) and (32) to obtain

un+i/2 = _-

Rearranging the above coupled equations, one obtains

\(I + 6Z2B) 6Z2L2_ l/
[8H2B (I + SH2L^\ \zn+1/2 J

(>

which corresponds to a first order filter to reduce the errors in computing x^ — MX + Dx.
A second-order discrete filter for computing u and z can be obtained by differentiating u
and z to obtain

{
_ • _ •

ti = — Ziii -
- • ft •-z = z — H\x\ —

and then substituting x\ and x% from (17). Subsequently, (19) is applied to integrate the
equations for u and z which yields

+ SZ2B + PZiM~lB S(Z2L2 + ZiLi+ ̂ M-%) 1 / un+1/2 \ _
I + SH^ + SM~1L2) + SH2L2 \ \ zn+1/2 J ~8(H2B + 6HiM

0

10

The net effects of this augmentation are to filter out the errors committed in estimating
both xi and x2. Solution of (39) for un+1/2 and zn+1/2 permits (25) and (26) to be solved
in continuous time for x"+1/2 and z£+1/2. Subsequently, (29b) is used for x^+1 and x£+1.

The preceding augmentation (39) leads to an accurate estimate of the control force and
observer error correction at the (n-f 1/2) time step. Although (39) involves the solution of
an additional algebraic equation, the equation size is relatively small (size = number of
actuators (m) plus the number of measurements (r)). Thus, (39) is an efficient method
for continuous time simulation of the Kalman filter equations provided the size of (39) is
significantly lower than the first order form of (4). The next section discusses the relative
efficiency of the present method and the conventional first order solution. More details on
the equation augmentation procedure (39) may be found in Park and Belvin (1991).

Finally, it is noted that by following a similar time discretization procedure adopted for
computing x" ' and x% , the structural dynamics equation (1) can be solved by

{JM T vJJ ~r v jx j'i'-i — .iMj/j T v « i > 2 ~ r v . * s u • (Af\\
n+l./2 _ n CD..H+1/2 X^71*1/2 *• '

•to *^~ 2 ""•" 0*3\Ji ~~" v4\ *vi
t>

Thus, numerical solutions of the structural dynamics equation (1) and the observer equa-
tion (20) can be carried out within the second-order solution context, thus realizing sub-
stantial computational simplicity compared with the solution of first-order systems of equa-
tions (4) and the corresponding first-order observer equations (6).

It is emphasized that the solutions of both the structural displacement x and the re-
constructed displacement x employ the same solution matrix, (M + SD + 82K). The
computational stability of the present procedure can be examined as investigated in Park
(1980) and Park and Felippa (1983, 1984). The result, when applied to the present case,
can be stated as

£2Amax < 1 (41)

where Amax is the maximum eigenvalue of

= 0 (42)

Experience has shown that |Amax| is several orders of magnitude smaller than /*max °f
the structural dynamics eigenvalue problem:

fiMy = Ky (43)

Considering that a typical explicit algorithm has its stability limit /imax • h < 2, the
maximum step size allowed by (42) is in fact several orders of magnitude larger than
allowed by any explicit algorithm.

11

Computational Efficiency

Solution of the Kalman filtering equations in second-order form is prompted by the po-
tential gain in computational efficiency due to the beneficial nature of matrix sparcity and
symmetry in the solution matrix of the second-order observer equations. There is an over-
head to be paid for the present second-order procedure, that is, the additional computations
introduced to minimize the control force and observer error terms on the right-hand-side of
the resulting discrete equations. The following paragraphs show the second-order solution
is most advantageous for observer models with sparse coefficient matrices M, D and K.

Solution of the first order Kalman filter equation (6) or the second-order form (25-26, 39)
may be performed using a time discretization as given by (19). For linear time invariant
(LTI) systems, the solution matrix is decomposed once and subsequently upper and lower
triangular system solutions are performed to compute the observer state at each time step.
Thus, the computations required at each time step result from calculation of the RHS
and subsequent triangular system solutions. For the results that follow, the number of
floating point operations per second (flops) are estimated for LTI systems of order O(N).
In addition, it is assumed that the mass, damping and stiffness matrices (M,D and K)
are symmetric and banded with bandwidth aN, where 0>< a < (0.5 — 277).

The first-order Kalman filter equation (6) requires (4JV2 -f 2Nr + O(N)) flops at each
time step. The discrete time second-order Kalman filter solution (25-26, 33-34) require
(8a2N2 +2aN2+3Nm+4Nr+O(N)) flops and the continuous time second-order Kalman
filter (25-26, 39) require (BaN2 + 2aN2 + 5JVm + 6JVr + (r + m)2 + O(N)) flops at each
time step. To examine the relative efficiency of the first-order and second-order forms,
several cases are presented as follows.

First, a worst case condition is examined whereby M, D and K are fully populated (a =
0.5 — 577) and r = m = N. For this condition, the number of flops are:

(First Order 6N2+O(N)
< Second Order Discrete ION2 + O(N)
[Second Order Continuous 18N2 + O(N)

Thus, for non-sparse systems with large numbers of sensors and actuators relative to the
system order, the first order Kalman filter is 300 percent more efficient than the second-
order continuous Kalman filter solution presented herein.

For structural systems, M, and K are almost always banded. In addition, the number
of sensors and actuators is usually small compared to the system order N. Hence, the
value of a for which the second-order form becomes more computationally attractive than
the first order form must be determined. If the assumption is made that the number of

12

actuators (m) and the number of measurements (r) is proportional to the bandwidth (
p = m = aJV), the value of a which renders the second-order solution more efficient is
readily obtained. For the 'second-order discrete Kalmari filter, when a < 0.394 the second-
order form is more efficient. Similarly, the second-order continuous Kalman filter form is
more efficient when a < 0.279. Since a obtains values approaching 0 when a modal based
structural representation is used with few sensors and actuators, the second-order form
can be substantially more efficient than the classical first-order form. A more detailed
discussion can be found in Belvin (1989).

Implementation and Numerical Evaluations

The second-order discrete Kalman filtering equation derived in (25) and (26) have been
implemented along with the stabilized form of the controller u and the filtered measure-
ments z in such a way the observer computational module can be interfaced with the
partitioned control-structure interaction simulation package developed previously (Belvin,
1989; Belvin Park, 1991; Alvin and Park, 1991). Table 1 contrasts the present CSI simula-
tion procedure to conventional procedures. It is emphasized that the solution procedure of
the present second-order discrete Kalman filtering equations (25) and (26) follows exactly
the same steps as required in the solution of symmetric, sparse structural systems (or the
plant dynamics in the jargon of control). It is this attribute that makes the present discrete
observer attractive from the simulation viewpoint.

The first example is a truss beam shown in Fig. 1, consisting of 8 bays with nodes 1 and
2 fixed for cantilevered motions. The locations of actuator and sensor applications as well
as their directions are given in Table 2. Figures 2, 3 and 4 are the vertical displacement
histories at node 9 for open-loop, direct output feedback, and dynamically compensated
feedback cases, respectively. Note the effectiveness of the dynamically compensated feed-
back case by the present second-order discrete Kalman filtering equations as compared
with the direct output feedback cases. Figure 5 illustrates a testbed evolutionary model
of an Earth-pointing satellite. Eighteen actuators and 18 sensors are applied to the sys-
tem for vibration control and their locations are provided in Tables 3 and 4. Figures 6,
7, and 8 are a representative of the responses for open-loop, direct output feedback, and
dynamically compensated cases, respectively. Note that ux response by the dynamically
compensated case does drift away initially even though the settling time is about the same
as that by the direct output feedback case. However, the sensor output are assumed to
be noise-free in these two numerical experiemnts. Although the objective of the present
paper is to establish the computational effectiveness of the second-order discrete Kalman
filtering equations, we conjecture that for noise-contaminated sensor output for which one
would apply dynamic compensated strategies, the relative control performance may turn

13

out to be the opposite. Further simulations with the present procedure should shed light
on the performance of dynamically compensated feedback systems for large-scale systems
as they are computationally more feasible than heretofore possible.

Table 5 illustrates the computational overhead associated with the direct output feedback
vs. the use of a dynamic compensation scheme by the output present Kalman filtering
equations. In the numerical experiments reported herein, we have relied on Matlab software
package (Wolfram, 1988) for the synthesis of both the control law gains and the discrete
Kalman filter gain matrices. It is seen that the use of the present second-order discrete
Kalman filtering equations for constructing dynamically compensated control laws adds
computational overhead, only an equivalent of open-loop transient analysis of symmetric
sparse systems of order N instead of 2N x 2N dense systems.

Summary

The present paper has addressed the advantageous features of employing the same direct
time integration algorithm for solving the structural dynamics equations also to integrate
the associated continuous Kalman filtering equations. The time discretization of the re-
sulting Kalman filtering equations is further facilitated by employing a canonical first-order

form via a generalized momenta. When used in conjunction with the previously developed
stabilized form of control laws (Park and Belvin, 1991), the present procedure offers a sub-
stantial computational advantage over the solution methods based on a first-order form
when computing with large and sparse observer models.

Computational stability of the present solution method for the observer equation has been
assessed based on the stability analysis result of partitioned solution procedures (Park,
1980). To obtain a sharper estimate of the stable step size, a more rigorous computational
stability analysis is being carried out and will be reported in the future.

Acknowledgements

The work reported herein was supported by a grant from Air Force Office of Scientific
Research, F49620-87-C-0074 and a grant from NASA/Langley Research Center, NAGl-
1021. The authors thank Drs. Anthony K. Amos and Spencer Wu of AFOSR for their
interest and encouragement and Dr. Jer-Nan Juang of NASA/Langley Research Center
who has encouraged us to work on second-order observers.

14

References

1. K. A. Alvin and K. C. Park, "Implementation of A Partitioned Algorithm for Simu-
lations of Large CSI Problems," Center for Space Structures and Controls, University
of Colorado at Boulder, CO., Report No. CU-CSSC-91-4, March 1991.

2. Arnold, W. F. and Laub, A. J. (1984), "Generalized Eigenproblem Algorithms and
Software for Algebraic Riccati Equations," Proceeding* of the IEEE, Vol. 72, No. 12,
pp. 1746-1754.

3. Belvin, W. K. (1989), "Simulation and Interdisciplinary Design Methodology for
Control-Structure Interaction Systems," PhD Thesis, Center for Space Structures and
Controls, University of Colorado at Boulder, CO., Report No. CU-CSSC-89-10, July
1989.

4. Belvin, W. K. and Park, K. C. (1989), "On the State Estimation of Structures with
Second Order Observers," Proc. the SOth Structures, Dynamics and Materials Con-
ference, ALA A Paper No. 89-1241.

5. Belvin, W. K. and Park, K. C. (1990), "Structural Tailoring and Feedback Control
Synthesis: An Interdisciplinary Approach," /. Guidance, Control and Dynamics, Vol.
13, No. 3, pp. 424-429.

6. Bender, D. J. and Laub, A. J. (1985), "Controllabilty and Observability at Infin-
ity of Multivariable Linear Second-Order Models," IEEE Transactions on Automatic
Control, Vol. AC-30, pp. 1234-1237.

7. Felippa, C. A. and Park, K. C. (1978), "Computational Aspects of Time Integration
Procedures in Structural Dynamics, Part 1: Implementation," Journal of Applied
Mechanics, Vol. 45, pp. 595-602.

8. Hashemipour, H. R. and Laub, A. J. (1988), "Kalman filtering for second-order mod-
els," J. Guidance, Control and Dynamics, Vol. 11, No. 2, pp.181-185. :

9. Hughes, P. C. and Skelton, R. E. (1980), "Controllability and observability of linear
matrix second-order systems," J. Applied Mechanics, Vol. 47, pp.415-420.

10. Jensen, P. S. (1974), "Transient Analysis of Structures by Stiflly Stable Methods,"
Computers and Structures, Vol. 4, pp.67-94.

11. Juang, J. N. and Maghami, P. G. (1990), "Robust Eigensystem Assignment for Second-
Order Estimators," Proc. of the Guidance, Navigation and Control Conference, AIAA
Paper no. 90-3474.

12. Kalman, R. E. (1961), "On the General Theory of Control Systems," Proc. 1st Inter-
national Congress on Automatic Control, Butterworth, London, Vol. 1, pp. 481-491.

13. Kalman, R. E. and Bucy, R. S. (1961), "New results in linear filtering and prediction
theory," Trans, ASME J. Basic Engineering, Vol. 83, pp. 95-108.

15

14. Kwakernaak, H. and Sivan, R. (1972), Linear Optimal Control Systems, Wiley-
Interscience, New York.

15. Oshman, Y., Inman, D. J. and Laub, A. J. (1989), "Square-Root State Estimation
for Second-Order Large Space Structures Models," Journal of Guidance, Control and
Dynamics, Vol. 12, no. 5, pp.698-708.

16. Park, K. C.(1980), "Partitioned Analysis Procedures for Coupled-Field Problems:
Stability Analysis," Journal of Applied Mechanics, Vol. 47, pp. 370-378.

17. Park, K. C. and Felippa, C. A. (1983), "Partitioned Analysis of Coupled Systems," in:
Computational Methods for Transient Analysis, T. Belytschko and T. J. R. Hughes
(eds.), Elsevier Pub. Co., pp. 157-219.

18. Park, K. C. and Belvin, W. K. (1989), "Stability and Implementation of Partitioned
CSI Solution Procedures," Proc. the 30th Structures, Dynamics and Materials Con-
ference, AIAA Paper No. 89-1238.

19. Park, K. C. and Felippa, C. A. (1984),"Recent Developments in Coupled-Fi.,-Id Analy-
sis Methods," in: Numerical Methods in Coupled Systems, Lewis, R. W. et al(editors),
John Wiley & Sons, pp. 327-352.

20. Wolfram, S., Mathematics™, Addison-Wesley Pub. Co., 1988."

16

f Structure: a)

Sensor Output: 6)

Estimator: c)

Control Force: <f)

. Estimation Error: e)

Mq + Dq + Kq =

q(0) = qo, q(0) =

z = Hx + v

Mq + D + Kq = f + Bu + ML27

q(0) = 0, q(0) = 0

u + F2M"1Bu =

= z - J(£ - Bu) -

Table la Partitioned Control-Structure Interaction Equations

a) x = Ax + Ef + Bu + Gwf Structure:

Sensor Output: &) z = Hx + v

Estimator: c) x = Ax + Ef

x(0) = 0

Control Force: d) u = -Fx
> Estimation Error: e) 7 = z — (H^q + H»q)

where

and

H.],

A=[-M°-'K -M'-'

Table Ib Conventional Control-Structure Interaction Equatioons

17

TABLE 2a:
Actuator Placement for Truss Example Problem

Actuator

1
2
3

. 4

Node

2
18
9
9

Component

y
y
y
X

TABLE 2b:
Sensor Placement for Truss Example Problem

Sensor

1
2
3
4
5
6

Type

Rate
Rate
Rate
Rate

Position
Position

Node

2
18
9
9
9
9

Component

y
y
y
X

y
X

18

TABLE 3:
Actuator Placement for EPS Example Problem

Actuator

1
2
3
4
5
6

' 7
8
9

10
11
12
13
14
15
16
17
18

Node

97
97
96
96
65
68
59
62
45
45
70
70
95
95
95
95
95
95

Component

X

z
X

z

y
y .-
y
y
y .
z

y
z
X

y
z

. 4*
<f>v
<t>z

19

TABLE 4:
Sensor Placement for EPS Example Problem

Sensor

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Type

Rate
Rate
Rate
Rate
Rate
Rate
Rate
Rate
Rate
Rate
Rate
Rate

Position
Position
Position
Position
Position
Position

Node

97
97
96
96
65
68
59
62
45
45
70
70
95
95
95
95
95
95

Component

X

z
X

z

y
y
y
y
y
z
y •
z
X

y
z

• <t>x
<j>y

<£*

20

TABLE 5:
CPU Results for ACSIS Sequential and Parallel Versions

Model

54DOF
Truss

582 DOF
EPS?

Problem
Type

Transient
FSFB

K. Filter
Transient

FSFB
K. Filter

Sequential

4.5
9.4

13.0
98.6

190.2
284.2

Parallel

5.6
10.2
10.7

100.3
294.5
321.5

21

«3as09COCO

IbO

22

Truss Model: Open Loop Transient Response

6.0 x 10~4

4.8 x 10~4

§ 3.6 x 10~4

I
S 2.4 X 10~4

1.2 x 10-4

0.000

0.000 0.200 0.400 0.600 0.800 1.000

Time, sec

Node 9, uy

Figure 2: Truss Transient Response

Truss Model: Full State Feedback Response

6.0 x 10~4

4.8 x 10~4

3 3.6 X 10~4

Iv
Q 2.4 X 10~4

-41.2X 10

0.000

0.000 0.200 0.400 0.600 0.800 1.000

Time, sec

Node 9, uy

Figure 3: Truss FSFB Response

23

Truss Model: Controlled Response with Kalman Filter

6.0

-44.8 x 10

J 3.6 x 10"*

I
2.4 X 10~4

-41.2 x 10

0.000

0.000 0.200 0.400 0.600 0.800 1.000

Time, sec

Node 9, uy

Figure 4: Truss Response with Filter

24

V•8CObO
•
 P

4

.1*OOHJ303

.2"•3"obO
•
 P

4

fa

25

EPS? Model: Open Loop Transient Response

2.0 x 10~4

J

1.4 x 10~4

.2 " 8.0 x 10~5

|
Q 2.0 x 10~5

-4.0 x 10~5

-1.0 x 10~*

0.000 2.000 4.000 6.000 8.000 10.000

Time, sec

Node 45, ux Node 45, uz

• Node 45, uy

Figure 6: EPS Transient Response

26

EPS7 Model: Full State Feedback Response

2.0 x 10-4

1.4 x 10~*

g 8.0 x 10~5

2.0 x 10~5

~5-4.0 x 10

-1.0 x 10-*

0.000 2.000 4.000 6.000 8.000 10.000

Node 45, ux

Node 45, uy

Time, sec

Node 45, uz

Figure 7: EPS FSFB Response

o

Model: Controlled Response w/Kalman Filter

2.0 x 10~4 f

1.4 x 10"*

0.000 2.000 4, 6.000 8.000 10.000

Time, sec

Node 45, ux Node 45, uz

Node 45, uy

Figure 8: EPS Response with Filter

27

INTELLIGENT STRUCTURES

Edited by

K..P. CHONG, S.C. LIU
National Science Foundation, USA

and.

J. C. LI
National Central University, Taiwan >

ELSEVIER APPLIED SCIENCE
LONDON and NEW YORK

,

PRECEDING PAGE BLANK NOT FILMED

439

PARALLEL COMPUTATIONS AND CONTROL
OF ADAPTIVE STRUCTURES

K. C. Park and Kenneth Alvin
Department of Aerospace Engineering Sciences and

Center for Space Structures and Controls
University of Colorado, Campus Box 429

Boulder, Colorado 80309

and

W. K. Belvin
Spacecraft Dynamics Branch

NASA/Langley Research Center
Hampton, VA 23665

ABSTRACT

The equations of motion for structures with adaptive elements for vibration control
are presented for parallel computations to be used as a software package for real-time
control of flexible space structures. A brief introduction of the state-of-tfc vart parallel
computational capability is also presented. Time marching strategies are developed for
an effective use of massive parallel mapping, partitioning and the necessary arithmetic
operations. An example is offered for the simulation of control-structure interaction on
a parallel computer and the impact of the approach presented herein for applications
in other disciplines than aerospace industry is assessed.

1. Introduction

Active suppression of structural vibrations or active control of flexible structures has
made considerable progress in recent years. As a result, it is now possible to actively
suppress vibrations in mechanical systems emanating from machine foundations, in
robotic manufacturing arms, truss-space structures and automobile suspension sys-
tems. A common characteristic to these applications of active control theory has been
its discrete actuators and discrete sensors, ranging from proof mass actuators and gyro

440

dampers to strain gages and accelerometers. Because most available discrete actuators
are inertia force-oriented devices, actuation often triggers coupling between the actu-
ator dynamics and structural transients. A practical consequence of such coupling is
a limitation of achievable final residual vibration level if both the actuator and struc-
ture possess insufficient passive damping leveL It is noted that structures made of
high stiffness composite materials have very low intrinsic damping, hence limiting the
achievable residual vibration level for space maneuvering and space disturbance rejec-
tion purposes. This has been a motivating factor for the development of distributed
actuators and sensors which are often embedded as an integral part of the structure
so that control force can be effectively maintained by strain actuation, thus alleviating
the undesirable actuator dynamics associated with inertia-force actuation.

Various activities that are being pursued by many investigators on the subject of
adaptive structures may be categorized into three major thrusts: device developments,
control laws synthesis and experimental demonstrations, and hardware/software im-
plementation. The device developments effort has been the objective of many material
scientists [1-3]. As the applications needs increase it is expected that functionally more
reliable electrostrictive and magnetostrictive elements will be available for use in active
control/strain damping with improved product quality.

The study of control laws synthesis and demonstration employing adaptive ele-
ments has been one of the predominant activities in recent years. As scientists accu-
mulate experience in the characterization of the coupling between the structure and
the adaptive element, the applications will then be expanded from the current beam-
like structures to the truss long beams, plates and shells. In order to effectively uti-
lize as many adaptive elements as necessary for actively controlling the vibration of
such large-scale structures in real-time operations, it will be imperative that the soft-
ware/hardware components in the real-time control loop must be able to process data
fast enough so that control commands and the measurements can be carried without
saturating and/or jamming the control system.

With the advent of new technology in distributed actuators and sensors [4-9], it ap-
pears that a combination of decentralized/distributed and hierarchical control strategies
can be a viable alternative to conventional centralized control strategies. The real-time
computer control of such systems as well as design of such control systems through
iterating on simulations and hardware realizations thus will require the processing of a
vast amount of data from and to the distributed actuators and sensors. A significant
part of such data processing for the decentralized actuators and sensors is planned to be
self-man aged, viz., there will be embedded microprocessors for each actuator and sensor
pair or for each group of them. However, the necessary links between the decentralized
control systems and the global control system as well as the necessary global control
strategy will still require computational power far in excess of presently available real-
time data processing capability. In addition, if one contemplates the performance of
neural-network control or adaptive control for onboard real-time control of large-scale,
space structures, the computational need will dramatically increase beyond the current
capability.. As a case in point, even for the control of 20-bay truss beam vibrations by

441

three proof mass actuators and six sensors, NASA/Langley is relying on CRAY-XMP
for adequate real-time data processing requirements.

The objective of this paper is thus to present a computational framework by which
one «•-«" bring the two emerging new technologies together, namely, the distributed actu-
ators and sensors and the parallel computing capability, toward the real-time control of
vibrations in large structural systems such as space stations, space cranes and in-space
construction facilities. We will then discuss the potential for applying such a space
technology to mitigate and/or minimize the earthquake damage of ground structures
such as high-rise buildings, bridges and lifeline equipment.

2. Models for Structures with Embedded Actuators and Sensors

The coupling between the structural behavior and an adaptive electrostrictive element,
whether it is embedded or surface-mounted, is primarily due to the following constitu-
tive relation [3,10-12]:

where e and v are the electrical displacement (charges/unit area) and the electric field
(volt/unit area), <r and e are the stress and strain, and 5, g and c are the constitutive
coefficient matrices, respectively. For magnetostrictive elements, one needs to replace
e and v by the magnetic field (H) and the magnetic induction (B), respectively, and
the subsequent derivations will hold without any loss of generality.

The coupled equations of motion for the structure and the adaptive elements
can proceed by augmenting the standard procedure for the structure with the elec-
tric transient equations plus the appropriate modification of the structural equilibrium
equations that reflect the coupled constitutive equations (1). The resulting coupled
structural-piezoelectric equations of motion take the following form [13-15]:

f Structure: a) Mq + Do, + (K, + Ka)q = f + Sa

q(Q) = q0, q(0) = q0

Sensor Output: 6) y = Hpq + Hrq -f Haa (l).

Actuator: c) a + ©a = B»u - S j ? >

where

Controller: d) u + Gu = Ly

•-{:}• •-

442

In the preceding equations, M is the mass matrix, D is the damping matrix, K,
is the stiffness matrix due to structural strain-displacement relations and Ka is the
stiffness matrix due to the strain actuation. f(t) is the applied force. S is the actuator
projection matrix. Hp, Hr and H0 are the sensor calibration gain matrices, 0 is the
actuator dynamic characteristics, Ba is the gain matrix that translates the applied
current/charge and voltage into the corresponding .strain and strain rate where S is
the transducer conversion gain, q is the generalized displacement vector and and the
superscript dot denotes time differentiation, and u is the control law that consists of.
the applied current (or charge), ID, and voltage across the electrostrictive devices, V0,
G is the electric circuit characteristics, and L is the optimum direct feedback gain
matrix. The case of dynamic compensations can be augmented to (2) by introducing
an observer. But in subsequent discussions we limit ourselves to direct feedback cases
only.

It is noted that the control laws, unlike conventional control-structure interaction
systems, are not directly fed back into the structural equations. Instead, the controller
is simply a regulator controlling the electric charge, the voltage or the current. These
regulated electric quantities are then fed into the piezoelectric sensors and actuators.
Hence, it is the piezoelectric actuation that triggers feedback into the structures.

3. Parallel Computations for the Dynamics of Adaptive Structures

The earliest recorded computational results in mechanics were the parabolic trajectory
calculations of a falling body by Galileo [16]. Since then, most scientific computations
have been carried out by anthropomorphic algorithms, viz.. step-by-step binary and/or
decimal arithmetics. To set the stage properly for the present objective, parallel com-
putations of the dynamic response of structures with distributed adaptive elements, we
recall a passage by Kepler .to John Napier, the inventor of a logarithmic table:

Newton was essentially dependent upon the results of Kepler's cal-
culations, and these calculations might not have been completed but
for the aid of that logarithms afforded. Without the logarithms, ..., .
the development of modern science might have been very different

' (I ']-

In terms of the present day data processing requirement, Napier's logarithmic
table in 1614 contained about 100 kilobytes, which was perhaps the most important
computational aid to Kepler and Newton. Three and one-half centuries later we are
witnessing gigabytes of tables being stored and retrieved at our disposal [18]. But
these tables complement the weakness of the human mind and computational speed:
long term memory and human arithmetic speed. In addition, for problems requiring a
sequential nature of computations, i.e., ballistic trajectories which deal only with the
position and velocity of a single shell or quasi-static equilibrium equations of a building
structure, the computing activities do not interact with "time" and the computing
efficiency affects only the humanpower efficiency for completing the computational
task.-

443

There are many important scientific and engineering endeavors whose computa-
tions must be fast enough for real-time delivery of the computed results. A classical
example was Richardson's lattice model for weather prediction by numerical process
in 1922 [19]. The motivation for adopting such a lattice concept was due to the fact
that the equation state at each lattice node takes on a different value set in time and
an efficient way of interchanging and transmitting the nodal values at each time step
was mandatory if the computations were to be carried out in real-time to predict the
weather. Indeed, this was the dawn of the parallel computing era, even though the basic
idea had to wait for its validity for 60 years. Today, many controls engineering activi-
ties have been implemented by using computers so that their intended functions can be
monitored and controlled in real-time. These include chemical processing, autopiloting
and vibration control of simple structures. It is important to note that the computa-
tional framework employed for such applications is based on sequential architecture.
Hence, we believe that future improvements that can deal with large parameter models
and large parameter controls must adopt a parallel computational framework. One
such area is the dynamics and control of large structures with distributed/embedded
adaptive elements.

In order to carry out the necessary parallel computations, there are three distinct
steps that must be addressed: discretizing the structure into appropriate partitions,
mapping the physical partitions onto the processors, and step advancing of the equation
states. These will be discussed below.

3.1 Partitioning and Mapping of Adaptive Structures

Ideally, if the sensor and actuator leads fall on the discrete nodes, no spatial interpola-
tion would be necessary. However, such a situation is either difficult to realize or may
prohibit the use of spatially convolving sensors [20] that are known to filter certain
harmonic signals for minimizing phase lag in the feedback loop; Hence, we will assume
that the sensor and actuator characteristics can be interpolated to the discrete nodes;
in this way the partition boundaries can be chosen arbitrarily regardless of the physical
locations of the sensor and actuator leads. In addition, this approach can lead to a
natural embedding of the sensor and actuator characteristics into the finite element or
boundary integral structural models. Once the partitioning is accomplished, the next
step is to map the discrete partitions for adaptive elements onto the corresponding
multiprocessors.

Consider an adaptive structure that has been modeled as a set of discrete elements
as shown in Fig. 1. In a sequential computing environment, in order to advance the
necessary computations for the present states, the arithmetic operations are carried
out step-by-step for each node at a time. Hence, each nodal-state computations is
performed in a manner similar to one courier delivering and picking up all the mails
throughout the entire routes. In a parallel computational environment, in contrast,
there can be as many couriers as necessary who comb through the routes concurrently
in order to pick up and deliver all the mail at once. One of the most popular concepts
in executing such tasks is the hypercube architecture (see Fig. 2) whose every node

444 "

Piezoelectric Elements

Applied

Structural Element

Fig. 1 Discrete Model of Adoptive Structures

Fig. 2 Hypercube Interconnection Network of a
32-Processor

(each node represents a processor)

,

445

is associated with a processor. Thus, to process the necessary computations for an
adaptive structure with 19 partitions, one can assign the 19 adaptive elements to 19
processors as shown in Fig. 3. The procedure for assigning the physical domain (ele-
ments) to the parallel processors with minimal interprocessor communications is called
mapping.

Of several techniques available for the processor mapping of the computational
domains [22], we will adopt a heuristic mapper developed by Farhat [23] since it can
accommodate both the synchronous and asynchronous cases with robust and accept-
able complexities. An application, of this mapping technique for modeling a bulkhead
substructure for massively parallel computing is shown in Fig. 4. A similar mapping
can be used for parallel computations of adaptive structures.

3.2 Parallel Data Structure and Algorithms

We will assume that each processor is assigned to carry out all the necessary computa-
tions for at least one set of a sensor, an actuator, and a controller or a group of them.
Therefore, the word partition does not necessarily imply a finite element: it can be a
substructure, an element or even a sublayer within the composite layer that includes a
sensor or an actuator. In carrying out the step-advancing in time, one may invoke an
implicit or explicit direct time integration algorithm. When an implicit algorithm is
employed, one needs to communicate not only the state variable vectors but also the
associated matrices, i.e., the stiffness matrix, among the processors. Although we will
show our results using implicit algorithms, we will, for illustrative purposes, restrict
ourselves to an explicit direct time integration algorithm as it is intrinsically parallel
and and the data structure aspects can be explained more succinctly via an explicit
algorithm. It should, .however, be mentioned that the choice of the solution algorithm
can greatly influence the design and implementation of the necessary mapping and data
structure.

Consider the explicit integration of the equations of motion for the structure (2a)
as recalled here:

Mq -i- f ,-„« = f -f f „„, (3)

where f;nt and fc8n« are the internal and applied control forces, respectively, given by

f int = Dq -I- (K, + Ka)q

f cont = Sa

The use of the central difference algorithm to integrate (3) leads to the following dif-
ference equations in time

(4)

446

(Physical Domain)

(Processor Configuration)

Fig. 3 Physical Domain and Its Mapping Onto
Hypercube Processors

4
4
7

o

'-

I °-
35 -s

.2
 •'i

IsouaQ•<?s
i

neC
E

D
W

Q
 PA

G
E

BLA
N

K
 N

O
T FILM

ED

449

0b
^o••4S5

2

=

S
0

-
O

 '=
"2

2
3

tf.
bflaC
-

01

450

4. Implementation and Illustrative Example

The mapping, partitioning and data structures above discussed have been imple-
mented based on a shared-memory concurrent machine (Alliant FX/8) by modifying
the software framework developed for finite element computations [26] and the control-
structure interaction simulation and design software developed in [27, 28]. At present
the following specialized systems of equations are implemented:

f Structure: a) Mq + Dq + Kq = f + Bu + Gw

q(0) = q0, q(0) = q0

Sensor Output: 6) z = Hx -f m

Estimator: c) x = Ax + Ef -f Bu + L(z - Hx)

x(0) = 0

. Control Force: <f) u = -Fx

where

and
rr. i

Fa]

It is noted that in the above implemented equations, we have merged the actua-
tor and the control law equations into one by neglecting the actuator and control law
dynamics. Instead, we have introduced an estimator equation as we do not have all
the measurements needed for complete feedback. In the above equations, B and ;3
represent the input influence matrix for actuator locations whereas G and G represent
the disturbance locations. The vector q is the generalized displacement, w is a distur-
bance vector and the vector m is measurement noise. In Eq. (6b), z is the measured
sensor output. The matrix Hj is the matrix of displacement sensor locations and H0

is the matrix of velocity sensor locations. The state estimator in Eq. (6c) may or may
not be model based. The superscript * and ' denote the estimated states and time
differentiation respectively. The input command, u, is a function of the state estimator
variables, q and q, and FI and Fj are control gains. The observer is governed by A,
the state matrix representing the plant dynamics, and L, the filter gain matrix.

The software thus implemented was used to test its applicability to solve the
control-structure interaction design of a model Earth Pointing Satellite (EPS), shown
in Fig. 6, which is a derivative of a geostationary platform proposed for the study of
Earth Observation Sciences. Two flexible antennas are attached to a truss bus. Typ-
ical missions involve pointing one antenna to earth, while tracking or scanning with

451

<ot.3•«*ubaeno(5
a

PRECEDING PAGE BLANK NOT FILMED

453

Table 1. EPS Vibration Frequencies (Hz.)
Mode No. Frequency

(1-6) 0.000
(7) 0.242
(8) 0.406
(9) 0.565
(10) 0.656
(11,12) 0.888
(13) 1.438
(14) 1.536
(15,16) 1.776
(17,18) 3.026
(19) 3.513
(20) 3.531

A small disturbance force was applied to the nominal EPS system in the form of a
reboost maneuver. The force acted at the center of gravity in the Y-axis direction for
0 ' seconds at a 10 N force level and from 0.1 to 0.2 seconds the force level was -10 N.
The disturbance was removed after 0.2 seconds. Figure 7 shows the open-loop angular
response about the X-axis of the 15 m antenna. A small amount of passive damping was
assumed (D = 0.0002 K). The vibrational response produced more than 4.5 p radians
of RMS pointing error due to this small reboost disturbance. Although many modes
participate in the flexible body response, this particular reboost maneuver strongly
excites modes near 4 Hz. The following paragraphs present an integrated control and
structure design which seeks to lower the vibrational response of the EPS subject to
some additional constraints. Figure 8 shows the closed-loop angular response about the
X-axis of the 15 m antenna after design optimization. The pointing error is significantly
reduced from that of the open-loop system shown .

5. Future Work and Discussions

The example problem analyzed in the previous section used a set of lumped actuators
and localized sensors instead of distributed adaptive actuators and spatially integrated
sensors. While such a model at best capture the adpative elements used by Anderson
et al. [29j, Matsunaga [30], and Takahara [31], it can not simulate on a large scale
the distributed usage of piezoelectric actuators and sensors proposed by de Luis [32],
Rogers et al. [33], and Burk and Hubbard [34]. Our immediate future work will
concentrate on the implementation of distributed adpative elements and assess their
practical applicability beyond the currently reported beam-like structural components.
In this regard, we are exploring an adaptation of neural-network concepts [35] in the
modeling and parallel computations of controlled structures with adaptive elements.
Specifically, the limits of the applicability of distributed parameter modeling and control
theory and discrete structures with discrete actuators and sensors, and their cross-over

454

x10 -5

.4 ' ' . . . i t

Fig. 7 Open-Loop Response of EPS Structure

»10"5 EPS Antenna Pointing: Oosed-Loop Response

0 2 4 6 8 10 12 14 16 18 20

Fig. 8 Closed-Loop Response of Structure EPS

455

performance must be investigated. Design, modeling, simulation and testing criteria
from such studies will provide greater insight into the eventual adoptions of adaptive
structures as viable choice for future space systems design alternatives.

The real-time simulation procedures presented herein may be applicable to the vi-
bration control of lifeline equipment, and secondarily in minimizing the damage of build-
ings during earthquakes. In this applications, the sensor measurements used herein can
be directly applicable to the vibration and earthquake-causing forces on the structures.
An idea that may prove to be crucial in this case is the use of earthquake-generated
natural force as vibration minimization actuatori forces. In other words, instead of
trying to mitigate the earthquake-generating forces, exploit the natural forces instantly
to activate certain vibration minimizing devices! Research along this line may in the
end lead to the design of actuators attachable to the columns and floors, if properly
triggered during earthquakes, can minimize damages based on the natural forces.

Acknowledgements

It is pleasure to acknowledge the support from NASA/Langley Research Center un-
der Grant NAG-1-1021 and by Air Force Office of Scientific Research under Grant
F49620-87-C-0074. We thank Dr. Spencer Wu of AFOSR and Dr. Ernst Armstrong
of NASA/Langley Research Center for their encouragement during the course of this
study. We thank Prof. Charbel Farhat for his assistance in data structures and imple-
mentation aspects employed in the present study.

References

1. Jaffe, B., Cook, W. and Jaffe, H., Piezoelectric Ceramics, Academic Press, London
and New York, 1971.

2. Zelenka, J., Piezoelectric Resonators and Their Applicatioi », Elsevier Science Pub-
lishing Co., Inc., New York, 1986.

3. Cross, L.E., Piezoelectric and electrostrictive sensors and actuators for adaptive
structures and smart materials. In Adoptive Structures, ed. B.K. Wada, ASME,
AD-Vol. 15, New York, 1989, pp. 9-17.

4. Forward, R.L., Electronic damping of vibrations in optical structures. Journal of
Applied Optics, 1979, 18 (5), 690-697.

5. Crawley, E.F. and de Luis, J., Use of piezoelectric actuators as elements of intelli-
gent structures. AIAA Journal, 1987, 25, (10), 1373-1385.

6. Bailey, T. and Hubbard, J.E., Distributed piezoelectric polymer active vibration
control of a cantilever beam. Journal of Guidance, Contraband Dynamics, 1985,
3, (5).

456

7. Hanagud, S., Obal, M.W. and Calise, A.J., Optimal vibration control by the use
of piezoceramic sensors and actuators, AIAA Paper No. 87-0959, presented at the
28th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials
Conference, Monteray, CA, April 1987, pp. 987-997.

8. Lee, C.K., Chiang, W.W., and O'Sullivan, T.C., Piezoelectric modal sensors and
actuators achieving critical damping on a cantilevered plate. Proc. the 30th
AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conf.,
AIAA, Washington D.C., 1989, pp. 2018-2026.

9. Baz, A. and Poh, S., Performance of an active control system with piezoelectric
actuators. Journal of Sound and Vibration, 1988, 126, (2), 327-343.

10. Newnham, R.E., Skinner, D.P. and Cross, L.E., Connectivity and piezoelectric-
pyroelectric composites. Mat. Res. Ball., 1978, 13. 525.

11. Lee, C.K., Piezoelectric laminates for torsional and bending modal control: theory
and experiment. Ph.D. Thesis, Cornell University, Ithica NY, 1987.

12. de Luis, J., Crawley, E.F. and Hall, S.R., Design and implementation of optimal
controllers for intelligent structures using infinite order structural models. Report
No. 3-89, Space Systems Laboratory, M.I.T., Cambridge, MA, 1989.

13. Tzou, H.S. and Tseng, C.I., Distributed piezoelectric sensor/actuator design for
dynamic measurement/control of distributed parameter systems: a finite element
approach. Journal of Sound and Vibration 1990, 137, (1).

14. Nailon, M., Coursant, R.H. and Besnier, F., Analysis of piezoelectric structures by
a finite element method. ACTA Electronic*, 1983, 25. (4), 341-362.

15. Hagood, N. and von Flotow, A., Modelling of piezoelectric actuator dynamics
for active structural control. AIAA Paper No. 90-1087, Proceedings of the 31st
AL4.A/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials
Conference, Long Beach, CA, April 1990, pp. 2242-2256.

16. Galileo, G., Two New Sciences, Dover Publication, New York, 1954, pp. 284-2S8.

17. Napier, M., Memoirs of John Napier of Merchiaton, William Blackwood, Edin-
burgh, 1834, p. 501.

18. Anonymous, Ma.th.ema.tica,, Wolfram Research, Inc., 1989.

19. Richardson, L. F., Weather Prediciton by Numerical Process, Dover, New York.
1922, p. 219.

20. Miller, D., Collins, S. and Peltzman, S., Development of spatially convolving sen-
sors for structural control applications. AIAA Paper No. 90-1127, Proceeding
of the 31st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and
Materials Conference, Long Beach, CA, April 1990, pp. 2283-2297.

457 ;

21. Noor, A.K., Parallel processing in finite element structural analysis. In Parallel
Computations and Their Impact on Mechanics, ed. A.K. Noor, American Society
of Mechanical Engineers, New York, 1987, pp. 253-277.

22. Bokhari, S.H., On the mapping problem. IEEE Transactions on Computers, 1981,
C-30, (3), 207-214.

23. Farhat, C., "On the mapping of massively parallel processors onto finite element
graphs," Computers & Structures, Vol 32, No. 2, 347-354 (1989).

24. Farhat, C., Felippa, C.A. and Park, K.C., "Implementation Aspects of Concurrent
Finite Element Computations," in Parallel Computations and Their Impact on
Mechanics, American Society of Mechanical Engineers, New York, 1987, pp. 310-
316.

25. Farhat, C., Sobh, N. and Park, K.C., "Transient Finite Element Computations
on 65,536 Processors: The Connection Machine," Report iVb. CU-CSSC-89-01,
Center for Space Structures and Controls, University of Colorado, February 1989,
to appear in International Journal on Numerical Methods in Engineering, 1990.

26. Farhat, C., A simple and efficient automatic finite element decomposer. Computers
& Structures, 1988, 28.

2,7. Park, K. C. and Belvin, W. K., "A Partitioned Solution Procedure for Control-
Structure Interaction Simulations." to appear in J. Guidance, Control and Dy-
namics, 1990.

28. Belvin, W. K. and Park, K. C., "Computer Implementation of Analysis and Opti-
mization Procedures for Control-Structure Interaction Problems," Proc. the 1990
AIAA Dynamics Spacialist Conference, Paper No. AIAA-90-1194, Long Beach,
Calif., 5-6 April 1990.

29. Anderson, E., Moore, D., Fanson. J.' and Ealey, M., Development of an active
member using piezoelectric and electrostrictive actuation for control of precision
structures. AIAA Paper No. 90-1085, Proc. of the 31st AIAA/ASME/ASCE
/AHS/ASC Structures, Structural Dynamics and Materials Conference, Long
Beach, CA, April 1990, pp. 2221-2233.

30. Matsunaga, S. Miura, K. and Natori, M., A construction concept of large space
structures using intelligent/adaptive structures. AIAA Paper No. 90-1128, Pro-
ceedings of the 31st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dy-
namics and Materials Conference, Long Beach, CA, April 1990, pp. 2298-2305.

31. Takahara, K, Kuwao, Shigeshara, M. Katoh, T., Motohashi, S.and Natori, M.,
Piezo linear actuators for adaptive truss structures. In Adaptive Structures, ed.
B.K. Wada, ASME, 1989, pp. 83-38.

458

32. de Luis, J. and Crawley, E., Experimental results of active control on a proto-
type intelligent structure. AIAA Paper No. 90-1163, Proceedings of the 31st
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials
Conference, Long Beach, CA, April 1990, pp. 2340-2350.

33. Rogers, C. and Ramaseshan, A., Investigation of embedded actuators using gener-
alized laminated plate theory. AIAA Paper No. 90-1168, Proceedings of the 31st
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials
Conference, Long Beach, CA, April 1990.

34. Burke, S. and Hubbard, J.E., Active vibration control of a simply-supported beam
using a spatially distributed actuator. IEEE Control Systems Magazine, August
1987, 7, (6), 25-30.

35. Arbib, M.A., Brains, Machines, and Mathematics, 2nd Edition, Springer-Verlag,
1987.

