ANALYSIS, PRELIMINARY DESIGN
AND SOFTWARE SYSTEMS FOR
CONTROL-STRUCTURE INTERACTION PROBLEMS
by
K. C. Park and K. Alvin

January 1991	COLLEGE OF ENGINEERING
	UNIVERSITY OF COLORADO
	CAMPUS BOX 429
	BOULDER, COLORADO 80309

Analysis, Preliminary Design and Simulation Systems for Control-Structure Interaction Problems

K.C. Park and K. F. Alvin
Department of Aerospace Engineering Sciences and Center for Space Structures and Controls
University of Colorado, Boulder; CO 80909-0429

Final Report on Grant NAG1-1021, funded by NASA Langley Research Center

SUMMARY

This is a final report on the tasks supported by NASA Langley Research Center under Grant NAG1-1021, Analysis, Preliminary Design and Simulation Systems for Control-Structure Interaction Problems. When the proposal was submitted, it was intedned to be a three-year program, with its first-year effort to be concentrated on software aspects of control-structure interaction(CSI) analysis. Due to the termination of the grant at the end of its first-year period, appropriate adjustments had to be made in order to make most out of the grant. The accomplishments from the one-year effort include: 1) the delivery of a research-level CSI analysis software that runs both on SUN Workstations as well as Alliant shared-memory parallel machines to Dr. W. K. Belvin of NASA/Langley Research Center; 2) three presentations at conferences, one in a bound book publication, the second in the 1990 AIAA Guidance and Control Conference Proceedings, and the third to appear in a NASA/DOD/JPL proceeding on system identifications. Two of these papers are being prepared for submittal to journal publications.

TABLE OF CONTENTS

SUMMARY

ENCLOSED PAPERS

K. A. Alvin and K. C. Park

Implementation of A Partitioned Algorithm for
Simulations of Large CSI Problems
K. C. Park, W. K. Belvin and K. A. Alvin

Second-Order Discrete Kalman Filtering Equations for
Control-Structure Interaction Simulations
K. C. Park, W. K. Belvin and K. A. Alvin

Parallel Computations and Control of Adaptive Structures

$$
\begin{gathered}
535361 \\
\wedge \\
1 / 8 \rho \text { N } 91-21 \% 181 \\
\text { CU-CSSC-91-d }
\end{gathered}
$$

IMPLEMENTATION OF A

PARTITIONED ALGORITHM FOR SIMULATION OF LARGE CST PROBLEMS
by
K. F. Alvin and K. C. Park

Implementation of a Partitioned Algorithm for Simulation of Large CSI Problems

K. F. Alvin and K. C. Park
Department of Aerospace Engineering Science and
Center for Space Structures and Controls
University of Colorado
Boulder, CO 80309-0429

March 1991

Report No. CU-CSSC-91-04

Summary

This report summarizes research work on the implementation of a partitioned numerical algorithm for determining the dynamic response of coupled structure/controller/estimator finite-dimensional systems. The partitioned approach leads to a set of coupled first and second-order linear differential equations which are numerically integrated with extrapolation and implicit step methods. The present software implementation, ACSIS, utilizes parallel processing techniques at various levels to optimize performance on a shared-memory concurrent/vector processing system. The current work also generalizes the form of state estimation, whereby the Kalman filtering method is recast in a second-order differential equation equivalent to and possessing the same computational advantages of the structural equations. As part of the present implementation effort, a general procedure for the design of controller and filter gains is also implemented, which utilizes the vibration characteristics of the structure to be solved. Example problems are presented which demonstrate the versatility of the code and computational efficiency of the parallel methods is examined through runtime results for these problems. A user's guide to the ACSIS program, including descriptions of input formats for the structural finite element model data and control system definition, can be found in Appendix A. The procedures and algorithm scripts related to gain design using PRO-Matlab are included in Appendix B. In Appendix C, a stability analysis for the partitioned algorithm is presented which extends previous analysis to include observer dynamics, leading to a clearly definable stability limit. The source code for the parallel implementation of ACSIS is listed in Appendix D.

1.0 Introduction

The present work on the implementation of a partitioned transient analysis algorithm for the simulation of linear Control-Structure Interaction (CSI) problems has concentrated on four major areas. The initial software implementation emphasized the user-friendly aspect and a structural dynamics-oriented interface for experienced practitioners of finite element analysis programs. Another reason for a new implementation of the algorithm was that the initial architecture of the CS3 software testbed developed by Belvin and Park [1-2] had little provision for effective parallelization. CS3 also included extensive links to optimization and optimal control algorithms which were not central to the current work and proved to be a further hinderance. This new software implementation was designated ACSIS, for Accelerated Control-Structure Interaction Simulation, and led to significant improvements in speed for particular problems on conventional serial processors due to simpler and more economical storage of primary variables. ACSIS is also versatile in its usage of a general Timoshenko beam element with pin release capability and shear correction factor adjustment, and control system definition via a single data file. A preliminary Users Guide was developed for ACSIS, and the input formats were made compatible with pre/postprocessing software developed for Sun and Silicon Graphics computers so that
future versions using parallel techniques via element mesh domain decompositions can rely on the same X-Window-based I/O utilities. Table 1 documents runtime comparisions of ACSIS and CS3 on a sample 48 DOF problem simulated on a Sun $3 / 260$ workstation using a floating point accelerator.

2.0 State Estimation via Second-Order Kalman Filtering

One restriction of the CS3 software testbed was the form of dynamic observer equations used in the partitioned algorithm as developed in [2]. However, Belvin and Park [3] showed that a general Kalman filtering type of state estimation was not only possible in the partitioned solution, but could be implemented at a very small additional cost in computations by a slight modification in the way the dynamical equations of the plant are cast into first-order form for filter gain design. The methods employed in [3] have been successfully implemented into ACSIS, thereby enhancing the code's ability to handle a wide variety of state estimation schemes. This is important as the application of optimal control techniques to the state estimator problem leads to this more general form, and as the restrictions of the observer used in CS3 typically meant either discarding part of the observer gain parameters, resulting in a loss in system performance.

ACSIS retains the option of using the more resricted observer form, as well as simple full state feedback (no dynamic compensation). It is clear from examining the respective equations, that for structures with stiffness-proportional damping, the only additional calculations required for the Kalman filter is the multiplication of the L_{1} gain matrix by the predicted state estimation error vector γ (see equations 25 of [3]). This is not a significant portion of the computations required at each integratiol step, as the dimension of γ is small (number of sensors). By far the major costs are for computing an internal force of the form Kq, and backsolving the factored integration matrix for the estimated displacement states. This is verified numerically in the ACSIS results of Table 1 (using a restricted form of observer) and version (A1) of Table 2. The model used in Table 1 is roughly comparable to the 54 dof truss in Table 2, and both show the additional simulation time due to state estimation is roughly the same as an additional transient analysis. Finally, the Kalman filtering equations do not lead to any additional complications in parallel implementation of the overall algorithm as compared to the more restricted second-order observer developed for CS3.

3.0 Parallel Implementation of ACSIS

A primary emphasis in our work dealt with the optimization of the software implementation on a concurrent processing system. The platform choser (primarily due to availability, initially at CU and later at NASA LaRC) was the Alliant FX/8 shared memory multiprocessor system with 8 parallel processing units and vectorization capabilities. Versions of the software have been ported to the Alliant and compiled using the Concentrix FX/Fortran optimizing compiler, which has available options for automatic vectorization and concurrency of standard, problem-independent parallel computations.

The partitioned CSI algorithm has three primary levels of parallelism in its numerics which can be exploited. At the highest level is the integration of the second-order dynamical plant (structure) and filter (estimator) equations, which as designed are of roughly equivalent size. Through the algorithm, these systems are effectively decoupled and independent at each discrete time step, and thus may be handled in parallel by invoking a compiler directive in the main program, which calls the respective subroutines simultaneously and handles re-synchronization of the execution upon their return.

At a lower level of the algorithm, the structure and state estimator equations exhibit symmetric, second-order forms typical of linear structural dynamics problems. It is well known that computations related to the formation of the internal force vector, Kq , can be re-implemented at an element level [4], which, through decomposition of the element mesh [5], can be handled in parallel within exclusive subdomains. This technique becomes particularly attractive for larger problems on more massively parallel systems; in the present work, the element-by-element (EBE) technique was not as effective as other types of parallelism. It should be noted here that the partitioned algorithm employs implicit integration methods, leading to systems of algebraic equations which are factored and solved using direct, rather than iterative; numerical methods. Therefore, formulation of the internal force vector is needed only in the formation of the known (right hand side) vector for integration of the plant and filter equations. The alternative to EBE computations is multiplication of the relevant displacement vector with the global stiffness matrix stored in profile (skyline) form. To "simulate" the advantages of local memory typical in large-scale parallel processing systems, the computed element stiffnesses were saved in shared memory for the EBE calculations, thus avoiding the need to recompute this data at each integration step. In addition, a low-overhead automatic element domain decomposition was provided for the parallel EBE method.

The final and lowest level of parallelism is obviously that of the basic matrix computations such as addition, multiplication, etc. These numerical operations are inherent in nearly all areas of the software implementation, including problem preprocessing. With the very capable optimizing compiler available on the Alliant system, this parallelism was exploited through vectorization and concurrency of the nominal source code using the FX/Fortran compiler run-time options -0 -DAS -alt. The performance of the resultant executable code was examined using the Alliant's profiling capabilities, and changes to the nominal
source code, remaining compliant to F77, to maximize the identifiable concurrency and thus enhance the resultant speed. This was particularly useful in the profile matrix/vector multiply operation, whose speed is critical to the overall program performance.

4.0 Problem Descriptions

Three structural dynamics problems were developed for code testing at various levels of complexity. All three problems have the following common features: simulations consisted of 1000 integration steps and employed a stiffness-proportional damping. The damping was not needed for algorithm stability, but to ensure consistency between the examples and because the existence of damping in the plant equations has a strong influence on program speed. The Kalman filter models were of second-order form [2] and equivalent in size to their respective plant models. For controlled simulations, the control system began operating after 100 integration steps, and all gain matrices were full (i.e. all model states influence all actuators and are influenced by all sensors). Additional specific information for the problems follow.
A. Axial Vibration of Elastic Bar (Spring Model)

\# Nodes:	3 free, 1 fixed
\# Elements:	3
\# Degrees of freedom:	3
\# Actuators:	1
\# Sensors:	1
Disturbance:	Initial displacement
B. Planar Vibration of Space Truss	uss Model)
\# Nodes:	18 free
\# Elements:	33
\# Degrees of freedom:	54
\# Actuators:	4
\# Sensors:	6
Disturbance:	Bang-bang type sinusoidal applied force
C. General 3D Vibration of EPS Sat	Re Reboost (EPS7 Model)
\# Nodes:	97 free
\# Elements:	256
\# Degrees of freedom:	582
\# Actuators:	18
\# Sensors:	18
Disturbance:	Bang-bang type square wave applied force

As can be seen, the problem sizes are roughly three different orders of magnitude, with corresponding increases in the sizes of the control systems. Appendix B includes routines using Matlab for the design of control and filter gains which were used for the control system design of all three example problems. An illustration of the EPS model is shown in Figure 1.

5.0 Performance Assessment

Table 2 compares CPU runtimes on the Alliant computer (using the UNIX "time" command) for distinct versions of the software. Version (A1) is the nominal F77 program code compiled without any performance-enhancing options, while version (A2) invokes automatic vectorization and concurrency of low-level, problem-independent computations such as vector addition and inner products. The performance improvements are significant, especially for the large EPS7 model, where the speed-up factor is $35-37$.

Version (A3) also uses the compiler options from (A2), but in addition has a compiler directive added to the main program which allows the plant and filter integration subroutines to be called in parallel. This does not affect the transient response results as that analysis option bypasses the altered code, but for controlled response there is some effect on performance. If filtering is used, which results in a significant increase in computation, the directive can lead to some increased speed as can be seen for the spring and truss problems. There can also, however, be a reduction in performance as compared to (A2) if the finite amount of processors and vector units are used in a less efficient way. This appears to be the case for the large EPS problem, where the "overhead" introduced by the directive, and its effect on processor assignment, is greater than the improvement generated by the manually-invoked parallel conistruct.

Table 3 shows CPU run times for ACSIS using E-B-E computations, which, as mentioned previously did not lead to better performance on the example problems using the Alliant system. This appears to be due to the lack of effective vectorization of the individual element computations when forming the internal force via the EBE method. To determine whether the EBE method effectively lead slower speeds through increased numbers of computations, version (A2) (see above) was altered by removing compiler optimization of the profile matrix/vector multiply routine (the alternate method to EBE). The resultant runtimes matched almost exactly with those of version (A4), leading to the conclusion that both methods require roughly the same amount of computations, but differ in how they can be optimized on the Alliant system. The matrix/vector multiply operation, in this environment, can exploit both vectorization and concurrency through the complier's performance options; this can be examined in the compiler output. The EBE computations, at the element level, do not vectorize because the parts of the global displacement and force vectors being operated on per element are not contiguous. In version (A5), the elements within each subdomain of the mesh are computed in parallel, leading to some performance

Overall, versions (A2) and (A3) provide the best code performance for the hardware available. Parallelizing the observer and structure (A3) leads to mixed results; improvement for the small spring and truss problems, but not for the large EPS model. Element-byelement computations do not improve code performance over compiler optimization via vectorization and concurrency for this platform. Reimplementation of the algorithm lead to a 5:1 improvement over the CS3 testbed software on a serial computer (Table 1). Further optimization of ACSIS on the Alliant FX/8 lead to an additional 30:1 improvement in runtimes for large-order systems such as the 582 dof EPS model. Time history responses of selected variables for the example problems are shown in Figures 2 through 10. For Figures 8 through 10, the u_{x}, u_{y}, u_{z} displacements plotted are located at node 45 , which is located at the vertex of the large antenna of the EPS model (see Figure 1).

6.0 Conclusions

The present work has demonstrated the efficiency of a streamlined simulation code for the analysis of large-order CSI systems and the viability of the continuous second-order Kalman filtering equations for state estimation. These methods show the versatility of the partitioned CSI integration algorithm and the promise of its application to real-time simulation. It is evident, however, that the use of element-by-element computational techniques requires the development of innovative algorithms for effective implementation on massively parallel processing systems. Future work in this area will include integrating algorithms for on-line system identification and applying these capabilities to the problem of real-time control.

Acknowledgements

The work reported herein was supported by NASA/Langley Research Center through grant NAG1-1021 with Dr. Ernst Armstrong as Langley's technical monitor and by Air Force Office of Scientific Research through grant F49620-87-C-0074 with Dr. Spencer Wu as the AFOSR technical monitor. We thank them for their interest and encouragements.

Simulation	CS3	ACSIS
Transient	439.2	98.8
Full State Feedback FSFB with Observer	688.2	181.5

Table 1: Comparison of Runtime Speeds for CS3 and ACSIS on a Sun 3/260 System

Model	Problem Type	(A1) Nominal Code	(A2) Compiler Optimized	(A3) Parallel Observer
3 DOF Spring	Transient	6.6	2.1	2.1
	FSFB	8.0	3.3	3.3
	K. Filter	12.3	3.5	3.3
$54 \text { DOF }$Truss	Transient	78.2	5.7	5.6
	FSFB	97.1	9.4	10.2
	K.Filter	170.7	13.0	10.7
582 DOF EPS7	Transient	3506.	98.6	100.3
	FSFB	7040.	190.2	294.5
	K. Filter	n/a	284.2	312.5

Table 2: CPU Results for Versions of ACSIS

			(A4)	(A5)
Model	Problem Type	E-B-E Computation	(A6) Parallel E-B-E	Parallel Obs. \& EBE
3 DOF	Transient	3.8	3.3	3.3
Spring	FSFB	4.9	4.4	4.9
	K. Filter	6.6	5.6	5.0
54 DOF	Transient	31.7	13.0	13.0
Truss	FSFB	35.5	16.9	35.6
	K.Filter	62.6	27.3	36.2
582 DOF	Transient	391.7	153.9	n / a
EPS7	FSFB	485.9	245.9	n / a
	K. Filter	n / a	n / a	n / a

Table 3: CPU Results for ACSIS with EBE Computations

Figure 1: EPS Finite Element Model

Spring Model: Open Loop Transient Response

Node 3, ux

Figure 2: Spring Transient Response

Spring Model: Full State Feedback Response

Node 3, ux

Figure 3: Spring FSFB Response

Spring Model: Controlled Response w/Kalman Filter

Node 3. ux

Figure 4: Spring Response w/Filter
$\therefore \quad i$

Truss Model: Open Loop Transient Response

Figure 5: Truss Transient Response

Truss Model: Full State Feedback Response

Figure 6: Truss FSFB Response

Truss Model: Controlled Response w/Kalman Eilter

—__ Node 9. uy

Figure 7: Truss Response w/Filter

EPS7 Model: Open Loop Transient Response

Figure 8: EPS Transient Response

EPS7 Model: Full State Feedback Response

Node 45, uy

Figure 9: EPS FSFB Response

EPS7 Model: Controlled Response w/Kalman Filter

Figure 10: EPS Response w/Filter

REFERENCES

1. Belvin, W. K., "Simulation and Interdisciplinary Design Methdology for ControlStructure Interaction Systems," PhD Thesis, Center for Space Structures and Controls, University of Colorado, Report No. CU-CSSC-89-10, July, 1989.
2. Park, K. C. and Belvin, W. K., "Partitioned Procedures for Control-Structure Interaction Simulations," Journal of Guidance, Control, and Dynamics, Vol. 14, No. 1, Jan.-Feb. 1991, pp. 59-67.
3. Park, K. C. and Belvin, W. K. and K. F. Alvin, "Discrete Second-Order Kalman Filtering Equations for Control-Structure Interaction Simulations," Report No. CU-CSSC-89-08, Center for Space Structures and Controls, University of Colorado, April 1989 (Submitted for publication in J. Guidance, Control and Dynamics).
4. Farhat, C. and Crivelli, L., "A General Approach to Nonlinear FE Computations on Shared Memory Multiprocessors," Comp. Methods in Applied Mech. Eng., Vol. 72, No. 2, pp. 126-152 (1989)
5. Farhat, C., "On the Mapping of Massively Parallel Processors onto Finite Element Graphs," Report No. CU-CSSC-88-02, Center for Space Structures and Controls, University of Colorado, April 1988

APPENDIXA

ACSIS User's Manua

Accelerated Control
Structure
Interaction
Simulation

Introduction

ACSIS is an analysis program for full-order simulation of control-structure interaction (CSI) problems. The CSI simulation is carried out using a partitioned analysis procedure which treats the structure (or plant), the observer, and the controller/observer interaction terms as separate entities. This procedure allows ACSIS to maintain relatively small, sparse matrix equations when compared to the process of assembling the computational elements into a single set of equations of motion and solving simultaneously. Although this software can also carry out modal analysis, the transient response and CSI simulation are done in real space using the entire finite element model. (For more information, see Ref. 2 of report, p. 14)

The ACSIS program is run using two previously prepared data input files and interactive input of run options. The two data input files are the finite element input file and the controller definition file.

Interactive Options

The run options are as follows, note that no defaults exist, data must be input each time it is requested for each item requested except during a background run. Files may be given any names, example names are given only to match the truss example at the back of this manual.

Please input analysis type:

This option is for selecting modal analysis, CSI simulation or the transient response of a structure. Not all interactive inputs are required for each analysis type.

Do you wish to save an input file? (y or n)
This option creates a file which saves all the interactive input options. ACSIS can be background run with minor option changes by editing this file and then directing the screen input to this file. This file is very different for each analysis type . (To do this run with the example names after running acsis.exe once interactively, the command would be: acsis.exe <INP_truss> \&.
Name of save input file? (filename)
This question asks for the name under which to save the interactive input. example name: INP_truss

Finite Element Model Input File Name (filename):
This file should contain all the finite element nodes, mesh, materials, properties, lumped inertias, fixations, and initial velocity and displacement conditions. It must be prepared in advance in the card format specified later. example name: FEM_truss
Number of modes desired?.
This only appears in the modal analysis to request the number of modes to be output. The actual analysis is carried out with double this number of modes for accuracy.

Controller Definition File Name:
This only appears for the CSI simulation. The file should contain the actuator and sensor locations, control gains, and observer gains. It also must be prepared in advance in card format. example name: Con_truss

Please input type of control::
This option is for selecting the form of control law equations used in the CSI simulation. Full state feedback uses the current states of the plant (structure) to determine the control via constant gain matrices. Second-order observer uses only the L2 filter gain matrix of a Kalman filtering type of state estimation where the state variables are position and velocity. The Kalman filter option allows the use of a full set of filter gains, but the gain design must come from a alternate variable casting using position and generalized momenta.

Initial time, final time, control-on time, step size:
Data format is four columns for CSI, but only three columns for transient response since the control-on time part is deleted.

Forcing function ID, scale factor, damping coeff- a, b :
In order for any time dependent forcing function to be easily implemented despite variable time step sizes, the forcing functions must be entered into the subroutine forces.f. The format is to assign each new forcing function an ID number in a elseif statement. An example of forces.f is included at the back of the manual. Then forces.f must be recompiled into an object file and acsis.exe relinked. This is easily done by typing make which detects changes to the fortran files and does only the necessary compiling. A particular forcing function is chosen by entering its ID number in the first column, in addition the force can be scaled by a constant using the scaling factor in the second column. The Rayleigh damping coefficients a and b are the third and fourth columns.

Phase lag fix? (y or n):
Specifies whether to include an extra iteration of control and sensor state prediction at each integration step to improve accuracy. Not generally needed unless the user is investigating the source of instability in a simulation and needs to test the sensitivity of the response to the partitioned algorithm's extrapolation method.

Gain scale factors (4 total):
These scaling factors are, in order: the F1 control gain matrix (displacement), F2 control gain matrix (velocity), L1 and L2 state estimator filter gain matrix. This question appears only for CSI.

ACSIS has tiwo types of output options. The first is the displacement or velocity motion of up to twenty separate degrees of freedom. Interactive questions are, 'Number of displacement results to output (max 10)' followed by as many 'Input node \#, dof for displacement output $\#$ ' as necessary. Then these repeat for velocity results. The name of the file where the output will be stored is requested by 'Output file name? (filename).' example name: OUT.truss. The second output option saves the displacement of all nodes at any time step where output is sent (see next entry). The format is suitable for animation of the entire structure. Question asks 'Animation Output? (\bar{y} or a)' then for an animation filename if necessary.

Send output every hov many steps?
This option affects both output options to reduce the size of the output and animation files. It causes output to only be sent after a integer number of time step iterations. To get output each time step, simply enter 1.

Finite Element Input File

The finite element input file consists of title cards followed by columns of data. The title cards can be in any order, but they must be all capitalized with the appropriate number of columns of data for each card. The program reads rows of data until encountering a new card. Data which represents an integer value may be entered with a decimal point while real data may be entered without a decimal point as necessary. Any line beginning with a* anywhere in the file is ignored and can be used to insert comments.
Any blank line will result in a read error.

HODES

Each node must be defined on a separate line. Columns can be separated by any number of spaces or a comma. Data format is four columns: node number, x-coordinate, y coordinate, z-coordinate.

TOPOLOGY

Each element must be defined on a separate line. Truss elements require two nodes then two coliumns of zeroes. (Truss elements would also require pin releases in ATTRIBUTES below.) Beam elements require two nodes then a third reference node representing a point in the $x z$ plane of the beam and then a column of zeroes. Element type refers to finite elment formalation. (Currently only type $1=$ timeshenko beam element is now. available.) Data format is six columns: element number, element type, node \#1, node \#2, node \#3, node \#4.

ATTRIBUTES

Each element is characterized by an ID number from each of the MATERIAL and PROPERTIES cards below. Each element also has six pin release codes. The first code is for longitudinal stiffness, the second code is for torsional stiffness, the third and fifth codes are bending stiffness at each end in the y direction and must be the same value; and the fourth and sixth codes are for bending stiffness in the 2 direction and also must be the same. (0 is stiff, 1 is released.) Data format is nine columns: element number, material type, property type, and six pin release codes.

Material

The material data is formatted in four columns: material type, Young's modulus, shear modulus and density of the material.

PROPERTIES

The properties data is formatted in six columns: property type, cross sectional area of the element, $I_{y} * I_{z}, I_{y}, I_{z}$, shear shape factor SSF2, shear shape factor SSF3.

FIXITY

Nodes with any fixations are defined here in the finite element file. The nodes must be entered with the fixity of all six of their DOF's, restrained or not. (1 is restrained, 0 is free) Data format is seven columns: node number, $x, y, z, \phi_{x}, \phi_{y}, \phi_{z}$.

INERTIA

All lumped inertias must be entered with each separate DOF on an individual line. Therefore a single node could take up to six lines to definè. Data format is three columns: node number, DOF number (1-6), and value of inertia.

IEITIAL CONDITIONS

All initial displacement and velocity conditions are entered into the finite element file. Data format is four columns: node number, DOF number (1-6), initial displacement, and initial velocity.

END
End of file.

Controller Definition Cards

The controller defintion file also consists of title cards followed by data entry. Each card must be followed by the appropriate number of columns of data and in some cases the appropriate number of rows. Integers can be entered in real format and vice versa if necessary. Any blank line will result in a read error.

NACT

Number of actuators in the entire control system.
BMAT
This entry creates the actuator position matrix or B matrix. There should be one row for each actuator, data format is four columns: node number, DOF number (1-6), actuator number, and sensitivity.

NSEN
Number of sensors in the entire controls system.
HDMA
This entry creates the matrix of displacement sensor locations. One row per displacement sensor, data format is four columns: node number, DOF number (1-6), sensor number, and sensitivity.

HVMA
This entry creates the matrix of velocity sensor locations. One row per velocity sensor, data format is four columns: node number, DOF number (1-6), sensor number, and sensitivity.

F1GA
This is a list of the F1 or displacement control gains. The data format is four columns: node number, DOF number (1-6), actuator number, and value of gain.

This is a list of the F2 or velocity control gains. The data format is four columns: node number, DOF number (1-6), actuator number, and value of gain.

LIGA

This is a list of the state estimator L 1 filter gains. The data format is four columns: node number, DOF number (1-6), actuator number, and value of gain.

L2GA

This is a list of the state estimator L2 filter gains. The data format is four columns: node number, DOF number (1-6), actuator number, and value of gain.

END
End of file.

Examples

This section includes all the files and procedures needed to run all three analysis on a simple elastic bar problem. The naming of the files is a simple and easy to remember system, however no particular format is necessary.

The finite element file was created simply by typing the node locations, connectivity (topology), etc. with a text editor.

File: FEM_spring

```
*
*
NODES
    1 0.00 0.00 0.00
    2 1.00 0.00 0.00
    3}2.000.000.00
    4 3.00 0.00 0.00
TOPOLOGY
\begin{tabular}{llllll}
1 & 1 & 1 & 2 & 0 & 0
\end{tabular}
\begin{tabular}{llllll}
2 & 1 & 2 & 3 & 0 & 0
\end{tabular}
    3
ATTRIBUTES
    1
    2
    3 1.1 1.0
MATERIAL
    1 1000. 0.0 0.0
PROPERTIES
```

```
    1}11.00 0.00 0.00 0.00 0.0 0.0 
FIXITY
    1
    2 0 1 1 1 1 1
    3
    4 0 1 1 1 1 1
INERTIA
    2. 1 0.100
    3}110.10
    4 1}0.10
INITIAL
3}110.1000.00
END
```

The modal analysis only requires the number of modes desired in addition to the finite element file. The file INP spring0 documents the interactive inputs used in the modal analysis. The results are saved in file EIG_spring.

File: INP_springo
-1
n

* ACSIS input file,two lines above are
* analysis type and save input file. Do
* not change them by editing this file.
* Finite element input file?(filename)

FEM_spring

* Number of modes desired?

3

* Output file?(filename)

EIG_spring

File: EIG_spring

SUBSPACE ITERATION ROUTINE
NB OF EIGENVALUES=
NB OF VECTOR= 3
NB OF DOF= 3
TOLERANCE $=1.000 E-04$
NB OF RIGID MODES=

1	2.3305	1.8689	-1.0372	0.	0.
2	1.8689	-1.0372	2.3305	0.	0.
3	1.0372	-2.3305	-1.8689	0.	0.

MASS MATRIX DIAGONAL:
$2131.0000000000000 \mathrm{D}-01$
$\begin{array}{llll}3 & 1 & 2 & 1.0000000000000 \mathrm{D}-01\end{array}$
$\begin{array}{llll}4 & 1 & 1 & 1.0000000000000 D-01\end{array}$

To run the transient response of the structure, a forcing function or initial condition would be needed to excite the structure. An initial condition would be added to the finite element file. A forcing function must be added to forces.f with a new ID number, then this number given as interactive input. In this case, an initial displacement acts on the second degree of freedom, which is defined in the finite element model input file. The file INP springl documents the interactive inputs used in the transient analysis.

File: INP_spring1
-3
II

* ACSIS input file,tro lines above are
* analysis type and save input file. Do
* not change them by editing this file.
* Finite element input file?(filename)

FEM_spring

* Initial, final, step size?
$0.00000000 \quad 1.00000000 \quad 0.00100000$
* Forcing function,scale f, damping a, b ?
$0 \quad 0.000000 \quad 0.00000000 \quad 0.00002000$
* Output file name? (filename)

OUT_spring

* Number of displacement outputs?

1
3
1

* Number of velocity outputs?

0

* Send output every hov many steps?

1

* Send animation output? (y or n)
n
In addition to the finite element file, the interactive input, and an excitation, CSI simulation requires a controller definition file. A full state feedback controller for the truss structure is defined in CON_spring.

File: CON_spring

IACT			
1			
BMAT			
3 1	1	1.0	
FIGAIN			
2	1	1	193.31415000000
3	1	1	1574.6315000000
4	1	1	-1669.0460000000
F2GAIN			
2	1	1	20.774256000000
3	1	1	27.790403000000
4	1	1	10.780212000000
NSEN			
1			
HVMAT			
3	1	1.0	
L1GAIN			
2	1	1	$8.7928909000000 \mathrm{D}-02$
3	1	1	$-4.8807901000000 \mathrm{D}-02$
4	1	1	$3.0102735000000 \mathrm{D}-03$
L2GAIN			
2	1	1	$1.0380932000000 \mathrm{D}-01$
3	1	1	6.1410130000000
4	1	1	-3.0608725000000
END			

Then if acsis.exe is run interactively and the input is saved, the file INP_spring2 can be produced. The file could be edited to change the input files, the output file, the forcing function ID, the length of simulation, control-on time, etc. Then to run it again, type acsis.exe<INP_spring2> scr \& . The scr is a scratch file which will store the screen output.

File: INP_spring2

```
n
    * ACSIS input file,two lines above are
    * analysis type and save input file. Do
    * not change them by editing this file.
    * Finite element input file?(filename)
FEM_spring
    * Controller file name?(filename)
COM_spring
    * Please input type of control:
            3
            * Initial,final,control-on,step size?
        0.00000000 1.00000000 0.10000000 0.00100000
            * Forcing function,scale f, damping a,b?
    0 0.000000 0.00000000 0.00002000
    * Phase lag fix?(y or n)
Z
    * Gain scale factors (4 total)?
    1.00000000 1.00000000 1.00000000 1.00000000
    * Output file name?(filenama)
OUT_spring
            * Number of displacement outputs?
    1
        3 1
            * Number of velocity outputs?
    0
        * Send output every how many steps?
    1
        * Send animation output?(y or n)

APPENDIX B

Matlab Procedure and Scripts for Controller and Kalman Filter Gain Designs

\section*{Introduction}

In order to retain simplicity in the ACSIS code for parallel implementation purposes, no control system design algorithms were included. Instead, using modal data output from the eigenmode analysis module of ACSIS, a procedure was developed using the Pro-Matlab and its Control System Toolbox, which includes algorithm scripts for optimal control solutions via the solution of an algebraic Ricatti equation. In order to accomodate large order dynamical systems, the design is accomplished in the uncoupled normal modes domain, using the available lowest eigenmodes from ACSIS.

The procedure begins by copying and editing the mode data output from ACSIS (see the listing for EIG_spring in Appendix A) into readable variables for input to Matlab. The typical approach was to create one file as a Matlab script (i.e. a ".m" file), with the eigenvalues, eigenvectors, and mass/dof data from ACSIS at the beginning, followed by actuator and sensor influence matrices (related to the physical degrees of freedom), the objective function weighting matrices, and the function which calls other Matlab scripts to determine the solution. An example of the above input for the spring problem described in Appendix \(A\) is in file EIG_spring.m, which is listed below. Compare this the the ACSIS mode data output shown in Appendix A to see how the editing was accomplished, and the additional control design data added

File: EIG_spring.m
```

lam}=[\mp@code{l980.6
15550.
32470.];
2 1.8689 -1.0372 - 2.3305 0. 0.
3 1.0372 -2.3305 -1.8689 0. 0. 0. 1;
m=[$$
\begin{array}{lllll}{2}&{1}&{3}&{1.00000000000000-01}\end{array}
$$]
3 11 2 1.0000000000000D-01
4 1 1 1.0000000000000D-01];
t=[v1(:,2:4)];
qbazeros(3,1);
qb (2,1)=1.0;
hd=zeros(1,3);
hv=zeros(1,3);
hv(1,2)=1.0;
qv=[1;.5;.1];
q=diag([qv;qv]);
I=.0001*eye(1);
[f1,f2]=mlqr(1am,t,m,qb,q,r,3);
qv=[1;1;1];
q=diag([qv;qv]);
r=100*eye(1);
[k1,k2] =mkf(1am,t,m,hd,h\nabla,q,r,3);
save flout f1 /ascii
save f2out f2 /ascii

```
```

save klout kl /ascii
save k2out k2 /ascii

```

The scripts mlqr.m and mkf.m were written to accept as input the vector of eigenvalues, the eigenvector matrix (orthogonal vectors stored in columns), a matrix of node, component, d.o.f, mass data, and the actuator (or sensor) influence matrix and weighting matrices. The scripts output the gain results in four-column arrays, with one gain per row, and the corresonding node number, displacement component, and actuator (or sensor) identification. The top-level problem script (listed above) then saves the output in external files and the analysis is complete. The design scripts (listed below) also include checks on controllability and observability of the system based on the modal data and influence matrices defined, and produce plots of the closed loop poles resulting from the gain design. This aids the analyst in assessing the expected performance (and stability) of the exact system before moving the data back to ACSIS for simulation. The script contrank.m finds the rank of the controllability matrix through iterative rank calculations of submatrices so as to avoid the illconditioning experienced in the full matrix. This is both faster and more accurate for determining whether a particular actuator placement has full control of the included structural modes.

\section*{File: mlqr.m}
```

function[F1out, F2out]=mlqr(lam,t,m,qb A,R, nmode)
%
% Controller gain design for second-order
% structural system via given eigenmodes.
% Gains are transformed to be coefficents
% of structural variables (disp,velocity);
% i.e. plant is shcond-order, of size ndof.
%
% Arguments:
%
% lam: vector of eigenvalues (mmode x 1)
% t: matrix of eigenvctors (ndof x mmode)
% m: mass diagonal and dof mapping info (ndof x 4)
% qb: actuator position influence matrix (nact x ndof)
% Q: optimal design state weighting matrix (2*mmode x 2*mode)
% R: optimal design feedbk veight. matrix (nact x nact)
\%
% Flout: F1 gain matrix for 2nd-order plant
%.F2out: F2 gain matrix for 2nd-order plant
%
% Uritten by K.F. Alvin
%
format short e
nmodmax=length(lam);
[ndof,nact]=size(qb);
%
% Variables:
% mass: mass matrix

```
```

% A: state transition matrix
% B: actuator influence matrix
% G: control gain matrix
%
massd(m(:,3))=m(:,4);
massmdiag(massd);
A=[zeros(mode), eye(made);-1*diag(1am(1:mmode)), zeros(mode)];
Amax=[zeros(nmodmax), өye(mmodmax);-1*diag(lam),zeros(nmodmax)];
B=[zeros(mmode,nact);t(:;1:mmode) *qb];
Bmaxs [zeros (nmodmax, ract);t'*qb];
disp('Number of structural modes and actuators used:')
disp([nmode,inact])
disp('Rank of the controllability matrix:')
disp(contrank(A,B))
disp('Determining controller gains for given system...')
G=1qr(A,B,Q,R);
mmax=1.1*max(sqqrt(1am));
axis([-rmax, fmax, -%max, rmax]);
plot(eig(A-B*G),'*')
grid
title('Roots of cont:Olled system')
bold
pause
%
% partition gain matrix
%
G1=G(:,1:nmode);
G2=G(:, nmode+1:nmode+nmode);
%
% Transform resultant gain matrices for use in
% partitioned csi algorithm using second-order
% structure(plant) equations.
%
disp('Mapping ga: ns back to physical domain...')
f1=G1*t(:,1:nmode)"Fmass;
f2=G2*t(:,1:nmode)'*mass;
%
% find modal damping ratios of controller for calulated gains:
%
Gmax=[f1**t,12*t];
lambda=eig(Amax-Bmax*Gmax);
plot(lambda,'*')
pause
nfreq|eqrt(imag(lambda)."2 + real(lambda). -2);
mdamp=-real(lambda)./nfreq;
disp('Resultant modal damping ratios for controller:')
disp([' Damping ',' Damped Freq (rad/s) '])
disp([mdamp,ifreq.*sqrt(1-mdamp. -2),1ambda])
bdamp=max (-2*mdamp./nfreq);
disp('Estimated minimum stiffness damping coefficient necessary')
disp(' to stabilize residual modes due to gain roundoff accumulation:')
disp(bdamp)
disp('Writing gains in node correspondence output form...')

```
```

Flout=zeros(nact*ndof,4);
F2out=zeros(nact*ndof,4);
for i=1:mact;
kmin=(i-1)*ndof+1;
bmax=i*ndof;
F1out(kmin:kmax,:)=[m(:,1:2),i*ones(ndof,1),{1(i,m(:, 3))'];
F2out(kmin:kmax,:)=[m(:,1:2),i*ones(ndof,1),f2(i,m(:,3))'];
end;
disp('Finished mlgr')

```

File: mkf.m
```

function[llout,[2out]=mkf(1am,t,m,hd,hv,Q,R,nmode)
%
% Kalman filter design for second-order
% structural system via given eigenmodes
% and transformed to independent
% displacement/gen. momentum variable
% casting for partitioned csi transient
% analysis. See Belvin/Park paper for
% filter variable definitions.
%
% Arguments:
%
% lam: vector of eigenvalues (nmode x 1)
% t: matrix of eigenvctors (ndof x nmode)
% m: mass diagonal and dof mapping info (ndof x 4)
% hd: sensor position influence matrix (nsen x ndof)
% hv: velocity position influence matrix (nsen x ndof)
% Q: optimal design state veighting matrix (2*nmode x 2*nmode)
% R: optimal design feedbk veight. matrix (nsen x nsen)
%
% Llout: L1 gain matrix for 2nd-order filter
% L2out: L2 gain matrix for 2nd-order filter
%
% Written by K.F. Alvin
%
format short e
gmodmax=length(lam);
[nsen,ndof]=size(hd);
%
% Variables:
% mass: mass matrix
% A: state transition matrix
% G: noise influence matrix
% C: output influance matrix
% K: filter gain matrix
%
massd(m(:,3))=m(:,4);
mass=diag(massd);
A=[zeros(nmode), eye(nmode);-1*diag(lam(1:nmode)),zeros(nmode)];
Amax=[zeros(nmodmax), eye(nmodmax);-1*diag(lam),zeros(nmodmax)];

```
```

G=eye(nmode+nmode);
C=[hd*t(:, 1:mmode),hv*t(:, 1:mmode)];
Cmax= [hd*t,hv*t];
disp('Mumber of structural modes and sensors used:')
disp([mmode,nsen])
disp('Rank of the observability matrix:')
disp(contrank(A',C'))
disp('Determiging silter gains for given system...')
K=lqe(A,G,C,Q,R):
%
partition gain matrix
%
K1=K(1:mmode,:);
K2=K(nmode +1: mmode+nmode,:);
Kmax=[K1;zeros(nmodmax-nmode,nsen);K2;zeros(nmodmax-nmode,nsen)];
%
% find modal damping ratios of filter for calulated gains:
%
lambda=eig(Amax-Kmax*Cmax);
plot(lambda,'+')
hold
pause
a1=-real(lambda);
b1=imag(lambda);
disp('Reaultant modal damping ratios for filter:')
disp([' Damping ',' Freq (rad/s) '])
disp([a1./sqgrt(a1."2+b1.-2),b1])
%
% Transform resultant gain matrices for use in
% partitioned csi algorithm using second-order
% . Kalman filter approach.
%
disp('Mapping gains back to physical domain....')
11=t(:,1:mmode)*K1;
12=mass*t(:,1:nmode)*K2;
disp('Writing gains in node correspondence output form:..')
Llout=zeros(nsen*ndof,4);
L2out=zeros(nsen*ndof,4);
for i=1:nsen;
kmin=(i-1)*ndof+1;
kmax=i*ndoi;
Llout (kmin:kmax,:)=[m(:,1:2),i*ones(ndof,1),11(m(:, 3),i)];
L2out (kmin:kmax,:)=[m(:,1:2),i*ones(ndof,1),12(m(:,3),i)];
end;
disp('Finishod mkf')

```

File: contrank.m
```

function maxrank=contrank(a,b)
maxrank=0;
[nstate,nact] =size(b);
i=0;

```
```

mat=b;
nerrankwrank(mat);
while nerrank > maxrank
maxrankmewrank;
i=i+1;
mat=[mat,(a-i)*b];
nerrank=rank(mat);
if nemrank=mintate
maxrank=newrank;
and
and

```

Unfortunately, the external files created from Matlab with the gain results are written completely in terms of real numbers, whereas the first three columns are actually to be read by ACSIS as integers (they are used as indices). A separate utility was written to convert the format of these files; the source code is listed below. On Unix systems, the user simply assigns the standard input to be the current data file created by Matlab, and gives another file name for the standard output. The code is basically just a filter to chaige the three columns of indices to integers. The output can then be pasted directly into the control definition file used by ACSIS.

File: convcont.f
```

program convcont
parameter (NMAX=100000)
real*8 f(NMAX), v(4)
integer node(NMAX), dof (NMAX), act(NMAX)
n=0
read (*,*,err=200, end=200)(v(i), i=1,4)
n=n+1
node(n)=int(v(1))
dof(n)=int(\nabla(2))
act(n) =int(\nabla(3))
f(n) = (4)
goto 100
200 do 300 i=1,n
print *, node(i),dof(i),act(i),f(i)
continue

```
end

\section*{APPENDIX C}

\author{
Stability Analysis of a \\ CSI Partitioned Simulation \\ Algorithm with State Estimator
}

The equation of the open-loop plant without passive damping in modal second-order form is
\[
\begin{equation*}
\ddot{q}+\omega^{2} q=u \tag{1}
\end{equation*}
\]

The controller uses a second-order observer to estimate the plant state, along with a full-state feedback control gain design.
\[
\begin{align*}
u & =-\left(\eta \omega^{2} p+\zeta \omega \dot{p}\right) \\
\tilde{p}+\omega^{2} p & =u+\xi \gamma \\
\gamma & =z-\dot{p}  \tag{2}\\
z & =\dot{q}
\end{align*}
\]
where \(q\) and \(p\) are the plant and estimator states, respectively, \(u\) is the control force, \(\gamma\) is the state estimation error, \(z\) is the sensor output, and \(\eta, \zeta, \xi\) are gain coefficients for position and velocity feedback, and the estimator filter.

The partitioned analysis procedure uses a stabilized form of the control law and estimation error determination to reduce inaccuracies associated with the extrapolation of variables in the controller force prediction. A first-order filtering is achieved by taking the time derivative of \((2 \mathrm{a}, \mathrm{c})\),
\[
\begin{align*}
& \dot{u}=-\eta \omega^{2} \dot{p}-\zeta \omega \bar{p} \\
& \dot{\gamma}=\dot{z}-\bar{p} \tag{3}
\end{align*}
\]
and then embedding the equations of motion through substitution for \(\ddot{p}\). This leads to the following two coupled, first-order differential equations for the prediction of the control force \(u\) and state error \(\gamma\).
\[
\left\{\begin{array}{c}
\dot{u}  \tag{4}\\
\dot{\gamma}
\end{array}\right\}+\left[\begin{array}{cc}
\dot{\zeta} \omega & \zeta \xi \omega \\
1 & \xi
\end{array}\right]\left\{\begin{array}{l}
u \\
\gamma
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
\dot{z}
\end{array}\right\}+\left\{\begin{array}{c}
\zeta \omega^{3} \\
\omega^{2}
\end{array}\right\} p-\left\{\begin{array}{c}
\eta \omega^{2} \\
0
\end{array}\right\} \dot{p}
\]

Time discretization of (4) using an implicit midpoint rule leads to the following coupled difference equation:
\[
\left[\begin{array}{cc}
1+\delta \zeta \omega & \delta \zeta \xi \omega  \tag{5}\\
\delta & 1+\delta \xi
\end{array}\right]\left\{\begin{array}{c}
u^{n+\frac{1}{2}} \\
\gamma^{n+\frac{1}{2}}
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
z_{p}^{n+\frac{1}{2}}
\end{array}\right\}+\left\{\begin{array}{c}
\delta \zeta \omega^{3}-\eta \omega^{2} \\
\delta \omega^{2}
\end{array}\right\} p_{p}^{n+\frac{1}{2}}-\left\{\begin{array}{c}
\zeta \omega \\
1
\end{array}\right\} \dot{p}^{n}
\]
where \(\delta \equiv\) half-step size \(=\frac{h}{2}\). Solving this equation requires knowledge of the plant (to obtain sensor output) and observer states. These values are extrapolated as:
\[
\begin{align*}
& p_{p}^{n+\frac{1}{2}}=p^{n}+\delta \dot{p}^{n} \\
& z_{p}^{n+\frac{1}{2}}=\dot{q}_{p}^{n+\frac{1}{2}}=\dot{q}^{n} \tag{6}
\end{align*}
\]

Using these equations to obtain \(u^{n+\frac{1}{2}}\) and \(\gamma^{n+\frac{1}{2}}\) allows the plant and observer equations to be solved independently. Midpoint time integration of (1) and (2b) leads to the following equations:
\[
\begin{align*}
\left(1+\delta^{2} \omega^{2}\right) q^{n+\frac{1}{2}} & =\delta^{2} u^{n+\frac{1}{2}}+q^{n}+\delta \dot{q}^{n} \\
\left(1+\delta^{2} \omega^{2}\right) p^{n+\frac{1}{2}} & =\delta^{2} u^{n+\frac{1}{2}}+p^{n}+\delta \dot{p}^{n}+\delta^{2} \xi \gamma^{n+\frac{1}{2}} \\
\dot{q}^{n+\frac{1}{2}} & =\frac{1}{\delta}\left(q^{n+\frac{1}{2}}-q^{n}\right) \\
\dot{p}^{n+\frac{1}{2}} & =\frac{1}{\delta}\left(p^{n+\frac{1}{2}}-p^{n}\right)  \tag{7}\\
q^{n+1} & =2 q^{n+\frac{1}{2}}-q^{n} \\
p^{n+1} & =2 q^{n+\frac{1}{2}}-q^{n} \\
\dot{q}^{n+1} & =2 \dot{q}^{n+\frac{1}{2}}-\dot{q}^{n} \\
\dot{p}^{n+1} & =2 \dot{q}^{n+\frac{1}{2}}-\dot{q}^{n}
\end{align*}
\]

Computational stability of the modal form of the CSI partitioned equations of motion using the aforementioned time discretization can be assessed by seeking a nontrivial solution of
\[
\left\{\begin{array}{l}
q^{n+1}  \tag{8}\\
p^{n+1} \\
\dot{q}^{n+1} \\
\dot{p}^{n+1}
\end{array}\right\}=\lambda\left\{\begin{array}{c}
q^{n} \\
p^{n} \\
\dot{q}^{n} \\
\dot{p}^{n}
\end{array}\right\}
\]
such that
\[
\begin{equation*}
|\lambda| \leq 1 \tag{9}
\end{equation*}
\]
for stability. Subtituting (8) into (5-7), we obtain
\[
\begin{equation*}
\mathrm{J} x=0 \tag{10}
\end{equation*}
\]
where
\[
\left.\begin{array}{c}
\mathbf{x}_{1}=\left[\begin{array}{lllll}
p_{p}^{n+\frac{1}{2}} & u^{n+\frac{1}{2}} & p^{n+\frac{1}{2}} & \dot{p}^{n+\frac{1}{2}} & p^{n}
\end{array} \dot{p}^{n}\right.
\end{array}\right]^{T} .\left[\begin{array}{lllll}
z_{p}^{n+\frac{1}{2}} & \gamma^{n+\frac{1}{2}} & q^{n+\frac{1}{2}} & \dot{q}^{n+\frac{1}{2}} & q^{n}
\end{array} \dot{q}^{n}\right]^{T} .
\]
\[
\begin{gather*}
\mathbf{J}_{11}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & -1 & -\delta \\
\left(\eta \omega^{2}-\delta \zeta \omega^{3}\right) & (1+\delta \zeta \omega) & 0 & 0 & 0 & \zeta \omega \\
0 & -\delta^{2} & \left(1+\delta^{2} \omega^{2}\right) & 0-1 & -\delta & \\
0 & 0 & -\frac{1}{6} & 1 & \frac{1}{6} & 0 \\
0 & 0 & -2 & \lambda+1 & 0 & \\
\mathbf{J}_{12} & =\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & \delta \zeta \xi \omega & 0 & 0 & 0 & 0 \\
0 & -\delta^{2} \xi & 0 & 0 & 0 & 0 \\
0 & -\delta \xi & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
\mathbf{J}_{21}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
-\delta \omega^{2} & \delta & 0 & 0 & 0 & 1 \\
0 & -\delta^{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
\mathbf{J}_{22}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & -1 \\
-1 & (1+\delta \xi) & 0 & 0 & 0 & 0 \\
0 & 0 & \left(1+\delta^{2} \omega^{2}\right) & 0 & -1 & -\delta \\
0 & 0 & -\frac{1}{6} . & 1 & \frac{1}{\delta} & 0 \\
0 & 0 & -2 & 0 & \lambda+1 & 0 \\
0 & 0 & 0 & -2 & 0 & \lambda+1
\end{array}\right]
\end{array}\right. \tag{12}
\end{gather*}
\]

A nontrivial solution to (10) is found from
\[
\begin{equation*}
\operatorname{det} \mathbf{J}=0 \tag{16}
\end{equation*}
\]
which leads to the characteristic equation
\[
\begin{array}{r}
\left((1-\delta \xi)\left(1+\delta^{3} \zeta \omega^{3}-\delta^{2} \eta \omega^{2}\right)+\delta \xi\left(1+\delta^{2} \omega^{2}\right)\right) z^{4} \\
+\left(\delta \zeta \omega(1-\delta \xi)+\delta \xi\left(1+\delta^{3} \zeta^{3}-\delta^{2} \eta \omega^{2}\right)\right) z^{3} \\
\left((1-\delta \xi)\left(\delta^{2} \omega^{2}+\delta^{2} \eta \omega^{2}\right)+\delta^{2} \omega^{2}\left(1+\delta^{3} \zeta \omega^{3}-\delta^{2} \eta \omega^{2}\right)\right.  \tag{17}\\
\left.+\delta \xi\left(\delta \zeta \omega+\delta^{2} \omega^{2}+\delta^{4} \omega^{4}\right)\right) z^{2} \\
\left(\delta^{2} \omega^{2}(\delta \zeta \omega)+\delta \xi\left(\delta^{2} \omega^{2}+\delta^{2} \eta \omega^{2}\right)\right) z \\
+\delta^{2} \omega^{2}\left(\delta^{2} \omega^{2}+\delta^{2} \eta \omega^{2}\right)=0
\end{array}
\]
where
\[
\begin{equation*}
\lambda=\frac{1+z}{1-z}, \quad|\lambda| \leq 1 \quad \Longleftrightarrow \quad \operatorname{Re}(z) \leq 0 \tag{18}
\end{equation*}
\]

Thus, a test of the polynomial equation for possible positive real roots by the RouthHurwitz criterion indicates that the partitioned approach as applied to the modal equations give a computationally stable solution for no velocity feedback \(\zeta=0\) provided
\[
\begin{align*}
h & \leq \frac{2}{\sqrt{\eta} \omega}  \tag{19}\\
h & \leq \frac{2}{\xi} \tag{20}
\end{align*}
\]

\section*{APPENDIX D}

ACSIS Source Code

File: Makefile


File: shared.inc
```

C
Argament definitions:
aciamp: ,hayleigh damping coofficiont alpha
b: actuator location matrix (packod storaga)
brom: , rov number of corrasponding real value in b
bcol: column number of corresonding real value in b
bval: number of nonzero values in b
bdamp: Rayloigh damping coefficiont bota
confile: controller input file name
contype: id for type of comtrol
coxyz: array of the x,y, and z components of each node
delta: one-hale time stop
delaq: ono-half time stop squared
ec: control prediction integration coofficiont matrix
omat: array of elemont material types
e0: observer construct matrix S in vector form
oprop: array of element property types
es: structure construct matrix S (M+delta*D+delsq*K)
etype: array of elament types
elnum: array of elemant numbers for domain decomposition
1:
vector of applied forces
11: control gain matrix

```
\begin{tabular}{|c|c|c|}
\hline c & 12: & control gain matrix \\
\hline c & femtile: & finite element input file name \\
\hline c & forcoid: & identification number of forcing function \\
\hline c & gamma: & state correction force \\
\hline C & ge: & RaS vector for control prediction module \\
\hline c & gk: & RHS vector for Kalman liltor momentum eqn \\
\hline C & go: & RHS vector for observer module \\
\hline c & gs: & RaS vector for structure module. \\
\hline c & h : & time stop size \\
\hline C & hd: & displacement sensor location matrix (packed storage) \\
\hline c & hdrov: & rov number of corresponding real value in hd \\
\hline c & hdeol: & colum number of corresonding real vaine in hd \\
\hline c & hdval: & number of nonzero values in hd \\
\hline c & h\%: & volocity sensor location matrix (packed storage) \\
\hline C & hrion: & rov number of corresponding real value in hv \\
\hline \(C\) & hrcol: & colum number of corresonding real value in hv \\
\hline c & hroal: & number of nonzero values in hv \\
\hline C & id: & DOF mapping array: id(comp, Rode \%) =6lobal DOF \# \\
\hline c & ix: & array of element connectivity and orientation \\
\hline c & inertia: & array of concontrated inertias or lumped masses \\
\hline c & jdiag: & array of diagonal element addresses \\
\hline c & 11: & State estimator filter gain matrix \\
\hline \(C\) & 12: & State estimator filter gain matrix \\
\hline \(c\) & mask: & \\
\hline C & mass: & mass matrix A in raduced vector form \\
\hline \(c\) & mat: & array of difforent materials \\
\hline \(c\) & mlen: & leagth of global matrices in profile vector atorage \\
\hline c & nact: & actral number of actuators \\
\hline C & ncai: & actual aumber of actuators and sensors \\
\hline C & ndisort: & number of displacement results to output \\
\hline c & ndof: & actual number of degrees of freedom \\
\hline c & ndomain: & actual aumber of element domains (for dom. decomp.) \\
\hline c & nel: & actual number of elements \\
\hline C & neld: & array of zumber of elements in-each domain \\
\hline c & nap: & actual number of modes \\
\hline c & nsen: & actual number of sensors \\
\hline \(c\) & avelout: & number of velocity results to output \\
\hline C & nolag: & logical llag to signal corrector loop in measurement \\
\hline c & outfile: & output file name \\
\hline c & outlabel: & array of output data requested \\
\hline c & pin: & array of element pin release codes \\
\hline \(c\) & pivot: & Colum pivoting iafo from facta \\
\hline C & prop: & array of different properties \\
\hline \(c\) & q: & genoralized displacoment vector \\
\hline c & q0: & initial displacoment condition \\
\hline c & qaipha: & gain scale factor for 11 \\
\hline 6 & qaiphao: & gain acale factor for 11 \\
\hline C & qbeta: & gain scale factor for 12 \\
\hline c & qbetao: & gain scale factor for 12 \\
\hline c & qdot: & velocity vector \\
\hline c & quot0: & initial volocity condition \\
\hline c & q*: & state eatimator diaplacement voctor \\
\hline C & qedot: & state estimator velocity vector \\
\hline C & r: & Solution vector of control module \{ \(\mathrm{u}, \mathrm{gamma}\) \} \\
\hline C & scalef: & Scaling factor for forcing function \\
\hline C & atiff: & stifiness matrix K in reduced vector form \\
\hline C & to: & initial time \\
\hline c & te & control-on time \\
\hline C & tf: & final time \\
\hline
\end{tabular}
```

 *: vector of control forces
 Parameter definitions
MAXACT: max. of actuators
MAXCSI: max. combined of actrators and sensors
MAXDAT: max. tof materials and properties
MAXDOF: max. of degrees of freedom
MAXDOK: max. of decomposition domains
HAXELE: max. of elements
KARMLEN: mar. loagth of global vectors in reduced form
MAXHODE: max. of nodes

```
parameter(MAXDOFa3000, MAXACTz50, MaxCSIa100)
parameter (MAXMODE=1000, MAXELEE3000, MAXDAT=100)
parameter (MAXILEN=200000, MAXDOR=50, MAZNZV=200)
real* 8 to,tf,tc,h,delta,delaq, qaipha,qbeta, qalphao, qbetao
5eal*8 q (MAXDOF), qdot(MAXDOF), q*(MAXDOF), qedot(MAXDOF)

real* 8 es(MAXMLEN), oo(MAXKLEN), ec(MAXCSI, MAXCSI)

real*\& mass(MAXILEX), stif(HAxMLENX), adamp,bdamp,gk(MAXDOF)
real*8 coxyz ( 3, MAXNODE), mat ( 6, MAXDAT), prop ( 10, MAXDAT)
real*8 qO ( 6, MADHODE), qdotO ( 6, MAZMODE), inertia ( 6, MAXNODE \()\)
real*8 b(MAXHZV), hd(MZKZV), hV(MAXNZV), estifm (78,500)
real*8 f1(MAXACT, MAXDOF), 12 (MAXACT, MAXDOF)
real*8 11 (MAXDOF, MaXACT) , 12 (MAXDOF, MAXACT)
integer etype(MAXELE),ix(4, MAXELE), amat (MAXELE), forceid
integer eprop(MAXELEE), pin( 6, MAXELE), id( 6, MAXNODE)
integer mask(MAKNODE), contype, brom(MAZNZV), bcol (MAXNZV)
integer hdrom(MAXNZV), hdcol (MAXNZV), hvroo(MAXNZV)
iateger hvcol(HAXNZV), bral, hdval, hvval
integer ndof, nact, rien, acsi, mlen,jdiag(MAXDOF), nnp,nel,neig
integer neld(MAXDOM), olnum(MAXELE,MAXDOM), oldom(MAXELE), ndomain
integer outlabel(40), ndisout, nvelout, pivot(MAXCSI)
integer iadjcy(MAXMEN), scount(MAXNODE+1), perm(MAXNODE)
inceger xls(maxnode)
logical animate,nolag
character*32 famfile, confile,outfile,animfile
COMON /FILES/ femfile, confile,outfile,outlabel, idisout,
                        nvelout, animfile, animate, nolag
COMHON /TIMERS/ to,tf,tc,h,delta,delsq
COMROX /STATES/ q,qdot,qe,qedot, \(x, g a \operatorname{man}, \mathcal{L}, \mathrm{r}, \mathrm{pe}\)
COMON /FEMDAT/ mase,stif,adamp,bdamp,coxyz,mat, prop,q0,qdoto,
    inertia,scalef
COMMON/IMTIEGR/ ea, eo, ec, ga, go,gc,gk, pivot
COMAON /DIMENS/ ndof,nact, nsen,ncsi,mlen,jdiag,nnp,nel,neig
COMRON /CONDAT/ b,hd,hv,i1, \(22,11,12\),
    qalpha, qbeta, qalphao, qbetao
COMKON /ELEDDM/ eatifm,ndomain,aold,elnum,eldom
COMMON /INTGER/ forceid,etype,ix,emat,eprop,pin,id,mask,
                                contfpe,brom, bcol, hdrom, hdcol, hVrov, hvcol,
        bral,hdval, hrval
COMHOX /GESEQX/ iadjey,icount,perm,xls

File：acsis．f
```

C=Program ACSIS
C=Puspose Accelerated CSI Simmlation
C=Author R. Alvin
C=Date May }199
CzBlock Fortran

```

```

 program ACSIS
 C GET SHARED DATA FIIE
include 'shared.inc'
C . LOCAl VARIABLES
real*8 t.z(MATACT)
integer n,m,runtype,outskip
C LOGIC
call IMPUT(runtype,outskip)
if (runtype) 100,200,300
C EIGEMRODE ANALYSIS
100 continge
call PREPFEM
call EIGENS
goto 999
C CSI SIRULATIOH
200 call PREPFEM
call PREPCOI
n =0
m=0
print \#,'Finished Proprocesaing . . . starting simalation'
print *,'Time 2',to
CALL ICSISOOT(t0)
do 250 t=t0,tz,h
call FORCES(t+h/2)
C Predict CSI coupling variables a and gamma

```
```

 if (t .ge. tc) then
 Call MEASURE(z)
 cal1 COMIROL(z)
 if (molag) them
 C211 HOPHLAG(z)
 call COMTHOL(z)
 agiL!
 ondit
 C Strucerre and observer set up tor parallel axecutioq
 CVO$ CNCALL
 do 275 i=1,2
 C Integrate Observer Equations
 if ((i .eq. 1).and.(t .ge. tc)) then
 if (contype .eq. 0) then
 call SECORDER(mass, gtif, adamp,bdamp,f,go,00,qe,qodot,
 delta,delsq,jdiag,ndof,MAXDOF)
 cisoif (contype .eq. 1) then
 call KFILTER
 endif
 C Integrate Structure Equations
elseif (i .eq. 2) then
call SECORDER(mass, stif, adamp,bdamp,f,gs,os,q,qdot,
delta,delsq,jdiag,adO1,MAXDOF)
endit
275
continue
C. PRINT TIME EACH }100\mathrm{ iterations
n=n+1
m+1
if (n .ge. 100) then
print *, 'Time m',t+h
n. =0
ondif
if (m .ge. outskip) then
call ACSISOUT(t+h)
vrite(24,'(40112.8)') t.(z(i),i=1,nsen)
m=0
endif
250 comtinge
goto 999
C TRANSIENT RESPOMSE
300 CELl PREPFEM
n = 0
m=0
print ('Finished Preprocessing . . . starting simulation'
print *,'Tige = ',to

```
```

call ACSISOUT(t0)
do 350 t=t0,t2,h
call FORCES(t+h/2)
CalI' 2BROVECT(gs,ndof)
call SECORDER(mase,atil, adamp,bdamp,f,gs,08,q,qdot,
delta,delsq,jdiag,ndof,MuxDOF)
C PAINT TINE EACH 100 iterations
m=n+1
mam+1
if (n .80. 100) thon
print *,'Time = ',t+h
m=0
ondif
if (n .ge. ontskip) then
call ACSISOUT(t+h)
m = 0
ondif
continge
stop
end

```
999

File: acsisout.f
```

C=Module ACSISOUT
C=Purpose Urite desired output from ACSIS for plotting, otc.
C=Author K. Alvin
C=Date May 1990
C=Block Fortran
C
C
C
C
C
C
C
C
C
C
C
C
rgamonts
C
subroutise ACSISOUT(t)
include 'shared.inc'
real*8 t

```
```

C local variables
intoger i
C LOGIC
Erite(13,'(40112.8)') t,(q(id(ortlabel(i+10),outlabel(i))).
. i*1, ndisout),(qdot(id(outlabel(i+30),outlabel(i+20))).
. ie1,n\#0lort)
Frite(23.'(40\&12.8)') s, (qa(id(antinbel(i+10), outlabel(i))),

- is1, pdisont),(qedot(id(ortlabel(i+30),oqtlabel(i\&20))),
. ia1,nvelout)
Erite(25,'(40112.8)') to(r(i),i=1,gact),(gamma(i),i=1,nsen)
if (animate) call ANIMOUT(q,id,nap,t,15)
rotusm
end

```

File: addstf.f
```

C=Module ADDSTY
C=Purpose Assemble Global stiffness matrix
CaAuthor vho krows
C=Opdate Jammary 1989, by E. Pramono
C=Block Fortran
subrortine MDDSTF(sk,1m,bk,jdiag,aseq)

```

```

C PURPOSE: C
C THIS SUBROUTINE ASSEMBLES THE ELEMENT STIFFNESS MATRICES C
C INTO TEE COMPACIED GLOBAL STIFFRESS VECTOR. C
C . c
C argureats: c
C sk - blemeat Stiffress mathix c
c lm - Location vector for ellement stiffmess matrix c
c bk - COMPACTED GLOBAL STIFFNESS vECTOR C
C jdiag - vector of dilgomal elemeat addresses a c
C nsoq - MORBER OF DEGREES OF FRERDOM PER ELEmENT C

```

```

C arguteats
real*8 sk(nseq, hseq), bk(1)
integer lm(18): jdiag(1)
integer lm(18); jdiag(1), nseq
c LOGAL ARGUREATS
integer i, j, k, l,m
C ASSEMBLE GLOBAL STIFFMESS AND LOAD ARRAYS
do 20 j = 1, neeq
k= lm(j)
if (x .eq. 0) goto 20

```
```

 l m jdiag(k) - k
 C
l = jdiag(}k+1) - k
do }10i=1, mseq
m mm(i)
if(m.gt,k .08. m .eq. 0) goto 10
m=1+m
bk(m) = bk(m) + ak(i,j)
continue
contince
ratyez
and
C=End Fortran

```

File: beam3d. 1

C=Module BEAM3D
C=Purpose Constract 3-d Timoshenko beam element stiffness and lumped mass
C=Author K. Alvin
C=Date May 1990
C=Block Fortran

* jtor,i2,i3,ipin,sk, sm )

C argulients:
C
C I Element ID Number
C ni Hode ID Number at End \(i\)
c
\(c\)
aj Hode ID Number at End \(j\)
xyz Node Location Array
amod Material Elastic Modrlua (Young's Modulus)
gmod Matorial Modulus of Rigidity (Shear Modulus)
rho Material Mass Density
area Element Crose-sectional area
ssit Shear shape factor in element r2 direction
ssf3 Shear shape factor in elemont x 3 direction
jtor Torsional constant J
i2 Area moment of inertia about element \(x 2\) axis
i3 Area moment of inertia about element x3 aris
ipin Pin rolease codes: 0=Fixed, \(1=\) Froed
(1) Axial
(2) Torsional
(3) End 4 rotation about \(x 2\) axis
(4) End \(A\) rotation about \(x 3\) axis
(5) End \(B\) rotation about \(x 2\) axis
(6) End a rotation about 23 axis
ak. Elament Stiffress Ratrix
sm Eloment Mase Matrix
integer n, ni, ij, nk,ipin(1)
real* 8 ryz(3,1),emod,gmod,rho,area,set2,seif3,jtor,i2,i3
real \(\% 8 \cdot \operatorname{sk}(12,1), s m(12,1)\)
C LOCAL VARIABLES:
```

integer i,j
real*8 dc(3,3),longth,rlength,kc(10),me(3)

```

LOGIC
C. Find Elament Lagth

C Find direction cosines for \(x 1, x 2, x 3\) olamont axes
```

 do }15\mathrm{ im{,3
 dc(1,i) = dc(1,i)/length
 if (ak .eq. 0) then
 de(2,i) = 0.0
 0180
 dc(2,i) m xyz(i,Dk) - xyz(i,mi)
 exdif
 comeinme
 if (nk .eq. 0) dc(2,3) = 1.0
 dc}(3,1)=dc(1,2)*dc(2,3)-dc(2,2)*dc(1,3
 dc(3,2) = dc(2,1)#dc(1,3) - dc(1,1)#dc(2,3)
 dc(3,3) = dc(1,1)*dc(2,2) - dc(2,1)*dc(1,2)
 sloggth sqrt (dc(3,1)**2 + dc(3,2)*#2 + dc(3,3)**2)
 is (slength .ne. 0.) goto 17
 dc(2,2) = 1.0
 dc(2,3)=0.0
 goto 16
 do }18\mathrm{ i=1,3
 dc(3,i) = dc(3,i)/rlongth
 continue
 dc(2,1) m de(3,2)*de(1,3) - dc(1,2)#dc(3,3)
 dc}(2,2)=dc(1,1)*dc(3,3) - dc(3,1)*dc(1,3
 dc}(2,3)=dc(3,1)*dc(1,2) - dc(1,1)*dc(3,2
    ```
    C. Compute various stifiness constants, acconnting for pin codes
        if (ipin(1) .eq. 0) then
    ke(1) marea*emod/length
else
    \(\mathrm{kc}(1)=0.0 \mathrm{dO}\)
    oadif
if (ipin(4) .oq. 0) thar
    if (ipin(6) .eq. 0) then
                \(k e(2)=\) area*gmod*ses2/1ength
                \(\operatorname{ke}(6)=i 3 * a m o d / l\) ength
                \(k e(7)=k c(2) *\) length/2.0d0
                \(\operatorname{kc}(9)=\operatorname{kc}(7) *\) leagth/2.0d0
        -1.0
            print *,'beam3D: Pin code orror, x3 direction, ol \(\#\) ', \(n\)
```

 ondif
 else
if (ipin(6) .eq. 0) then
print .'BEAK3D: Pin code error, x3 direction, ol f',n
*lse
kc(2) = 0.0d0
ke(3) = 0.0d0
kc(7) = 0.0.0
kc(9) = 0.0d0
ondif
nadit
if (ipin(3) .eq. 0) then
if (ipin(5) .eq. 0) then
kc(3) area|gmod*eat3/leingth
kc(5) i2*emod/length
kc(8) kc(3)*length/2.0d0
kc(10) = ke(8)=longth/2.0d0
else
print *,'bEAK3D: Pin code orror, x2 direction, el s',n
ondif
el:e
if (ipin(5) .eq. 0) then
print \#,'bRAK3D: Pin code error, x2 direction, el %',n
else
ke(3) = 0.000
ke(5) = 0.0d0
kc(8) = 0.0d0
kc(10) = 0.0d0
endif
ondif
if (ipin(2) .eq. 0) then
kc(4) = jtor*gmod/leagth
-lse
kc(4) = 0.0d0
endif
me(1) = araamrho*length/2.0d0
mc(2) = i2*rho\#length/2.0d0
me(3) = i3*rho*length/2.0d0
sk(1,1) = ke(1)*dc(1,1)*dc(1,1) +kc(2)*dc(2,1)*dc(2,1) +
kc(3)\#dc(3,1)*dc(3,1)
sk(1,2) = kc(1)*dc(1,1)*dc(1,2) + kc(2)*dc(2,1)*dc(2,2) +
kc(3)*dc(3,1)\#de(3,2)
Bk}(1,3)=\operatorname{kc}(1)*\operatorname{dc}(1,1)*dc(1,3)+\operatorname{kc}(2)*dc(2,1)*dc(2,3)
kc(3)\#dc(3,1)*dc(3,3)
sk(1,4) = kc(7)*dc(2,1)*dc(3,1) - kc(8)*dc(3,1)*dc(2,1)
Bk(1,5) * kc(7)*dc(2,1)*dc(3,2) - kc(8)=dc(3,1)*dc(2,2)
sk(1,6) = ke(7)*dc(2,1)*dc(3,3) - ke(8)*dc(3,1)*dc(2,3)
sk(1,7) =-\operatorname{sk}(1,1)
sk(1,8) - -k (1, 2)
sk(1,9) = -sk(1,3)
sk}(1,10)=sk(1,4
sk(1,11) s sk(1,5)
sk(1,12) a sk(1,6)
sk(2,2) = ke(1)*dc(1,2)*dc(1,2) + kc(2)*dc(2,2)*dc(2, 2) +
ke(3)*dc(3,2)\#dc(3,2)

```
```

Ak(2,3) = kc(1)*dc(1,2)*dc(1,3) \& kc(2)*dc(2, 2)*dc(2,3) +
kc(3)*dc(3,2)*de(3,3)
sk(2,4)
a kc(7)*dc(2,2)*dc(3,1) = ke(8)*dc(3,2) \#dc (2,1)
sk(2,5) = kc(7)*dc(2,2)\#dc(3,2) - kc(8)*dc(3,2)\#dc (2,2)
m(2,8) : ke(7)*dc(2,2)*dc(3,3) = kc(8)*dc(3,2)*dc(2,3)
mk(2,7) - -k(1,2)
sk(2,8) = - gk (2,2)
sk(2,9) a ask (2,3)
sk(2,10) = sk(2,4)
sk(2,11) = sk(2,5)
k(2,12) mk (2,6)
sk(3,3). = ke(1)*dc(1,3)\#dc(1,3) \& kc(2)\#dc(2,3)\#dc(2,3) +
kc(3)}\#dc(3,3)\#dc(3,3
kk(3,4) = kc(7)*dc(2,3)*dc(3,1) Okc(8)*dc(3,3)*dc(2,1)
sk(3,5) E kc(7)*dc(2,3)\#dc(3,2) - kc(8)*dc(3,3)*dc(2,2)
k(3,6) = kc(7)*dc(2,3)*dc(3,3) - kc(8)*dc(3,3)*dc(2,3)
sk(3,7) = -sk(1,3)
sk(3,8) = -sk(2,3)
sk(3,9) = -sk(3,3)
sk}(3,10)=\operatorname{sk}(3,4
sk(3,11).a sk(3,5)
sk(3,12) = kk(3,6)
sk(4,4) = ke(4)*de(1,1)*dc(1,1)+(kc(10)+kc(5))*dc(2,1)*dc(2,1)
+ (ke(9)+kc(6))*dc(3,1)*dc(3,1)
sk(4,5) m kc(4)*dc(1,1)*dc(1,2)+(kc(10)+kc(5))*dc(2,1)*dc(2,2)
+ (kc(9)+kc(6))*dc(3,1)*dc(3,2)
gk(4,6) = kc(4)*dc(1,1)*dc(1,3)+(kc(10) +kc(5))*dc(2,1)*dc(2,3)
+(kc(9)+ke(6))*de(3,1)*de(3,3)
sk(4,7) =-4k(1,4)
sk(4,8) = -kk(2,4)
sk}(4,9)=-\operatorname{gk}(3,4
sk(4,10) = -kc(4)*dc(1,1)*dc(1,1)*(kc(10)-kc(5))*dc(2,1)*dc(2,1)
+ (ke(9)-kc(6))*de(3,1)\#dc(3,1)
sk(4,11) = -kc(4)*dc(1,1)*dc(1,2)+(kc(10)-kc(5))*dc(2,1)*dc(2,2)
+ (kc(9)-ke(6))*de(3,1)*de(3,2)
sk(4,12)= -kc(4)*dc(1,1)*dc(1,3)+(kc(10)-kc(5))*dc(2,1)*dc(2,3)
* (kc(9)-kc(6))*dc(3,1)*dc(3,3)
sk(5,5) = kc(4)*dc(1,2)*dc(1,2)+(kc(10)+kc(5))*dc(2,2)*dc(2,2)
+(kc(9)+kc(6))*dc(3,2)*dc(3,2)
sk(5,6) = kc(4)*dc(1,2)*dc(1,3)+(kc(10)+kc(5))*dc(2,2)*dc(2,3)
+(kc(9)+kc(6))*de(3,2)*dc(3,3)
sk(5,7) = - -g(1,5)
sk(5,8) =-sk(2,5)
sk(5,9) = -sk(3,5)
sk(5,10) = sk(4,11)
sk(5,11) = -kc(4)*dc(1,2)*dc(1,2)+(ke(10)-kc(5))*dc(2,2)*dc(2,2)
+(ke(9)-ke(6))*de(3,2)*dc(3,2)
sk(5,12)=-kc(4)*dc(1,2)*dc(1,3)+(kc(10)-kc(5))*dc}(2,2)*dc(2,3
+ (ke(9)-kc(6))*dc(2,3)*de(3,3)
sk(6,6) = kc(4)*dc(1,3)\#dc(1,3)+(kc(10)+kc(5))*dc(2,3)*dc(2,3)
+(ke(9)+kc(6))*de(3,3)*de(3,3)
mk(6,7) =-sk(1,6)
sk(6,8) = -sk(2,6)
ck(6,9) = -sk(3,6)
sk(6,10) = sk(4,12)
sk(6,11) = sk(5,12)
sk(6,12) = -kc(4)*de(1,3)*de(1,3)+(kc(10)-kc(5))*dc(2,3)*dc(2,3)
+ (kc(9)-kc(6))\#dc(3,3)*dc(3,3)
sk}(7,7)=\operatorname{sk}(1,1

```
```

gk(7,8) = ck(1,2)
k(7,9) = sk(1,3)
sk(7,10) = -kz(1,4)
kk(7,11) =-8k(1,5)
vk(7,12)=-sk(1,6)
ck(8,8) = gk(2,2)
kk}(8,9) = <k(2,3
ak(8,10) = -ak(2,4)
sk(8,11) = बk (2,5)
sk(8,12) = - k (2,6)
ak(9,9) = sk(3,3)
sk(9,10) = -sk(3,4)
sk(9,11) = - sk(3,5)
sk(9,12)=-8k(3,6)
sk(10,10) = sk(4,4)
sk(10,11) = sk(4,6)
sk(10,12) = sk(4,6)
sk(11,11) sk(5,5)
zz(11,12)=ak(5,6)
sk(12,12) = sk(}5,6
do 50 i = 1,12
do 55 j = 1,12
sm(i,j) = 0.d0
continue
continue

```

C Rom-sum rotated mass matrix to ro-diagonalize
```

sm(1,1) a mc(1)
sm(2,2) a me(1)
sm(3,3) =mc(1)
sm(4,4) = me(2)*(de(1,1)*dc(1,1)+dc(2,1)*dc(2,1)) +
mc(3)*(dc(1,1)*dc(1,1)+dc(3,1)*dc(3,1)) +
mc(2)*(dc(1,1)*dc(1,2)+dc(2,1)*dc(2,2)) +
mc}(3)*(dc(1;1)\#dc(1,2)+dc(3,1)*dc(3,2)) +
mc(2)*(dc(1,1)*dc(1,3)+dc(2,1)*dc(2,3)) +
mc(3)\#(dc(1,1) \#dc(1,3)+dc(3,1)\#dc(3,3))
a mc(2)*(dc(1,1)*dc(1,2)+dc(2,1)*dc(2,2)) +
mc(3)=(dc(1,1) =dc (1,2)+dc(3,1)\#dc(3,2))
= me(2)*(dc(1,1)\#dc(1,3)+dc(2,1)*dc(2,3)) +
mc(3)*(dc(1,1)\#dc(1,3)+dc(3,1)*dc(3,3))
=mc(2)*(dc(1,1)*dc(1,2)+dc(2,1)*dc(2,2)) +
mc(3)*(dc(1,1)*dc(1,2)+dc(3,1)*dc(3,2))
m me(2)*(dc(1,2)\#dc(1,2)+dc(2,2)*dc(2,2)) +
mc(3)\#(dc(1,2)=dc(1,2)+dc(3,2)\#dc(3,2)) +
me(2)\#(dc(1,1)*dc(1,2)+dc(2,1)*dc(2,2)) +
mc(3)*(dc(1,1)*dc(1,2)+dc(3,1)*dc(3,2)) +
me(2)*(dc(1,2)*dc(1,3)+dc(2,2)*dc(2,3)) +
mc(3)*(dc(1,2)*dc(1,3)+dc(3,2)*de(3,3))
mc(2)*(dc(1,2)*de(1,3)+dc(2,2)*dc(2,3)) +
mc(3)*(de(1,2)*dec(1,3)+de(3,2)*de(3,3))
-mc(2)*(dc(1,1)=de(1,3)+dc(2,1)*dc(2,3)) +
mc(3)*(dc(1,1)*dc(1,3)+dc(3,1)*de(3,3))
-mc(2)*(dc(1,2)*dc(1,3)+dc(2,2)*dc(2,3)) +
mc(3)*(dc(1,2)*dc(1,3)+dc(3,2)*dc(3,3))
=mc(2)*(dc(1,3)*dc(1,3)+dc(2,3)*dc(2,3)) *
mc(3)*(dc(1,3)*dc(1,3)+dc(3,3)*dc(3,3)) +

```
```

 mc(2)&(dc(1,1)Adc(1,3)+dc(2,1)#dc(2,3)) +
 mc(3)#(dc(1, 1)*dc(1,3) fdc(3,1)*dc(3,3)) t
 me(2)#(dc(1,2)#dc(1,3)+dc(2,2) #dc(2,3))
 me(3)#(dc(1, 2) tdc (1,3)+dc(3,2)#dc(3,3))
 m(7,7) a me(1)
 m(8,8) me(1)
 m(9,9) ac(1)
 sm(10,10) = am(4,4)
 C max (10,11) = sm(4,6)
c sem}(10,12) = ves(4,6
C Em(1%,10) = sm(5,4)
* (12,11) sm(3,5)
C sm}(11,12) sm((, 6)
C sm}(12,10)=\operatorname{sm}(6,4
C sm(12,11) = am(}6,5
max (12,12) = sm}(6,6
do 100 j=1,12
do 200 jE1,i=1
sk(i,j) = sk(j,i)
comtinue
continue
returg
end
C=End Fortram

```

File: forces.f
```

C=Module FORCES
C=Purpose Calculate applied force vector at given time
C=Anthor K. Alvin
C=Date May }199
C=Block Fortran

```


```

C

```
C
C Subroutine FORCES
C Subroutine FORCES
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
    subroutine FORCES(time)
    subroutine FORCES(time)
    include 'shared.inc'
    include 'shared.inc'
    real*8 time,pi
    real*8 time,pi
C LOGIC
C LOGIC
    pi = 3.1415928
```

 pi = 3.1415928
    ```
```

call ZEROVECT(1,ad01)
if (forceid .eq. 101) ther
if (time .10. .02) thon
i(id(2,15)) = 100.*(1.-cos(2.*pi*tima/.03))
oxdif
-lmaif (forcaid .eq. 102) than
if (time .1t. .1) then
1(id(2,95)) = 10.
elseif (time .eq. .1) thon
f(id(2,95)) = 0.
elseif ((time .gt. .1).and.(time .1t. .2)) then
f(id(2,95))=-10.
else
f(id(2,95))=0.
ondif
elseif (1orceid .eq. 103) then
if (time .10. .01) thon
f(id(1,15)) = 100
endif
104 elaeif (forcoid .eq.104) then
if ((time .gt. 0) .and. (time .It. .17)) then
f(id(3,125)) = 10
elaoif ((time.gt. .17) .and. (time .lt. 1.0)) then
f(id(3,125))=-10
ondif
elseif (forceid .eq. 105) then
if (time .1*. .01) then
f(id(2,9)) = 100.*(1.-cos(2.*pi*time/.01))
01soif (time .10. .02) then
f(id(2,9)) = 100.*(cos(2.*pi*time/.01)-1.)
ondif
endif
do 10im = 1, ndor
f(i) acalof (f(i)
continue
returg
and

```

File: input.f
```

C=Module ITPUT

```
C=Purpose Input data parameters for ACSIS
C=Anthor K. Alvin
```

CaDate May }199
C=Block Fortran

```
```

Subroutine IAPOT

```

\section*{Axgrant detinitiona}
```

crantype - ID of analyais run type
savin - variable to control creation of input iile
runfile - variable indicates if rus is from input file
commant - dumy alame for comment input lines
outskip - aumber of steps to skip before sending output
subroutine INPUT(runtype,outskip)
include 'shared.inc'
integer runtype, outskip
character"1 savin, Fuafile,temp
charactorゅ48 comment,inpfile
PRINT ABD READ START-UP
print *, '2nd Order Accelerated CSI Simulation (ACSIS)'
print *
print *, 'Please input analysis type:'
print *
print *, ' 1. Eigenmode Analysis'
print *, , 2. CSI Simulation'
print *, ' 3. Transient Response'
print *
read *, santype
RUS OPTIORS AND INPUI FILE SETUP
runfile a 'n'
if (runtype .lt. 0) then runtype $=-1$ * runtype ruafile = 'y'
ondif
print *, 'Do you vish to save an input file? (y or n)'
read 21, savin
format (a32)
format (ai)
if (savin .eq. 'y') thon print *, 'Hame of save input iile? (iilename)' read 20, inptile
open(16,1ile=inpfile)
rantype = -1 * runtype
\#rite(16,'(i2)') rumtype
runtype = -1 * runtype
mrite(16,'(a1)') 'n'
mrite(16,'(a47)') '\# ACSIS input file,tro lines above are'
\#rite(16,'(a48)') '* analyais type and save input file. Do'
urite(16,'(a48)') ', not change them by editing this file.'
ondif

```
```

 Funtype = runtype - 2
 if (ranfile .eq. 'y') then
 do }30i=1,
 read 20, comment
 continue
 ondif
print *, 'Finite Element Hodel Inprt File Name (filename)'
raad 20, fomfile
opon(11,1ile=femfile)
if (savin .eq. 'y') thon
Erite(16,'(a47)') '* Figite olement input file?(filename)'
urite(16,'(a32)') tomfile
ondif
if (runtype) 100,200,300
EIGEmHODE INPUTS
print *,'Humber of modes desirea:?
if (ruafile .eq. 'y'), read 20, commeat
road *, zoig
if (runfile.og. 'y') read 20, comment
priat *,'Output File Name:'
read 20, outfile
opon(13,1ile=outfile)
if (savin .eq. 'Y') tren
mrito(16,'(a35)') '* Number of modes desired?'
urite(16,'(i4)') neig
\#rite(16,'(a33)') '* Output file?(filename)'
urite(16,'(a32)') outfile
ondif
call READFEX
goto 1000
CSI INPUTS
print *,'Controller Definition File Name:'
if (runfile .eq. 'y') read 20, comment
raad 20, corfil.
opar(12,file=confile)
print *, 'please input type of control:'
print *
print *,' 1. Full State Feedback'
print *, , 2. Luenberger Observer (L1=0)'
print *,' 3. Kalman Filtor'
print *
if(runfile .eq. 'y') raad 20, comment
read \#, contype
contype = contype - 2
print *,'Initial time, Sinal time, control-on time, step size:'
if (runfile .eq. '}\overline{\prime}\mathrm{ ') read 20, comment
read *, to,tf,tc,h
print \#,'Forcing function ID, scale factor, damping coeff-a,b:"
if (runfile.eq. 'y') read 20, comment
read *, forcoid, scalet, adamp,bdamp
print *,'Phase lag lix?(% or n):'
if (runfile .eq. 'Y') read 20, comment

```
```

 road 21, temp
 is (teary .eq. 'J') nolag a .true.
 if (tery .eq. 'r') nolag = .false.
 priat m,Gain scale factors (4 total):"
 if (rumille..eq. 'J') read 20, cominnt
 soad *;qalpha,qbotm,qalphao,qbotwo
 if (sa\nablain .eq. 'y') then
 Erite(16,'(a42)') '& Controller file name?(filoname)'
 Trito(16.'(232)') confilo
 #rite(18,'(a42)') '; please iaput type of cortrol: ,
 EEito(16.'(i10)') contype + 2
 #Eite(16.'(as6)') '年 Initial,{inal,control-0,,stop size?'
 *Eite(16,'(4114.8)') t0,tt,tc,h
 #sita(16,'(a49)')''# Foreing frnction,scale 1, damping a,b?'
    ```

```

 grite(16,'(a32)') '申 Phase lag fix?(% or n)'
 is (nolag) mrite(16,'(a1)') '7'
 if (.not. nolag) Erite(16,'(a1)') 'm'
 *sita(16.'(840)') 't Gaig senie lactars (4 total)?'
 Hrite(16,'(4t14.8)') qalpha,qbota,qalphao,qbotao
 endif
call READFEM
goto 999
TRANSIEAT RESPONSE INPUTS
OUTPUT OPTIONS
print *,'Initial time, final time, step size:'
if (runfile .eq. 'Y') read 20, commant
road %, to,tf,h
print \#,'Forcing function ID, scale factor, damping coeff- a,b:'
if (runfile .eq. 'Y') read 20, comment
read *, forceid, scalot,adamp,bdamp
if (savin .eq. 'r') then
mrite(16,'(a48)') '* Initial, {inal, step size?'
myite(16,'(3114.8)') t0,tf,h
write(16,'(a49)') '; Forcing function,scale f, damping a,b?'
mrite(16,'(i4,115.6,2112.8)') forcoid,scalof,adamp,bdamp
ondif
call RradFEM
goto 999

```
```

print *,'Ontput File Hame:'

```
print *,'Ontput File Hame:'
if. (runfile .eq. 'y') read 20, comment
read 20, outfil.
open(13,ifile=outilie)
print #.'Mumber of displacoment results to output (max 10):'
if (runfile .eq. 'y') read 20, comment
read #,ndisout
do }500\mathrm{ ia1, ndisont
    print *,'Input node *, dof for displacement ontput#',i
    read *,ontlabel(i),outlabel(i+10)
    continue
print *,'Number of velocity results to output (max 10):'
```

```
    if (ranfile .eq. 'J') raad 20, comment
    read *,avelout
    do 600 i=1,nvelout
    print *,'Input node %, dof for velocity output%',i
    read *,outlabel(i+20),outlabel(i+30)
    coztinge
    print #.'Sond output ovory how many stops?'
    if (ruarile .eq. 'y') read 20, comment
    read *, outskip
    if (savin .eq. 'y') thon
    #rite(16,'(a38)') '* Ontput file name?(filename)'
    Erito(16,'(a32)') outisil.
    vrite(16,'(a42)') '# Sumber of displacoment outputs?'
    write(16,'(i4)') ndisout
    do 650 i=1,ndisont
        grite(16,'(2i8)') outlabel(i),outlabel(i+10)
    continme
    #xito(16,'(a38)') '* Number of velocity outputs?'
    Mrite(16,'(i4)') smelowt
    do }660\mathrm{ i=1,avolont
        myite(16,'(2i8)') outlabel(i+20), outlabel(i+30)
    continue
    Grite(16,'(a44)') '*' Send output every hos many steps?'
    mrite(16.'(i3)') outskip
endi&
ANTHATION OPTIOM
print *,'Animation Output? (y or a):'
if (runfile .eq. 'y') read 20, comment
read 21, temp
if (tomp .eq. 'Y') amimate = .true.
if (temp'.eq. 'n') amimate a .false.
if (animate) then
    print*,'Animation fil` name (fil@a|me)'
    if (ruafile .0q! 'y') road 20, comment
    raad 20, animile
    opon (15, filoaagimfilo)
ondif
if (savin .eq. 'y') ther
    urite(16,'(a41)') '# Send animation output?(y or a)'
    if (animate) vrite(16,'(a1)') 'y'
    if (.not. animate) #rito(16,'(a1)') 'n'
    if (animate) thom
            Erite(16,'(a31)') '# Lnimation file name?'
            write(16,'(a32)') animfilo
    ondif
ondif
delta = h/2.
deleq = delta**2
1 0 0 0
roturn
end
```

File: pmomul.f

```
C=Module prymul
CaAnthor z. llvin
CaDase May }199
CaBloct Fortrea
c
C
    Arguments
        & - matrix in vector forrs
        b - vector
        & - reatit vectur
        geq - order of vector and square matrix
        jdiag - asray of diagonal addresses for a
    smbroutize pHM%UL(a,jdiag,b,neq,c)
    recuraive gabromtiae PRVMUL(a,jdiag,b,neq,c)
    real*8 a(1), b(1), c(1)
    integar jdiag(1), neq
    do }100\mathrm{ i }=1,\textrm{geq
        c(i) = a(jdiag(i))*b(i)
    continue
    do 200 im2,neq
        do 300 j=jdiag(i-1)+1,jdiag(i)-1
            k z jdiag(i) - j
            c(i) ac(i) + a(j)=b(i-k)
        continue
    continue
    do 250 i=2,neq
        do }400\mathrm{ j=jdiag(i-1)+1,jdiag(i)-1
            k = jdiag(i) - j
            c(i-k)=c(i-k) +a(j)#b(i)
        continue
    continme
    return
    and
C
    Subroutine PMVHAD
    Purpose:
        Multiply a matrix in vector form and a vector and add the
        resultant vector multiplied. by a constant to a second vector
```


Arguments

a - matrix in pector form
b - vector to be maltiplied aith matrix
c - resultant and vector to be added
facti - constant moltiplior of matrix and first vector
fact2 - cometant maltiplior of second vector jdiag - array of diagonal addresses for matrix neq - ordor of vectors and matrix
arbroutiae PHVHAD(a,jdiag, b, neq,fact1, $c, f a c t 2)$
rectrsive arbroutine Prvind (a,jdiag,b, req,fact1, c,fact2)
Fani* 8 a(1). $b(1), c(1)$, 1acti, 1act2
integer jdiag(1), neq
do $100 \mathrm{i}=1,2 \mathrm{eq}$
$c(i)=$ fact2*c(i) + fact1*a(jdiag(i))*b(i)
continue
do 200 i $=2,7 e q$
do 300 jajdiag(i-1)+1,jdiag(i)-1
$\mathbf{k}=\mathrm{jdiag}(\mathrm{i})-j$
$c(i)=c(i)+1 a c t 1 * a(j) \neq b(i-k)$
continne
continue
do 250 i=2,neg
do 400 jajdiag $(i-1)+1, j d i a g(i)-1$
$\mathbf{k}=$ jdiag $(i)-j$
$c(i-k)=c(i-k)+1 a c t 1 * a(j) * b(i)$
continue
continge
return
end

File: prepfem.f

```
C=Module PREPFEM
C=Purpose Proprocess Structure Finite Element module Ior ACSIS
C=Author K. Alvin
C=Date May }199
C=Block Foritran
C
C
C Subrontin}\mathrm{ PREPFEM
C
    Purpose:
        This subroutine propares the finite olement mass,
        stiffness, and S matrices in reduced profile vector form
```

C
C
c
C
C
c c

C
6
c
c

Local variables:
Ek Element Stifinese matrix
日盛 Elemert Mass Hatrix
In Local/Global DOF Mappiag vector
nseq. Jumber of olement dogrees of freedom
angep Matorial and Propety id for elemant
subsoutime PREPEg
include 'shared.inc'
LOCAL VABIABLES
paramoter (MAXSEQ=24)

integer lm(MAXSEQ),nseq, am, op
call Rmy
Set up skyline storage profile for global matrices

C Porfors antomatic domain decomposition
call Dompec
Check size of skyline profile against storage limitation
if (mien .gt. Maximex) then
priat*, 'PRBPFRM: exror, global matrix exceeded max. sizo'
ondif
Zero Global Matrices prior to assembly
call 2EROVECT (stif,men)
call ZEROVECT (mass, imon)
C ASSEMBLE EACR ELEMEAT MASS ABD STIFFNESS
do 100 2 $=1, \mathrm{nel}$
do $20 \mathrm{k}=1,4$
jaix (k, n)
if ((otype(n).eq.1).and.(k.gt.2)) $j=0$
do $30 i=1,6$
kk=6*(k-1) +i
if (j .ge. 0) then
lm(kk) $=i d(i, j)$
-1se
$I \ln (k x)=0$ ondit
continue
continue

```
        it (otype(n) .eq. 1) then
        gseq = 12
        an=amat(n)
        \bulletp = 0prop(n)
        call BEAK3D(n,ix(1,n),ix(2,n),ix(3,n), coxyz,mat( }1,0m)\mathrm{ ,
            mat(2,ब{a),mat(3,0m),prop(1, बp),prop(5,बp),prop(6, өp),
            prop (2,^p),prop(3,\bulletp),prop(4,@p),pin(1,a),sk,am)
        elseif (ix(1,n) .ae. 0) then
    print*,'PREPFEM:Element type not Lound;n=',n,'etype=',etype(n)
    ondif
```

ADD EREMENT TO GLOBAL MASS AHD STIFFNESS

```
    call ADDSTF(sk,1m,atif,jdiag,aseq)
    call ADDSTF(am,1m,mass,jdiag,nseq)
```

C ASSEMBLE AND FACTORIZE os (S MATRIX)

```
        me = 1. + delta*adamp
        kc = delta*bdamp + delsq
        do 200 i=1,mlon
            Qa(i) = mc*mass(i) + kc*gtif(i)
            continue
```

 call SOLVER(0s,gs,jdiag,adof,1)
 INITIALIRE DISPLACEMENT AND VELOCITY VECTORS
do 300 i $=1$, nnp
do $350 \mathrm{j}=1,6$
if (id($j, i)$.ne. 0) then
$q(i d(j, i))=q 0(j, i)$.
$\operatorname{qdot}(i d(j, i))=\operatorname{qdoto}(j, i)$
ondif
continue
continae
roturn
and
sqbroqtine SAVESR(sk,n,nseq)
include 'shared.inc'

```
    real*8 sk(nseq,1)
    integer m,gseq
    mm0
    do 10 ja1,geeq
        de 20 $a1.j
        kmb+1
        08%ifk(k,n)=8k(i,j)
        combimue
    comtiame
coturs
end
subsoutige DOHDEC
include 'shared.inc'
logical nchk,ndehk(MAXNODE,MAXDOM)
integer ndom
do 10 j=1,MAXDOR
    zold(j)=0
    de }30\mathrm{ im1, anp
        ndehk(i,j)=.false.
        continue
        continue
    ndomaiz=0
    do 100 n=1,mel
    ndom=0
    achk=0
    do 200 while (nchk.oq.0)
        ndom=ndom+1
        if (ndom.gt.ndomain). ndomain=ndom
        nchys1
        if (ndcht(ix(1,n),adom,) nchk=0
        if (adchk(ix(2,n),ndom)) achk=0
        if (nchk.eq.1) then
            eldom(n)=ndom
            ndchk(ix(1,n),ndom)=.true.
            ndehk(ix(2,n),ndom)=.true.
                ondif
        contine@
        mold(ndom)=neld(ndom)+1
        -lnum(nold(ndom),ndom)=n
        continue
    return
end
```

File: profile.f

```
C=Module PROFILE
C=Purpose Compate the mumber of equations and set profile for K
C=Author Bob Taylor
CzDate ©ho knors
CaOpdate January }1989\mathrm{ by E. Pramono
CzBlock Fortran
    subroutine PROFILE(ix,id,jdiag,amp,nel, nen,adot, rad,aeq,mask)
```



```
C PORPOSE: C
C THIS SUBROUTIHE COMPUTES THE NOMBER OF EQUATIONS REQOIRED C
C TO SOLVE THE PROBLEM BY ELIMINATING RESTRAINED DEGREES OF C
C FRREDON FROM THE SYSTRM OF EQUATIONS. KNOUING THE EQUATION C
C EDIBERS COORESPOMDIHG TO TEE HODAL DEGREES OF FREEDOM, THE C
C DIAGONLL ELEMENT LOCATIOMS CAM BE COMPUTED FOR STORING THE C
C GLOBAL STIFFWES MATRIX IN CDMPACTED VECTOR FORM. C
```



```
C
C ARGULEITSS
C
    integer ix(nen,1), id(ndor,1), jdiag(1)
    integer nnp, nel, nad, neq, mask(1)
    integer map, nel, non, ndof, nad, noq, mask(1)
C
C .IOCAL ARGUHENTS
C
    integer i, j, k, 1, m, n, j1, k1, 11; ml
C
C SET UP EQUATIOR NUHBERS
C
    neq. = 0
    do 30 n m 1, nnp
        do 20 m = 1, ndof
            j = id(m,mask(n))
            if (j .eq. 1) goto 10
            neq = neq + 1
            id(m,mask(n)) = neq
            jdiag(neq) = 0
            goto 20
            id(m,mask(n)) = 0
                continge
        continue
```



```
C
C
C COMPUTE COLUN HEIGHTS
do 80 n = 1, nel
    do 70 m= 1, non
            ml = ix(m,n)
            if (mi .le. 0) goto 70
            do 60 1 = 1, ados
                11 = id(1,m1)
                if (11 .eq. 0) goto 60
            do 50 k =m, nen
                k1 = ix(k,n)
                if (k1 .10. 0) goto 50
                do 40 j = 1, ndor
                    j1 = id(j, k1)
                    if (j1..eq. 0) goto 40
```

 ned 1
 jdiag(1) = 1
 if (neq .eq. 1) return
 do \(90 \mathrm{n}=2, \mathrm{neq}\)
 jdiag \((n)=j d i a g(n)+j d i a g(n-1) \neq 1\)
 continue
 and m jdiag(neq)
 C
$50 t 45$
-1.d
CaEnd Fortran

File: read.f

```
C=Module READ
C=Anthor &. Alvin
C=Date. May }199
C=Block Fortran
C
C
C Subroutine READFEM
C
C Purpose:
C This subrouting reads the data file for the finite
C . element model.
C
```



```
C
C Argaments
C
C
    subroutine RRADFEM
C GLOBALS
    include 'shared.inc'
C LOCMLS
    integer j,n,ctype,GETITPE
    character*132 aline
    real*8 in
C INITIALIZE SIZE OF PROBLEM
```

```
        nnp =0
n+1=0
ndot = 0
Idomain = 0
C IDENTIFY CLRD TYPE AND ASSIGN INPUT
10 raad(11, 1000,ond=9999) lise
100 ctjpe = GETTYPE(aliae)
    if (ctype) 10,10,150
150.. if (aline(1:4) .eq. 'MODE') goto 200
    if (alime(1:4) .eq. 'TOPO') goto 300
    if (aline(1:4) .eq. '4Tra') goto 400
    if (alino(1:4) .eq. 'MMTE') goto 500
    if (aline(1:4) .eq. 'pROP') goto 600
    if (aline(1:4) .eq. 'PIII') goto 700
    if (aline(1:4) .eq. 'I&IT') goto 800
    if (aline(1:4).eq. 'INER') goto 900.
    if (aline(1:4) .eq. 'EMD ') goto 10
    if (aline(1:4) .eq. 'MRSH') goto 10
    print *,'READFEA: Unrecognized card type; ',aline(1:4)
    goto 10
C READ HODES
200 read(11,1000,01d=9999) aline
    ctype = GETTYPE(aline)
    if (ctype) 200,250,100
250 read(aline,*) A, (coxyz(j, R),j=1,3)
    if (n .gt. nnp) nnp = II
    goto 200
C READ TOPOLOGY
300 read(11,1000, onda9999) aline
    ctjpe = GETTYPE(aline)
    if (ctypo) 300,350,100
350 read(alime,*) n, etype(n),(ix(j,n),j=1,4)
    if (n .gt. nel) nel = n
    goto 300
C READ ATIRIBUTES
400 read(11,1000,end=9999) aline
    etype = GEITYPE(aline)
    if (ctype) 400,460,100
450 read(aliae,*) n, amat(n), aprop(n). (pin(j, n),j=1,6)
    if (oldom(n).gt.adomain) ndomain=oldom(n)
    goto 400
    READ MATERIAL
500 read(11,1000, बada9999) alize
    ctype = GETTYPE(aline)
    if (ctype) 600,550,100
550 read(aline,*) n,(mat(j, n), j=1,3)
    goto 500
    READ PROPERTIES
```

```
    read(11,1000,0nd=9999) aline
    ctype aETTYPE(aline)
    if (ctjpe) 600,650,100
650 read(aline,*) m, (prop(j, R),j=1,6)
    gote 600
    READ FIXITY
700 read(11,1000,0ndm9999) aline
    ctype = GETTYPE(alise)
    if (erjpe) 700,750,100
    read(aline,*) m,(id(j,n),j=1,6)
    gote 700
    READ IITYIAL COMDITIOMS
    read(11,1000,anda9999) aline
    ctype = ExSIXPE(alise)
    if (ctype) 800,850,100
850 Fead(alime,*) m,j,q0(j, n),qdotO(j, n)
    goto 800
    READ INEMTIA
    read(11,1000,end=9999) aline
    ctype = GETTYPE(aline)
    if (ctype) 900,950,100
1000. format(a132)
9999 continue
    return
    ond
C
C
C
C
C
c
C
C
C
C
C
C
C
C
C
C
C BMAT - locations of actuators
C HDRA - array of displacement sensor locations
C BVHA - array of velocity sonsor locations
C FIGA - control gain matrix
```

```
C F2GA - control gain matrix
C L1GA - Etate estimator lilter gaia matrix
C
    L2GA - state estimator filter gain matrix
subroutine READCOM
include 'shared.inc'
zOCALS
real*8 val'
integer j,a,ctype,GETTYPE
character*132 aline.
bral =0
hdval = 0
hvval = 0
hdbval s 0
hremal = 0
IDENTIFY CARD TYPE AND ASSIGN INPUT
10 read(12,1000,0ndz9999) aline
100 ctype = GETTYPE(aline)
    if (ctype) 10,10,150
150. if (alime(1:4) .eq. 'NACT') goto 200
if (aline(1:4) .eq. 'MSEN') goto 300
if (aline(1:4) .eq. 'BMAT') goto 400
if (aline(1:4) .eq. 'RDMA') goto 500
if (aline(1:4) .eq. 'gvMa') goto 600
if (aline(1:4) .eq. 'F1GA') goto 700
if (alime(1:4) .eq. 'F2GA') goto 800
if (alin0(1:4) .eq. 'L2GA') goto 900
if (aline(1:4) .eq. 'LIGA') goto 1100
if (aline(1:4) .oq. 'END ') goto 10
print *,'READCON: Unrecognized card type; ',aline(1:4)
goto 10
READ INPUT CARDS
200 read (12,1000,0ad=9999) aline
    ctype = GEITYPE(aline)
    if (ctype) 200,250,100
250 read(aline,*) nact
    goto 200
    raad(12,1000,ond=9999) aline
    ctype = GETTYPE(aliae)
    if (ctjpe) 300,350,100
    read(aline,*) asen
    goto 300
400 raad (12,1000,and=9999) alize
    etype a GETTYPE(aline)
    if (ctype) 400,450,100
450 read(aline,*) i,j,n,val
    bval = bral + 1
    b(bval) = val
    brot(bval) = id(j,i)
```

```
    bcol(bval) = a
    goto 400
    read(12,1000,0ndz9999) aline
    c&ype = GEITYPE(aline)
    is (ctype) 500,550,100
550 Fead(aline.m) i.jom,val
    hdval m hdval + &
    hd(hdval) = val
    hdsom(hdval) m
    hdcol(hdval) = id(j,i)
    goto 500
    rand(12,1000,ond=9999) alize
    ctype = GETIYPE(alize)
    1f (ctjpe) 600,650,100
    read(aline,*) i,j,n,val
    hroal a hrval + 1
    ho(hroel) = rel
    hrrov(hvoal) I I
    hrcol(hvval) = id(j,i)
    goto 600
    raad(12,1000,onds9999) aline
    ctype GETTYPE(aline)
    if (ctype) 700,750,100
750 read(aline,*) i,j,n,val
    f1(n,id(j,i)) = qalpha*val
    goto 700
    read(12,1000,0nd=9999) aline
    cॄype = GETTYPE(aline)
    if (ctype) 800,850,100
    read(aline,*) i,j,n,val
    f2(n,id(j,i)) = qbeta*val
    goto 800
    read(12,1000,enda9899) aline
    ctype = GETTYPE(aline)
    if (ctypo) 900,950,100
    read(aline,*) i,j,n,val
    12(id(j,i),n) a qbotao*val
    goto 900
    read(12,1000,and=9999) aline
    ctype = GETTYPE(aline)
    if (ctjpe) 1100,1150,100
    read(aline,*) i,j,n,val
    l1(id(j,i),n) = qalphao*val
    goto 1100
    format(a132)
    continue
    return
    and
C
C
C
```

```
C Function GETIYPE
C
C
C
C
C
C
C
C
C
C
    Iunction GETTYPE(string)
    GLOBALS
    character*132 string
    LOCalS
    integes GETIXPE,ctype(10)
    character*1 hoad(10)
    data hoad /'!','0','#','$','%','&','#','C','c',' '/
    data ctjpe /-1,-1,-1,-1,-1,-1,-1,-1,-1,0/
    LOGIC
    GETTYPE=1
    do }100i=1,1
    if (string(1:1) .eq. head(i)) GETTYPE=ctype(i)
    continu*
    return
    end
```

File: solver.f

```
C=Module SOLVER
C=Purpose Solves the system of linear symmetric equations
C=Author who knome
C=Date
C=Opdate January 1989 by E. Pramono
C=Block Fortran
C SUBROUTINE SOLVER(BR,BR,JDIAG,NEQ, IFLAG)
    recuraive SUBROUTINE SOLVER(BK,BR,JDIAG,NEQ,IFLAG)
```



```
c PURPOSE:
C THIS SUBROUTINE SOLVES THE SYSTEM OF LINEAR SYMDETRIC C
C EQUATIONS IN VECTOR FORM USING THE CROUT REDUCTIEY C
C HETHOD. C
C
    ARGUTENTS: C
        BR - GLOBAL STIFFNESS EQDATIONS IN VECTOR FORA C
        BR - GLOBAL LOAD VECTOR C
        JDIAG - LOCATION VECTOR FOR DIAGONALS IN [BK] C
        NEQ - &UMBER OF EQUATIONS C
        IFLAG - FLAG INDICATING wHICE FUNCTION IS TD BE PERFORMED C
                1 M FORWARD REDUCTION C
                        2 B BACKYARD SUBSTITUTION C
```



```
C ARGUIENTS
    88AL=8 BR(1), BR(1)
    IMTEGER JDIAG(1), HEQ, IFLLO
C LOCAL VARIABLES
    REAL*8 ZERO, EZERO, TOL, DAYAL, DOT, D, RDD, DD
    IMTEGER LDFLAG, JR, J, JD, JH, IS, IE, K, JDT
    IHTEGER JJ, ID, I, IN, IR
    JJ s 6
C
```



```
NETH PMRANETERS
```



```
    2ER0 =0.000
    EZERO =0.3D-14
    TOL = 0.5D-7
    LDFLAG = 0
C
C FACTOR BR TO UT#D*OU OR AEDUCE R
    JB=0
    DO 70 J = 1, IEQ
        JD = JDIAG(J)
        JR: JD = JR
        IS = J - JK + 2
        IF (JH - 2) 60, 30, 10
C
10 IF (IFLAG .NE. 1) GOTO 50
    IE = J - 1
        K= JR + &
        ID = JDIAG(IS-1)
C
```



```
C IF DIAGORAR IS ZERO COMPUTE & MORM FOR SINGULARITY TEST
C
    JDT = JDIAG(IE) + 1
    IF (BK(JD) .EQ. ZERO .AND. IFLAG .EQ. 1) THEN
        CALL DATEST (BK(JDT), JH-2, DAVAL)
    END IF
C
```



```
C REDOCE ALL EQUATIOAS EXCEPT FIRST RON AHD DIAGONAL
C
    DO 20I = IS, IE
        IR = ID
        ID = JDIAG(I)
        IR = MINO(ID-IR-1,I-IS+1)
        IF (IH .GT. O) BK(K) = BK(K) - DOT(BK(K-IH), BK(ID-IH), IH)
        K=R+1
    contINOE
20
C
C
C REDUCE FIRST ROM AND DIAGONLL
```

```
c
30
C CRECX FOR POSSIBLE ERRORS AND PRIETT WLRNIEGS
```



```
    RDD = BK(JD)
    IF (DLAS(ADD) LIT. TOL*DABS(DD)) KRITE (JJ,2000) J
    IF (DD .LT. ZERD .ASD. RDD .GT. ZERO) HRITE (JJ,2001) J
    IF (DD .GT. ZERO .AND. RDD .IT. ZERO) urite (JJ,2001) J
    IF (DABS(RDD) .LT. EZERO) MRITE (JJ,2002) J
c
c
C COMPLETE RANK TEST FOR & ZERO DIAGONAL TEST
c
    IF (DD .EQ. 2ERO .AND. JH .GT. O) THEN
        IF (DABS(RDD) .LT. TOL*DAVAL) WRITE (JJ,2003) J
    END IF
REDOCE RIGET GAND SIDE
        IF (IFLAG .EQ. 2) BR(J) = BR(J) - DOT(BR(JR+1), BR(IS-1), JH-1)
        JR = JD
    COMTINUE
    IF (IFLAG .ME. 2) RETURN.
    DIVIDE BY DIAGOBAL TERMS
    DO 80 I = 1, IEQ
            ID = JDIIG(I)
            IF (BK(ID).NE. 0.0) BR(I) = BR(I)/BK(ID)
            IF (BR(I) .NE. 2ERO) LDELLG = 1
    COMTINOE
c
C
C
    CHECK FOR 2ERO LOAD VECTOR
    IF (LDFLAG .EQ. 0) URITE(JJ,2004)
C
C
C BACE SUBSTITUTE
c
    J = &EQ
    ID = JDIAG(J)
    D = BR(J)
    J=J-1
```

```
        IF (J .LE. 0) RETURN
        JR= JDIAG(J)
        IF (JD - JR .LE. 1) GOTO 110
        IS = J = JD + JR + 2
        | = JR - IS + 1
        DO 100 I= IS, J
        BR(I) = BR(I) - BK(I+K)*D
    COMTINUE
    JD & JB
        cOTO 90
    C
    C -manmomomomem
    C varming gormats
    C. -\infty-\inftymom-\infty-m-\infty0-
    2000 FORHAT(/'!! WARIING !! 1 - IN SOLVER, LOSS OF AT LEAST 7 DIGITS'
    * /18X, 'IN REDUCIMG DIAGONAL OF EQUATION;',4X,I5)
2001 FORMAT(/'!! YARNING !! 2 - IF SOLVER, SIGN OF DIAGONAL CEANGED'
    * /18X, 'WREN REDUCING EQUATION;',15X,I5)
2002 FORMAT(/'!! MARMIME !! 3 - IN SALVER, REDUGED DIAGOMAL IS 2ERO'
    + /18x, 'FOR EGOATION;',25X,I5)
2003 FORMAT(/'!! WARMING !! 4 - IE SOLVER, RANKK FAILURE FOR A 2ERO'
    + /18I, 'UIREDOCED DIAGOBAL IN EQOATIOX:',7x,15)
2004 FORMAT(/'!! HARNING !! 5 - IN SOLVER, ZERO LOAD VEGTOR')
C
    END
C=End Fortran
C=Module DATEST
C=Block Fortran
C SUBROUTIHE DATEST(A,JH,DAVAL)
    recrusive SUBROUTLEE DATEST(A,JH,DAVAL)
```



```
C C
C TEST FOR RANK C
C C
C IITUTS; C
C A(J) - COLUTR OF UNREDUCED ELEMENTS IN ARRAY C
C JH - NUNBER OF ELEMENTS IN COLUNN C
C . C
C OUTPUTS; C
C DAVAL - SUR OF ABSOLUTE VALUES C
C . C
```



```
C
    C ARGURENTS
REAL*8 A(1), DAVAL
INTEGER JR
C LOCAL ARGUMENTS
    INTEGER J
C
        DAVAL = 0.0DO
        DO 10 J = 1, JH *
            DAVAL = DAVAL + DABS(A(J))
    10 CONTITOE
    C
        RETURA
        END
```

```
C
C
CmEnd Fortran
Cshodule DOT
CzBlock Fortran
C FUEGTION DOT(A,B,B)
    racursive FURCTIOR DOT(A,B,H)
```



```
C PURPOSE: C
C THIS FUSCTIOK SUBROUTIHE PEAFORAS THE DOT PRODUCT OF TWO C
C VRCTORS. C
C C
C ABCURENTS: C
C A - FIRST VECTOR IIVOLVED IN DOT PRODUCT C
C B - SECORD VECTOR INVOLVED IN DOT PRODUCT C
G % - &OLBER OF ELEHENTS IN EACM OF THE TWO VECTORS C
```



```
    zent*8 nor, A(1). B(1)
    TNTEGER H
C
    INTEGER I
C
    DOT = 0.0
    DO 10 I = 1, M
        DOT = DOT + A(I)*B(I)
    COHTINOE
    RETORA
    END
CaEnd Fortran
```

File: nophlag.f

```
C=Module HOPHLAG
C=Author K. Alvin
C=Date July 1990
C=Block Fortran
C
C
C
C
C
C
c
C
C
C
C Argumonta
C. delbeta - delta * bdamp
C
    Subroutine MOPHLAG
    Purpose:
        This subroutine solves for the structural displacomont
        and velocity vectors at the half-step for the phase lag
        correction loop, and gets ner measurement
    subroutine HOPGLAG(zp)
    real*8 zp(1)
    include 'shared.inc'
```

```
G logal variables
    integer i
Feal*s v(MARDOF),delbote
C LOGIC
C LOD APPLIED FORGES TO RES AND PREPARE RASS KULTIPEIER
do }10\mathrm{ i^1,ador
    gs(i) gs(i) & q(i)
    F(i) m (1. $ delta*adamp)#q(i) $ delta#qgdot(i)
    contiame
SOLVE FOR RIGET HAND SIDE, gs
do 77 i = 1.ndot
    gg(i) = delsq#gm(i) + V(i)*mass(jdiag(i))
```



```
    is (bdamp .me. 0.) then
    delbeta = deleambdamp
        cell PMYMUO(stif,jdiag,g,ndof,delbeta,gs,1.d0)
        endif
C. SOLVE FOR DISPLACENENT, q, USING RAS AND MATRIX S
    call SOLVER(os,gas,jdiag,ndof,2)
    do }100\textrm{i}=1,\mathrm{ ndof
        \nabla(i) = (gs(i)-q(i))/delta
    continue
    call 2EROVECT(2p,nsen)
    do 200 jj = 1,hdval
        i = hdron(jj)
        j m hicol(jj)
        zp(i) a zp(i) + hd(jj)*ga(j)
    continge
    do 250 jj = i,hvoal
    i = hvrom(jj)
    j = hvcol(jj)
    zp}(i)=\operatorname{zp}(i)+\operatorname{hv}(jj)*v(i
    continue
return
    ond
```

File:.zerovect.f

```
C=MOdule zEROVECT
C=Purpose Initialize vector of given length to zero
C=Author K. Alvin
C=Date Hey }199
C
```

```
C
C Subroutine 2EROVECI
C
C
C
100
    subroutine zeROvect(v,n)
    roal*8 V(1)
    integer n
    do }100\textrm{imi,n
        F(i) =0.d0
        comtiame
    return
    end
```

File: lu.f

SUBROUTINE LUFACT (A, X, PIVOT, DET, IER, MMAX)
C
C
C SUBROUTINE FACTOR USES GAUSSIAN ELIMINATION WITH
C PARTIAL PIVOTING AND IMPLICIT SCALING TO DETERMINE
C THE L*O DECOMPOSIOR OF A SQUARE MATRIX "A" OF
C ORDER M. THE ALGORITHM ALSO FINDS THE DETERMINENT
C OF "A". UPOA COMPLETION, THE ELEMENTS OF THE UPPER
C TRIANGULAR RATRIX "J" ARE CONTAINED IN THEIR RESPECTIVE
C LOCATIORS IH MATRII "A". THE ELEMETTS OF MATRIX "L"
C ARE CONTAINED IN THE LOWER TRIANGULAR PORTION OF "A", C BUT ARE SCRAKBLED UITH RESPECT TO "U" BECAUSE OF ROH
C IITTERCHANGE OPERATIONS NOT PERFORMED ON THE ELEMENTS
C OF "L". TEE VECTOR PIVIOT (SEE BELOW) RUST BE USED TO
C UNSCRAMBLE "L" IF IT IS TO EE USED FOR OTAER OPERATIONS.
C
C VARIABLES: $A=$ FOLI SQUARE MATRII (DOUBLE PRECISION)
C . $N=O R D E R$ OF MATRIX A (INTEGER)
C PIVOT=VECTOR CONTAIIIIMG A RECORD OF
c
c
6
c
C
C
c
C
ROW INTERCHANGES. THE INTEGER VALOE PIVOT(X) IS THE ROW WHICE UAS INTERCRANGED HITH ROU K AT FORHARD ELIMINATION STEP K. (INTEGER)
DET=DETERMINENT OF MATRIS A (DOUBLE PRECISION) IER=ERROR FLAG. IF IER=1, THE MATRIX A HAS FOUND TO BE SINGULAR, AND THE ROUTINE VAS EXITED. IF IER=O, THE DECOMPOSITION WAS SOCCESSFUL.
c

IATEGER PIVOT (1), IER, H,I, J, K, IO, MMAX

DET=1.000

C FIID TEE ROW HORMALIZING COEFFICIENTS S(I) FOR IMPLICIT SCALING.
C EXIT ROUTISE IF AITY $S(I)=0.0$

```
C
```



```
            DO 100 IE&, H
                S(I)=0.0DO
                DO 110 ja1.H
                    IF (ABS(A(I,J)).GT.S(I)) S(I)=ABS(A(I,J))
                    comTIUS
            IF (S(I).EQ.0) THEN
                IEE*1
                DET*O.0DO
                RETURS
                Es0 IF
    100 CO#TINUE
```



```
C
C START FORHARD ELIMINATIOM STEP &
C
```



```
    DO 120 X=1, F-1
```



```
C
C DETERMINE PIVOT ELEMENTS A(IO,R) BY FINDING THE ROH IO
C BETTEEN X AND H COETAIMIHG TEE MAXIHOT NORMALIZED
C VALUE IN COLOIN I. SET PIVOT(K)=IO
C
```



```
    C(K)=0.0DO
    DO 130 I=K,M
            TEMP=ABS(A(I,K)/S(I))
            IF (TEMP.GT.C(K)) THEN
                    C(K)未TENIP
                    IO=I
                    END IF
            CORTINOE
        PIVOT(K)=IO
```



```
C
C EXIT ROUTINE IF ALL VALUES IN COLONN & AT OR BELOK
C THE RAIN DIAGONAL ARE EQUAL TO 0.0
C
```



```
    IF (C(K).Eq.0.0) TEEN
            IER=1
            DET=0.0DO
            RETURM
            END IF
```



```
C
C INTERCHAHGE ROWS IO AND K FOR COLONNS X TO N. SKIP IF IO=K.
C SET DET=-DET IF ROUS ARE IHTERCEANGED.
C
```



```
    IF (IO.EQ.K) GOTO 150
    DET=-1.0DO*DET
    DO 140 J=R,M
            TEMP=A(R,J)
            A(K,J)=\(IO,J)
        A(IO,J)=TENP
    140 COMTINUE
```



```
C
C ELIEIBATE COLONS X BELON HAIN DIAGONAL BY ROLTIPLYING
C ROW & FBOR COLUSE K TO & BY }\triangle(I,K)/A(K,K) AND SUBTRACTIHG
C FROM RON I. STORE THE ROLTIPLIER FOR ROU I IN THE ELIMINATED
C COLUNH &. RULTIPLY THE RUNRIMG PRODUCT DET BY DIAGONAL ELEMENTS A(K,K).
C
```



```
    150 DO 160 I=K+1, H
                        A(I,K)=A(I,R)/A(R,K)
                        DO 170 J*&*1,H
                    A(I,J)=A(I,J)-A(I,X)*A(I,J)
                        COMTINUE
        costinuE
        DET:DET*A(X,K)
        COETIMOE
```



```
C
C CHECX LASI ROR/COLJNT FOR SIMGMLARITY. IF THERE IS HO ERBOR,
C COMPLETE CALCULATION OF THE DETERMINENT, SET THE ERROR FLAG
C TO INDICATE NORHAL COMPLETION, AND EXIT.
C
```



```
    IF (A(N,N).EQ.0.0) TEEN
            IER=1
            DET=0.000
            RETUR:
            END IF
        DET=DET*A(H,N)
        IER=0
        RETURA
        END
    SUBROUTINE LUSOLVE(A,B,B,PIVOT,MHAX)
```



```
C
C SUBROUTINE SOLVE
C
```



```
    INTRGER PIVOT(1),B,I,J,K,MRAX
    REAL*8 A(BMAX,1),B(1),TEMP
    DO 100 K=1,N-1
        IF (PIVOT(K).EQ.K) GOTO 110
        TEMP=B(K)
        B(K)=B(J)
        B(J)=TENP
    110 DO 120 I=K+1,N
                B(I)=B(I)-A(I,K)*B(K).
    120 CONTINOE
    B(H)=B(H)/A(H,H)
    DO 130 I=M-1,1,-1
        DO 140 J=I+1,H
                B(I)=B(I)-A(I,J)*B(J)
    140 COMTINUE
        B(I)=B(I)/A(I,I)
    130 COMTINOE
        RETURS
    EMD
```

```
GzEND FORTRAK
C=DECK FACTA
CmPURPOSE - Factors the 4 matrix as & U : A, vith partial pivoting
canutige I BILVm, Sept. 2%, }198
e
```



```
e Iapue
C amatmoo-[n X n] mitrix to be factored, destroyed on output
c mp-momooprobloz size
c
e amatom--contains the LU decomposition
C
e
    subroutine FACTA(amat, np,nrov,1p)
c
    real*8 amat(*),tta
    dategrar Ip(*)
c
    do 50 ia1,np
    50 1p(i)=i
    Find largest pivot.
        do 100 k=1,np-1
        amark=0.
        mmax=0
            do 200 mak,ap
                if (abs(amat(lp(m)+(k-1)#nrov)) .gt. amack) then
                    amaxkmabs(amat(lp(m)+(k-1)#nrom))
                        zmax"m
                ondif
    200
        continue
c
                1=1p(k)
                lp(k)=1p(mmax)
                1p(maxax) 1
c
                do 400 i=k+1,np
                        -ta=amat(1p(i)+(k-1)*nrov)/amat(1p(k)+(k-1)*nrou)
                        amat(1p(i)+(k-1)*nrov)=ata
                        do }500\textrm{j}=k+1,n
                        amat(1p(i)+(j-1)*nror)=amat(1p(i)+(j-1)*nrou)-
                        -ta*amat(lp(k)+(j-1)*nrom)
                            contiare
                continue
C
    100 continne
c
    roturn
    and
C END FORTRAH
e=DECK LUSOLV
c=PURPOSE - SOIve L U x = b,
c=AUTHOR | K. BELVIH, Sept. 24, 1987
c
```



```
    Firat solves L y = b, then U I = y
    Input
        amat----[n X n] matrix factored by FACTA
        np------problen size
        1p --pointer vector based on pivoting
        rhs-a-mRS of equation
    Ontput
        amat-m--contains the LU decomposition
        x--m-m-the solution vector
    subroutine LUSOLV(amat, Ip,arom,1p,rhs,x)
    roal*8 amat(*),x(*),rhs(*).
    integer lp(*)
    do 50 i=1,m
    x(i)=rhs(i)
    continue
    Selve Lover System-n----------------------------------------------------
    Outer 100p
    do 100 k=1,7p
        Ths(k)=x(1p(k))
        if (rhs(k).eq. 0.) go to 100
c**** Inger loop
200
100
```



```
    do 300 k=np,1,-1
        x(k)=rhs(k)/amat (1p(k)+(k-1)*nror)
            do 400 i=1,k-1
                rha(i)=rhs(i)-r(k)*amat(lp(i)+(k-1)*nron)
            contigne
400
300
    continue
    roturn
    ond
```

c
c
c.
c

File: prepcon.f

```
C=Module PREPCOR
C=Purpose Preprocess control analysis module for ACSIS
C=Author K. Alvin
C=Date June 1990
C=Block Fortran
```


6

Perpose:

This subrontime prapares ec, the comtrol prediction integration

arbroutime PREPCuI
Lnclude 'shared.inc'

LOCAL VABIABLES
real*8 merse
integer ier
L0RER
call RBADCOR
Form Control Prediction Integration Coofficient Matrix
contype $=-1$: Full State Foedback
coatype $=0$: Lxenberger Observar
contjpe ${ }^{\circ} 1$: Kalman Pilter
do 10 i $=1$, nact + neon
do $20 \mathrm{j}=$ 1, ract + nen
$\bullet(i, j)=0 . d 0$
comtinue
continge
if (contype) $100,200,400$
nesi $=$ nact
do $110 \mathrm{i}=1$, iact
do $120 \mathrm{jj}=1$,bval
$j=b c o l(j j)$
$\mathbf{k}=\mathrm{bror}(\mathrm{j} j)$
$\bullet(i, j)=\operatorname{cc}(i, j)+\operatorname{delta*t2}(i, k) * b(j j) /$ mass (jdiag(k))
continne
continue
goto 600
ncai $=$ nact + nsen
do $210 i=i$, aact
do $220 \mathrm{jj}=1$,bval
$j=\operatorname{bcol}(\mathrm{jj})$
$k=\mathrm{brom}(\mathrm{jj})$ $\operatorname{ec}(i, j)=\operatorname{cc}(i, j)+d e 1 t a * 12(i, k) \neq b(j j) /$ mass (jdiag $(k))$ continge
do $240 j=$ nact +1 ,nesi do $250 \mathrm{k}=1$, ndof $e c(i, j)=e c(i, j)+d e l t a * f 2(i, k)=12(k, j-n a c t)$

```
250
240
210
    do 1100 i = 1,ncsi
        ec(i,i) = ec(i,i) + 1.do
            continue
C
FACTORIZE ©
call FACTA(ec,ncsi, MAXCSI,pivot)
```

```
if (ies .eq. 1) then
    prine 'rppppas: Singular Matrix for Control Integration'
    -xcide
```

C Fors Obecrer Integration Coefficient Iatrix, eo

ke © deltambamp + delsq
de 1200 ia1. mlon
eo(i) memeass (i) - kc*stif (i)
costiare
C FACTORI28 ©
cell SOLVER(e0,go,jdiag,Hdof,1)
C Initialize Observer States

ces1 2EROYECT(qedot, idof)
cell 2EROVECT(Pe,ados)
roturn
end

File: control.f

```
Cshodule COMTROL
CsAnthor K. Alvin
C=Date May }199
C=Block Fortran
C
C
G Subroutine COMTROL
C
C
C Paxpose:
C
C
C
C
C
C. Arguments.
C qep - estimated displacemont vector at hale time step
C qedotp - entimated velocity vector at hall time step
C pp - genoralized momontum (f-D*qबdotp-K*qबp)
C 2 - measurad sonsor output
    subroutise COMTROL(z)
    include 'shared.inc'
    roal*8 z(1)
C LOCAL VARIABLES
    real*8 q@p(MAXDOF),qedotp(MAXDOF),pp(MAXDOF),V(MAXDOF)
```

LOGIC
Form R of Control Prediction Equation Set

```
    contype - -1 : Pull State Feedback
    contype = 0 : Luenberger Observer vith b1 = 0
    contype = +1 : Kalman Filter a/generalized momentum variable
```

 call 2zanvect (ge,gcai)
 if (contyfe) \(100,200,300\)
 continue
 do \(110 i=1\), adot
 \(q o(i)=q(i)\)
 qedot(i) \(=\operatorname{qdot}(i)\)
 continue
 contiage
 do \(210 i=1\), ndof
 \(q \circ p(i)=q \otimes(i)+d e l t a=q \cot (i)\)
 qadotp(i) \(=\) qedot \((i)\)
 \(p p(i)\) z \(1(i)\) - mass(jdiag(i))*adamp*qedotp(i)
 \(\nabla(i)=q a p(i)+\) bdamp*qedotp \((i)\)
 continne
 call PMVMAD(stif,jdiag, \(\nabla\), ndof,-1.d0,pp,1.d0)
 do \(220 \mathrm{i}=1\), ract
 do \(230 \mathrm{j}=1\), ndof
 \(g c(i)=g c(i)-11(i, j) \neq q \theta p(j)-12(i, j) \neq(q \operatorname{cdot}(j)+\)
 delta*pp(j)/mass(jdiag(j)))
 continue
 comtinue
 if (ncsi .eq. nact) goto 600
 do 240 i=nact +1 , ncai
 \(\mathbf{k}=\mathbf{i}\) - nact
 \(g c(i)=z(k)\)
 continae
 do 245 ii \(=1\) hdval
 \(i=\) hdrov(ii) + nact
 \(j=\) hdcol(ii)
 \(g e(i)=g c(i)-h d(i i) * q 9 p(j)\)
 continge
 do 250 ii a 1,hrval
 \(i=h r r o v(i i)+\) nact
 \(j=\operatorname{hrcol}(i i)\)
 \(g c(i)=g c(i)-h v(i i) \neq(q \operatorname{codot}(j)+d e l t a * p p(j) /\) mass \((j d i a g(j)))\)
 continue
 goto 600
 continae
do $310 i=1, n d o t$

```
        q@p(i) = q|(i)
        pp(i) a f(i) - mass(jdiag(i))*adamp*g@p(i)/delta
        T(i) = (i + bdamp/delta)*q\rhop(i)
    continge
cal1 puvan(atis,jdiag,v,mdof,-1.d0.pp,1.d0)
do 320 ia1,gact
    do 330 j = 1,ados
        ge(i) = ge(i) = {1(i,j)*qep(j) - $2(i,j)*(pe(j) $
                        delta&pp(j))/rase(jdiag(j))
                cascinge
    comtinse
do 340 isnact+1,ncsi
    k'mi = nact
    gC(i)=m(x)
    continue
do 346 ii = 1,Mdval
    i = Mrea(ii) + mact
    j m hdcol(ii)
    gc(i) =ge(i) - hd(ii)#q\rhop(j)
    continue
do 350 ij = 1,hvoal
    i m hreor(ii) + nact
    j = hveol(ii)
    gc(i) = gc(i) - q\nabla(ii)#(pe(j) + delta#pp(j))/masa(jdiag(j))
    continue
FIED f, CONTROL ASD STATE CORRECTION FORCES
call LUSOLV(ec,mcsi,MAXCSI,pivot,gc,5)
do 610 j=1,nact
    r(j) = r(j)
    continue
do 620 janact+1,ncsi
    gamas(j=nact) = I(j)
    continue
    C FIMD COHTROL COMTRIBUTIOA TO RHS VECTOR FOR
C OBSERVER AND STRUCTRE
do 710 i=1,ndof
    g(i) = 0.d0
    go(i) =0.d0
    gk(i) =0.d0
    continue
    do 720 jj=1,bval
    i= brom(jj)
    j = bcol(jj)
    ga(i) =ga(i) + b(jj)*a(j)
    go(i) = go(i) + b(jj)**(j)
    gk(i)=gk(i) +b(jj)犃(j)
    continge
if (contype .eq. 0) then
    do 725 i = 1,ndof
        do 730 j=1,nson
            go(i) = go(i) + masz(jdiag(i))*12(i,j)*gamma(j)
            contince
```

continme
elseif (contgpe .eq. 1) then
do $735 i=1$, ndof
do $740 \mathrm{j}=1, \mathrm{asen}$
$g \circ(i)=g \circ(i)+(12(i, j)+$ mass $(j d i a g(i)) * 11(i, j) / d e l t a)$
*gama(j)
$g k(i)=g k(i)+12(i, j) * g \operatorname{man}(j)$
comtinme
contiaue
endif
roturn
end

File: secorder.f

```
C=Module SECORDER
C=Auchor N. Alvin
C=Date May }199
C=Block Fortran
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C II - matrix M
C & - matrix K
C alpha - scalar alpha
C beta - scalar bota
C 1 - Force vector f(n+1/2)
C g - Feedback lorce vector g(n+1/2)
C - - mactix E
C I - Variable vactor }x(n
C xd - Variable vector I'(n)
C delta - Half of integration time step
C delsq - delta-2
C jdiag - Diagonal location pointer for M,K,E matrices
C ador - Number of equations and length of q
```

```
C v - mass multiplier for RHS proparation
C delbeta - delta beta
C Embrortine SECORDER(m,k,alpha,bota,f,g,e,x,xd,
C . delta,deleq,jdiag,adot,MuToOF)
```



```
- dolta,delsq,jdiag,Idof,MaxDOF)
ABCu:EmTS
real*8 m(1), L(1),alpha, beta,{(1),g(1),e(1)
real*8 I(1),xd(1),delta,delsq
imteger jdiag(1),ndof,MuxDOF
local variables
integer i
seal*8 (3000),delbeta
C LOGIC
C ADD APPLIED FORCES TO RHS AND PREPARE MASS MULTIPLIER
    do }10\mathrm{ im1,mdot
        g(i) =g(i)+1(i)
        \nabla(i) = (1. delta*alpha)*x(i) + delta*xd(i)
        contiane
C SOLVE FOR RIGET HAND SIDE, g
    do 77 im1,adof
        g(i) = delsq|}\mp@subsup{|}{(}{(i) + V(i)*m(jdiag(i))
        contisue
    if (beta .ne. 0.) then
        delbota = delta*beta
    Activate EBE computations iJF internal force by using STIFFRC
    subroutine. Otherwise use PMNAMD (profile matrix/\nablaector mult-add
        call PMVHAD(k,jdiag, x,ndo1,delbeta,g,1.d0)
        call STIFFRC(x,delbeta,g)
        ondil
    SOLVE FOR DISPLAGEIENT, q, USIMG RHS AND MATRIX E,
    call SOLVER(0,g,jdiag,Idof,2)
    do }100\mathrm{ i=1,mdot
        xd(i) = 2.#(g(i) - I(i))/delta - xd(i)
        x(i) =2.*g(i) - x(i)
        continue
    return
    and
```

File: measure.f

```
CaModul- MeASURE
C=Author K. AIvin
C=Date Ray 1990
C=Block Fortran
C
C
C Sabrontine aRASURE
C
C
Purpose:
C
C
C
C
```



```
C
C Argmonts
C EP - macoured sencor data armay
C
    subroutine MEASURE(zp)
    include 'shared.inc'
    roal*8 2p(1)
    C&ll 2EROYECT(2p,ason)
    do 100 jj = 1,hdval
        i = hdrov(jj)
        j = ndcol(jj)
        zp(i)= zp(i) + hd(jj)*q(j)
        continue
    do 200 jj = 1,hoval
        i = hrrom(jj)
        j a hvcol(jj)
        zp(i) = zp(i) + hv(jj)*qdot(j)
        continue
    return
    0nd
```

File: eigens.f

```
CaHodule EIGENS
C=Purpose Find Eigenmodes given Mass, Stiffness Matrices
C=Author K. Alvin
C=Date March }199
C=Block Fortran
```



```
c
    aubromtine EIGENS
C
```



```
c
C COMOH LND GLOBALS
```

```
isclude 'skared.inc'
```

LOCAS VLRTABLES


```
gealt8 VI(HNNNH), FI (HNNVH), akk(HICNV); amm(HXCNV)
geal*8 xx(MVA,HVK),0igV(MVH),oigold(NVH)
Foul*8 toleig,toljac,omega, thz
coleige.0001
ORE =13
toljac = toloig
mvoc minO(2*meig,100)
nvec = minO(arec,adof)
```

SET IP ISL VECTOR
isd(1) $=1$
do 50 j $=2$, Idof
isl $(j)=j-j d i a g(j)+j d i a g(j-1)+1$
continue
CALI EIGEASOLVER
 jdiag, noig, nvec, ndof,toleig,toljac,out)

WRYTE OUTPUT

```
*rite(out.*) 'EIGEN ANALYSIS RESULTS:'
write(out,*) ' MADIAL CYCLIC'
urite(out,*)' RODE EIGENVALUE FREQUENCY FREQUENCY'
```



```
vrite(out,*)
do 100 i=1,70ig
        omoga = dsqrt(aigy(i))
        thz = omega/(2*3.141592654)
        write(out,'(i5,3(3x,g12.5))') i, बigv(i),omega,ihz
    continue
```

 Erite(out,*) 'EIGESVECTORS:'
 do 200 j=1, \(1 \times 1 \mathrm{~g}, 5\)
 wite(out,*)
 do 300 i \(=1\), adot
 \(k=\operatorname{adof}(j-1)+i\)
 urite(out,'(i5,5(1x,g12.5))') \(i,(v r(k k), k k=k, k+4=n d o f\), ndot \()\)
 continge
 continue
 grite(out,*) 'MASS MATRIX DIAGONAL:'
 do \(400 \mathrm{i}=1\), nnp
 do \(450 \mathrm{j}=1,6\)
 if (id(j,i).ne.0) then

endif
continue
return
and
C=End Fortran

File: singeig.f

SUBROUTIEE SSPACE (AK, AR,VL, VR, AKX, AMR, XX, EIGY,EIGOLD,ISL,
1 IDILG; WEIG, ATEC, BDOF,TOLEIG,TOLJAC, MH)
input :

output:

| | norking array
 AM times rigid modes
 subspace at the previous step |
| :---: | :---: |
| VR(RDOF, RUEC) | eigen-ractors |
| - VR(.,1..NRMOD) | rigid modes |
| - VR(, ,RRMOD'. NVEC) | subspace at this stop (eigenvectors) |
| AKK (NVEC* (NVEC + 1)/2) | stiffness matrix in the subspace |
| AMA (NVEC* (NVEC + 1)/2) | consistent mass matrix in the subspace |
| II(RUEC*RVEC) | subspace eigenvectors |
| EIGV (BVEC) | current oigenvalnes |
| - EIGY(1. .fRMOD) | 0 oigen-ralues |
| - EIGV (MRMOD. .NVEC) | folloging eigenvaines > 0 |
| EIGOLD (IVEC) | same as̀ EIGV |

IMPLICIT REAL*8 ($1-\mathrm{E}, \mathrm{O}-2$)
DIMENSIOI AK (1), AK(1), VL(IDDOF, AVEC), VR (NDOF, MVEC), $1 K X(1)$,
1 AYM(1), IX(IVEC*BVEC), EIGV(1),EIGOLO(1),ISL(1), IDIAG(1)
C
URITE (MY, 1003) NEIG, HVEC, MDOF,TOLEIG
c
CALL IHVECT (AR,AK,VL,VR,IDIAG,NDOF,NVEC)
CALI FACT (AR,IDIAG,ISL, IDDOF,NH)
CALL HOLL (AR, AM, VL, VR, IDIAG, ISL, NDOF ,NRMOD)

```
C
C HRMOD : OR rigid modes
    MEITR (MT, 1004) MRMOD
    HSOBEMNEC-MRMOD
c
C
    IT80
    MSMU5=15
    FITHA$=16
    &VECI=1vgC-1
    DO 5 Im1, FVEC
    gIGOLD(I)=0.0
C
    500 MITmHIT+1
    VRIT&(KN,1000) BIT
C
```



```
    CARL ORTHO (VL,VR,NDOP,NRMOD,NVEC)
C
    IJ=0
    DO 10 J`以EAOD+1, BVEC
    CALCOLATE THE UPPER PART OF AKK (STMIRETRIC)
    DO 10 ImNMOD +1,J
        TR=0.0
        DO 11 K=1,HDOF
        TRaTR&VL}(R,I)=VR(X,J
        IJ=[J]+1
        AKR(IJ)=TR
    cOMTINUE
c
    CALLL MOLT (AM,VA(1,NRMOD +1),VL(1,NRMOD +1),ISL,IDIAG,NSUB,NDOF)
c
    IJ=0
    DO 2O J=WRMOD +1, NNEC
C
c
C
    2 1
    20
C
C
C
C
30 IS=0
DO 40 IFERMOD +1, HVECI
        IF (EIGV(I+1).GE.EIGV(I)) GO TO 40
        IS=1
        TR=EIGY(I+1)
        EIGY(I+1)=EIGY(I)
```

```
            EIGV(I)=TR
        DO 41 J=1,HSOB
            TR=2Z(J+(I-RRHOD)*ESUB)
            II(J+(I-NRKOD)*HSUB)=II (J +(I-BRMOD-1)*ASUB)
                        II(I+(I-SRMOD - ) * *SSUB =TM
    CONTINOE
    IF (IS.EQ.1) GO TO 30
C
C SUBSPAGE CONVERGENCE TEST
C
    ICORV:O
    DO 50 I=HRMOD 1, FVEC
        TR*DABS((EIGOLD(I)-EIGY(I))/EIGV(I))
        EICOLD(I)=EIGY(I)
        EIGY(I)=TR
        IF (TR.GT.TOLEIG.ARD.I.LE.HEIG) ICONV=1
    5 0 ~ C O M T E N U E ~
        WRITE (EN,1001) (EIGV(I),I=1,NVEC)
        IF (ICNHY.EQ.0) GD IN 200
    IF (HIT.LE.HITHAX) GO TO 70
    WRITE (MN,1002)
    GO TO }10
c
c
C
    70 DO 80 I=1,NDOF
        DO 80 J=1.#SUB
            TR=0.0.
            DO 81 K=1; MSUB
    81 TR=TR+VR(I,K+MRMOD)*XX(X +(J-1)*NSUB)
            VL(I,J+NRMOD ) =TR
    8 0 ~ c o m T I N U E ~
    DO 90 I=1,NDOF
        DO 90 J=NRMOD +1, NVEC
        VR(I;j)=VL(I,J)
        GO TO 500
c
c
C
    100 DO 110 I=1,MDOF
        DO 110 J=1,HSOB
            TR=0.0
            DO 111 K=1,MSUB
                TR=TR+VL(I,R+MRMOD ) = IX(K+(J-1)*NSUB)
            VR(I,J+MRMOD ) =TR
        COETINOE
        DO }112\mathrm{ I=1, RVEC
    112 EIGV(I)=EIGOLD(I)
C
    RETURA
C
    1000 FORMAT (5L,12HITERATIOR MO,I5)
    1001 FORHAT (6(2x,1PE1O.3))
    1002 FORMAT (5I,24EVE ACCEPT CURREMT VILUES)
    1003 FORMAT (//20X,'SUBSPACE ITERATION ROUTINE'//' NB OF EIGENVALUES=',
    1 I5/' BB OF VECTOR=',I5/' HB OF DOF=',I5/' TOLERAMCE=',1PE10.3/)
    1004 FORMAT (' GB OF RIGID MODES=',I5//)
c
```

EMD
 SUBROUTIETE IHYECT (AK,AK,VL,VR,IDIAG, NDOF, BVEC)
IKPLICIT REAL*8 ($1-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
DHMEISIGM AK(1), MI(1),VL(1),VR(HDOP, IVEC), DDIAC(1)
c
ID=ADOP/TvEC
c
8080 Im1。 100 F
IIEIDIAG(I)
VR(I, 1) $\mathrm{EAB}(I I)$
VL(I) ana (II)/AR(II)
DO $10 \mathrm{~J}=2$, IVEC
$\operatorname{VB}(I, J) \approx 0.0$
10 COMTPISUE
c
II=KDOP-2ID
c
D0 20 J-2 Hege
$T 2=0.0$
c
DO 30 I $11, L L$
FF (VL(I).LT.TR) GO TO 30
TR3V(I)
IJII
COMTIMOE
C
DO 40 I=LL, MDOF
IF (VL(I).LE.TR) GO TO 40
TR=VL(I)
IJeI
COSTINOE
c
VL(IJ) $=0.0$
LI=LI-ND
$\operatorname{VR}(I J, J)=1.0$
c
20 compinde
C
RETURI
END

SUBROOTITE KOLT (AR,VR,VL, ISL, IDIAG, IVEC, IDDOF)
IHPLICIT REAL $=8$ ($1-\mathrm{H}, 0-2$)

DO 500 IV:1, INEC
DO $100 \mathrm{I}=1$,3DOF
2R=0.0
IJ=IDIAG(I)
IKsABS(ISL(I))
KR=I
DO $110 \mathrm{~K}=\mathrm{IK}, \mathrm{I}$
$T R=T R+A M(I J) * V L(K X, I V)$
IJ=IJ-1
KX=KK-1
110 COETIRUE
c
IF (I.EQ.MDOF) GO TO 99

```
                IX=I+1
                DO 120 K=IK,HDOF
                    IP (I.LT.ABS(ISL(K))) GO TO 120
                    IJ=IDIAG(K)-K+I
                    TR=TR+AM(IJ)*VL(K,IV)
                carrimue
                VR(I,IV)=TR
CONTISUE
CONTITUE
RETURS
EMD
```



```
SUBROUTIHE JACOBI (AR,AM,XX,EIGV,HSMAX,TOL,N,NH)
IMPLICIT REAL*8 (A-H,O-2)
DITEASIOK AK(1),MM(1),IX(N,H),EIGV(1)
C
C IRITIALIEE
C
    ZERO=0.0
    TMO=2.0
    DO 10 I=1,H
        II=I*(I-1)/2+I
            IF (AK(II).LE.2ERO.OR.AM(II).LE.ZERO) GO TO 900
            EIGV(I)=AK(II)/AM(II)
            DO 20 Ja1,R
                KX(I,J)=2ERO
    20
            comtinue
            XX(I,I)=1.0
    COMTINUE
C
C SET COUITER
C
    MSTEEP=0
    NR=N-1
    MSWEEPaHSTREP +1
C
C CHECX IF ZEROOING IS REQUIRED
C
    EPS=0.01**NSUEEP
    EPS=EPS*EPS
    DO 150 J=1,相
        IIK=j+1
        DO 150 K=IIK,R
            JJ=J*(J-1)/2+J
            KK=R*(K-1)/2+K
            JK=K*(K-1)/2+J
            EPSAK=(AK(JK)*AR(JK))/(AK(JJ)*AK(KK))
            EPSAKa(AM(JK)*AR(JK))/(AK(JJ)=AM(KK))
            IF (EPSAR.LT.EPS.ABD.EPSAM.LT.EPS) GO TO }15
        C
C CALCULATE ROTATION ELEMENTS
C
            AKK=AR(KK)*AAR(JK)-AR(KK)*AK(JK)
            LJJ=AR(JJ)*AM(JK)-AK(JJ)*AK(JK)
            AB=(AR(JJ)*AK(KK)-AR(KK)=AM(JJ))/THO
            CHECK=AB*AB+AKX*AJJ
            IF (CHECX.LT.2ERO) GO IO 900
            SQCH=DSQRT (CBECR)
```

| | D1-AB+SqCE |
| :---: | :---: |
| | D2-AB-SQCE |
| | DEYab1 |
| | IF (DABS(D2).GT.DABS (D1)) DENT=D2 |
| | I\% (DET.[E.28R0) 605045 |
| | CAsereso |
| | |
| | 607580 |
| 45 | CAEAEX/DES |
| | CGB AJJ/DES |
| c | |
| C | |
| c | |
| 50 | JP10j+1 |
| | JM1m@1 |
| | |
| | |
| | IF (J14.LT.1) GO TO 70 |
| | DO 60 Impedex |
| | IJx \ddagger \# 3 M $1 / 2+1$ |
| | IK $=\mathrm{K} * \mathrm{KH} 1 / 2+\mathrm{I}$ |
| | ARJ=AR(IJ) |
| | AKS =AR (IR) |
| | Asjadit (IJ) |
| - | AHE=AR(IX) |
| | |
| | AH(IJ) $=$ AMJ + CG*ARR |
| | AK (IK) =AKK + CA*ARJ |
| | |
| 60 | Cometave |
| 70 | IF (EP1.GT. ${ }^{\text {P }}$) G0 5090 |
| | DO 80 InKP1, ${ }^{\text {d }}$ |
| | JI*I* (I-1) $/ 2+J$ |
| | KImI* (I-1)/2+K |
| | AKJsAR(JI) |
| | AHJ=AM(JI) |
| | AKKaAK (KI) |
| | AKK $=$ AR (KI) |
| | AR(JI) =AKJ + CG*AKK |
| . | |
| | $\operatorname{AK}(\mathrm{KI})=\triangle \mathrm{XX}$ + CA*AKJ |
| | |
| 80 | cortinue |
| 90 | IF (JP1.GT.KM1) GO TO 110 |
| | DO $100 \mathrm{I}=\mathrm{JP1,KH1}$ |
| | JI=I* (I-1)/2+J. |
| | IX $=\mathbb{L}+(\mathbb{X}-1) / 2+I$ |
| | AKJ = AR (JI) |
| | MrJ=AIH (JI) |
| | ASEA AR (IK) |
| | ALSEMK (IR) |
| | AR (JI) $=18 J+C G * 1 E K$ |
| | AM(JI) $=$ AHJ + CG*AJIK |
| | AK (IK) $=\Lambda K K+C A * A R J ~$ |
| | AM(IK) $=$ MEIK + CA* ARJ |
| 100 | COMTINOE |
| 110 | AKK $=1 \mathrm{~K}$ (KK) |
| | |
| | $A R J=A K(J J) ~$ |

```
        MRJ=AM(JJ)
        AR(KKR)=AKX+TNO*CA*AK(JK)+CA*CA*AKJ
        AK(KX) = AKRK+TNO*CA*AM(JK) +CA*CA*AKJ
        AR(JJ)=ARJ+TNO*CG*AR(JK)+CG*CG*AKK
        AK(JJ)=ARJ+TWO*CG*AIM(JK)+CG*CG*AHK
        AS(JK) =2E80
        AB(JK)=ZERO
C
    NT=N*(B+1)/2
    ICORV=0
    DO 160 I21.H
        II=I*(I-1)/2+I
        IF (AK(II).LE.ZERO.OR.AM(II).LE.ZERO) GO TO 900
        TR=AR(II)/AM(II)
        DEN=(TR-EIGV(I))/TR
        EIGY(I)=TR
        IF (DABS(DEN).GT.TOL) ICONV=1
    CONTINOE
    IF (ICONY.EQ.1) GO TO 499
C
C. CHECK OFF DIAGONAL TERMS
c
    EPS=TOL*TOL
    DO 170 J=1,HR
        IIK=J+1
        DO 170 K=IIK,H
        JJ=J*(J-1)/2+J
        KX=K*(K-1)/2+K
        JK=K=(K-1)/2+J
        EPSAK=(AK(JK)*AR(JK))/(AK(JJ)*AK(KX))
        EPSAHa(AM(JK)*AR(JK))/(AM(JJ)*AK(KK))
        IF (EPSAR.LT.EPS.AND.EPSAM.LT.EPS) GO TO 170
        60 TO 499
    CONTINUE
C
C SCALE EIGESVECTORS
C
    179 DO 180 I=1,且
        II=I*(I-1)/2+I
        ARI=DSQRT(AK(II))
        DO 180 J=1,H
            XX(I,I)=XX(J,I)/AKK
        COMTINUE
        RETORS
C
    IF (MSWEEP.LE.NSHAX) GO TO 500
```

```
        URITE (MN,1000)
        60 T0 179
C
    900 WRITE (MH,1001)
        STOP
    C
    1000 FORHAT (5X,34R1SO COUNEGGEGE AT HSNAX ITERATIONS)
    1001 FORAAT (5X,46BERROR IE JACOBI : MATRII NOT POSITIVE DEFIRITE)
G
    MD
```



```
    SUBROOTIME SOLVES (AK,VL,VR,IDIAG,ISL,NDOF,INEC)
C
C
C
C
C
C
C
    IMPLICIT REAL*8 (A-H,0-Z)
    DIMENSION AX(1),VL(NDOF,IVEC),VR(NDOF,NVEC),IDIAG(1),ISL(1)
C
    DO 500 IV=1,HVEC
            DO }60\mathrm{ I=1,MDOF
    50 VL(I,IY)=VR(I,IV)
c
C BACKSUBSTITUTE
C
    DO 100 IC=2.HDOF
                TR=0.0
                ICI=IC-1
                INI=IDIAG(IC)-IC
                IK=ISL(IC)
                IF (IN.LE.O) THEN
                    VL(IC,IV)=0.
                    GOTO }10
                ENDIF
                IF (IK.GT.IC1) GO TO }10
                DO 120 K=IK.IC1
                TR=TR+AR(IM1+K)*VL(K,IV)
    120 COMTIHOE
            VL(IC,IV)=VL(IC,IV)-TR
    100 CONTINOE
C * SOLVE DU=0
C
        DO 150 IC=1,NDOF
                    VL(IC,IY)=VL(IC,IV)/AK(IDIAG(IC))
    COO COMTINOE
C
C BAKSUBSTITUIE
C
    IIC=RDOF
    DO 200 IC=2,MDOF
        TR=VL(IIC,IV)
        IC1=IIC-1
        II=ISL(IIC)
        IH1=IDIAG(IIC)-IIC
```

```
                IF ((IK.GT.IC1).OR.(IK.LE.O)) GO TO 221
            DO 220 K=IK,IC1
                        VL(K,IV)=VL(K,IV)-1X(INI +K)*TR
            COMTINOE
            IIC=IIC-1
                COXIINUE
continue
    RETORH
    END
```



```
    SUBROUTIIR FACT (AR,IDIAG,ISL,IDOF,NW)
C
C PURPOSE : LDLT DECOMPOSITION OR THE POSITIVE SEHI-DEFINITE
                MATRIX AK, THE SINGULAR COLDENS OF AK ARE INDEXED
                BY & HEGATIVE VALJE OF IDIAGS
    IMPLICNT REIL*& ( }1-7,0-2
    DIMENSIOM AR(1),IDIAG(1),ISL(1)
C
C DETERMIEE MIN & MAX
C
    TR=DABS(AK(1))
    AHITHETR
    AEAX=TR
    DO. 10 IL=1, MDOF
        TR=DABS(AK(IDIAG(IL)))
        IF (TR.LI.MHIN) AMIN=TR
        IF (TR:GT.AMAI) AHAX=TR
    10. COMTINUE
        ZERO=(AKAX+AKIN)*1.OD-10
c
C LOOP OVER COLUNN
C
    DO. 100 IC=1,NDOF
        MIC=ISL(IC)
        IC1=IC-1
        HIC1=HIC+1
        IN2=IDIAG(IC)-IC
        IF ((MIC.LT.1).OR.(MIC.GT.IC)) GO TO 901
c
C. CALCULATE GS
C
    IF (HIC1.GT.IC1) GO TO 150
    DO 120 IL=MIC1.IG1
        IF (IDIAG(IL).LI.O) THEN
            4X(IN2+IL) =0
            GOTO }12
            ENDIF
            MIL=ISL(IL)
            II_1=IL-1
            HIM=MAXO(MIL,MIC)
            IN1=IDIAG(IL)-IL
            TR=0.0
            IF (MIM.GT.ILI) GO TO }12
            DO 130 K=MIM,IL1
                    TR=TR+AR(IN1+K)*AK(INT2+K)
130 COMTINOE
```

```
                ITY=1N2+IL
                AR(IN)=AK(INH)-TR
    CONTITUE
C
c CALCULATE LID
C
    TA=0.0
    IF (HIC.GT.IC1) GO TO 201
    DO 200 InsMIC,ICI
        IF (IDIAG(IL).IT.O) GOTO 200
        AG=AR(IM24IIS)
        ALvag/Ax(IDIAG(IL))
        AK(IM2+IL) =AL
        TB=TB+AL&AC
    COHTINUE
    IN*IDIAG(IC)
        AX(IM)=AK(IH)-TR
        IF (AK(IF).LT.ZERO) IDIAG(IC)a-IDIAG(IC)
    courcmus
    RETORS
901 URITE (HH.1001)
    sTOP
1001 PORMAT (5X,29H***STOP ERROR IH IDIAG VECTOR)
1010 FORRAT (5X,'CONDITIONING OE THE STIFFNESS MATRIX'/2X,
    1 'HIN DIAG TERM=',1PE10.3.' MAX DIAG TERM=',E10.3)
    END
```



```
    SUBRODTINE NOLL (AR,AK,VL,VR,IDIAG,ISL,MDOF,NRMOD)
C
C PURPOSE : CALCOLATE THE HULL SPACE OF AK AND PUT AN
c
C
C
C
C
    IMPLICIT REAL** (A-H,0-2)
    DIMENSION AK(1),AM(1),IDIAG(1),ISL(1),VL(NDOF,*),VR(NDOF,*)
C
C STORE THE SIMGULAR COLUNS INTO THE BEGINNING OF VR
C tHE SImGULAR EqUATION ARE NOU INDEXED BY nEGATIVE valuES
C IHTO ISL IMSTEND OF IDIAG
C
    RRMOD=O
    DO 1 IC=1, MDOF
        IF (IDIAG(IC).GT.0) GOTO 1
        IDIAG(IC)=-IDIAG(IC)
        FRMOD=1RMMOD+1
        MIC=ISL(IC)
        IH=IDIAG(IC)-IC
        DO 2 K=1,MIC-1
            VR(R,MRMOD)=0.
        DO }3\mathrm{ K=MIC,IC-1
            VR(R,MRMOD)= \R(IN+K)
            AR(IN+R)=0.
        COMTITUE
```

```
            ISL(IC)=-ISL(IC)
            VR(IC,HRMOD)=-1.
            AR(IDIAG(IC))=1.
            DO & X=IC+1, BDOF
        VR(K,HRMOD)=0.
    COMTINOE
C
C BAKSUESTITUTE
C
    DO 200 Ha1,HRMOD
        IICsHDOP
        DO 200 IC=2,BDOF
            TR=VR(IIC,H)
            ICI=IIC-1
            IK=ISL(IIC)
            IHI=IDIAG(IIC)-IIC
            IF ((IT.GT.IC1).OR.(IX.LE.0)) GO T0 221
            DO 220 K=IK,IC1
```



```
            comTINOE
            IIC=IIC-1
        contINuE
C
C ORTHOGOMALISATIOR
C
    DO . }10\textrm{M=1.MRMOD
        DO 20 K=1, M-1
            TR=0.
            DO 30 I=1,HDOF
                    TR=TR+VL(I,R)*VR(I,N)
            DO 40 I=1,NDOF
                    VR(I,M)=VR(I,M)-TR*VR(I,K)
        COMTIHOE
        CALI MULT(AM,VL(1,H),VR(1,N),ISL,IDIAG,1,NDOF)
        TR=0.
        DC 50 I=1,MDOF
            TR=TR+VA(I,N)*VL(I-N)
        TR=1/SQRT(TR)
        DO 60 I=1,MDOF
            VR(I,N)=VR(I,N)由TR
            VL(I,H)=VL(I,H)*TR
        CONTIMUE
        comTINUE
        RETURS
        EID
```



```
    SUBROUTIES ORTZO(VL,VR,MDOF,NRHOD,MVEC)
C
C PURPOSE : ORTHOGONALISE THE HSOB LAST COLUNNS OF VL (LAST
C EVALOATED SOLUTIOM) UITH RESPECT TO THE NULL SPACE
c
c
C
    IMPLICIT REAL*8 (1-H,O-2)
    INTEGEA RDOF,HRMOD,IVEC
    DIGESSIOE VL(IDOF,INEC),VR(NDOF,IVEC)
    ZSUB=ENTEC-MRMOD
```

```
    DO 1 JE1,NSUB
        DO 2 IEI.MRHOD
        S=0.
        DO 3 Em&.4DO%
    3
                SaS+VL(R,I)*VL(K,MRMOD +J)
            DO & LaI,MDOS
                VL(L,MRRMOD +J) =VL(L, MRMOD +J)-S*VR(L,J)
    COMTINOE
coysInJO
RETURT
END
```


File: agimout.f

```
C=Module AHIMOUT
CaAnthor K. Alqin
CaDate Juno }199
CaBlock Foz亡zan
```



```
C
C sebroutine ANIMOUT
C
C Purpose:
        This subroutine produces an output file to bo used to
        visualize the simulation using MESE.
C
C
C
    subroutige ABIMOUT(q,id,anp,time,out)
    real*8 q(1),time,v(3)
    integer out,id(6,4),anp,i,k
    write(out.'(g15.5)') time
    do }100\mathrm{ i=1,anp.
        do }200{=1,
            if (id(k,i) .ne. 0) then
                \nabla(k) = q(id(k,i))
            elae
                \nabla(k) =0.
                endif
            continue
            grite(out,1000) (v(k), k=1,3)
            continue
        format(3g15.5)
        roturn
        end
```

File: stiffrc.f

```
C subroutine STIFFRC(v,1act,kq)
```

recursive anbroutise STIFFRC(v,fact,kq)
real*8 (1), 1act,kq(1)
include 'shared.inc'
C ASSEMBLE EACH ELEMEAT MASS AND STIFFHESS
do 100 ii $\equiv 1$, adomain
cvo

retura

and
C subroutine ELEFRC(v,fact,kq, Ω)
recursive subroutine Eleprc (v,fact,kq,n)
real*8 $\nabla(1)$, fact, $k q(1)$
integer in
include 'shared.ine'
C local variables
paramotor(RAXSEQ=24)
real*8 sk(MAXSEQ, KAXSEQ)
intoger lm(MAXSEQ),iseq
do $20 \mathrm{k}=1,4$
$j=i x(k, n)$
if ((otjpe(n).eq.1).and.(k.gt.2)) $j=0$
do 30 i=1,6
yka* $(k-1)+i$ if (j .ne. 0) then ln(kk) $=i d(i, j)$
-1se $\mathrm{L}(\mathrm{k} \boldsymbol{k})=0$ ondif
continue
continge
nseq̌ $=12$
call LOADSK(sk,n,nseq)
call ESTIFYK(sk,1n,aseq, $, \mathbf{k q}, \mathrm{fact})$
roturn
and

```
C aubroutige LOADSK(sk,n,aseq)
    recursive subroutine LOADSX(sk,n,Eseq)
    include 'shared.inc'
real#8 sk(nseg.1)
integer m,nieq
k=0
do 10 j=1.ineq
        de 20 i&i,j
            k=k+1
            sk(i,j)=astifm(k,n)
            ck(j,i)=sk(i,j)
            continte
    continue
setwer
exd
```


File: estifvm.f

C subroutine ESTIFVR(sk,1m,nseq, $\nabla, k q, f a c t)$
recursive subroutine ESTIFVA(sk, $1 \mathrm{~m}, \mathrm{nseq}, \mathrm{v}, \mathrm{kq}, \mathrm{fact})$
C ARGUIETHES

```
    real&8 ak(nseq, 1), %(1),kq(1),fact
```

 integer \(\operatorname{lm}(1)\),aseq
 do \(20 \mathrm{j}=1\), nseq
 \(k=1\) m \((j)\)
 if (\(x\).eq. 0) goto 20
 do 10 i \(=1\), nseq
 \(m=1 \mathrm{~m}(\mathrm{i})\)
 if (n.eq. 0) goto 10
 \(k q(m)=k q(m)+s k(i, j) \neq \nabla(k) * f a c t\)
 continue
 20
continue
returiz
and
C=End Fortras

File: renum.f

```
C=DECK RESUM:
C=PURPOSE- RENUNBERS THE GRID POINTS TO MINIMIZE PROFILE STORAGE
C=AUTHOR U E BELYIN and DOC NGUYEN 7-5-90
C
    smbroutine RESUM
C
    include 'shared.inc'
```

```
c
C Initialize vector
C
    mantry=2*anp/3 +1
c.......
        Itermemmp*maxtry
        do 22 j=1,aterms
    22 iadjcy(j)=0
        do 10 i=1, anp
    10 icount(i)=0
```



```
        do 1 i=1, B01
            godea=ix(1,i)
            nodebeix(2,i)
                    if ((nodea .eq. 0).or.(nodeb .eq. 0)) go to 1
            icount(nodea)=icount(nodea) }
            icount(nodeb)=i connt(nodeb) +1
            jarceomas(sodea)
            ibsicount(nodeb)
            if(ia.gt.maxtry .or. ib.gt.martry) go to 345
            locate=(nodea-1)*martry+ia
            iadjcy(locate)snodeb
            locates(nodob-1)*martry+ib
            iadjcy(locate)anodea
    1 contigre
```



```
        ii=0
        do 37 i=1,ntorms
            if (iadjcy(i) .eq. 0) go to 37
            ij=ij+1
            iadjcy(ii)=iadjcy(i)
    37 continue
```



```
        last=0
        do 2i=1,nnp
                            last=last+icount(i)
    2 contigue
        jjaicount(1)
        icount(1)=1
        do 3i=2,nnp+1
            kk=icount(i)
            icount(i)=icount(i-1)+jj
            jjmik
        continue
        go to 556
        vrite(6,555)
        format(2x,'orror in dimension for mAxTRY !! ')
        continae
c*************************************
        call GENRCR(anp,icount,jadjcy,porm,mask,xls)
        return
        and
c%%%%%%z%%%%%%%%%%%%
    sabroutine genrcm(дeqns,xadj,adjncy,perm,mask,xls)
c......refereace: computer solntion of large sparse positive dofinite
c...... syetams, alas george josoph v-h liu
c...... (prontive-hall,inc.,onglevood cliffs.NJ 07632)
    integer adjncy(1),mack(1), perm(1),xls(1)
```

```
    integer madj(1),ccsize,i,neqna,nlvi,anm,root
    do }100\mathrm{ i=1,neqas
        magk(i)si
    continue
    nume1
    do 200 i=1,negns
        if( mask(i).eg.0 ) go to 200
        zootsi
        cal1 fnroot(root,xadj, adj#Cy,mask, #lvl, xls,perm(num))
        call rem(root,zadj,adjncy,mask,porm(num),ccsize,xls)
        #mmenumecsize
        if(nve.gt.neqns) go to 987
    continue
c......porn(nem node)=01d node
c......now, mask(old node)s now node
    987 continze
        do 11 дeve1,neqns
            ieldzperm(nev)
            magk(iold)=me*
            Exite(6,*) 'iold,mask(iold) = ',iold,mask(iold)
            continue
        returg
        0ad
c%%%%%,%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    subroutine fnroot(root,xadj,adjney,mask,alvl,xls,ls)
    integer adjney(1),1s(1),mask(1),xls(1)
    integor radj(1),ccsize,j,jstrt,k,kstop,kstrt,
        $
            call rootls(root,radj,adjncy,mask,nlvi,xls,1s)
    ccsizemxls(nlvl+1)-1
    if(nlvi.0q.1 .05. nlvl.0q.cesize) return
    jatrtaxls(nlvi)
    mindegacesize
    rootmls(jstrt)
    if(ccsize.eq.jstrt) go to 400
    do 300 jajatrt,ccsize
            nodesls(j)
            udeg=0
            kstrtaradj(node)
            kstop=radj(node+1)-1
            do 200 k=kstrt,kstop
                    zabor=adjncy(k)
                    if( mask(nabor) .gt. 0) ndeg=ndeg+1
            continue
            if(ndeg.ge.mindeg) go to 300
            rootminode
            mindeg=ndeg
        continue
    call rootls(root, xadj,adjncy,mask, nunlvi, Ils,1s)
    if(nnolv1.1e.niv1) return
    nlvi=munlol
    if(alvl.1t.ccsize) go to 100
    returg
    and
с%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    subroutine rem(root,radj, adjncy,mask,pern, ceaize,deg)
    integer adjncy(1),deg(1),mask(1), perm(1)
    integer radj(1),ccsize,fnbr,i,j,jstop,jstrt,k,l,lbegin,
    $
                        lnbr,1perm,1vlead,abr,node,root
```

```
    call degree(root,radj,adjncy,mask,deg,ccsize,perm)
    mank(z00t)=0
    if(ccaize.le.1) yetarn
    1vlead=0
    1nbral
100 1begin=lvlond+1
    Irlendelnbr
    do 600 i=lbogin,Ivlend
    nodesporm(i)
    jetrt=radj(node)
    jetoperadj(node+1)-1
    Enby=lnbz+1
    do 200 jajatrt,jatop
                abreadjncy(j)
                if(mask(nbr).0q.0) go to 200
                Inbr=1abx+1
                mask(nbr)=0
                pera(labx)anbx
            comtinge
        if(fnbr.ge.Inbr) go to 600
        la{nbr
        13k
        k=1+1
        nbraporm(k)
        if(1.1t.fnbr) go to 500
        Iperm=perm(1)
        if( deg(lporm).le.deg(nbr) ) .go to 500
        perm(1+1)=1perm
        1=1-1
        go to 400
        porm(1+1) =nbr
        if(k.1t:1nbr) go to 300
        continne
        if(lnbr.gt.2viand) go to }10
        kmecsize/2
        laccsize
        do 700 i=1,k
        1permpperm(1)
        porm(1)=perm(i)
        perm(i)=lpern
        1=1-1
        continae
        retmrz
        0nd
c%4%%%%%4%2%%4%2%%%4%4%2%2%2%2%%2%%%%
        subrortine rootla(root,xadj,adjncy,mask,nlvl,rls,1s)
        integer adjncy(1),1s(1),mask(1),xls(1)
        intoger radj(1),i,j,jstop,jatrt,Ibegin,ccsize,ivlond,
    $ lveize,abr,alvl,gode,500t
        mack(root)=0
        Is(1)=root
        n101=0
        lvlond=0
        ceaize=1
200 lboginelvlead+1
    lvlend=cesize
    alolonlvl+1
    xla(nlv1)=1bogin
    do 400 i=lbegin,Ivlead
```

```
        godesls(i)
        jstrtrinadj(node)
        jstopmadj(node+1)-1
        if(jatop.1t.jatrt) go to 400
        do 300 j=jstre,jstop
            ybmwadjncy(j)
        if( mack(nbr).eg.0) go to 300
        cesimescesizet1
        1s(ccsizo)=gbr
        eask(abx)=0
        cogtinue
        comtinee
    Iveize=ccsize-Ivlend
    if(lveize.gt.0) go to 200
    xIs(nl\nabla1+1)=1\nabla1end+1
    do 500 i=1,ccsize
        sodeals(i)
        mask(Iode)=1
    concimeo
        rotrun
    and
c%%%%%%%%%%%%%%%%%%%%%
    subroutire degree(root,xadj,adjncy,mask,deg,ccsizo,1s)
    integer adjncy(1),deg(1),1s(1),mask(1)
    integer madj(1),ccsize,i,ideg,j,jstop,jstrt,
    $
    ls(1)=root
    radj(root)=-radj(root)
    lvlend=0
    ccsize=1
    100 lbeginelvlond+1
    lvlend=ccsize
    do }400\mathrm{ i=lbegin,lviend
        node=ls(i)
        jetrt=-radj(node)
        jatopsiabs( radj(node+1) ) -1
        ideg=0
            if(jstop.lt.jstrt) go to 300
            do 200 jajstrt,jstop
            nbraadjncy(j)
                    if( mask(nbr).eq.0 ) go to 200
                    ideg=ideg+1
                    if(radj(zbr).1t.0) go to 200
                    radj(nbr)=-xadj(nbr)
                    ccsize=ccsize+1
                    la(cesize)anbr
            continue
            deg(node)=ideg
            continae
    1vaizosccsize-lvlend
    if(Ivsize.gt.0) go to 100
    do 500 i=1,cesize
            node=1s(i)
            radj(node)=-xadj(node)
        continge
    return
    end
```

File: kfilter.f

```
*
```

C subroutine EFILTER
recrraive subroutine EFILTER
include 'shared.inc'
do $10 i=1$, ndof
$g \circ(i)=d e l s q *(f(i)+g o(i))+d e l t a * p e(i) \neq$ mass $(j d i a g(i)) * q \theta(i)$
$g k(i)=d e l t a *(f(i)+g k(i))+p e(i)$
consiane
call SOLVER(00,go,jdiag, Idot, 2)
C Activate EBE computations for internal force by using STIFFRC
C subroutine. Otherwise use PMVAAD (profile matrix/vector mult-add
C call PMMHD(atif,jdiag,go,adot, -dalta,gk,1.d0)
call STIFFRC(go,-delta,gk)
do $100 \mathrm{i}=1$, ndof $q \operatorname{li})=2 . \mathrm{qgo}^{(i)}$ - qe(i) $p o(i)=2 . * g k(i)-p q(i)$
100 continue
retura
ond
C.U.CSSC-91-5

CENTER FOR SPACE STRUCTURES AND CONTROLS

SECOND-ORDER DISCRETE KALMAN FILTERING EQUATIONS FOR CONTROL-STRUCTURE INTERACTION SIMULATIONS

by
K. C. Park, W. K. Melvin and K. F. Alvin

Second-Order Discrete Kalman Filtering Equations
 for
 Control-Structure Interaction Simulations ${ }^{+}$

K. C. Park ${ }^{1}$ and K. F. Alvin ${ }^{2}$
Center for Space Structures and Controls University of Colorado, Campus Box 429
Boulder, Colorado 80309
and
W. Keith Belvin ${ }^{3}$
Spacecraft Dynamics Branch
NASA Langley Research Center
Hampton, Virginia 23665

Abstract

A general form for the first-order representation of the continuous, second-order linear structural dynamics equations is introduced in order to derive a corresponding form of first-order continuous Kalman filtering equations. Time integration of the resulting firstorder Kalman filtering equations is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete Kalman filtering equations involving only symmetric, sparse $N \times N$ solution matrices. The present integration procedure thus overcomes the difficulty in resolving the difference between the time derivative of the estimated displacement vector $\left(\frac{d}{d t} \hat{x}\right)$ and the estimated velocity vector $(\hat{\dot{x}})$ that are encountered when one attempts first to eliminate ($(\hat{\dot{x}})$ in order to form an equivalent set of second-order filtering equations in terms of $\left(\frac{d}{d t} \hat{x}\right)$. A partitioned solution procedure is then employed to exploit matrix symmetry and sparsity of the original second-order structural systems, thus realizing substantial computational simplicity heretofore thought difficult to achieve.

[^0]
Introduction

Current practice in the design, modeling and analysis of flexible large space structures is by and large based on the finite element method and the associated software. The resulting discrete equations of motion for structures, both in terms of physical coordinates and of modal coordinates, are expressed in a second-order form. As a result, the structural engineering community has been investing a considerable amount of research and development resources to develop computer-oriented discrete modeling tools, analysis methods and interface capabilities with design synthesis procedures; all of these exploiting the characteristics of second-order models.

On the other hand, modern linear control theory has its roots firmly in a first-order form of the governing differential equations, e.g., (Kwakernaak and Sivan, 1972). Thus, several investigators have addressed the issues of interfacing second-order structural systems and control theory based on the first-order form (Hughes and Skelton, 1980; Arnold and Laub, 1984; Bender and Laub, 1985; Oshman, Inman and Laub, 1987; Belvin and Park, 1989; 1990). As a result of these studies, it has become straightforward for one to synthesize non-observer based control laws within the framework of a first-order control theory and then to recast the resulting control laws in terms of the second-order structural systems.

Unfortunately, controllers based on a first-order observer are difficult to express in a pure second-order form because the first-order observer implicitly incorporates an additional filter equation (Belvin and Park, 1989). However a recent work (Juang and Maghami, 1990) has enabled the first-order observer gain matrices to be synthesized using only second-order equations. To complement the second-order gain synthesis, the objective of the present paper is to develop a second-order based simulation procedure for first-order obser ers. The particular class of first-order observers chosen for study are the Kalman Filter based state estimators as applied to second-order structural systems. The procedure permits simulation of first-order observers with nearly the same solution procedure used for treating the structural dynamics equation. Hence, the reduced size of system matrices and the computational techniques that are tailored to sparse second-order structural systems may be employed. As will be shown, the procedure hinges on discrete time integration formulas to effectively reduce the continuous time Kalman Filter to a set of second-order difference equations.

The paper first reviews of the conventional first-order representation of the continuous second-order structural equations of motion. An examination of the corresponding firstorder Kalman filtering equations indicates that, due to the difference in the derivative of the estimated displacement ($\frac{d}{d t} \hat{x}$) and the estimated velocity ($\hat{\dot{x}}$), transformation of the first-order observer into an equivalent second-order observer requires the time derivative of measurement data, a process not recommended for practical implementation.

Next, a transformation via a generalized momentum is introduced to recast the structural equations of motion in a general first-order setting. It is shown that discrete time numerical integration followed by reduction of the resulting difference equations circumvents the need for the time derivative of measurements to solve Kalman filtering equations in a secondorder framework. Hence, the Kalman filter equations can be solved using a second-order solution software package.

Subsequently, computer implementation aspects of the present second-order observer are presented. Several computational paths are discussed in the context of discrete and continuous time simulation. For continuous time simulation, an equation augmentation is introduced to exploit the symmetry and sparcity of the attendant matrices by maintaining state dependant control and observer terms on the right-hand-side (RHS) of the filter equations. In addition, the computational efficiency of the present second order observer as compared to the first order observer is presented.

Continuous Formulation of Observers for Structural Systems

Linear, second-order discrete structural models can be expressed as

$$
\begin{gather*}
M \ddot{x}+D \dot{x}+K x=B u+G w, \quad x(0)=x_{0}, \quad \dot{x}(0)=\dot{x}_{0} \tag{1}\\
u=-Z_{1} x-Z_{2} \dot{x}
\end{gather*}
$$

with the associated measurements

$$
\begin{equation*}
z=H_{1} x+H_{2} \dot{x}+\nu \tag{2}
\end{equation*}
$$

where M, D, K are the mass damping and stiffness matrices of size $(N \times N) ; x$ is the structural displacement vector, $(N \times 1) ; u$ is the active control force ($m \times 1$); B is a constant force distribution matrix $(N \times m) ; z$ is a set of measurements $(r \times 1) ; H_{1}$ and H_{2} are the measurement distribution matrices $(r \times N) ; Z_{1}$ and Z_{2} are the control feedback gain matrices ($m \times N$); w and ν are zero-mean, white Gaussian processes with their respective covariances Q and R; and the superscript dot designates time differentiation. In the present study, we will restrict ourselves to the case wherein Q and R are uncorrelated with each other and the initial conditions x_{0} and \dot{x}_{0} are also themselves jointly Gaussian with known means and covariances.

The conventional representation of (1) in a first-order form is facilitated by

$$
\left\{\begin{array}{l}
x_{1}=x \tag{3}\\
x_{2}=\dot{x}=\dot{x}_{1} \\
M \dot{x}_{2}=M \ddot{x}=B u+G w-D x_{2}-K x_{1}
\end{array}\right.
$$

which, when cast in a first-order form, can be expressed as

$$
\left\{\begin{array}{l}
E \dot{q}=F q+\bar{B} u+\bar{G} w, \quad q=\left\langle x_{1} \quad x_{2}\right\rangle^{T} \tag{4}\\
z=H q+\nu
\end{array}\right.
$$

where

$$
\begin{gather*}
E=\left[\begin{array}{cc}
I & 0 \\
0 & M
\end{array}\right], \quad F=\left[\begin{array}{cc}
0 & I \\
-K & -D
\end{array}\right], \\
\bar{B}=\left\{\begin{array}{l}
0 \\
B
\end{array}\right\}, \quad \bar{G}=\left\{\begin{array}{l}
0 \\
G
\end{array}\right\} \tag{5}
\end{gather*}
$$

It is well-known that the Kalman filtering equations (Kalman, 1961; Kalman and Bucy, 1963) for (4) can be shown to be (Arnold and Laub, 1984):

$$
\begin{equation*}
E \dot{\hat{q}}=F \hat{q}+. \bar{B} u+E P H^{T} R^{-1} \bar{z} \tag{6}
\end{equation*}
$$

where

$$
\bar{z}=z-H \hat{q}, \quad P=\left[\begin{array}{cc}
U & S^{T} \tag{7}\\
S & L
\end{array}\right], \quad \hat{q}=\left\{\begin{array}{l}
\hat{x}_{1} \\
\hat{x}_{2}
\end{array}\right\}=\left\{\begin{array}{l}
\hat{x} \\
\dot{x}
\end{array}\right\}
$$

in which U and L are positive definite matrices and the matrix P is determined by the Riccati equation (Kwakernaak and Sivan, 1972; Arnold and Laub, 1984)

$$
\begin{equation*}
E \dot{P} E^{T}=F P E^{T}+E P F^{T}-E P H^{T} R^{-1} H P E^{T}+\bar{G} Q \bar{G}^{T} \tag{8}
\end{equation*}
$$

The inherent difficulty of reducing the first-order Kalman filtering equations given by (6) to second order form can be appreciated if one attempts to write (6) in a form introduced in (3):

$$
\begin{cases}a) & \hat{x}_{1}=\hat{x} \tag{9}\\ b) & \hat{x}_{2}=\dot{\hat{x}}=\dot{\hat{x}}_{1}-L_{1} \bar{z} \\ \text { c) } & M \dot{\hat{x}}_{2}=-D \hat{x}_{2}-K \hat{x}_{1}+B \hat{u}+M L_{2} \bar{z}\end{cases}
$$

where

$$
L_{1}=\left(H_{1} U+H_{2} S\right)^{T} R^{-1}, \quad L_{2}=\left(H_{1} S^{T}+H_{2} L\right)^{T} R^{-1}
$$

Note from (9b) that $\hat{x}_{2} \neq \dot{\hat{x}}_{1}$. In other words, the time derivative of the estimated displacement ($\dot{\hat{x}}$) is not the same as the estimated velocity ($(\hat{\dot{x}})$; hence, \hat{x}_{1} and \hat{x}_{2} must be treated as two independent variables, an important observation somehow overlooked in Hashemipour and Laub (1988).
Of course, although not practical, one can eliminate \hat{x}_{2} from (9). Assuming $\dot{\hat{x}}_{1}$ and \hat{x}_{2} are differentiable, differentiate (9 b) and multiply both sides by M to obtain

$$
\begin{equation*}
M \ddot{\hat{x}}_{1}=M \dot{\hat{x}}_{2}+M L_{1} \dot{\bar{z}} \tag{10}
\end{equation*}
$$

Substituting $M \dot{\hat{x}}_{2}$ from (9c) and \hat{x}_{2} from (9b) in (10) yields

$$
\begin{equation*}
M \overline{\hat{x}}_{1}=-D\left(\dot{\hat{x}}_{1}-L_{1} \bar{z}\right)-K \hat{x}_{1}+B u+M L_{2} \bar{z}+M L_{1} \dot{\bar{z}} \tag{11}
\end{equation*}
$$

which, upon rearrangements, becomes

$$
\begin{equation*}
M \ddot{\hat{x}}_{1}+D \dot{\hat{x}}_{1}+K \hat{x}_{1}=B u+M L_{2} \bar{z}+M L_{1} \dot{\bar{z}}+D L_{1} \bar{z} \tag{12}
\end{equation*}
$$

There are two difficulties with the above second-order observer. First, the numerical solution of (12) involves the computation of $\overline{\hat{x}}_{1}$ when rate measurements are made. The accuracy of this computation is in general very susceptible to errors caused in numerical differentiation of $\dot{\hat{x}}_{1}$. Second, and most important, the numerical evaluation of $\dot{\bar{z}}$ that is required in (12) assumes that the derivative of measurement information is available which should be avoided in practice. We now present a computational procedure that circumvents the need for computing measurement derivatives and that-enables one to construct observers based on the second-order models.

Second-Order Transformation of Continuous Kalman Filtering Equations.

This section presents a transformation of the continuous time first-order Kalman filter to a discrete time set of second-order difference equations for digital implementation. The procedure avoids the need for measurement derivative information. In addition, the sparsity and symmetry of the original mass, damping and stiffness matrices can be maintained. Prior to describing the numerical integration procedure, a transformation based on generalized momenta is presented which is later used to improve computational efficiency of the equation solution.

Generalized Momenta

Instead of the conventional transformation (3) of the second-order structural system (1) into a first-order form, let us consider the following generalized momenta (Jensen, 1974; Felippa and Park, 1978):

$$
\begin{cases}\text { a) } & x_{1}=x \tag{13}\\ \text { b) } & x_{2}=A M \dot{x}_{1}+C x_{1}\end{cases}
$$

where A and C are constant matrices to be determined. Time differentiation of (13b) yields

$$
\begin{equation*}
\dot{x}_{2}=\dot{A} M \dot{x}_{1}+C \dot{x}_{1} \tag{14}
\end{equation*}
$$

Substituting (1) via (13a) into (14), one obtains

$$
\begin{equation*}
\dot{x}_{2}=A(B u+G w)-(A D-C) \dot{x}_{1}-A K x_{1} \tag{15}
\end{equation*}
$$

Finally, pairing of (13b) and (15) gives the following first-order form:

$$
\begin{gather*}
{\left[\begin{array}{cc}
A M & 0 \\
A D-C & I
\end{array}\right]\left\{\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right\}+\left[\begin{array}{cc}
C & -I \\
A K & 0
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=} \\
{\left[\begin{array}{c}
0 \\
A(B u+G w)
\end{array}\right]} \tag{16}
\end{gather*}
$$

The associated Kalman filtering equation can be shown to be of the following form:

$$
\begin{gather*}
{\left[\begin{array}{cc}
A M & 0 \\
A D-C & I
\end{array}\right]\left\{\begin{array}{c}
\dot{\hat{x}}_{1} \\
\hat{x}_{2}
\end{array}\right\}+\left[\begin{array}{cc}
C & -I \\
A K & 0
\end{array}\right]\left\{\begin{array}{l}
\hat{x}_{1} \\
\hat{x}_{2}
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
A B u
\end{array}\right\}+} \\
{\left[\begin{array}{cc}
A M & 0 \\
A D-C & I
\end{array}\right]\left[\begin{array}{l}
\bar{L}_{1} \\
\vec{L}_{2}
\end{array}\right] \bar{z}} \tag{17}
\end{gather*}
$$

where

$$
\bar{L}_{1}=\left(\bar{H}_{1} U+\bar{H}_{2} S\right)^{T} R^{-1}, \quad \bar{L}_{2}=\left(\bar{H}_{1} S^{T}+\bar{H}_{2} L\right)^{T} R^{-1}
$$

and \bar{H}_{1} and \bar{H}_{2} correspond to a modified form of measurements expressed as

$$
\begin{equation*}
z=H_{1} x+H_{2} \dot{x}=\bar{H}_{1} x_{1}+\bar{H}_{2} x_{2} \tag{18}
\end{equation*}
$$

where

$$
\bar{H}_{1}=H_{1}-H_{2} M^{-1} A^{-1} C, \quad \bar{H}_{2}=H_{2} M^{-1} A^{-1}
$$

Clearly, as in the conventional first-order form (9), \hat{x}_{1} and \hat{x}_{2} in (17) are now two independent variables. Specifically, the case of $A=M^{-1}$ and $C=0$ corresponds to (3) with $x_{2}=\dot{x}_{1}$. However, as we shall see below, the Kalman filtering equations based on the generalized momenta (13) offer several computational advantages over (3).

Numerical Integration

At this juncture it is noted that in the previous section one first performs the elimination of \hat{x}_{1} in order to obtain a second-order observer, then performs the numerical solution of the resulting second-order observer. This approach has the disadvantage of having to deal with the time derivative of measurement data. To avoid this, we will first integrate numerically the associated Kalman filtering equation (17).

The direct time integration formula we propose to employ is a mid-point version of the trapezoidal rule:

$$
\left\{\begin{array}{l}
\text { a) }\left\{\begin{array}{l}
\hat{x}_{1} \\
\hat{x}_{2}
\end{array}\right\}^{n+1 / 2}=\left\{\begin{array}{l}
\hat{x}_{1} \\
\hat{x}_{2}
\end{array}\right\}^{n}+\delta\left\{\begin{array}{c}
\dot{x}_{1} \\
\dot{\hat{x}}_{2}
\end{array}\right\}^{n+1 / 2} \tag{19}\\
\text { b) }\left\{\begin{array}{l}
\hat{x}_{1} \\
\hat{x}_{2}
\end{array}\right\}^{n+1}=2\left\{\begin{array}{l}
\hat{x}_{1} \\
\hat{x}_{2}
\end{array}\right\}^{n+1 / 2}-\left\{\begin{array}{l}
\hat{x}_{1} \\
\hat{x}_{2}
\end{array}\right\}^{n}
\end{array}\right.
$$

where the superscript n denotes the discrete time interval $t^{n}=n h, h$ is the time increment and $\delta=h / 2$.

Time discretization of (17) by (19a) at the $n+1 / 2$ time step yields

$$
\begin{gather*}
{\left[\begin{array}{cc}
A M & 0 \\
A D-C & I
\end{array}\right]\left\{\begin{array}{l}
\hat{x}_{1}^{n+1 / 2}-\hat{x}_{1}^{n} \\
\hat{x}_{2}^{n+1 / 2}-\hat{x}_{2}^{n}
\end{array}\right\}+\delta\left[\begin{array}{cc}
C & -I \\
A K & 0
\end{array}\right]\left\{\begin{array}{l}
\hat{x}_{1}^{n+1 / 2} \\
\hat{x}_{2}^{n+1 / 2}
\end{array}\right\}} \\
=\delta\left[\begin{array}{cc}
A M & 0 \\
A D-C & I
\end{array}\right]\left[\begin{array}{l}
\bar{L}_{1} \\
\bar{L}_{2}
\end{array}\right] \bar{z}^{n+1 / 2}+\delta\left\{\begin{array}{c}
0 \\
A B u^{n+1 / 2}
\end{array}\right\} \tag{20}
\end{gather*}
$$

The above difference equations require the solution of matrix equations of $2 N$ variables, namely, in terms of the two variables $\hat{x}_{2}^{n+1 / 2}$ and $\hat{x}_{1}^{n+1 / 2}$, each with a size of N. To reduce the above coupled equations of order $2 N$ into the corresponding ones of order N, we proceed in the following way by exploiting the nature of parametric matrices of A and C as introduced in (13). To this end, we write out (20) as two coupled difference equations as follows:

$$
\begin{gather*}
A M\left(\hat{x}_{1}^{n+1 / 2}-\hat{x}_{1}^{n}\right)+\delta\left(C \hat{x}_{1}^{n+1 / 2}-\hat{x}_{2}^{n+1 / 2}\right) \\
=\delta A M \bar{L}_{1} \bar{z}^{n+1 / 2} \tag{21}\\
(A D-C)\left(\hat{x}_{1}^{n+1 / 2}-\hat{x}_{1}^{n}\right)+\left(\hat{x}_{2}^{n+1 / 2}-\hat{x}_{2}^{n}\right)+\delta A K \hat{x}_{1}^{n+1 / 2} \\
=\delta(A D-C) \bar{L}_{1} \bar{z}^{n+1 / 2}+\delta \bar{L}_{2} \bar{z}^{n+1 / 2}+\delta A B u^{n+1 / 2} \tag{22}
\end{gather*}
$$

Multiplying (22) by δ and adding the resulting equation to (21) yields

$$
\begin{align*}
& A\left(M+\delta D+\delta^{2} K\right) \hat{x}_{1}^{n+1 / 2}=(A M+\delta(A D-C)) \hat{x}_{1}^{n}+\delta \hat{x}_{2}^{n} \\
& +\left\{\delta A M \bar{L}_{1}+\delta^{2}(A D-C) \bar{L}_{1}+\delta^{2} \bar{L}_{2}\right\} \bar{z}^{n+1 / 2}+\delta^{2} A B u^{n+1 / 2} \tag{23}
\end{align*}
$$

Of several possible choices for matrices A and B, we will examine

$$
\begin{cases}\text { a) } & A=I, \quad C=D \tag{24}\\ b) & A=M^{-1}, \quad C=0\end{cases}
$$

The choice of (24a) reduces (23) to:

$$
\begin{gather*}
\left(M+\delta D+\delta^{2} K\right) \hat{x}_{1}^{n+1 / 2}=M \hat{x}_{1}^{n}+\delta \hat{x}_{2}^{n}+\delta^{2} B u^{n+1 / 2} \\
+\delta\left\{M \bar{L}_{1}+\delta \bar{L}_{2}\right\} \bar{z}^{n+1 / 2} \tag{25}
\end{gather*}
$$

so that once $\hat{x}_{1}^{n+1 / 2}$ is computed, $\hat{x}_{2}^{n+1 / 2}$ is obtained from (22) rewritten as

$$
\begin{equation*}
\hat{x}_{2}^{n+1 / 2}=\hat{x}_{2}^{n}+\delta \hat{g}^{n}-\delta K \hat{x}_{1}^{n+1 / 2} \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{g}^{n}=B u^{n+1 / 2}+\bar{L}_{2} \bar{z}^{n+1 / 2} \tag{27}
\end{equation*}
$$

which is already computed in order to construct the right-hand side of (25). Hence, $K \hat{x}_{1}^{n+1 / 2}$ is the only additional computation needed to obtain $\hat{x}_{2}^{n+1 / 2}$. It is noted that neither any numerical differentiation nor matrix inversion is required in computing $\hat{x}_{2}^{n+1 / 2}$. This has been achieved through the introduction of the general transformation (13) and the particular choice of the parameter matrices given by (24a).
On the other hand, if one chooses the conventional representation (24b), the solution of $\hat{x}_{1}^{n+1 / 2}$ is obtained from (23)

$$
\begin{align*}
& \left(M+\delta D+\delta^{2} K\right) \hat{x}_{1}^{n+1 / 2}=(M+\delta D) \hat{x}_{1}^{n}+\delta M \hat{x}_{2}^{n} \\
& +\delta\left\{(M+\delta D) \bar{L}_{1}+\delta M \bar{L}_{2}\right\} \bar{z}^{n+1 / 2}+\delta^{2} B u^{n+1 / 2} \tag{28}
\end{align*}
$$

Once $\hat{x}_{1}^{n+1 / 2}$ is obtained, $\hat{x}_{2}^{n+1 / 2}$ can be computed either by

$$
\begin{equation*}
\hat{x}_{2}^{n+1 / 2}=\left(\hat{x}_{1}^{n+1 / 2}-\hat{x}_{1}^{n}\right) / \delta-\bar{L}_{1} \bar{z}^{n+1 / 2} . \tag{29}
\end{equation*}
$$

which is not accurate due to the numerical differentiation to obtain $\dot{\hat{x}}_{1}^{n+1 / 2}$, or by (22)

$$
\begin{gather*}
\hat{x}_{2}^{n+1 / 2}=\hat{x}_{2}^{n}+\delta \hat{g}^{n}-\delta M^{-1} K \hat{x}_{1}^{n+1 / 2}- \\
M^{-1} D\left(\hat{x}_{1}^{n+1 / 2}-\hat{x}_{1}^{n}\right)+\delta M^{-1} D \bar{L}_{1} \bar{z}^{n+1 / 2} \tag{30}
\end{gather*}
$$

which involves two additional matrix-vector multiplications, when $D \neq 0$, as compared with the choice of $A=I$ and $C=D$. Thus (24a) is the preferred representation in a first-order form of the second-order structural dynamics equations (1) and is used in the remainder of this work.

Decoupling Of Difference Equations

We have seen in the previous section, instead of solving the first-order Kalman filtering equations of $2 n$ variables for the structural dynamics systems (1), the solution of the implicit time-discrete observer equation (25) of n variables can potentially offer a substantial computational saving by exploiting the reduced size and sparsity of M, D and K. This assumes that $\bar{z}^{n+1 / 2}$ and $u^{n+1 / 2}$ are available, which is not the-case since at the $n^{\text {th }}$ time step

$$
\begin{gather*}
u^{n+1 / 2}=-\bar{Z}_{1} \hat{x}_{1}^{n+1 / 2}-\bar{Z}_{2} \hat{x}_{2}^{n+1 / 2} \tag{31}\\
\bar{z}^{n+1 / 2}=z^{n+1 / 2}-\bar{H}_{1} \hat{x}_{1}^{n+1 / 2}-\bar{H}_{2} \hat{x}_{2}^{n+1 / 2} \tag{32}
\end{gather*}
$$

requires both $\hat{x}_{1}^{n+1 / 2}$ and $\hat{x}_{2}^{n+1 / 2}$ even if $z^{n+1 / 2}$ is assumed to be known from measurements or by solution of (1). Note in (32), the control gain matrices are transformed by

$$
\bar{Z}_{1}=Z_{1}-Z_{2} M^{-1} A^{-1} C, \quad \bar{Z}_{2}=Z_{2} M^{-1} A^{-1}
$$

There are two distinct approaches to uncouple (25) and (26) as described in the following. sections.

Discrete Time Update

Equations (31) and (32) can be approximated using

$$
\begin{gather*}
\bar{z}^{n+1 / 2} \simeq z^{n}-\bar{H}_{1} \hat{x}_{1}^{n}-\bar{H}_{2} \hat{x}_{2}^{n} \tag{33}\\
u^{n+1 / 2} \simeq-\bar{Z}_{1} \hat{x}_{1}^{n}-\bar{Z}_{2} \dot{x}_{2}^{n} \tag{34}
\end{gather*}
$$

This approximation leads to a discrete time update of the control force and state correction terms which is analogous to that which exists in experiments where a finite bandwidth of measurement updates occurs. For discrete time approximation, the step size $h=t^{n+1}-t^{n}$ should be chosen to match the time required to acquire, process and output a control update.

Discrete time simulation is quite simple to implement as the control force and state corrections are treated with no approximation on the right-hand-side (RHS) of (25) and (26). Should continuous time simulation be required, a different approach is necessary.

Continuous Time Update

To simulate the system given in (25) and (26) in continuous time, strictly speaking, one must rearrange (25) and (26) so that the terms involving $\hat{x}_{1}^{n+1 / 2}$ and $\hat{x}_{2}^{n+1 / 2}$ are augmented
to the left-hand-side (LHS) of the equations. However, this augmentation into the solution matrix ($M+\delta D+\delta^{2} K$) would destroy the computational advantages of the matrix sparcity and symmetry. Thus, a partitioned solution procedure has been developed for continuous time simulation as described in (Park and Belvin, 1991). The procedure, briefly outlined herein, maintains the control force and state correction on the RHS of the equations as follows.

First, $\hat{x}_{1}^{n+1 / 2}$ and $\hat{x}_{2}^{n+1 / 2}$ are predicted by

$$
\begin{equation*}
\hat{x}_{1 p}^{n+1 / 2}=\hat{x}_{1}^{n}, \quad \hat{x}_{2 p}^{n+1 / 2}=\hat{x}_{2}^{n} \tag{35}
\end{equation*}
$$

However, instead of direct substitution of the above predicted quantity to obtain $u_{p}^{n+1 / 2}$ and $\bar{z}_{p}^{n+1 / 2}$ based on (31) and (32), equation augmentations are introduced to improve the accuracy of $u_{p}^{n+1 / 2}$ and $\bar{z}_{p}^{n+1 / 2}$. Of several augmentation procedures that are applicable to construct discrete filters for the computations of $u^{n+1 / 2}$ and $\bar{z}^{n+1 / 2}$, we substitute (26) into (31) and (32) to obtain

$$
\left\{\begin{array}{l}
u^{n+1 / 2}=-\bar{Z}_{1} \hat{x}_{1}^{n+1 / 2}-\overline{\bar{Z}}_{2}\left(\hat{x}_{2}^{n}-\delta K \hat{x}_{1}^{n+1 / 2}+\right. \tag{36}\\
\left.\quad \delta B u^{n+1 / 2}+\delta \bar{L}_{2} \bar{z}^{n+1 / 2}\right) \\
\bar{z}^{n+1 / 2}=z^{n+1 / 2}-\bar{H}_{1} \hat{x}_{1}^{n+1 / 2}- \\
\bar{H}_{2}\left(\hat{x}_{2}^{n}-\delta K \hat{x}_{1}^{n+1 / 2}+\delta B u^{n+1 / 2}+\delta \bar{L}_{2} \dot{\bar{z}}^{n+1 / 2}\right)
\end{array}\right.
$$

Rearranging the above coupled equations, one obtains

$$
\begin{align*}
& {\left[\begin{array}{cc}
\left(I+\delta \bar{Z}_{2} B\right) & \delta \bar{Z}_{2} \bar{L}_{2} \\
\delta \bar{H}_{2} B & \left(I+\delta \bar{H}_{2} \bar{L}_{2}\right)
\end{array}\right]\left\{\begin{array}{l}
u^{n+1 / 2} \\
\bar{z}^{n+1 / 2}
\end{array}\right\}=} \\
& \left\{\begin{array}{c}
-\bar{Z}_{2} \hat{x}_{2}^{n}-\left(\bar{Z}_{1}-\delta \bar{Z}_{2} K\right) \hat{x}_{1}^{n+1 / 2} \\
z^{n+1 / 2}-\bar{H}_{2} \hat{x}_{2}^{n}-\left(\bar{H}_{1}-\delta \bar{H}_{2} K\right) \hat{x}_{1}^{n+1 / 2}
\end{array}\right\} \tag{37}
\end{align*}
$$

which corresponds to a first order filter to reduce the errors in computing $\hat{x}_{2}=M \dot{\hat{x}}+D \hat{x}$. A second-order discrete filter for computing u and \bar{z} can be obtained by differentiating u and \bar{z} to obtain

$$
\left\{\begin{array}{l}
\dot{u}=-\bar{Z}_{1} \dot{\hat{x}}_{1}-\bar{Z}_{2} \dot{\hat{x}}_{2} \tag{38}\\
\dot{\bar{z}}=\dot{\dot{z}}-\bar{H}_{1} \dot{\hat{x}}_{1}-\bar{H}_{2} \dot{\hat{x}}_{2}
\end{array}\right.
$$

and then substituting $\dot{\hat{x}}_{1}$ and $\dot{\hat{x}}_{2}$ from (17). Subsequently, (19) is applied to integrate the equations for u and \bar{z} which yields

$$
\begin{gather*}
{\left[\begin{array}{cc}
I+\delta \bar{Z}_{2} B+\delta^{2} \bar{Z}_{1} M^{-1} B & \delta\left(\bar{Z}_{2} \bar{L}_{2}+\bar{Z}_{1} \bar{L}_{1}+\delta \bar{Z}_{1} M^{-1} \bar{L}_{2}\right) \\
\delta\left(\bar{H}_{2} B+\delta \cdot \bar{H}_{1} M^{-1} B\right) & I+\delta \bar{H}_{1}\left(\bar{L}_{1}+\delta M^{-1} \bar{L}_{2}\right)+\delta \bar{H}_{2} \bar{L}_{2}
\end{array}\right]\left\{\begin{array}{l}
u^{n+1 / 2} \\
\bar{z}^{n+1 / 2}
\end{array}\right\}=} \\
\left\{\begin{array}{l}
u^{n} \\
\bar{z}^{n}
\end{array}\right\}-\delta\left\{\begin{array}{c}
\bar{Z}_{1} M^{-1}\left(\hat{x}_{2}^{n}-\delta K \hat{x}_{1}^{n+1 / 2}-D \hat{x}_{1}^{n+1 / 2}\right)+\bar{Z}_{2} K \hat{x}_{1}^{n+1 / 2} \\
\bar{H}_{1} M^{-1}\left(\hat{x}_{2}^{n}-\delta K \hat{x}_{1}^{n+1 / 2} D \hat{x}_{1}^{n+1 / 2}\right)+\bar{H}_{2} K \hat{x}_{1}^{n+1 / 2}
\end{array}\right\}+\left\{\begin{array}{c}
0 \\
z^{n+1 / 2}-z^{n}
\end{array}\right\} \tag{39}
\end{gather*}
$$

The net effects of this augmentation are to filter out the errors committed in estimating both \hat{x}_{1} and \hat{x}_{2}. Solution of (39) for $u^{n+1 / 2}$ and $\bar{z}^{n+1 / 2}$ permits (25) and (26) to be solved in continuous time for $\hat{x}_{1}^{n+1 / 2}$ and $\hat{x}_{2}^{n+1 / 2}$. Subsequently, (29b) is used for \hat{x}_{1}^{n+1} and \hat{x}_{2}^{n+1}. The preceding augmentation (39) leads to an accurate estimate of the control force and observer error correction at the $(n+1 / 2)$ time step. Although (39) involves the solution of an additional algebraic equation, the equation size is relatively small (size $=$ number of actuators (m) plus the number of measurements (r)). Thus, (39) is an efficient method for continuous time simulation of the Kalman filter equations provided the size of (39) is significantly lower than the first order form of (4). The next section discusses the relative efficiency of the present method and the conventional first order solution. More details on the equation augmentation procedure (39) may be found in Park and Belvin (1991).
Finally, it is noted that by following a similar time discretization procedure adopted for computing $\hat{x}_{1}^{n+1 / 2}$ and $\hat{x}_{2}^{n+1 / 2}$, the structural dynamics equation (1) can be solved by

$$
\left\{\begin{array}{l}
\left(M+\delta D+\delta^{2} K\right) x_{1}^{n+1 / 2}=M x_{1}^{n}+\delta x_{2}^{n}+\delta^{2} B u^{n+1 / 2} \tag{40}\\
x_{2}^{n+1 / 2}=x_{2}^{n}+\delta B u^{n+1 / 2}-\delta K x_{1}^{n+1 / 2}
\end{array}\right.
$$

Thus, numerical solutions of the structural dynamics equation (1) and the observer equation (20) can be carried out within the second-order solution context, thus realizing substantial computational simplicity compared with the solution of first-order systems of equations (4) and the corresponding first-order observer equations (6).
It is emphasized that the solutions of both the structural displacement x and the reconstructed displacement \hat{x} employ the same solution matrix, $\left(M+\delta D+\delta^{2} K\right)$. The computational stability of the present procedure can be examined as investigated in Park (1980) and Park and Felippa (1983, 1984). The result, when applied to the present case, can be stated as

$$
\begin{equation*}
\delta^{2} \lambda_{\max } \leq 1 \tag{41}
\end{equation*}
$$

where $\lambda_{\max }$ is the maximum eigenvalue of

$$
\begin{equation*}
\left(\lambda^{2} I+\lambda \bar{Z}_{2} B+\bar{Z}_{1} M^{-1} B\right) y=0 \tag{42}
\end{equation*}
$$

Experience has shown that $\left|\lambda_{\max }\right|$ is several orders of magnitude smaller than $\mu_{\max }$ of the structural dynamics eigenvalue problem:

$$
\begin{equation*}
\mu M y=K y \tag{43}
\end{equation*}
$$

Considering that a typical explicit algorithm has its stability limit $\mu_{\max } \cdot h \leq 2$, the maximum step size allowed by (42) is in fact several orders of magnitude larger than allowed by any explicit algorithm.

Computational Efficiency

Solution of the Kalman filtering equations in second-order form is prompted by the potential gain in computational efficiency due to the beneficial nature of matrix sparcity and symmetry in the solution matrix of the second-order observer equations. There is an overhead to be paid for the present second-order procedure, that is, the additional computations introduced to minimize the control force and observer error terms on the right-hand-side of the resulting discrete equations. The following paragraphs show the second-order solution is most advantageous for observer models with sparse coefficient matrices M, D and K.

Solution of the first order Kalman filter equation (6) or the second-order form (25-26, 39) may be performed using a time discretization as given by (19). For linear time invariant (LTI) systems, the solution matrix is decomposed once and subsequently upper and lower triangular system solutions are performed to compute the observer state at each time step. Thus, the computations required at each time step result from calculation of the RHS and subsequent triangular system solutions. For the results that follow, the number of floating point operations per second (flops) are estimated for LTI systems of order $\mathrm{O}(\mathrm{N})$. In addition, it is assumed that the mass, damping and stiffness matrices (M, D and K) are symmetric and banded with bandwidth αN, where $0 \leq \alpha \leq\left(0.5-\frac{1}{2 N}\right)$.

The first-order Kalman filter equation (6) requires ($4 N^{2}+2 N r+O(N)$) flops at each time step. The discrete time second-order Kalman filter solution (25-26, 33-34) require $\left(8 \alpha^{2} N^{2}+2 \alpha N^{2}+3 N m+4 N r+O(N)\right)$ flops and the continuous time second-order Kalman filter $(25-26,39)$ require $\left(8 \alpha N^{2}+2 \alpha N^{2}+5 N m+6 N r+(r+m)^{2}+O(N)\right)$ flops at each time step. To examine the relative efficiency of the first-order and second-order forms, several cases are presented as follows.

First, a worst case condition is examined whereby M, D and K are fully populated ($\alpha=$ $\left.0.5-\frac{1}{2 N}\right)$ and $r=m=N$. For this condition, the number of flops are::

$$
\begin{cases}\text { First Order } & 6 N^{2}+O(N) \\ \text { Second Order Discrete } & 10 N^{2}+O(N) \\ \text { Second Order Continuous } & 18 N^{2}+O(N)\end{cases}
$$

Thus, for non-sparse systems with large numbers of sensors and actuators relative to the system order, the first order Kalman filter is 300 percent more efficient than the secondorder continuous Kalman filter solution presented herein.

For structural systems, M, and K are almost always banded. In addition, the number of sensors and actuators is usually small compared to the system order N. Hence, the value of α for which the second-order form becomes more computationally attractive than the first order form must be determined. If the assumption is made that the number of
actuators (m) and the number of measurements (r) is proportional to the bandwidth ($r=m=\alpha N$), the value of α which renders the second-order solution more efficient is readily obtained. For the second-order discrete Kalman filter, when $\alpha \leq 0.394$ the secondorder form is more efficient. Similarly, the second-order continuous Kalman filter form is more efficient when $\alpha \leq 0.279$. Since α obtains values approaching 0 when a modal based structural representation is used with few sensors and actuators, the second-order form can be substantially more efficient than the classical first-order form. A more detailed discussion can be found in Belvin (1989).

Implementation and Numerical Evaluations

The second-order discrete Kalman filtering equation derived in (25) and (26) have been implemented along with the stabilized form of the controller \mathbf{u} and the filtered measurements $\overline{\mathbf{z}}$ in such a way the observer computational module can be interfaced with the partitioned control-structure interaction simulation package developed previously (Belvin, 1989; Belvin Park, 1991; Alvin and Park, 1991). Table 1 contrasts the present CSI simulation procedure to conventional procedures. It is emphasized that the solution procedure of the present second-order discrete Kalman filtering equations (25) and (26) follows exactly the same steps as required in the solution of symmetric, sparse structural systems (or the plant dynamics in the jargon of control). It is this attribute that makes the present discrete observer attractive from the simulation viewpoint.

The first example is a truss beam shown in Fig. 1, consisting of 8 bays with nodes 1 and 2 fixed for cantilevered motions. The locations of actuator and sensor applications as well as their directions are given in Table 2. Figures 2, 3 and 4 are the vertical displacement histories at node 9 for open-loop, direct output feedback, and dynamically compensated feedback cases, respectively. Note the effectiveness of the dynamically compensated feedback case by the present second-order discrete Kalman filtering equations as compared with the direct output feedback cases. Figure 5 illustrates a testbed evolutionary model of an Earth-pointing satellite. Eighteen actuators and 18 sensors are applied to the system for vibration control and their locations are provided in Tables 3 and 4. Figures 6, 7 , and 8 are a representative of the responses for open-loop, direct output feedback, and dynamically compensated cases, respectively. Note that u_{x} response by the dynamically compensated case does drift away initially even though the settling time is about the same as that by the direct output feedback case. However, the sensor output are assumed to be noise-free in these two numerical experiemnts. Although the objective of the present paper is to establish the computational effectiveness of the second-order discrete Kalman filtering equations, we conjecture that for noise-contaminated sensor output for which one would apply dynamic compensated strategies, the relative control performance may turn
out to be the opposite. Further simulations with the present procedure should shed light on the performance of dynamically compensated feedback systems for large-scale systems as they are computationally more feasible than heretofore possible.

Table 5 illustrates the computational overhead associated with the direct output feedback vs. the use of a dymamic compensation scheme by the output present Kalman filtering equations. In the numerical experiments reported herein, we have relied on Matlab software package (Wolfram, 1988) for the synthesis of both the control law gains and the discrete Kalman filter gain matrices. It is seen that the use of the present second-order discrete Kalman filtering equations for constructing dynamically compensated control laws adds computational overhead, only an equivalent of open-loop transient analysis of symmetric sparse systems of order N instead of $2 N \times 2 N$ dense systems.

Summary

The present paper has arldressed the advantageous features of employing the same direct time integration algorithm for solving the structural dynamics equations also to integrate the associated continuous Kalman filtering equations. The time discretization of the resulting Kalman filtering equations is further facilitated by employing a canonical first-order form via a generalized momenta. When used in conjunction with the previously developed stabilized form of control laws (Park and Belvin, 1991), the present procedure offers a substantial computational advantage over the solution methods based on a first-order form when computing with large and sparse observer models.

Computational stability of the present solution method for the observer equation has been assessed based on the stability analysis result of partitioned solution procedures (Park, 1980). To obtain a sharper estimate of the stable step size, a more rigorous computational stability analysis is being carried out and will be reported in the future.

Acknowledgements

The work reported herein was supported by a grant from Air Force Office of Scientific Research, F49620-87-C-0074 and a grant from NASA/Langley Research Center, NAG11021: The authors thank Drs. Anthony K. Amos and Spencer Wu of AFOSR for their interest and encouragement and Dr. Jer-Nan Juang of NASA/Langley Research Center who has encouraged us to work on second-order observers.

References

1. K. A. Alvin and K. C. Park, "Implementation of A Partitioned Algorithm for Simulations of Large CSI Problems," Center for Space Structures and Controls, University of Colorado at Boulder, CO., Report No. CU-CSSC-91-4, March 1991.
2. Arnold, W. F. and Laub, A. J. (1984), "Generalized Eigenproblem Algorithms and Software for Algebraic Riccati Equations," Proceedings of the IEEE, Vol. 72, No. 12, pp. 1746-1754.
3. Belvin, W. K. (1989), "Simulation and Interdisciplinary Design Methodology for Control-Structure Interaction Systems," PhD Thesis, Center for Space Structures and Controls, University of Colorado at Boulder, CO., Report No. CU-CSSC-89-10, July 1989.
4. Belvin, W. K. and Park, K. C. (1989), "On the State Estimation of Structures with Second Order Observers," Proc. the 90th Structures, Dynamics and Materials Conference, AIAA Paper No. 89-1241.
5. Belvin, W. K. and Park, K. C. (1990), "Structural Tailoring and Feedback Control Synthesis: An Interdisciplinary Approach,"J. Guidance, Control and Dynamics, Vol. 13, No. 3, pp. 424-429.
6. Bender, D. J. and Laub, A. J. (1985), "Controllabilty and Observability at Infinity of Multivariable Linear Second-Order Models," IEEE Transactions on Automatic Control, Vol. AC-30, pp. 1234-1237.
7. Felippa, C. A. and Park, K. C. (1978), "Computational Aspects of Time Integration Procedures in Structural Dynamics, Part 1: Implementation," Journal of Applied Mechanics, Vol. 45, pp. 595-602.
8. Hashemipour, H. R. and Laub, A. J. (1988), "Kalman filtering for second-order models," J. Guidance, Control and Dynamics, Vol. 11, No. 2, pp.181-185.
9. Hughes, P. C. and Skelton, R. E. (1980), "Controllability and observability of linear matrix second-order systems,". J. Applied Mechanics, Vol. 47, pp.415-420.
10. Jensen, P. S. (1974), "Transient Analysis of Structures by Stiffly Stable Methods," Computers and Structures, Vol. 4, pp.67-94.
11. Juang, J. N. and Maghami, P. G. (1990), "Robust Eigensystem Assignment for SecondOrder Estimators," Proc. of the Guidance, Navigation and Control Conference, AIAA Paper no. 90-3474.
12. Kalman, R. E. (1961), "On the General Theory of Control Systems," Proc. 1st International Congress on Automatic Control, Butterworth, London, Vol. 1, pp. 481-491.
13. Kalman, R. E. and Bucy, R. S. (1961), "New results in linear filtering and prediction theory," Trans, ASME J. Basic Engineering, Vol. 83, pp. 95-108.
14. Kwakernaak, H. and Sivan, R. (1972), Linear Optimal Control Systems, WileyInterscience, New York.
15. Oshman, Y., Inman, D. J. and Laub, A. J. (1989), "Square-Root State Estimation for Second-Order Large Space Structures Models," Journal of Guidance, Control and Dynamics, Vol. 12, no. 5, pp.698-708.
16. Park, K. C.(1980), "Partitioned Analysis Procedures for Coupled-Field Problems: Stability Analysis," Journal of Applied Mechanics, Vol. 47, pp. 370-378.
17. Park, K. C. and Felippa, C. A. (1983), "Partitioned Analysis of Coupled Systems," in: Computational Methods for Transient Analysis, T. Belytschko and T. J. R. Hughes (eds.), Elsevier Pub. Co., pp. 157-219.
18. Park, K. C. and Belvin, W. K. (1989), "Stability and Implementation of Partitioned CSI Solution Procedures," Proc. the 90th Structures, Dynamics and Materials Conference, AIAA Paper No. 89-1238.
19. Park, K. C. and Felippa, C. A. (1984), "Recent Developments in Coupled-Fi.ld Analysis Methods," in: Numerical Methods in Coupled Systems, Lewis, R. W. et al(editors), John Wiley \& Sons, pp. 327-352.
20. Wolfram, S., Mathematica ${ }^{T M}$, Addison-Wesley Pub. Co., 1988.
(Structure:
a) $\quad \mathbf{M} \ddot{\mathbf{q}}+\mathbf{D} \dot{\mathbf{q}}+K \mathbf{q}=\mathbf{f}+\mathbf{B u}+\mathbf{G} \mathbf{w}$

$$
\mathbf{q}(0)=\mathbf{q}_{0}, \quad \dot{\mathbf{q}}(0)=\dot{\mathbf{q}}_{0}
$$

Sensor Output:
b) $z=H x+v$
Estimator:

$$
\begin{aligned}
& \text { c) } \quad \mathbf{M} \ddot{\tilde{\mathbf{q}}}+\mathbf{D} \dot{\tilde{\mathbf{q}}}+\mathbf{K} \tilde{\mathbf{q}}=\mathbf{f}+\mathbf{B u}+\mathbf{M L}_{2} \boldsymbol{\gamma} \\
& \tilde{\mathbf{q}}(0)=0, \quad \tilde{\mathbf{q}}(0)=0
\end{aligned}
$$

Control Force:
d) $\quad \dot{\mathbf{u}}+\mathbf{F}_{2} \mathbf{M}^{-1} \mathbf{B u}=\mathbf{F}_{2}\left(\mathbf{M}^{-1} \dot{\tilde{\mathbf{p}}}+\mathbf{L}_{2} \boldsymbol{\gamma}\right)+\mathbf{F}_{1} \dot{\tilde{\mathbf{q}}}$
Estimation Error: e) $\quad \dot{\boldsymbol{\gamma}}+\mathbf{H}_{v} \mathbf{L}_{2} \boldsymbol{\gamma}=\dot{\mathbf{z}}-\mathbf{H}_{v} \mathbf{M}^{-1}(\dot{\tilde{\mathbf{p}}}-\mathbf{B u})-\mathbf{H}_{d} \dot{\tilde{\mathbf{q}}}$

Table 1a Partitioned Control-Structure Interaction Equations

$\left\{\begin{array}{lll}\text { Structure: } & \text { a) } & \dot{\mathbf{x}}=\mathbf{A x}+\mathbf{E f}+\overline{\mathbf{B}} \mathbf{u}+\overline{\mathbf{G}} \mathbf{w} \\ & & \mathbf{q}(0)=\mathbf{q}_{0}, \quad \dot{\mathbf{q}}(0)=\dot{\mathbf{q}}_{\mathbf{0}} \\ \text { Sensor Output: } & \text { b) } & \mathbf{z}=\mathbf{H x}+\mathbf{v} \\ \text { Estimator: } & \text { c) } & \dot{\tilde{\mathbf{x}}=\mathbf{A} \tilde{\mathbf{x}}+\mathbf{E f}+\overline{\mathbf{B}} \mathbf{u}+\mathbf{L} \boldsymbol{\gamma}} \\ & & \tilde{\mathbf{x}}(0)=0 \\ \text { Control Force: } & \text { d) } & \mathbf{u}=-\mathbf{F} \tilde{\mathbf{x}} \\ \text { Estimation Error: } & e) & \boldsymbol{\gamma}=\mathbf{z}-\left(\mathbf{H}_{d} \tilde{\mathbf{q}}+\mathbf{H}_{v} \dot{\tilde{\mathbf{q}}}\right)\end{array}\right.$
where

$$
\mathbf{x}=\left\{\begin{array}{l}
\mathbf{q} \\
\dot{\mathbf{q}}
\end{array}\right\}, \quad \tilde{\mathbf{x}}=\left\{\begin{array}{c}
\tilde{\mathbf{q}} \\
\dot{\mathbf{q}}
\end{array}\right\}
$$

and

$$
\mathbf{H}=\left[\begin{array}{ll}
\mathbf{H}_{d} & \mathbf{H}_{v}
\end{array}\right], \quad \mathbf{L}=\left[\begin{array}{l}
\mathbf{L}_{1} \\
\mathbf{L}_{2}
\end{array}\right], \quad \mathbf{E}=\left[\begin{array}{c}
0 \\
\mathbf{M}^{-1}
\end{array}\right]
$$

$$
\mathbf{A}=\left[\begin{array}{cc}
0 & \mathbf{I} \\
-\mathbf{M}^{-1} \mathbf{K} & -\mathbf{M}^{-1} \mathbf{D}
\end{array}\right], \quad \overline{\mathbf{B}}=\left[\begin{array}{c}
0 \\
\mathbf{M}^{-1} \mathbf{B}
\end{array}\right], \quad \mathbf{F}=\left[\begin{array}{ll}
\mathbf{F}_{1} & \mathbf{F}_{2}
\end{array}\right]
$$

Table 1b Conventional Control-Structure Interaction Equatioons

TABLE 2a:
Actuator Placement for Truss Example Problem

| Actuator | Node | Component |
| :---: | :---: | :---: |
| 1 | 2 | y |
| 2 | 18 | y |
| 3 | 9 | y |
| 4 | 9 | x |

TABLE 2b:
Sensor Placement for Truss Example Problem

| Sensor | Type | Node | Component |
| :---: | :---: | :---: | :---: |
| 1 | Rate | 2 | y |
| 2 | Rate | 18 | y |
| 3 | Rate | 9 | y |
| 4 | Rate | 9 | x |
| 5 | Position | 9 | y |
| 6 | Position | 9 | x |

TABLE 3:
Actuator Placement for EPS Example Problem

| Actuator | Node | Component |
| :---: | :---: | :---: |
| 1 | 97 | x |
| 2 | 97 | z |
| 3 | 96 | x |
| 4 | 96 | z |
| 5 | 65 | y |
| 6 | 68 | y |
| 7 | 59 | y |
| 8 | 62 | y |
| 9 | 45 | y |
| 10 | 45 | z |
| 11 | 70 | y |
| 12 | 70 | z |
| 13 | 95 | x |
| 14 | 95 | y |
| 15 | 95 | z |
| 16 | 95 | ϕ_{x} |
| 17 | 95 | ϕ_{y} |
| 18 | 95 | ϕ_{z} |

TABLE 4:
Sensor Placement for EPS Example Problem

| | | | |
| :---: | :---: | :---: | :---: |
| Sensor | Type | Node | Component |
| 1 | Rate | 97 | x |
| 2 | Rate | 97 | z |
| 3 | Rate | 96 | x |
| 4 | Rate | 96 | z |
| 5 | Rate | 65 | y |
| 6 | Rate | 68 | y |
| 7 | Rate | 59 | y |
| 8 | Rate | 62 | y |
| 9 | Rate | 45 | y |
| 10 | Rate | 45 | z |
| 11 | Rate | 70 | y |
| 12 | Rate | 70 | z |
| 13 | Position | 95 | x |
| 14 | Position | 95 | y |
| 15 | Position | 95 | z |
| 16 | Position | 95 | ϕ_{x} |
| 17 | Position | 95 | ϕ_{y} |
| 18 | Position | 95 | ϕ_{z} |

TABLE 5:
CPU Results for ACSIS Sequential and Parallel Versions

| | Problem | | |
| ---: | ---: | ---: | ---: |
| Model | Type | Sequential | Parallel |
| 54 DOF | Transient | 4.5 | 5.6 |
| Truss | FSFB | 9.4 | 10.2 |
| | K. Filter | 13.0 | 10.7 |
| 582 DOF | Transient | 98.6 | 100.3 |
| EPS7 | FSFB | 190.2 | 294.5 |
| | K. Filter | 284.2 | 321.5 |

Figure 1: Truss Beam Problem

Truss Model: Open Loop Transient Response

Node 9, uy
Figure 2: Truss Transient Response

Truss Model: Full State Feedback Response

Figure 3: Truss FSFB Response

Truss Model: Controlled Response with Kalman Filter

Figure 4: Truss Response with Filter

Figure 5: Evolutionary Earth-Pointing Satellite

EPS7 Model: Open Loop Transient Response

Figure 6: EPS Transient Response

Figure 7: EPS FSFB Response

-- - - Node 45, ux

- - - - Node 45, uz

Node 45, uy
Figure 8: EPS Response with Filter

535364

Sol $53-61$
v91-217827

INTELLIGENT STRUCTURES

Edited by

K. P. THONG, S.C. LIU
National Science Foundation, USA
and
J. C. LI
National Central University, Taiwan

ELSEVIER APPLIED SCIENCE LONDON and NEW YORK

PARALLEL COMPUTATIONS AND CONTROL OF ADAPTIVE STRUCTURES

K. C. Park and Kenneth Alvin
Department of Aerospace Engineering Sciences and
Center for Space Structures and Controls
University of Colorado, Campus Box 429
Boulder, Colorado 80309
and
W. K. Belvin
Spacecraft Dynamics Branch
NASA/Langley Research Center
Hampton, VA 23665

Abstract

The equations of motion for structures with adaptive elements for vibration control are presented for parallel computations to be used as a software package for real-time control of flexible space structures. A brief introduction of the state-of-th --art parallel computational capability is also presented. Time marching strategies are developed for an effective use of massive parallel mapping, partitioning and the necessary arithmetic operations. An example is offered for the simulation of control-structure interaction on a parallel computer and the impact of the approach presented herein for applications in other disciplines than aerospace industry is assessed.

1. Introduction

Active suppression of structural vibrations or active control of flexible structures has made considerable progress in recent years. As a result, it is now possible to actively suppress vibrations in mechanical systems emanating from machine foundations, in robotic manufacturing arms, truss-space structures and auromobile suspension systems. A common characteristic to these applications of active control theory has been its discrete actuators and discrete sensors, ranging from proof mass actuators and gyro
dampers to strain gages and accelerometers. Because most available discrete actuators are inertia force-oriented devices, actuation often triggers coupling between the actuator dynamics and structural transients. A practical consequence of such coupling is a limitation of achievable final residual vibration level if both the actuator and structure possess insufficient passive damping level. It is noted that structures made of high stiffness composite materials have very low intrinsic damping, hence limiting the achievable residual vibration level for space maneuvering and space disturbance rejection purposes. This has been a motivating factor for the development of distributed actuators and sensors which are often embedded as an integral part of the structure so that control force can be effectively maintained by strain actuation, thus alleviating the undesirable actuator dynamics associated with inertia-force actuation.

Various activities that are being pursued by many investigators on the subject of adaptive structures may be categorized into three major thrusts: device developments, control laws synthesis and experimental demonstrations, and hardware/software implementation. The device developments effort has been the objective of many material scientists [1-3]. As the applications needs increase it is expected that functionally more reliable electrostrictive and magnetostrictive elements will be available for use in active control/strain damping with improved product quality.

The study of control laws synthesis and demonstration employing adaptive elements has been one of the predominant activities in recent years. As scientists accumulate experience in the characterization of the coupling between the structure and the adaptive element, the applications will then be expanded from the current bearnlike structures to the truss long beams, plates and shells. In order to effectively utilize as many adaptive elements as necessary for actively controlling the vibration of such large-scale structures in real-time operations, it will be imperative that the software/hardware components in the real-time control loop must be able to process data fast enough so that control commands and the measurements can be carried without saturating and/or jamming the control system.

With the advent of new technology in distributed actuators and sensors [4-9], it appears that a combination of decentralized/distributed and hierarchical control strategies can be a viable alternative to conventional centralized control strategies. The real-time computer control of such systems as well as design of such control systems through iterating on simulations and hardware realizations thus will require the processing of a vast amount of data from and to the distributed actuators and sensors. A significant part of such data processing for the decentralized actuators and sensors is planned to be self-managed, viz., there will be embedded microprocessors for each actuator and sensor pair or for each group of them. However, the necessary links between the decentralized control systems and the global control system as well as the necessary global control strategy will still require computational power far in excess of presently available realtime data processing capability. In addition, if one contemplates the performance of neural-network control or adaptive control for onboard real-time control of large-scale. space structures, the computational need will dramatically increase beyond the current capability. As a case in point, even for the control of 20 -bay truss beam vibrations by
three proof mass actuators and six sensors, NASA/Langley is relying on CRAY-XMP for adequate real-time data processing requirements.

The objective of this paper is thus to present a computational framework by which one can bring the two emerging new technologies together, namely, the distributed actuators and sensors and the parallel computing capability, toward the real-time control of vibrations in large structural systems such as space stations, space cranes and in-space construction facilities. We will then discuss the potential for applying such a space technology to mitigate and/or minimize the earthquake damage of ground structures such as high-rise buildings, bridges and lifeline equipment.

2. Models for Structures with Embedded Actuators and Sensors

The coupling between the structural behavior and an adaptive electrostrictive element, whether it is embedded or surface-mounted, is primarily due to the following constitutive relation [3,10-12]:

$$
\left\{\begin{array}{l}
\mathrm{e} \tag{1}\\
\sigma
\end{array}\right\}=\left[\begin{array}{cc}
\varepsilon & g \\
-g^{T} & c
\end{array}\right]\left\{\begin{array}{l}
\mathrm{v} \\
\dot{\epsilon}
\end{array}\right\}
$$

where e and v are the electrical displacement (charges/unit aren) and the electric field (volt/unit area), σ and ϵ are the stress and strain, and ε, g and c are the constitutive coefficient matrices, respectively. For magnetostrictive elements, one needs to replace e and v by the magnetic field (H) and the magnetic induction (B), respectively, and the subsequent derivations will hold without any loss of generality.

The coupled equations of motion for the structure and the adaptive elements can proceed by augmenting the standard procedure for the structure with the electric transient equations plus the appropriate modification of the structural equilibrium equations that reflect the coupled constitutive equations (1). The resulting coupled structural-piezoelectric equations of motion take the following form (13-15]:

| Structure: | a) | $\mathbf{M} \ddot{q}+\mathrm{D} \dot{\mathbf{q}}+\left(\mathrm{K},+\mathrm{K}_{\mathbf{a}}\right) \mathbf{q}=\mathbf{f}+\mathbf{S a}$ |
| :---: | :---: | :---: |
| | | $\mathbf{q}(0)=\mathbf{q}_{0}, \quad \dot{\mathbf{q}}(0)=\dot{\mathbf{q}}_{0}$ |
| Sensor Output: | b) | $\mathrm{y}=\mathrm{H}_{p} \mathrm{q}+\mathrm{H}_{r} \dot{\mathrm{q}}+\mathrm{H}_{\mathrm{a}} \mathrm{a}$ |
| Actuator: | c) | $\dot{a}+\Theta a=B_{a} u-\bar{S}^{T}\left\{\begin{array}{l} q \tag{2}\\ \dot{q} \end{array}\right\}$ |
| Controller: | d) | $\dot{\mathrm{u}}+\mathrm{Gu}=\mathrm{Ly}$ |

where

$$
a=\left\{\begin{array}{l}
e \\
v
\end{array}\right\}, \quad u=\left\{\begin{array}{l}
I_{0} \\
V_{0}
\end{array}\right\}
$$

In the preceding equations, M is the mass matrix, D is the damping matrix, K, is the stiffness matrix due to structural strain-displacement relations and K_{a} is the stiffness matrix due to the strain actuation. $f(t)$ is the applied force. S is the actuator projection matrix. H_{p}, H_{r} and H_{a} are the sensor calibration gain matrices, Θ is the actuator dynamic characteristics, B_{a} is the gain matrix that translates the applied current/charge and voltage into the corresponding strain and strain rate where $\tilde{\mathbf{S}}$ is the transducer conversion gain. q is the generalized displacement vector and and the superscript dot denotes time differentiation, and u is the control law that consists of the applied current (or charge), I_{0}, and voltage across the electrostrictive devices, V_{0}, G is the electric circuit characteristics, and L is the optimum direct feedback gain matrix. The case of dynamic compensations can be augmented to (2) by introducing an observer. But in subsequent discussions we limit ourselves to direct feedback cases only.

It is noted that the control laws, unlike conventional control-structure interaction systems, are not directly fed back into the structural equations. Instead, the controller is simply a regulator controlling the electric charge, the voltage or the current. These regulated electric quantities are then fed into the piezoelectric sensors and actuators. Hence, it is the piezoelectric actuation that triggers feedback into the structures.

3. Parallel Computations for the Dynamics of Adaptive Structures

The earliest recorded computational results in mechanics were the parabolic trajectory calculations of a falling body by Galieo [16]. Since then, most scientific computations have been carried out by anthropomorphic algorithms, viz.. step-by-step binary and/or decimal arithmetics. To set the stage properly for the present objective, parallel computations of the dynamic response of structures with distributed adaptive elements, we recall a passage by Kepler to John Napier, the inventor of a logarithmic table:

> Newton was essentially dependent upon the results of Kepler's calculations, and these calculations might not have been completed but for the aid of that logarithms afforded. Without the logarithms, ..., the development of modern science might have been very different [17].

In terms of the present day data processing requirement, Napier's logarithmic table in 1614 contained about 100 kilobytes, which was perhaps the most important computational aid to Kepler and Newton. Three and one-balf centuries later we are witnessing gigabytes of tables being stored and retrieved at our disposal [18]. But these tables complement the weakness of the human mind and computational speed: long term memory and human arithmetic speed. In addition, for problems requiring a sequential nature of computations, i.e., ballistic trajectories which deal only with the position and velocity of a single shell or quasi-static equilibrium equations of a building structure, the computing activities do not interact with "time" and the computing efficiency affects only the humanpower efficiency for completing the computational task.

There are many important scientific and engineering endeavors whose computations must be fast enough for real-time delivery of the computed results. A classical example was Richardson's lattice model for weather prediction by numerical process in 1922 [19]. The motivation for adopting such a lattice concept was due to the fact that the equation state at each lattice node takes on a different value set in time and an efficient way of interchanging and transmitting the nodal values at each time step was mandatory if the computations were to be carried out in real-time to predict the weather. Indeed, this was the dawn of the parallel computing era, even though the basic idea had to wait for its validity for 60 years. Today, many controls engineering activities have been implemented by using computers so that their intended functions can be monitored and controlled in real-time. These include chemical processing, autopiloting and vibration control of simple structures. It is important to note that the computational framework employed for such applications is based on sequential architecture. Hence, we believe that future improvements that can deal with large parameter models and large parameter controls must adopt a parallel computational framework. One such area is the dynamics and control of large structures with distributed/embedded adaptive elements.

In order to carry out the necessary parallel computations, there are three distinct steps that must be addressed: discretizing the structure into appropriate partitions, mapping the physical partitions onto the processors, and step advancing of the equation states. These will be discussed below.

3.1 Partitioning and Mapping of Adaptive Structures

Ideally, if the sensor and actuator leads fall on the discrete nodes, no spatial interpolation would be necessary. However, such a situation is either difficult to realize or may prohibit the use of spatially convolving sensors [20] that are known to filter certain harmonic signals for minimizing phase lag in the feedback loop: Hence, we will assume that the sensor and actuator characteristics can be interpolated to the discrete nodes; in this way the partition boundaries can be chosea arbitrarily regardless of the physical locations of the sensor and actuator leads. In addition, this approach can lead to a natural embedding of the sensor and actuator characteristics into the finite element or boundary integral structural models. Once the partitioning is accomplished. the next step is to map the discrete partitions for adaptive elements onto the corresponding multiprocessors.

Consider an adaptive structure that has been modeled as a set of discrete elements as shown in Fig. 1. In a sequential computing environment, in order to advance the necessary computations for the present states, the arithmetic operations are carried out step-by-step for each node at a time. Hence, each nodal-state computations is performed in a manner similar to one courier delivering and picking up all the mails throughout the entire routes. In a parallel computational environment, in contrast, there can be as many couriers as necessary who comb through the routes concurrently in order to pick up and deliver all the mail at once. One of the most popular concepts in executing such tasks is the hypercube architecture (see Fig. 2) whose every node

Fig. 1 Discrete Model of Adoptive Structures

Fig. 2 Hypercube Interconnection Network of a
32-Processor
(each node represents a processor)
is associated with a processor. Thus, to process the necessary computations for an adaptive structure with 19 partitions, one can assign the 19 adaptive elements to 19 processors as shown in Fig. 3. The procedure for assigning the physical domain (elements) to the parallel processors with minimal interprocessor communications is called mapping.

Of several techniques available for the processor mapping of the computational domains [22], we will adopt a heuristic mapper developed by Farhat [23] since it can accommodate both the synchronous and asynchronous cases with robust and acceptable complexities. An application of this mapping technique for modeling a bulkhead substructure for massively parallel computing is shown in Fig. 4. A similar mapping can be used for parallel computations of adaptive structures.

3.2 Parallel Data Structure and Algorithms

We will assume that each processor is assigned to carry out all the necessary computations for at least one set of a sensor, an actuator, and a controller or a group of them. Therefore, the word partition does not necessarily imply a finite element: it can be a substructure, an element or even a sublayer within the composite layer that includes a sensor or an actuator. In carrying out the step-advancing in time, one may invoke an implicit or explicit direct time integration algorithm. When an implicit algorithm is employed, one needs to communicate not only the state rariable vectors but also the associated matrices, i.e., the stiffness matrix, among the processors. Although we will show our results using implicit algorithms, we will, for illustrative purposes. restrict ourselves to an explicit direct time integration algorithm as it is intrinsically parallel and and the data structure aspects can be explained more succinctly via an explicit algorithm. It should, however, be mentioned that the choice of the solution algorithm can greatly influence the design and implementation of the necessary mapping and data structure.

Consider the explicit integration of the equations of motion for the structure (2a) as recalled here:

$$
\begin{equation*}
M \bar{q}+f_{i n t}=f+f_{c o n t} \tag{3}
\end{equation*}
$$

where $f_{i n t}$ and $f_{\text {cont }}$ are the internal and applied control forces, respectively, given by

$$
\begin{gathered}
\mathbf{f}_{\mathrm{int}}=\mathrm{D} \dot{\mathbf{q}}+\left(\mathrm{K}_{\mathbf{g}}+\mathrm{K}_{\mathbf{a}}\right) \mathbf{q} \\
\mathbf{f}_{\text {cont }}=\mathbf{S} \mathbf{a}
\end{gathered}
$$

The use of the central difference algorithm to integrate (3) leads to the following difference equations in time

$$
\left\{\begin{array}{l}
\dot{\mathrm{q}}^{n+\frac{1}{2}}=\dot{\mathrm{q}}^{n-\frac{1}{2}}+h \mathrm{M}^{-1}\left(\mathrm{f}^{n}+\mathrm{f}_{c o n t}^{n}-\mathrm{f}_{i n t}^{n}\right) \tag{4}\\
\mathrm{q}^{n+1}=\mathrm{q}^{n}+h \dot{\mathrm{q}}^{n+\frac{1}{2}}
\end{array}\right.
$$

(Physical Domain)

Fig. 3 Physical Domain and Its Mapping Onto Hypercube Processors

Fig. 4 Decomposition of the Structure with
"Finite Element Chips"

Fig. 5 Partitioning and Commmication
Requirement

4. Implementation and Illustrative Example

The mapping, partitioning and data structures above discussed have been implemented based on a shared-memory concurrent machine (Alliant FX/8) by modifying the software framework developed for finite element computations [26] and the controlstructure interaction simulation and design software developed in [27, 28]. At present the following specialized systems of equations are implemented:
where

$$
x=\left\{\begin{array}{l}
q \\
\dot{q}
\end{array}\right\}, \quad \bar{x}=\left\{\begin{array}{l}
\bar{q} \\
\dot{q}
\end{array}\right\}
$$

and

$$
\mathrm{H}=\left[\begin{array}{ll}
\mathrm{H}_{d} & \mathrm{H}_{v}
\end{array}\right], \quad \mathrm{L}=\left[\begin{array}{l}
\mathrm{L}_{1} \\
\mathrm{~L}_{2}
\end{array}\right], \quad \mathrm{F}=\left[\begin{array}{ll}
\mathrm{F}_{1} & \mathrm{~F}_{2}
\end{array}\right]
$$

It is noted that in the above implemented equations, we have merged the actuator and the control law equations into one by neglecting the actuator and control law dynamics. Instead. we have introduced an estimator equation as we do not have all the measurements needed for complete feedback. In the above equations, \mathbf{B} and 3 represent the input influence matrix for actuator locations whereas G and \bar{G} represent the disturbance locations. The vector q is the generalized displacement, w is a disturbance vector and the vector m is measurement noise. In Eq. (6b); z is the measured sensor output. The matrix H_{d} is the matrix of displacement sensor locations and $\mathrm{H}_{\boldsymbol{v}}$ is the matrix of velocity sensor locations. The state estimator in Eq. (6c) may or may not be model based. The superscript " and denote the estimated states and time differentiation respectively. The input command, \mathbf{u}, is a function of the state estimator variables, \bar{q} and $\dot{\mathbf{q}}$, and F_{1} and F_{2} are control gains. The observer is governed by \mathbf{A}, the state matrix representing the plant dynamics, and L , the filter gain matrix.

The software thus implemented was used to test its applicability to solve the control-structure interaction design of a model Earth Pointing Satellite (EPS), shown in Fig. 6, which is a derivative of a geostationary platform proposed for the study of Earth Observation Sciences. Two flexible antennas are attached to a truss bus. Typical missions involve pointing one antenna to earth, while tracking or scaining with

Fig. 6 Earth Pointing Satellite Structure

PRECEDING PAGE BLANK NOT FILMED

| Table 1. EPS Vibration Frequencies (Hzo) | |
| :--- | :---: |
| Mode No. | Frequency |
| $(1-6)$ | 0.000 |
| (7) | 0.242 |
| (8) | 0.406 |
| (9) | 0.565 |
| (10) | 0.656 |
| $(11,12)$ | 0.888 |
| (13) | 1.438 |
| (14) | 1.536 |
| $(15,16)$ | 1.776 |
| $(17,18)$ | 3.026 |
| (19) | 3.513 |
| (20) | 3.531 |

A small disturbance force was applied to the nominal EPS system in the form of a reboost maneuver. The force acted at the center of gravity in the Y -axis direction for 0 seconds at a 10 N force level and from 0.1 to 0.2 seconds the force level was -10 N . The disturbance was removed after 0.2 seconds. Figure 7 shows the open-loop angular response about the X -axis of the 15 m antenna. A small amount of passive damping was assumed ($\mathrm{D}=0.0002 \mathrm{~K}$). The vibrational response produced more than 4.5μ radians of RMS pointing error due to this small reboost disturbance. Although many modes participate in the flexible body response, this particular reboost maneuver strongly excites modes near 4 Hz . The following paragraphs present an integrated control and structure design which seeks to lower the vibrational response of the EPS subject to some additional constraints. Figure 8 shows the closed-loop angular response about the X -axis of the 15 m antenna after design optimization. The pointing error is significantly reduced from that of the open-loop system shown.

5. Future Work and Discussions

The example problem analyzed in the previous section used a set of lumped actuators and localized sensors instead of distributed adaptive actuators and spatially integrated sensors. While such a model at best capture the adpative elements used by Anderson et al. [29], Matsunaga [30], and Takaiara [31], it can not simulate on a large scale the distributed usage of piezoelectric actuators and sensors proposed by de Luis [32], Rogers et al. [33], and Burk and Hubbard [34]. Our immediate future work will concentrate on the implementation of distributed adpative elements and assess their practical applicability beyond the currently reported bearn-like structural components. In this regard, we are exploring an adaptation of neural-network concepts [35] in the modeling and parallel computations of controiled structures with adaptive elements. Specifically, the limits of the applicability of distributed parameter modeling and control theory and discrete structures with discrete actuators and sensors, and their cross-over

Fig. 7 Open-Loop Response of EPS Structure

Fig. 8 Closed-Loop Response of Structure EPS
performance must be investigated. Design, modeling, simulation and testing criteria from such studies will provide greater insight into the eventual adoptions of adaptive structures as viable choice for future space systems design alternatives.

The real-time simulation procedures presented herein may be applicable to the vibration control of lifeline equipment, and secondarily in minimizing the damage of buildings during earthquakes. In this applications, the sensor measurements used herein can be directly applicable to the vibration and earthquake-causing forces on the structures. An idea that may prove to be crucial in this case is the use of earthquake-generated natural force as vibration minimization actuatori forces. In other words, instead of trying to mitigate the earthquake-generating forces, exploit the natural forces instantly to activate certain vibration minimizing devices! Research along this line may in the end lead to the design of actuators attachable to the columas and floors, if properly triggered during earthquakes, can minimize damages based on the natural forces.

Acknowledgements

It is pleasure to acknowledge the support from NASA/Langley Research Center under Grant NAG-1-1021 and by Air Force Office of Scientific Research under Grant F49620-87-C-0074. We thank Dr. Spencer Wu of AFOSR and Dr. Ernst Armstrong of NASA/Langley Research Center for their encouragement during the course of this study. We thank Prof. Charbel Farhat for his assistance in data structures and implementation aspects employed in the present study.

References

1. Jaffe, B., Cook, W. and Jaffe, H., Piezoelectric Ceramics, Academic Press, London and New York, 1971.
2. Zelenka, J., Piezoelectric Resonators and Their Application s, Elsevier Science Publishing Co., Inc., New York, 1986.
3. Cross, L.E., Piezoelectric and electrostrictive sensors and actuators for adaptive structures and smart materials. In Adoptive Structures, ed. B.K. Wada, ASME, AD-Vol. 15, New York, 1989, pp. 9-17.
4. Forward, R.L., Electronic damping of vibrations in optical structures. Journal of Applied Optics, 1979, 18 (5), 690-697.
5. Crawley, E.F. and de Luis, J., Use of piezoelectric actuators as elements of intelligent structures. AIAA Journal, 1987, 25, (10), 1373-1385.
6. Bailey, T. and Hubbard, J.E., Distributed piezoelectric polymer active vibration control of a cantilever beam. Journal of Guidance, Control, and Dynamics, 1985, 8, (5).
7. Hanagud, S., Obal, M.W. and Calise, A.J., Optimal vibration control by the use of piezoceramic sensors and actuators, ALAA Paper No. 87-0959, presented at the 28th ALAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, Monteray, CA, April 1987, pp. 987-997.
8. Lee, C.K., Chiang, W.W., and O'Sullivan, T.C., Piezoelectric modal sensors and actuators achieving critical damping on a cantilevered plate. Proc. the 30th ALAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conf., AIAA, Washington D.C., 1989, pp. 2018-2026.
9. Baz, A. and Poh, S., Performance of an active control system with piezoelectric actuators. Journal of Sound and Vibration, 1988, 126, (2), 327-343.
10. Newnham, R.E., Skinner, D.P. and Cross, L.E., Connectivity and piezoelectricpyroelectric composites. Mat. Res. Ball., 1978, 13. 525.
11. Lee, C.K., Piezoelectric laminates for torsional and bending modal control: theory and experiment. Ph.D. Thesis, Cornell University, Ithica NY, 1987.
12. de Luis, J., Crawley, E.F. and Hall, S.R., Design and implementation of optimal controllers for intelligent structures using infinite order structural models. Report No. 3-89, Space Systems Laboratory, M.I.T., Cambridge, MA, 1989.
13. Tzou, H.S. and Tseng, C.I., Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: a finite element approach. Journal of Sound and Vibration 1990, 137, (1).
14. Nailon, M., Coursant, R.H. and Besnier, F., Analysis of piezoelectric structures by a finite element method. ACTA Electronica, 1983, 25, (4), 341-362.
15. Hagood, N. and von Flotow, A.; Modelling of piezoelectric actuator dynamics for active structural control. ALAA Paper No. 90-1087, Proceedings of the 31st ALAA/ASME/ASCE/AHS/ASC Siructures, Structural Dynamics and Materials Conference, Long Beach, CA, April 1990, pp. 2242-2256.
16. Galileo, G., Two Neí Sciences, Dover Publication, New York, 1954, pp. 284-2SS.
17. Napier, M., Memoirs of John Napier of Merchiston, William Blackwood, Edinburgh, 1834, p. 501.
18. Anonymous, Mathematica, Wolfram Research, Inc., 1989.
19. Richardson, L. F., Weather Prediciton by Numerical Process, Dover, New York. 1922, p. 219.
20. Miller, D., Collins, S. and Peltzman, S., Development of spatially convolving sensors for structural control applications. AIAA Paper No. 90-1127, Proceedings of the 31st ALAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Long Beach, CA, April 1990, pp. 2283-2297.
21. Noor, A.K., Parallel processing in finite element structural analysis. In Parallel Computations and Their Impact on Mechanics, ed. A.K. Noor, American Society of Mechanical Engineers, New York, 1987, pp. 253-277.
22. Bokhari, S.H., On the mapping problem. IEEE Transactions on Computers, 1981, C-30, (3), 207-214.
23. Farhat, C., "On the mapping of massively parallel processors onto finite element graphs," Computers \& Structures, Vol 32, No. 2, 347-354 (1989).
24. Farhat, C., Felippa, C.A. and Park, K.C., "Implementation Aspects of Concurrent Finite Element Computations," in Parallel Computations and Their Impact on Mechanics, American Society of Mechanical Engineers, New York, 1987, pp. 310316.
25. Farhat, C., Sobh, N. and Park, K.C., "Transient Finite Element Computations on 65,536 Processors: The Connection Machine," Report No. CU-CSSC-89-01, Center for Space Structures and Controls, University of Colorado, February 1989, to appear in International Journal on Numerical Methods in Engineering, 1990.
26. Farhat, C., A simple and efficient automatic finite element decomposer.Computers \& Structures, 1988, 28.
27. Park, K. C. and Belvin, W. K., "A Partitioned Solution Procedure for ControlStructure Interaction Simulations," to appear in J. Guidance, Control and Dynamics, 1990.
28. Belvin, W. K. and Park, K. C., "Computer Implementation of Analysis and Optimization Procedures for Control-Structure Interaction Problems," Proc. the 1990 ALAA Dynamics Spacialist Conference, Paper No. AIA.A-90-1194, Long Beach, Calif., 5-6 April 1990.
29. Anderson, E., Moore, D., Fanson. J.' and Ealey, M., Development of an active member using piezoelectric and electrostrictive actuation for control of precision structures. ALAA Paper No. 90-1085, Proc. of the 31st ALAA/ASME/ASCE /AHS/ASC Structures, Structural Dynamics and Materials Conference, Long Beach, CA, April 1990, pp. 2221-2233.
30. Matsunaga, S. Miura, K. and Natori, M., A construction concept of large space structures using intelligent/adaptive structures. ALAA Paper No. 90-1128, Proceedings of the 31st ALAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Long Beach, CA, April 1990, pp. 2208-2305.
31. Takahara, K, Kuwao, Shigeshara, M. Katoh, T., Motohashi, S.and Natori, M., Piezo linear actuators for adaptive truss structures. In Adaptive Structures, ed. B.K. Wada, ASME, 1989, pp. 83-38.
32. de Luis, J. and Crâwley, E., Experimental results of active control on a prototype intelligent structure. AIAA Paper No. 90-1163, Proceedings of the 31st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dyamics and Materials Conference, Long Beach, CA, April 1990, pp. 2340-2350.
33. Rogers, C. and Ramaseshan, A., Investigation of embedded actuators using generalized laminated plate theory. ALAA Paper No. 90-1168, Proceedings of the 31st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Long Beach, CA, April 1990.
34. Burke, S. and Hubbard, J.E., Active vibration control of a simply-supported beam using a spatially distributed actuator. IEEE Control Systems Magazine, August 1987, 7, (6), 25-30.
35. Arbib, M.A., Brains; Machines, and Mathematics, 2nd Edition, Springer-Verlag, 1987.

[^0]: + An earlier version of the present paper without numerical experiments was presented at the AIAA Guidance and Control Conference, Portaland, Ore., 20-22 August 1990, Paper No. AIAA 90-3387.
 ${ }^{1}$ Professor of Aerospace Engineering, University of Colorado. Associate Fellow of AIAA.
 ${ }^{2}$ Graduate Research Assistant ${ }^{3}$ Structural Dynamics Division, NASA Langley Research Center. Member AIAA.

