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Abstract

A general form for the first-order representation of the continuous, second-order linear
structural dynamics equations is introduced in order to derive a corresponding form of
first-order continuous Kalman filtering equations. Time integration of the resulting first-
order Kalman filtering equations is carried out via a set of linear multistep integration
formulas. It is shown that a judicious combined selection of computational paths and the
undetermined matrices introduced in the general form of the first-order linear structural
systems leads to a class of second-order discrete Kalman filtering equations involving only
symmetric, sparse N x JV solution matrices. The present integration procedure thus over-
comes the difficulty in resolving the difference between the time derivative of the estimated
displacement vector (jji) and the estimated velocity vector (x) that are encountered when
one attempts first to eliminate (x) in order to form an equivalent set of second-order fil-
tering equations in terms of (-fix). A partitioned solution procedure is then employed to
exploit matrix symmetry and sparsity of the original second-order structural systems, thus
realizing substantial computational simplicity heretofore thought difficult to achieve.

+ An earlier version of the present paper without numerical experiments was presented at
the AIAA Guidance and Control Conference, Portaland, Ore., 20-22 August 1990, Paper
No. AIAA 90-3387.
1 Professor of Aerospace Engineering, University of Colorado. Associate Fellow of AIAA.
2 Graduate Research Assistant 3 Structural Dynamics Division, NASA Langley Research
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Introduction

Current practice in the design, modeling and analysis of flexible large space structures
is by and large based on the finite element method and the associated software. The
resulting discrete equations of motion for structures, both in terms of physical coordi-
nates and of modal coordinates, are expressed in a second-order form. As a result, the
structural engineering community has been investing a considerable amount of research
and development resources to develop computer-oriented discrete modeling tools, analysis
methods and interface capabilities with design synthesis procedures; all of these exploiting
the characteristics, of second-order models.

On the other hand, modern linear control theory has its roots firmly in a first-order form
of the governing differential equations, e.g., (Kwakernaak and Sivan, 1972). Thus, several
investigators have addressed the issues of interfacing second-order structural systems and
control theory based on the first-order form (Hughes and Skelton, 1980; Arnold and Laub,
1984; Bender and Laub, 1985; Oshman, Inman and Laub, 1987; Belvin and Park, 1989,,
1990). As a result of these studies, it has become straightforward for one to synthesize
non-observer based control laws within the framework of a first-order control theory and
then to recast the resulting control laws in terms of the second-order structural systems.

Unfortunately, controllers based on a first-order observer are difficult to express in a pure
second-order form because the first-order observer implicitly incorporates an additional
filter equation (Belvin and Park, 1989). However a recent work (Juang and Maghami, 1990)
has enabled the first-order observer gain matrices to be synthesized using only second-order
equations. To complement the second-order gain synthesis, the objective of the present
paper is to develop a second-order based simulation procedure for first-order obsen 3rs.
The particular class of first-order observers chosen for study are the Kalman Filter based
state estimators as applied to second-order structural systems. The procedure permits
simulation of first-order observers with nearly the same solution procedure used for treating
the structural dynamics equation. Hence, the reduced size of system matrices and the
computational techniques that are tailored to sparse second-order structural systems may
be employed. As will be shown, the procedure hinges on discrete time integration formulas
to effectively reduce the continuous time Kalman Filter to a set of second-order difference
equations.

The paper first reviews of the conventional first-order representation of the continuous
second-order structural equations of motion. An examination of the corresponding first-
order Kalman filtering equations indicates that, due to the difference in the derivative of
the estimated displacement (j^x) and the estimated velocity (x), transformation of the
first-order observer into an equivalent second-order observer requires the time derivative
of measurement data, a process not recommended for practical implementation.



Next, a transformation via a generalized momentum is introduced to recast the structural
equations of motion in a general first-order setting. It is shown that discrete time numerical
integration followed by reduction of the resulting difference equations circumvents the need
for the time derivative of measurements to solve Kalman filtering equations in a second-
order framework. Hence, the Kalman filter equations can be solved using a second-order
solution software package.

Subsequently, computer implementation aspects of the present second-order observer are
presented. Several computational paths are discussed in the context of discrete and con-
tinuous time simulation. For continuous time simulation, an equation augmentation is
introduced to exploit the symmetry and sparcity of the attendant matrices by maintain-
ing state dependant control and observer terms on the right-hand-side (RHS) of the filter
equations. In addition, the computational efficiency of the present second order observer
as compared to the first order observer is presented.

Continuous Formulation of Observers
for Structural Systems

Linear, second-order discrete structural models can be expressed as

MX + Dx + Kx = Bu + Gw , x(0) = x0 , x(0) = x0 (1)

^_ *7 /«• *7 *i

with the associated measurements

where M, D, K are the mass damping and stiffness matrices of size (N x N); x is the
structural displacement vector, (N x 1); u is the active control force (m x 1); B is a
constant force distribution matrix (N x m); z is a set of measurements (r x 1); HI and #2
are the measurement distribution matrices (r x ./V); Z\ and Z2 are the control feedback gain
matrices (m x N); w and v are zero-mean, white Gaussian processes with their respective
covariances Q and R; and the superscript dot designates time differentiation. In the present
study, we will restrict ourselves to the case wherein Q and R are uncorrelated with each
other and the initial conditions x0 and x0 are also themselves jointly Gaussian with known
means and covariances.

The conventional representation of (1) in a first-order form is facilitated by

x\ = x

(3)
Mx2 = MX = Bu + Gw —



which, when cast in a first-order form, can be expressed as

f Eq = Fq + Bu + Gw, q = ( x i X2)T /^

where . _

It is well-known that the Kalman filtering equations (Kalman, 1961; Kahnan and Bucy,
1963) for (4) can be shown to be (Arnold and Laub, 1984):

R-*z (6)

where ' '
r/T cTi f r, 1 ( vl

- TT~ n I »•' " I " J *1 I J •*" I /T\z = z -Hq, P= \ c T \' 9 = } ~ f = } If (7)L" •" J L ^ z J L^J

in which U and L are positive definite matrices and the matrix P is determined by the
Riccati equation (Kwakernaak and Sivan, 1972; Arnold and Laub, 1984)

EPET = FPET + EPFT - EPHTR~l HPET + GQGT (8)

The inherent difficulty of reducing the first-order Kalman filtering equations given by (6)
to second order form can be appreciated if one attempts to write (6) in a form introduced
in (3):

a) x\ = x
b) x2 = x = Xi — LIZ (9)
c) Mx2 = —Dx2 — Kxi + Bu + ML2z

where
T / IT TT _i_ IT o^T p—1 r / IT cT _i tr r \T p—1Li\ — {tl\U T a.2J) ft , A/2 — ̂ -"l^ ~r O-'i'-i) •ft

Note from (9b) that x2 ^ x\. In other words, the time derivative of the estimated dis-
placement (x) is not the same as the estimated velocity (x); hence, Xi and x2 must be
treated as two independent variables, an important observation somehow overlooked in
Hashemipour and Laub (1988).

Of course, although not practical, one can eliminate x2 from (9). Assuming Xi and x2 are
differentiate, differentiate (9b) and multiply both sides by M to obtain

(10)



Substituting Afxa from (9c) and x-i from (9b) in (10) yields

Mxi = -D(x ! - LIZ) - Kxi +Bu + ML-iZ + MLiI (11)

which, upon rearrangements, becomes

' (12)

There are two difficulties with the above second-order observer. First, the numerical
solution of (12) involves the computation of x\ when rate measurements are made. The
accuracy of this computation is in general very susceptible to errors caused in numerical

• • •

differentiation of x\. Second, and most important, the numerical evaluation of z that
is required in (12) assumes that the derivative of measurement information is available
which should be avoided in practice. We now present a computational procedure that
circumvents the need for computing measurement derivatives and that- enables one to
construct observers based on the second-order models.

Second-Order Transformation of
Continuous Kalman Filtering Equations

This section presents a transformation of the continuous time first-order Kalman filter to
a discrete time set of second-order difference equations for digital implementation. The
procedure avoids the need for measurement derivative information. In addition, the spar-
sity and symmetry of the original mass, damping and stiffness matrices can be maintained.
Prior to describing the numerical integration procedure, a transformation based on gener-
alized momenta is presented which is later used to improve computational efficiency of the
equation solution.

Generalized Momenta

Instead of the conventional transformation (3) of the second-order structural system (1)
into a first-order form, let us consider the following generalized momenta (Jensen, 1974;
Felippa and Park, 1978):

( a) xi = x
6) X2 = AMii + Cx\

where A and C are constant matrices to be determined. Time differentiation of (13b)
yields

x2 = AM£i + Cxi (14)



Substituting (1) via (13a) into (14), one obtains

x2 = A(Bu + Gw) - (AD - Cfa - AKXl (15)

Finally, pairing of (13b) and (15) gives the following first-order form:

r AM o i f * ! re -m*!l =
[AD-C / J \ x 2 / + [AK- O ] \ x 2 /

+ Gu,)] (16)

The associated Kalman filtering equation can be shown to be of the following form:

o rr AM o i f i i i re: -m*ii
[AD-C I \ \ x - i } ^ [ A K O j \ x 2 j

r AM oi \LI
[AD-C i\ [L2

where

and HI and HZ correspond to a modified form of measurements expressed as

z = HIX + H2x = H1xl + H2x2 (18)

where

Clearly, as in the conventional first-order form (9), Xi and x2 in (17) are now two inde-
pendent variables. Specifically, the case of A = M~l and C = 0 corresponds to (3) with
x2 = x\. However, as we shall see below, the Kalman filtering equations based on the
generalized momenta (13) offer several computational advantages over (3).

Numerical Integration

At this juncture it is noted that in the previous section one first performs the elimination
of xi in order to obtain a second-order observer, then performs the numerical solution
of the resulting second-order observer. This approach has the disadvantage of having to
deal with the time derivative of measurement data. To avoid this, we will first integrate
numerically the associated Kalman filtering equation (17).



The direct time integration formula we propose to employ is a mid-point version of the
trapezoidal rule:

n+l/2 f * N n f I % n+1/2

a
X2

n+1/2 r . x n

r . \ n + l 2 f * N n

) I?1} =(?')
\ X 2 J \ X 2 J

(
. N n+1 /• . i2} =*{*;}

where the superscript n denotes the discrete time interval tn = nh, h is the time increment
and 6 = h/2.

Time discretization of (17) by (19a) at the n -f 1/2 time step yields

r AM 01 fa

2
re+1/2J

AM 01 r^ll-n+1/2 , cf 0

-C / i 2 + 6

The above difference equations require the solution of matrix equations of 2N variables,
namely, in terms of the two variables x2 ' and x" ' , each with a size of N. To
reduce the above coupled equations of order IN into the corresponding ones of order N,
we proceed in the following way by exploiting the nature of parametric matrices of A and
C as introduced in (13). To this end, we write out (20) as two coupled difference equations
as follows:

- x?)

(21)

/ ' / in r'V-t"*1/2 Z . n \ , ( z n + l l l zn\ , C A T f z n + l / Z{ALf — GJ^Xj —Xj ) -f- ̂ X2 — X2 J T 0,/Ln. Xj

— Xf A n f\T ^ n+ 1 / 2_l_Xf =«+l/2 • c A T>.,n+l/2 /oo^— v\J\JJ ~" \*/ \lj\Z ~T" t/X>2* ~t~ OflJJU \^£i&j

Multiplying (22) by 8 and adding the resulting equation to (21) yields

A(M + SD + 62K)x"+1/* = (AM + 6(AD - C))x? + 8x%

+{SAMLl + 62(AD - C)Li + 82L2}zn+1/2 + 62ABun+1/2 (23)

Of several possible choices for matrices A and B, we will examine

r a) A = J, C = D
\ 6) A = M- J , C = 0 W



The choice of (24a) reduces (23) to:

(M + 6D + 82K)x"+l/* = MX? + 6x% + *2#u

+S{MLl + SL2}zn+l^ (25)

so that once x"+1'2 is computed, x£+1'2 *s obtained from (22) rewritten as

x£+1/2 = x» + 6gn - 6Kx^+l/2 (26)

where
gn = Bun+lf2 + L2z

n+1/2 (27)

which is already computed in order to construct the right-hand side of (25). Hence,
Kx"+l'2 is the only additional computation needed to obtain x£+1'2. It is noted that
neither any numerical differentiation nor matrix inversion is required in computing z£ .
This has been achieved through the introduction of the general transformation (13) and
the particular choice of the parameter matrices given by (24a).

On the other hand, if one chooses the conventional representation (24b), the solution of
is obtained from (23)

(M + 6D + 82K)x"+l/2 = (M + 6D)xl +

+6{(M + 8D)Ll+6ML2}zn+1'2 + 6?Bun+1/2 (28)

Once x*+1' is obtained, x£+1'2 can be computed either by

(29)

which is not accurate due to the numerical differentiation to obtain xl , or by (22)

x? + 8gn -

M-lD(x"+1/2 - x?) + SM^DL^z^1'2 (30)

which involves two additional matrix- vector multiplications, when D ^ 0, as compared
with the choice of A = I and C = D. Thus (24a) is the preferred representation in a
first-order form of the second-order structural dynamics equations (1) and is used in the
remainder of this work.

8



Decoupling Of Difference Equations

We have seen in the previous section, instead of solving the first-order Kalman filtering
equations of 2n variables for the structural dynamics systems (1), the solution of the im-
plicit time-discrete observer equation (25) of n variables can potentially offer a substantial
computational saving by exploiting the reduced size and sparsity of M, D and K. This
assumes that £n+1/2 and u""1"1/2 are available, which is not the~case since at the ntk time
step

un+i/2 = .^y+i/a _ z^1/2 (31)

(32)

requires both x™ and x£ even if 2rn+1/2 is assumed to be known from measurements
or by solution of (1). Note in (32), the control gain matrices are transformed by

There are two distinct approaches to uncouple (25) and (26) as described in the following
sections.

Discrete Time Update

Equations (31) and (32) can be approximated using

r +1/2 ^ zn _ Si -n _ £2in (33)

(34)

This approximation leads to a discrete time update of the control force and state correction
terms which is analogous to that which exists in experiments where a finite bandwidth of
measurement updates occurs. For discrete time approximation, the step size h = tn+l — tn

should be chosen to match the time required to acquire, process and output a control
update.

Discrete time simulation is quite simple to implement as the control force and state cor-
rections are treated with no approximation on the right-hand-side (RHS) of (25) and (26).
Should continuous time simulation be required, a different approach is necessary.

Continuous Time Update

To simulate the system given in (25) and (26) in continuous time, strictly speaking, one
must rearrange (25) and (26) so that the terms involving x"+1' and x^+l are augmented



to the left-hand-side (LHS) of the equations. However, this augmentation into the solution
matrix (M +6D+82 K) would destroy the computational advantages of the matrix sparcity
and symmetry. Thus, a partitioned solution procedure has been developed for continuous
time simulation as described in (Park and Belvin, 1991). The procedure, briefly outlined
herein, maintains the control force and state correction on the RHS of the equations as
follows.

First, x"+l/2 and x£+1/2 are predicted by
_ _

Xlp — Xl > X2p — X2

However, instead of direct substitution of the above predicted quantity to obtain Up '
and Zp+l'2 based on (31) and (32), equation augmentations are introduced to improve the
accuracy of Up+l'2 and Zp+1'2. Of several augmentation procedures that are applicable
to construct discrete filters for the computations of un+1/2 and £n+1/2

) We substitute (26)
into (31) and (32) to obtain

un+i/2 = _-

Rearranging the above coupled equations, one obtains

\(I + 6Z2B) 6Z2L2_ l/
[ 8H2B (I + SH2L^\ \zn+1/2 J

( >

which corresponds to a first order filter to reduce the errors in computing x^ — MX + Dx.
A second-order discrete filter for computing u and z can be obtained by differentiating u
and z to obtain

{
_ • _ •

ti = — Ziii -
- • ft •-z = z — H\x\ —

and then substituting x\ and x% from (17). Subsequently, (19) is applied to integrate the
equations for u and z which yields

+ SZ2B + PZiM~lB S(Z2L2 + ZiLi+ ̂  M-%) 1 / un+1/2 \ _
I + SH^ + SM~1L2) + SH2L2 \ \ zn+1/2 J ~8(H2B + 6HiM

0
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The net effects of this augmentation are to filter out the errors committed in estimating
both xi and x2. Solution of (39) for un+1/2 and zn+1/2 permits (25) and (26) to be solved
in continuous time for x"+1/2 and z£+1/2. Subsequently, (29b) is used for x^+1 and x£+1.

The preceding augmentation (39) leads to an accurate estimate of the control force and
observer error correction at the (n-f 1/2) time step. Although (39) involves the solution of
an additional algebraic equation, the equation size is relatively small ( size = number of
actuators (m) plus the number of measurements (r) ). Thus, (39) is an efficient method
for continuous time simulation of the Kalman filter equations provided the size of (39) is
significantly lower than the first order form of (4). The next section discusses the relative
efficiency of the present method and the conventional first order solution. More details on
the equation augmentation procedure (39) may be found in Park and Belvin (1991).

Finally, it is noted that by following a similar time discretization procedure adopted for
computing x" ' and x% , the structural dynamics equation (1) can be solved by

{JM T vJJ ~r v jx j'i'-i — .iMj/j T v « i > 2 ~ r v . * s u • (Af\\
n+l./2 _ n CD..H+1/2 X^71*1/2 *• '

•to *^~ 2 ""•" 0*3\Ji ~~" v4\ *vi
t>

Thus, numerical solutions of the structural dynamics equation (1) and the observer equa-
tion (20) can be carried out within the second-order solution context, thus realizing sub-
stantial computational simplicity compared with the solution of first-order systems of equa-
tions (4) and the corresponding first-order observer equations (6).

It is emphasized that the solutions of both the structural displacement x and the re-
constructed displacement x employ the same solution matrix, (M + SD + 82K). The
computational stability of the present procedure can be examined as investigated in Park
(1980) and Park and Felippa (1983, 1984). The result, when applied to the present case,
can be stated as

£2Amax < 1 (41)

where Amax is the maximum eigenvalue of

= 0 (42)

Experience has shown that |Amax| is several orders of magnitude smaller than /*max °f
the structural dynamics eigenvalue problem:

fiMy = Ky (43)

Considering that a typical explicit algorithm has its stability limit /imax • h < 2, the
maximum step size allowed by (42) is in fact several orders of magnitude larger than
allowed by any explicit algorithm.

11



Computational Efficiency

Solution of the Kalman filtering equations in second-order form is prompted by the po-
tential gain in computational efficiency due to the beneficial nature of matrix sparcity and
symmetry in the solution matrix of the second-order observer equations. There is an over-
head to be paid for the present second-order procedure, that is, the additional computations
introduced to minimize the control force and observer error terms on the right-hand-side of
the resulting discrete equations. The following paragraphs show the second-order solution
is most advantageous for observer models with sparse coefficient matrices M, D and K.

Solution of the first order Kalman filter equation (6) or the second-order form (25-26, 39)
may be performed using a time discretization as given by (19). For linear time invariant
(LTI) systems, the solution matrix is decomposed once and subsequently upper and lower
triangular system solutions are performed to compute the observer state at each time step.
Thus, the computations required at each time step result from calculation of the RHS
and subsequent triangular system solutions. For the results that follow, the number of
floating point operations per second (flops) are estimated for LTI systems of order O(N).
In addition, it is assumed that the mass, damping and stiffness matrices (M,D and K)
are symmetric and banded with bandwidth aN, where 0>< a < (0.5 — 277).

The first-order Kalman filter equation (6) requires (4JV2 -f 2Nr + O(N)) flops at each
time step. The discrete time second-order Kalman filter solution (25-26, 33-34) require
(8a2N2 +2aN2+3Nm+4Nr+O(N)) flops and the continuous time second-order Kalman
filter (25-26, 39) require (BaN2 + 2aN2 + 5JVm + 6JVr + (r + m)2 + O(N)) flops at each
time step. To examine the relative efficiency of the first-order and second-order forms,
several cases are presented as follows.

First, a worst case condition is examined whereby M, D and K are fully populated (a =
0.5 — 577) and r = m = N. For this condition, the number of flops are:

(First Order 6N2+O(N)
< Second Order Discrete ION2 + O(N)
[ Second Order Continuous 18N2 + O(N)

Thus, for non-sparse systems with large numbers of sensors and actuators relative to the
system order, the first order Kalman filter is 300 percent more efficient than the second-
order continuous Kalman filter solution presented herein.

For structural systems, M, and K are almost always banded. In addition, the number
of sensors and actuators is usually small compared to the system order N. Hence, the
value of a for which the second-order form becomes more computationally attractive than
the first order form must be determined. If the assumption is made that the number of

12



actuators (m) and the number of measurements (r) is proportional to the bandwidth (
p = m = aJV), the value of a which renders the second-order solution more efficient is
readily obtained. For the 'second-order discrete Kalmari filter, when a < 0.394 the second-
order form is more efficient. Similarly, the second-order continuous Kalman filter form is
more efficient when a < 0.279. Since a obtains values approaching 0 when a modal based
structural representation is used with few sensors and actuators, the second-order form
can be substantially more efficient than the classical first-order form. A more detailed
discussion can be found in Belvin (1989).

Implementation and Numerical Evaluations

The second-order discrete Kalman filtering equation derived in (25) and (26) have been
implemented along with the stabilized form of the controller u and the filtered measure-
ments z in such a way the observer computational module can be interfaced with the
partitioned control-structure interaction simulation package developed previously (Belvin,
1989; Belvin Park, 1991; Alvin and Park, 1991). Table 1 contrasts the present CSI simula-
tion procedure to conventional procedures. It is emphasized that the solution procedure of
the present second-order discrete Kalman filtering equations (25) and (26) follows exactly
the same steps as required in the solution of symmetric, sparse structural systems (or the
plant dynamics in the jargon of control). It is this attribute that makes the present discrete
observer attractive from the simulation viewpoint.

The first example is a truss beam shown in Fig. 1, consisting of 8 bays with nodes 1 and
2 fixed for cantilevered motions. The locations of actuator and sensor applications as well
as their directions are given in Table 2. Figures 2, 3 and 4 are the vertical displacement
histories at node 9 for open-loop, direct output feedback, and dynamically compensated
feedback cases, respectively. Note the effectiveness of the dynamically compensated feed-
back case by the present second-order discrete Kalman filtering equations as compared
with the direct output feedback cases. Figure 5 illustrates a testbed evolutionary model
of an Earth-pointing satellite. Eighteen actuators and 18 sensors are applied to the sys-
tem for vibration control and their locations are provided in Tables 3 and 4. Figures 6,
7, and 8 are a representative of the responses for open-loop, direct output feedback, and
dynamically compensated cases, respectively. Note that ux response by the dynamically
compensated case does drift away initially even though the settling time is about the same
as that by the direct output feedback case. However, the sensor output are assumed to
be noise-free in these two numerical experiemnts. Although the objective of the present
paper is to establish the computational effectiveness of the second-order discrete Kalman
filtering equations, we conjecture that for noise-contaminated sensor output for which one
would apply dynamic compensated strategies, the relative control performance may turn

13



out to be the opposite. Further simulations with the present procedure should shed light
on the performance of dynamically compensated feedback systems for large-scale systems
as they are computationally more feasible than heretofore possible.

Table 5 illustrates the computational overhead associated with the direct output feedback
vs. the use of a dynamic compensation scheme by the output present Kalman filtering
equations. In the numerical experiments reported herein, we have relied on Matlab software
package (Wolfram, 1988) for the synthesis of both the control law gains and the discrete
Kalman filter gain matrices. It is seen that the use of the present second-order discrete
Kalman filtering equations for constructing dynamically compensated control laws adds
computational overhead, only an equivalent of open-loop transient analysis of symmetric
sparse systems of order N instead of 2N x 2N dense systems.

Summary

The present paper has addressed the advantageous features of employing the same direct
time integration algorithm for solving the structural dynamics equations also to integrate
the associated continuous Kalman filtering equations. The time discretization of the re-
sulting Kalman filtering equations is further facilitated by employing a canonical first-order

form via a generalized momenta. When used in conjunction with the previously developed
stabilized form of control laws (Park and Belvin, 1991), the present procedure offers a sub-
stantial computational advantage over the solution methods based on a first-order form
when computing with large and sparse observer models.

Computational stability of the present solution method for the observer equation has been
assessed based on the stability analysis result of partitioned solution procedures (Park,
1980). To obtain a sharper estimate of the stable step size, a more rigorous computational
stability analysis is being carried out and will be reported in the future.
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f Structure: a)

Sensor Output: 6)

Estimator: c)

Control Force: <f)

. Estimation Error: e)

Mq + Dq + Kq =

q(0) = qo, q(0) =

z = Hx + v

Mq + D + Kq = f + Bu + ML27

q(0) = 0, q(0) = 0

u + F2M"1Bu =

= z - J(£ - Bu) -

Table la Partitioned Control-Structure Interaction Equations

a) x = Ax + Ef + Bu + Gwf Structure:

Sensor Output: &) z = Hx + v

Estimator: c) x = Ax + Ef

x(0) = 0

Control Force: d) u = -Fx
> Estimation Error: e) 7 = z — (H^q + H»q)

where

and

H.],

A=[-M°-'K -M'-'

Table Ib Conventional Control-Structure Interaction Equatioons
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TABLE 2a:
Actuator Placement for Truss Example Problem

Actuator

1
2
3

. 4

Node

2
18
9
9

Component

y
y
y
X

TABLE 2b:
Sensor Placement for Truss Example Problem

Sensor

1
2
3
4
5
6

Type

Rate
Rate
Rate
Rate

Position
Position

Node

2
18
9
9
9
9

Component

y
y
y
X

y
X
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TABLE 3:
Actuator Placement for EPS Example Problem

Actuator

1
2
3
4
5
6

' 7
8
9

10
11
12
13
14
15
16
17
18

Node

97
97
96
96
65
68
59
62
45
45
70
70
95
95
95
95
95
95

Component

X

z
X

z

y
y .-
y
y
y .
z

y
z
X

y
z

. 4*
<f>v
<t>z
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TABLE 4:
Sensor Placement for EPS Example Problem

Sensor

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Type

Rate
Rate
Rate
Rate
Rate
Rate
Rate
Rate
Rate
Rate
Rate
Rate

Position
Position
Position
Position
Position
Position

Node

97
97
96
96
65
68
59
62
45
45
70
70
95
95
95
95
95
95

Component

X

z
X

z

y
y
y
y
y
z
y •
z
X

y
z

• <t>x
<j>y

<£*
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TABLE 5:
CPU Results for ACSIS Sequential and Parallel Versions

Model

54DOF
Truss

582 DOF
EPS?

Problem
Type

Transient
FSFB

K. Filter
Transient

FSFB
K. Filter

Sequential

4.5
9.4

13.0
98.6

190.2
284.2

Parallel

5.6
10.2
10.7

100.3
294.5
321.5
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Truss Model: Open Loop Transient Response
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Time, sec

Node 9, uy

Figure 2: Truss Transient Response

Truss Model: Full State Feedback Response

6.0 x 10~4

4.8 x 10~4

3 3.6 X 10~4

Iv
Q 2.4 X 10~4

-41.2X 10

0.000
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Node 9, uy

Figure 3: Truss FSFB Response
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Truss Model: Controlled Response with Kalman Filter

6.0

-44.8 x 10

J 3.6 x 10"*

I
2.4 X 10~4

-41.2 x 10

0.000

0.000 0.200 0.400 0.600 0.800 1.000

Time, sec

Node 9, uy

Figure 4: Truss Response with Filter
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EPS? Model: Open Loop Transient Response

2.0 x 10~4

J

1.4 x 10~4

.2 " 8.0 x 10~5

|
Q 2.0 x 10~5

-4.0 x 10~5

-1.0 x 10~*
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• Node 45, uy

Figure 6: EPS Transient Response
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EPS7 Model: Full State Feedback Response

2.0 x 10-4
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Figure 7: EPS FSFB Response

o

Model: Controlled Response w/Kalman Filter
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Figure 8: EPS Response with Filter
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