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ABSTRACT

We discuss recent theorems proving that artificial neural networks are

capable of approximating an arbitrary mapping and its derivatives as

accurately as desired. This fact forms the basis for further results

establishing the leamability of the desired approximations, using results

from non-parametric statistics. These results have potential applications in

robotics, chaotic dynamics, control, and sensitivity analysis (physics,

chemistry, and engineering). We discuss an example involving learning the

transfer function and its derivatives for a chaotic map.
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Jordan (1989), "Generic Constraints on Underspecified Target Trajectories,"

Proceedings IJCNN, Washington D.C.:

The Jacobian matrix OzlOx... is the matrix that relates small changes in the

controller output to small changes in the task space results and cannot be

assumed to be available a priori, or provided by the environment. However,

all of the derivatives in the matrix are forward derivates. They are easily

obtained by differentiation if a forward model is available. The forward

model itself must be learned, but this can be achieved directly by system

identification. Once the model is accurate over a particular domain, its

derivatives provide a leaming operator that allows the system to convert

errors in task space into errors in articulartory space and thereby change the

controller.
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ABSTRACT

We give conditions ensuring that multilayer feedforward networks with as few as a

single hidden layer and an appropriately smooth hidden layer activation function are

capable of arbitrarily accurate approximation to an arbitrary function and its derivatives.

In fact, these networks can approximate functions that are not differentiable in the

classical sense, but possess only a generalized derivative, as is the case for certain

piecewise di_rendable functions. The conditions imposed on the hidden layer

activation function are relatively mild; the conditions imposed on the domain of the

function to be approximated have practical implications. Our approximation results

provide a previously missing theoretical justification for the use of multilayer

feedforward networks in applications requiring simultaneous approximation of a function

and its derivatives.
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Relevant Application Areas:

1. Robotics

2. Chaotic Dynamics

3. Control

4. Sensitivity Analysis (Physics, Chemistry, Engineering)
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Intuition suggests that networks having smooth hidden layer activation functions

ought to have output function derivatives that will approximate the derivatives of an

unknown mapping. However, the justification for this intuition is not obvious. Consider

the class of single hidden layer feedforward networks having network output functions

belonging to the set

,__,(G)- {_ " _r ....) _ I g(x)_. (1__jG(._T)j);

j=l

x _ IRr, fl j _ IR, )j _ IRr + l , j = l,..., q, q _ IN},

where x represents an r vector of network inputs (r _ /N--- {1,2, ...}), _" -- (1,xT) 7

(the superscript T denotes transposition), flj represents hidden to output layer weights

and yj represents input to hidden layer weights, j = 1,..., q, where q is the number of

hidden units, and G is a given hidden unit activation function. The first partial

derivatives of the network output function are given by

Og(x)/ =
j=l

i = 1,..., r,

where xi is the ith component ofx,)ji is the ith component of)j, i = 1,..., r (?'j0 is the

input layer bias to hidden unit j ), and DG denotes the first derivative of G.
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Outline:

1. Mathematical Background

2. Approximation Results

3. Learning Results

4. Example: Learning Chaotic Map
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I. MATHEMATICAL BACKGROUND

Let U be an open subsetof JStr,and letC (U) be the setof allfunctionscontinuous

on U. Let a be an r-tuple a = (a 1,... ,O_r)T of non-negative integers (a "multi-index").

Ifx belongs to _r, let x a -- x_ _ a, D a• ... • x,.. Denote by the partial derivative

olal/Oxa_-olal/(OxC_ t 0_2_a2...,,,._r:_ a, )

of order lal--t_l +t_2+...+o_ r. For non-negative integers m. we define

c'n(u) = {f _ C (U): D a f _ C(U) for all a, lal m} and C**(U) = tnmml Cm(U).

We let D O be the identity, so that C°(U) = C(U). Thus, the functions in Cm(U) have

continuous derivatives up to order m on U, while the functions in C**(U) have

continuous derivatives on U of every order. We shall be interested in approximating

elements of cm(u) using feedforward networks. When U g _r, the fact that network

output functions (elements of Y.(G)) will belong to cm( JR r ) necessitates considering

• their restriction to U, written g Iu for g in Z(G). Recall that g IU(x) = g (x)for x in U

and is not defined forx not in U, thus g IU _ cm(u), as desired.)
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DEFINITION 2.1: Let U be a subset of _r, letS be a coUextion of functions f.

U ---) /R and let p be a metric on S. For any g in Z(G) (recall g : _r ....) _ ) define

the restriction of g to U, g Iu as g Iu(x) = g (x) for x in U, g l u (x) unspecified for x

not in U.

Suppose that for any f in S and e > 0 there exists g in E(G) such that

P(f, g Itl) <e. Then we say that E(G) contains a subset p-dense in S. If in addition

g ItJ belongs to S for every g in Z(G), we say that E(G) is p -dense in S. []

DEFINITION 2.2: Let m, I _ {0] u/N, 0 < m </, and U c /R r be given, and let

S c CI(u). Suppose that for any f in S, compact K c U and e > 0 there exists g tn

g(G) such that maxlal <m supz_ g I Daf(x)-Dag(x) I <e. Then we say that

g(G) is m-uniformly dense on compacta in S. []

When Y,(G) is m-uniformly dense on compacta in S, then no matter how we choose

an f in S, a compact subset K of U, or the accuracy of approximation e > 0, we can

always find a single hidden layer feedforward network having output function g (in

E(G)) with all derivatives of g Itl on K up to order m lying within e of those off on K.

This is a strong and very desirable approximation property.
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The space Lp(U, tz) is the collection of all measurable functions f such that

[Ifllp,u,g = [fu If IPd#] lip <0% 1 <p <oo, where the integral is defined in the

sense of Lebesgue. When/.t =A, we may write either _ofd_, or fvf(x)dxto denote

the same integral. We measure the distance between two functions f and g belonging to

Lp(U,#) in terms of the metric Pp, v,a(f, g) mlJf- g Ib, Two functions that differ

only on sets of/z-measure zero have pp, U._ (f, g) = O. We shall not distinguish between

such functions.

The first Sobolev space we consider is denoted S_(U,I.t), defined as the collection

of all functions fin cm(u) such thatUDaf[]p,U.lz < oo for all I o_ I <m. We define

the Sobolev norm [[fl[m,p, u._ - (_l a I< m IID" fll_. u._) up- TheSobolevmetric is

m
Pp,_(f,g)-llf -gllm.p.v._ f,g _ S_(U,_t),

Note that mp p,_ depends implicitly on U, but we suppress this dependence for notational

convenience. The Sobolev metric explicitly takes into account distances between

derivatives. Two functions in S_(U, tz ) are close in the Sobolev metric ppmlz when all

derivatives of order 0 < I c_ i < m are close in Lp metric.
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We also consider the Sobolev spaces

W_(U)_ {f _ Ll, loc(U) l Oaf _ Lp(U,_),O< la l <m }.

This is the collection of all functions having generalized derivatives belonging to

Lp(U,/q,) of order up to m. Consequently, W'_(U) includes S"fl(U,2), as well as

functions that do not have derivatives in the classical sense, such as piecewise

differentiable functions.

The norm on W_(U) generalizes that on S_(U,_,); we write it as

Ilfllm,p,u-( E [I/_fllppu.x) 1/p f_W'_(U).
lal<m

For the metric on Wn_(U) we suppress the dependence on U and write

P'_(f,g)-llf-gllm,p,U f,g_ W'_(U).

Two functions are close in the Sobolev space Wn_(U) if all generalized derivatives are

close in Lp(U,X) distance.
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Our results make fundamental use of one last function space, the space C_ ( IR r)

of rapidly decreasing functions in CO°(]Rr). C_( ]R r) is defined as the set of all

functions in COo(_r) such that for all multi-indices a andS, x#Daf(x)-->O as

IX I"->*% where x_X_llX_22..2 " and Ix I=maxl<i<r Ixi I. Note that

cb*( IRr) c C_ (IRr).

Desired results:

1.) Z(G) is m-uniformly dense on compacta in C_,( _r ), Sty(U, _,)

2.) Z(G)isp_,u-denseinS_(#_r, #)

3.) Z(G) isp_-dense in W_(U)
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2. APPROXIMATION RESULTS

THEOREM 3.1: Let G ;e 0 belong to S_(_,_) for some integer m >_0. Then Z(G)
i

is m-uniformly dense on compacta in CT (/R r ). []

DEFINITION 3.2: Let l e {0} u/N be given. G is l-finite if G ecl(IR) and.

0<_1 DiG I d_, < oo. []

LEMMA 3.3: If G is l-finite then for all 0 < m < l there exists H e s_n(_,_,), H ;e 0,

suchthatZ(H) c Z(G). []

l-finite activation functions G with I DIG dg ;e 0 have f IDmGI dZ =.o for an m < l,

and for m > I all l-finite activation functions G have IDmG dA = 0 (provided Drag

exists).

It is informative to examine cases not satisfying the conditions of the theorems. For

example, if G = sin then G e C**(//?), but for all l, I I DIG I d_l. = **. If {7 is a

polynomial of degree m then again G e C**(/R), but for l<m we have

I IDIG I dA. =-0, although f I DIG I d_, = 0 for l > m. Consequendy, neither

trigonometric functions nor polynomials are 1-finite.
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COROLLARY 3.4: If G is l-finite, then for all 0 < m < I, 7_,(G) is m-uniformly dense

on compacta in C_ ( _r ). []

COROLLARY 3.5: If G is l-finite, 0 <_m < l, and U is an open subset of

,Y_,(G) is m-unifonnly dense on compacta in S_(U,P_ ) for l <-p <.o. []

_r then

COROLLARY 3.6: If G is l-firfite and/_ is compactly suplxnXed, then for all 0 -< m < 1

E(G) c s_n(/R r, _) and Z(G) isp_,_-dense in S_n ( /R r, /z ).

COROLLARY 3.8: If G is/-finite, 0 < m </, U is an open bounded subset of _r and

C_ (/R') is p_-_nse in W_(U) then E(G) is also p_-dense in W_(U).

These results rigorously establish that suffaciently complex multilayer feedforward

networks with as few as a single hidden layer are capable of arbitrarily aceurate

approximation to an unknown mapping and its (generalized) derivatives in a variety of

precise senses. The conditions imposed on G are relatively mild; the conditions required

of U have practical implications.
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ABSTRACT

Recently, multiple input, single output, single hidden layer, feedforward

neural networks have been shown to be capable of approximating a nonlinear map

and its partial derivatives. Specifically, neural nets have been shown to be dense

in various Sobolev spaces (Hornik, Stinchcombe and White, 1989). Building

upon this result, we show that a net can be trained so that the map and its

derivatives are learned. Specifically, we use a result of Gallant (1987b) to show

that least squares and similar estimates are strongly consistent in Sobolev norm

provided the number of hidden units and the size of the training set increase

together. We illustrate these results by an application to the inverse problem of

chaotic dynamics: recovery of a nonlinear map from a time series of iterates.

These results extend automatically to nets that embed the single hidden layer,

feedforward network as a special case.
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3. LEARNING RESULTS

SETUP. We consider a single hidden layer feedforward network having network

output function

K

gr(x,o) - y__jC(xTTj)
j=l

where x represents an r x 1 vector of network inputs (including a "bias unit"),/_j

represents hidden to output layer weights, yj represents input to hidden layer

weights, K is the number of hidden units,

o'= (ill, r_,/h, r2,... ,fix,rk),

and G is the hidden unit activation function.

We assume that the network is trained using data {Yt, Xt} generated

according to

Yt = g *(xt) + et t = 1, 2, ..., n.

xt denotes the observed input and et denotes random noise. The number Kn of

hidden units employed depends on the size n of the training set. The network is

trained by finding gx, (x, 0 ) that minimizes

K.
s,,(O) = 1 _, [yt _ E PjG(xTyj)] 2 ,

n t=l j=l

subject to the restriction that gtc,(x, 0 ) is a member of the estimation space q.
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REGULARITY CONDITIONS:

Input space. The input space X is the closure of a bounded, open subset of _r.

Parameter space. For some integer m, 0 < m < _, some integer p, 1 < p < 0_, and

some bound B, 0 < B < _, g is a point in the Sobolev space Wm+[r/pl+l,p, x and

Ilg*llm+[r/pJ+l,p,x < B.

Activation function. The activation

_** (dra/dum)G(u) du < 0-. See Section
.--oo

(1989).

function G belongs to cm(_) and

3 of Homik, Stinchcombe and White

Estimation space, gx,(x, O) is restricted

the optimization of sn(g).

to _--- {g: I[g llm+[r/p]+l,p, x < B} ill

Training set. The empirical distribution of {xt}_=1converges to a distribution

_t(x) and/g(O) >Ofor every open subset Oof._

Error process. The errors {et} are independently and identically distributed with

common probability law P having _eP(de):O and 0<_ e2p(de)<**.

(_e2p(de) = 0 implies = 0 for all t.)et

8o



Independence. The probability law P of the errors does not depend on {xt}7*=l;

that is, P(A) can be evaluated without knowledge of {xt)_=l,

limn_._(1/n)Y_,t= 1 xt, etc.
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THEOREM 1. Under the Regularity Conditions

tim IIg*- g_c.(-,o)llm.**,x= o
n_

almost surely

provided lirnn _ Kn = .o almost surely. In particular,

lirn atgK.(x, 0 )1=a(g* )
n_

almost surely

provided tr is continuous with respect to I1"lira,**,x" []

82



4. EXAMPLE: LEARNING CHAOTIC MAP

Our investigation studies the ability of the single hidden layer network

K

gK(Xt-5 ,...,Xt-1) = _.__jG(,75jxt-5 +"" + _'ljxt-I + 70j)

j=1

with logistic squasher

G(u) = 1/[1 + exp(-u)]

to approximate the derivatives of a,discretized variant of the Mackey-Glass

equation (Schuster, 1988, p. 120)

[ (0"2)Xt---.-.-._5 _ (0.1)Xt_l] "g(Xt-5, Xt-1) = Xt-1 + (10.5) 1 + (Xt_5) 10

The values of the weights _j and _'ij that minimize

n
1 _., [xt -gK(Xt-5,..., Xt-1)] 2

s,,(gx) = n t--1

were determined using the Gauss-Newton nonlinear least squares algorithm. Our

rule relating K to n was of the form K *_.log(n) because asymptotic theory in a

related context (Gallant, 1989) suggests that this is likely to be the relationship

that will give stable estimates.
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Impact of Application of Fuzzy Theory to Industry

(Paper not provided by publication date.)
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Time-sweeping Mode Fuzzy Computer-o Forward and Backward
Fuzzy Inference Engine

(Paper not provided by publication date.)
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