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Recent Advances in Approximation
Concepts for Optimum Structural Design

Jean-Francois M. Barthelemy, NASA/Lang!ey Research Center 1

Raphael T. Haftka, Virginia Polytechnic
Institute and State University 2

This paper reviews the basic approximation concepts used In structural op-

timization. It also discusses some of the most recent developments in that area

since the Introduction of the concept in the mid-seventies. The paper distinguishes

between local, medium-range and global approximations; it covers functions ap-

proximations and problem approximations, it shows that, although the lack of com-

parative data established on reference test cases prevents an accurate assessment,

there have been significant improvements. The largest number of developments

have been In the areas of local function approximations and use of Intermediate
variable and response quantities. It appears also that some new methodologies

emerge which could greatly benefit from the introduction of new computer archi-
tectures.

INTRODUCTION

In the mid-seventies, Schmit and his coworkers showed that applications of nonlinear

programming methods to large structural design problems could prove cost effective,

provided that suitable approximation concepts were introduced (Schmit and Farshi (1974),

Schmit and Miura (1976)). They combined the now familiar techniques of intermediate

variable definition, explicit approximation, reduced basis and design variable linking as

well as constraint deletion and regionalization. This paper reviews the basic ideas

underlying approximation concepts as well as some recent results. The emphasis is

on methods that are generic in that they are applicable to any engineering discipline
and are largely independent of the details of the analysis methodology used. As a

consequence, the paper will not cover the closely connected field of solution of perturbed
analysis equations also known as approximate reanalysis techniques. There are many

excellent reviews of this field including Arora (1976), Kitsch (1984) on the static equilibrium

equation, and Murthy and Haftka (1988) on the eigenvalue problem.

We identify three general categories of approximations. In a globa/approximation, the

approximation concept is valid for the whole design space or, at least, large regions of it.
In local approximation the approximatiOn is only valid in the vicinity of a point in the design

space. Finally, some approaches attempt to give global qualities to Zocal approximations,
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and we will refer to those as to mid-range approximations: We will also distinguish

between function approximation, in which an alternate and explicit expression is sought
for the objective function and/or constraints of the problem, and problem approximation

where the focus is on replacing the original statement of the problem by one which is

approximately equivalent but which is easier to solve. It is pointed out that, generally,
approximation concepts can be combined to make for a very efficient problem formulation.

LOCAL APPROXIMATIONS

Local approximations are valid in the vicinity of the point at which they are generated.

Typically, they are used to generate an approximate problem formulation which is solved

for an optimum solution point. A new approximate problem is then generated at that

point, and the process continues until convergence. Local function approximations are
variations on the Taylor series expansion; local problem approximations try to reduce the
size of the active constraint set.

Local Function Approximations

Local function approximations are probably the most popular approximations used

in optimization. One of the first robust optimization algorithms is the Simplex algorithm

developed by Dantzig in 1947 for the solution of linear optimization problems (Linear
Programs). It was natural that people attempted to use this highly successful algorithm

for nonlinear programs by linearizing the constraints and objective function about a trial

design. This led to the Sequential Unear Programming (SLP) method and the wide use

of the linear Taylor sedes approximations. Applications can be found in Zienkiewicz and

Campbell (1973) who optimize the shape of dams and in Pedersen (1981) who finds

the optimum design of space trusses, for example. Another reason for the popularity

of local approximations is that, as discussed later, some global approximations become

very expensive computationally when the dimensionality of the design space exceeds
about 10.

Approximations Based on Zeroth- and First-Order Function Information The most

commonly used local approximations to objective functions and cons_traints are based on
the use of the function and its first derivatives at a single design point, say 7o. The

simplest is the /inear approximation based on the Taylor series. Given a function g(X),

the linear approximation gz;(X) is

gL(x) = g(Xo) + - =o,) Xo
i=i

For some applications the linear approximation is inaccurate even for design points-

X that are close to Xo. Accuracy can be increased by retaining additional terms in the

Taylor series expansion. This, however, requires the costly calculation of higher-order

derivatives. Instead, many researchers tried to obtain other approximations that use only

first derivatives but which can be more accurate than the linear approximation.
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One approximation of this type is the reciprocal approximation which is a linear

approximation in y_, the reciprocal of z,,

1
y_ = --. (2)

Xi

Its frequent use reflects the fact that many of the early structural optimization studies

were performed on structures consisting of truss or plane stress elements. The design
variables in these studies were usually the cross-sectional areas of the truss elements

and the thicknesses of the plane-stress elements. For statically determinate structures,
stress and displacement constraints are linear functions of the reciprocals of these design

variables. Even for statically indeterminate structures, using the reciprocals of the design

variables still proved to be a useful device in making the constraints more linear (see,

for example, Storaasli and Sobieszczanski, 1974, and Noor and Lowder, 1975a). The

reciprocal approximation can be written in terms of the original design variables as

()gR(X) g(Xo) + _"_(x_ . zo_ /)g . (3)
= - Xo

i=1

One of the attractive features of the reciprocal approximation, even for statically indeter-

minate structures, is that it preserves the property of scaling. That is, when the stiffness

matrix is a homogeneous function of order h in the components of X the displacements

are a homogenous function of order -h in the components of X. For truss and membrane

elements h = 1, so that the displacements are a homogeneous function of the reciprocal

of the design variables. If all the design variables are scaled by a factor, the displacement

vector is scaled by the reciprocal of that factor. The reciprocal approximation preserves
this scaling property, and therefore it is exact for scaling the design. Fuchs (1980), and

Hajali and Fuchs (1989) have investigated the importance of the homogeneity property,

and proposed a family of constraints that generalize the reciprocal approximation to any

order of homogeneity.

One problem with the reciprocal approximation is that it becomes unbounded when

one of the variables approaches zero. This is acceptable when the design variables are

bounded away from zero, as is the case in many structur_ problems. However, it can

result in large errors when one of the design variables becomes very small. To correct

this deficiency Haftka and Shore (1979) proposed a modified reciprocal approximation

given as

g,,,.(x) = j(Xo) + - + =,.,)(=,+ =..) \o=,7 Xo'
i=l

where the values of zm,'s are typically small compared to representative values of the

corresponding x/s. It is possible, however to take large values for some z,_'s, and this

results in an approximation which is closer to the linear approximation than the reciprocal

approximation in these variables.

Another approximation, called the conservative approximation (Starnes and Haftka,

1979), is a hybrid form of the linear and reciprocal approximations which is more con-
servative than either. It is particularly suitable for interior and extended interior penalty
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function methods which do not toiet_{te constraint violations well. To obtain the conser-

vative approximation, we start by subtracting the reciprocal approximation from the linear
approximation

ga(X) = ,_ .
• i=l ;;Ci _ Xo

The sign of each term in the sum is determined by the sign of the ratio ((:3g/Oz_)/::oi

which is also the sign of the product Zo_(Og/Oz_). Design variables for which this product
is negative contribute to make the reciprocal approximation more positive than the linear

approximation, and vice versa. Since the constraint is usually expressed as g(X) < 0, a

more positive approximation is more conservative. The conservative approximation, gc,

is created by selecting for each design variable the more positive contribution

gc(x) = g(xo)+ a,(=,- =o,) xo'
i=1

where

! if Zo_(Og/Oz_) > O,C_ = :cod:c; otherwise. (7)

Note that G'_ = I corresponds to a linear approximation, and C, = to,/Z; corresponds
to a reciprocal approximation in z,.

The conservative approximation is not the only hybrid linear-reciprocal approximation

possible. Sometimes physical considerations may dictate the use of linear approximation

for some variables and the reciprocal for others (see, for example, Haftka and Shore,

1979, and Prasad 1984b). However, as can be easily checked, the conservative approxi-

mation has the advantage of being convex. If the objective function and all the constraints

are approximated by the conservative approximation, the approximate optimization prob-

lem is convex. Convex problems are guaranteed to have only a single optimum, and they

are amenable to treatment by dual methods. Fleury and Braibant (Braibant and Fleury,

1985, Fleury and Braibant, 1986) suggested taking advantage of this property and solv-

ing the approximate problem by dual methods. They also introduced the term convex

linearization for the process of approximating the optimization by the conservative-convex

approximation for the objective function and constraints. This approach has been used

by many others (e.g., Ding and Esping, 1986, Ding, 1987).

There has been a systematic investigation of approximations based on using powers

of the design variables (Prasad, 1983, 1984a,b, Woo, 1987). Many of these are conser-
vative and/or convex approximations, but it is important to note that the one presented

here and the others are not guaranteed to be conservative in an absolute sense (that is,

we do not know that the approximation is more conservative than the exact constraint,

gc(X) > g(X)). The conservative approximation presented here is only more conserva-
tive than either the linear or reciprocal approximations. Finally, it has been shown (e.g.,

Haftka, 1989) that the conservative-convex approximation tends to be less accurate than

either the linear or the reciprocal approximation. Therefore, it should not be used unless

its convexity or conservativeness are needed.
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Thereciprocalandconservativeapproximationdestroythe linearity of the approxima-

tion, and the possibility of using sequential linear programming (SLP). Chart and Turtea

(1978) used a nonlinear approximation that still permits the use of SLP. This is the posyn-

omial approximation (Duffin, Peterson and Zener, 1967).

= , (8)
i=l

where a_ is the logarithmic derivative of g,

•o, (9)
ai - g(Xo) \0=_/Xo"

The logarithm of gp is a linear function of the design variables, so if the objective function

and constraints are approximated by this posynomial approximation, the optimization

problem can be transformed into a linear problem by taking the logarithm of the constraint

equations and objective function.

The posynomial approximation can be used without any transformation when the

optimization method is geometric programming which actually requires such form. Ap-

plications of the posynomial approximations to structural optimization using geometric
programming include Morris (1972, 1974), Templeman and Winterbotton (1974) and Ha-

jela (1986).

Differential Equation Based Approximation Pritchard and Adelman (1990) recently

introduced a new method that begins with the equation for the sensitivity of the quantity
being approximated. It takes it as a constant coefficient differential equation, integrates it

and derives a high-quality nonlinear equation. For example, in a dynamical system, the

sensitivity of an eigenvalue _= to change in a single design variable x is given by

assuming that

d_ 2 ,_T [ dK ,v2 dM] (10)

a = _T dK ,bTdM
_ and b - dx

are constant, the following differential equation results

d_ 2
--=a-b_ 2
dx

which, upon integration and specification of the boundary condition that for the original

value xo of the variable, the eigenvalue is _, yields the following approximation

.3 = _ - e-b(':-_°) + _ (11)

They extended this approach to several design variables as wetl as to approximation of

eigenvectors, and displacements. They generally showed good approximation quality, by

comparison with conventional linear Taylor series expansions.
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Approximations Based on Higher-Order Function Information Higher order approx-

imations are also used occasionally. For example, the quadratic approximation, gq is
obtained by including the quadratic terms in the Taylor series expansion

g (x)=g(xo)+ - j Xo+
The reciprocal quadratic approximation gqR is obtained by using the quadratic approxi-
mation in terms of the reciprocal design variables to obtain (Haftka, G0rdal, and Kamat,
1990)

i=i \ =i t z; / ' \T___,-)Xo
03)

'££+ 2 i=l j---I \'_i i\ Zj t

Quadratic approximations have been used primarily for eigenvalue problems where the

linear approximation tends to be particularly limited in applicability. For example, Rommel

(1983) used a quadratic approximation for flutter speeds and damping factors, while Miura

and Schmit (1978) used a quadratic approximation for vibration frequencies. However, it

should be noted that for eigenvalue problems the quadratic approximation is not efficient,

because for nearly the same cost it is possible to obtain a cubic approximation by using

a linear approximation to the eigenvectors in the Rayleigh quotient (Murthy and Haftka,
1988). Often the high cost of obtaining these derivatives dictates a compromise based

on using only the diagonal second derivatives (e.g., Fleury, 1988, 1989a,b, Renwei

and Peng, 1987). For stress constraints, the use of only diagonal second derivatives

can be justified by invoking St. Venant principle and assuming that changes in the

property of an element would affect only the stress in that element (Renwei and Peng,

1987). The use of diagonal second derivatives is also sometimes motivated by the

desire for a separable approximation (e.g., Smaoui, Fleury and Schmit, 1§88, Fleury

and Smaoui, 1988, Fleury, 1989a,b). Haftka (1988) compared the perfo_ance of first-

and second-order approximations in structural optimization. He found that the second-

order approximations reduce the number of required optimization cycles by about 10-50

percent. This is marginal improvement when the cost of second derivatives is high. Jawed

and Morris (1984, 1985) suggest the calculation of approximate second derivatives, which

can make the use of quadratic approximations more attractive.

When second derivatives are available and it is still desirable to use SLP, it is possible

to use the diagonal second derivatives to construct a better linear approximation to the

constraint near the critical surface g = 0 (Mistree eta/. 1981).

Local Problem Approximations

Technically, algorithms based on sequential approximations (linear programming,

quadratic programming or convex linearization) can be viewed as problem approximation

concepts as they replace the given nonlinear problem by a sequence of subproblems that
are easier to solve. However, in this section, we will focus on techniques which have to

do with reduction in the number of constraints or the number of design variables.



Constraint Number Reduction In order to improve the optimization algorithm effi-
ciency, one may reduce the number of constraints retained at each iteration to those

which are active or nearly active. This limits the necessary constraint gradient calcula-

tions and greatly reduces the cost of optimization per iteration. In addition to constraint

de/etion, Schmit and Miura (1976) also have advocated the use of regiona/ization. This is

a technique where for each region of the structure, and for each load case, only the most
active stress and displacement constraints are retained. Assuming that the most active

constraint does not change dudng one iteration, then only that gradient must be found

for that region. A region can be identified as the area described by a single variable in a

design variable linking scheme (see subsection on global problem approximation).

Design Variable Reduction Hajela and Sobieski offered an interesting local design
variable linking scheme (for more on design variable linking see the section on Global

Problem Approximations) which they termed controlled growth method (Hajela and

Sobieszczanski-Sobieski (1981), Hajela (1982)). This approach is applied at each Opti-
mization iteration. All the design variables are ranked according to their combined mea-

sure of effectiveness (CME). Variables with low effectiveness are held constant during the
current iteration, The remaining variable variations are linked to that of the variable with

the highest CME, in effect replacing the original multi-variable optimization problem by

a sequence of single variable subproblems. Hajela and Sobieszczanski-Sobieski (1981)
showed reduction in analysis and gradient counts on conventional problems with up to
13 variables.

GLOBAL APPROXIMATIONS

Global approximations are valid for the whole design space or large areas of it. As

such, they are ,Jsed to modify the formulation of the problem from the outset and generate

an alternate formulation that is more tractable. Global function approximations techniques
include the generation of response surfaces; global problem approximations include the
introduction of intermediate variable or response quantities as well methods to reduce

the number of design variables in the problem.

Global Function Approximations

Response Surface Approach A natural approach to solving an optimization problem
is to first build approximate analytical response surfaces giving the dependent variables

as functi6hS of the independentva-dabies. Then an optimization algorithm can be used to

optimize the approximate problem. Typically, these response surfaces are global in that

they cover the whole design space, although, this is not necessary. Depending on the
quality of the response surfaces, the resulting design can be used as a final solution or

high-quality starting point for an ultimate optimization with direct coupling to a structural

analysis. The main challenge in generating response surfaces is to do so without an

excessive number of exact analyses.
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Schoofs (1987) gave the following rationale for combining nonlinear optimization with

response surface generation: i) both techniques can use the same variables, ii) both

techniques aim at minimizing the number of expensive analyses, iii) once a global model

is derived for a particular design problem, multiple optimization studies can be performed

without additional analyses (as required for example when a multiobjective problem is

solved or when a design problem formulation is being fine-tuned). In addition, gradients

are not generally required for response surface generation although, if they are available,
they can be used to enhance the process.

Construction of response surface (or model-building) relies heavily on the theory

of experiments (see Box and Draper (1987)). It is an iterative process. A typical

application begins with postulating a model for the relationship between dependent and

independent variables. Although linear or quadratic polynomial approximations are by

far the most common forms employed, other forms (e.g., polynomials in powers of

trigonometric functions) have been used as well. The approximation contains a number
of unknown parameters (such as polynomial coefficients) that must be adjusted for it
to match the behavior of the system. To do so, analyses are performed at a number of

carefully selected design points and a least-square solution is typically used to extract the

parameter values from the analysis results. Then the approximate model is used to predict
the response of the system at a number of selected test points and statistical measures

are used to assess the goodness-of-fit, or the accuracy of the response surfaces. If the

fit is not satisfactory, the process is restarted and further experiments are made or the

postulated model is improved by removing and/or adding terms.

There is a limited number of examples of applications of response surface techniques

in the structural optimization literature. Brown and Nachlas (1985) selected the orientation
of the layers of composite fibers in the three sections of a missile exit cone. They

used polynomials in trigonometric functions of the orientations to approximate the safety

factors under selected load cases. With 4 design variables per section and up to 7

possible values for these variables, an exhaustive search of the design space would

require 2401 analyses per section. Instead they selected 28 design points per section

and generated a final design with a 37 Ib weight reduction with respect to a metal
baseline. White et aL (1985 and 1986) used the response surface approach in their

study of passenger car crashworthiness. Most of the dependent variables optimized

in their study were derived from deceleration data generated by simulation programs.
They first approximated the deceleration time histories by polygonal profiles; they then

constructed response surfaces to relate the parameters describing the polygonal profiles

to their structural design variables. Using polynomials of up to third power, they required

over 200 sets of simulation results for fitting 11 crash signature parameters with 7 design

variables. After optimizing the problem they retained the model to conduct inexpensive

univariate sensitivity studies. Schoofs (1987) described small mechanical engineering

problems (design of pin joints, bearing joints, beam cross-sectional shape and heart

leaflet valves). He also described at !ength the challenging design of the shape of a
carillon bell to prescribed natural frequency ratios. The shape design variables were 7

radii, describing the bell cross-section in a vertical plane. Polynomial approximations of up
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to thirdpowerin thevariableswereused. After several attempts, he concluded that 1220

analyses must be performed to obtain an adequate fit. In the process, he reported the

design of bells with frequency ratio distributions that had eluded professional bell-founders

for centuries. Lawson et al. (1989) discussed the design of a moving head disk drive

actuator arm. They reviewed two approaches to selecting the sample analysis results

and optimized a 4-variable model using quadratic response surfaces derived from as little
as 15 full analyses and requiring as little as 27% of the time required for conventional

optimization.

The experience with response surfaces in structural optimization is limited to problems

of relatively small size. This is because the number of analyses required to construct

response surfaces increases dramatically with the number of design variables. The

usage of high-quality approximations has reduced the number of analyses required for

the solution of most structural optimization problem to 15-20 regardless of the number

of design variables. Assuming finite-difference calculations this translates to about 15n

to 20_ analyses. In the theory of experiments, the basic set of design points considered

is called a full factorial design. Each variable (factor) is assumed to take on a number

of possible discrete values (levels) and each possible combination of variable values
is considered. A full factorial design with only two values per variables requires 2"

analyses. It permits to generate response surfaces linear in each design variables (and

this would probably be inadequate for most structural responses). On this basis alone,

response surface methodology is not competitive for problems with more than 8 design

variables. However, direct comparison is not easy. First, in a typical design exercise,

many conventional optimizations must be performed to develop a satisfactory problem

formulation, to try and isolate a global optimum or to solve a multiobjective problem. With

each additional optimization, a completely new set of analyses and sensitivity analyses

must be performed. Second, in the theory of experiments, numerous methods exist to

construct fractional factorial designs where the number of analyses is reduced drastically

from the full factorial design while maintaining the required level of accuracy (see Box and

Draper (1987), for example). Finally, a third point is that constructing response surfaces

is an inherently parallel operation. While analysis (and, possibly, sensitivity analysis)

results are needed sequentially in applications of conventional nonlinear programing

methodology, they are needed all at one time when response surface methodology is

used, thereby enabling better usage of multi-processor computers. It must be noted
that the conventional analysis and sensitivity analysis process lends itself to parallel

implementation if derivatives are found by finite difference. However, constructing a

response surface offers even more parallelism since all the analyses are required at

the outset. Further investigat!on of response surface methodology may show it to be a
competitive alternative to using conventional optimization method for some problems.

Other Global Function Approx!matlons Hajela and Berke (1990) have proposed us-

ing neural networks in optimization to provide fast approximate structural analysis. A

neural network is a computer that attempts to mimic neurobiological processes. It is a

massively parallel network of interconnected computing elements that processes input

data and generates output. A neural network is trained by presenting it pairs of input
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and outputdata and then iterativelyadjustingweightsin the connectionsbetweencom-
putingelementsso that its outputmatchesthe knownoutputdata. Once trained, the
networkcan be used to replacecomplexand time-consuminganalysisprocedures. In
thatsense,neuralnetworkscanbe thoughtof as analternateapproachto globalfunction
approximation. Hajela and Berkedescribedhow neuralnetworksare able to abstract
key informationandpatternspresentin theirinputsets.Also, they showedthat networks
are fault tolerantin that theyare relativelyinsensitivetodegenerationof a fewcomputing
elementsor to corruptionof a fewdatasets. Althoughverydifferentconceptually,neural
networksand responsesurfacesprovidethe same typeof informationand present a lot
of the same advantagesand disadvantages. On the One hand both methodologies i)

require for input a number of analyses of the system considered, ii) can accommodate

input from different sources (including analytical and experimental), iii) are adaptive in

that they can be improved as more information becomes available, and, finally, iv) pro-

vide a rapid analysis capability that is global and can be reused many times at little or no
additional cost. On the other hand, both require a significant amount of up-front computa-

tions. Hajela and Berke demonstrated the appiicability of neural networks in optimization

by considering simple truss and wing structures of 16 design variables or less. With
as little as 100 training sets (complete analyses), and a significant amount of iterative

training time, they showed optimization results that were comparable to those generated

by conventional methods.

For problems in which some constraints are quite expensive to calculate, bounds can

be developed for the constraints which are significantly easier to calculate and which will

help provide bounds on the optimum solution. These bounds then replaced the original
constraints in their optimization problem. One such example was given by MUls-Curran

and Schmit (1983) in an application of optimization under dynamic behavior constraints. In

that application, they developed time-dependent upper bounds for dynamic displacement
and stress constraints which are valid for lightly damped systems away from resonant

forcing conditions.

Global Problem Approximations

One of the most direct approaches to approximating a problem formulation is the

use of simplified analysis models. On the one hand, the simplification can be to obtain
the numerical solution with, for example, a coarser finite element mesh discretization.

Haftka and Starnes (1976) looked at the effect of varying the number of degrees-of-

freedom and design variables in wing models. They showed CPU times increasing

linearly with the number of design variables for a given number of degrees of freedom

and almost quadratically with the number of degrees of freedom for a given number of

design variables. Salama et aL (1984_ alsoexamine d the benefit o!va_ingthe number of

degrees-of-freedom and design variables in problems of optimization of simple beams and

built-up truss structures. On the other hand, the analysis can be performed with a simpler

model, for example a plate model of a wing instead of a complex built-up finite element
model. McCullers and Lynch (1972) used such a model to develop the program TSO

which has remained a classic preliminary design tool for flexible wings. Sobieszczanski-
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Sobieskiand Loendorf(1972)developeda simple lumpedpropertymodelof a fuselage
for use in a two-level sizing procedure;Rickettsand Sobieszczanski-Sobieski(1977)
developeda complete lumpedmodel for aircraft sizing under flutter constraints. The
focusof this section,however,remainson methodsthat are more generic in nature.

Intermediate Variables and Response Quantities In their quest for improving the

quality of function approximations, researchers occasionally resort to using intermedi-

ate response quantities and intermediate variables. When a particular response R(X)

can be written in terms of an intermediate response (or response vector) RE and of an
intermediate variable (or variable vector) X[, then, for example,

=

R(X) = R(RI(XI(X))) (14)

If the relationships R[ =R[(X[) and X[ = X_(X) are known analytically and if a very
accurate approximation R[(X[) exists, then, a very accurate approximation R.(X) is

given by

(15)

In general, all three nested relationships may be approximated. In this case,

= (16)

While all reported applications are local approximations, the idea of resorting to inter-

mediate design variables or intermediate response quantities to improve approximation

quality is applicable to all forms of approximations.

Among the earliest introduction of intermediate design variables has been that of

the reciprocal variable (see previous section on local approximations). For trusses, the

intermediate variable of choice for displacement constraints is the reciprocal of the cross-
sectional area (see Bennett (1981), for example). This reciprocal approximation is exact

for statically determinate trusses and, in general, very good for all trusses. Similarly, the

reciprocal of the thickness is an appropriate intermediate variable for approximations of

the response of built up structures made of membrane elements.

For built-up structures made of beams of simple cross-section, Fleury and Sander

(1983) recommended i) the reciprocal of the wall thickness for structures made of thin
walled beam, tubes or sandwich beams with constant cross-section but variable thickness,

ii) the reciprocal of the square of the dimensions for beams with uniformly varying cross-

sections and iii) the reciprocal of the cube of the height for built-up structures made of

beams of varying height. For plates in bending, they suggested i) the reciprocal of the face

sheet thickness for sandwich plates of constant core depth and ii) the reciprocal of the

cube of the plate thickness for solid plates. When both extensional and bending behaviors

are present, they derived approximations based on the reciprocal of the thickness, its

second and third power for displacement, stress, frequency and buckling constraints. In

this latter case, however, the approximations were not simple linearizations any more but

were derived on the basis of energy considerations.
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In theirwork on frameworksmadeof beamsof complexcross-sections,Schmitand
hiscoworkersrecognizedthatwh_eabeamcross-sectionis fullydescribedby all its cross-

section dimensions (CSD), (wall thickness, beam height and width, for example), its global

behavior (nodal displacements, member forces) is described in terms of reciprocal section

properties (RSP) (reciprocal of area, moment of inertia). Therefore, they recommended
to include the latter as intermediate design variables. Mills-Curran et aL (t983) restated

the conventional frame design problem in terms of the RSP taken as intermediate

variables, eliminating the CSD during optimization and recovering them through linear

approximations. Lust and Schmit (1986) compared frame optimization results where

the problem was stated in terms of CSD only to results where intermediate variables

including the RSP were included. Their results were slightly better when RSP were
used as intermediate variables. Salajegheh and Vanderplaats (1986, Vanderplaats and

Salajegheh 1988) recommended linearizing framework frequencies in terms of the direct

section prope_'es (DSP).

Zhou and Xhia (1990) proposed a two-level approximation to solve framework prob-
lems. At the first level, the relevant behavior variables (e.g. stresses, displacements) are

linearly approximated in terms of intermediate Variables (called generalized variables)
which include the RSPs as well as entries in the stress matrices. At the second level,

the resulting approximate problem is replaced by a sequence of quadratic programming

problems in terms of the CSDs which they solve using a dual approach. They showed

good analysis count improvement over traditional implementations.

The first notable introduction of intermediate response quantity was due to Salajegheh

and Vanderplaats (1986/1987, Vanderplaats and Salajegheh 1989) who recommended
the use of linear approximation of forces in terms of areas for trusses and in terms of

section properties for frameworks. Stress constraints were then derived exactly from

the approximate forces. Kodiyalam and Vanderplaats (1989) extended this idea to the

problem of shape optimization of a three-dimensional continuum and reported improved
convergence of the optimization process. However, the repeated exact calculation of

element stresses is quite expensive and offsets somewhat the improvement in approxi-

mation quality. Vanderplaats and Kodiyalam (1990) resolved the issue of stress recovery

cost by using a two-level approximation. For each structural analysis, a linear force

approximation is constructed. A sequence of linear problems is then solved. At the

beginning of each problem a new linear stress approximation is derived from the linear

force approximation and the sequence of inner linear problems is continued until con-

vergence. At that point, a new structural analysis is conducted and a new linear force
approximation is constructed and the process is continued until convergence. Hansen

and Vanderplaats (1990) applied the force approximation in configuration optimization of
trusses and demonstrated a markedly reduced analysis count. Moore and Vanderplaats

(1990) showed that the linear force approximation yields stress approximates that include

higher order terms than the conventional linear stress approximation. They then devel-

oped a simplified force approximation including only a subset of these higher-order terms

and demonstrated promising results.

In his optimization with crashworthiness constraints, Lust (1990) needed to calculate
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the nonlinear crash response of a car. He used a spring-mass model with nonlinear

component force-displacement characteristics. He selected those force-displacement

characteristics as intermediate response quantities and then proposed a linear scaling
relation for them in terms of the design variables. He demonstrated that the resulting

approximation permits very efficient calculations, while the same problem cannot be

solved with conventional Taylor series expansions because of the low quality of the

resulting approximations.

Canfield (1990) used a Rayleigh quotient approximation to improve approximations of

frequencies in a cantilever beam and several truss examples. Each frequency is replaced

by its Rayleigh quotient and the corresponding modal strain and kinetic energies serve as

intermediate response quantities. They are in turn linearized with respect to the design
variables, assuming that the normal modes remain constant. He demonstrated stable and

smooth convergence in less iterations than other existing approaches. A more general

discussion of approximating eigenvalues of modified matrices was taken up by Murthy and

Haftka (1988) who covered approximations based on eigenvalue derivatives, generalized

Rayleigh quotient and the trace theorem.

Thomas and coworkers combined intermediate variables and intermediate response

quantities to derive high-quality approximations in control-augmented structural synthesis.

Thomas and Schmit (1990) used DSP as intermediate design variables for trusses and

frameworks. Their intermediate response quantities included the individual components of

actuator forces and dynamic displacements, and the components of the complex pseudo-

modal strain and kinetic energies for constraints on complex frequencies. They showed

that using this combination of approximations for a mass minimization problem reduces

the number of iterations from 24 to 14 and improves the final solution. Thomas et aL

(1990) used modal participation factors as intermediate responses in their approximation
of dynamic displacements near resonance.

Design Variable Linking and Reduced Basis Method Schmit and Miura (1976) pro-

posed a two-step approach to reducing the number of design variables in an optimization

problem by combining design variable linking and reduced basis vectors. Design variable
/inking is an approach introduced initially when optimizing structures modelled by finite

element models. In this approach, many finite elements may be controlled by one or

several design variables. The choice of what elements are linked is based on considera-

tions of symmetry, manufacturability or even some preexisting optimization results which

show that some areas of the structures appear to converge to similar designs. In effect,

design variable linking amounts to writing

X = [L]Y (17)

where X is the original unlinked variable vector, Y is the new linked variable vector (of

size smaller thanX) and [L] the linking matrix. It should be noted that, for a minimization
problem, the design obtained after variable linking is an upper bound to that obtained

with the full set of design variables.
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A further reduction in the number of design variables may be achieved by the

introduction of reduced basis vectors. The linked variable vector may now be written

Y = [B]Z (18)

where [B] is a matrix whose columns are the basis vectors. Z is now the final variable
vector, much smaller in size than X. Picket et aL (1973) introduced the reduced basis

concept. They recommended to include among the basis vectors i) quasi-fully stressed

designs generated for each load case of the initial problem using a few cycles of fully

stress design, ii) quasi-fully displaced designs generated similarly with a few cycles of

fully displaced design, iii) the vector of minimum gauge for the variables. For design

problems for trusses with up to 200 members, they showed computer time reductions by
factors of at least 7-8 with little weight penalty. Rajamaran and Schmit (1981) suggested

a different type of basis vectors. They recommended to create one auxiliary design

problem for each type of behavior (stresses, displacements, buckling) constrained in the

initial problem. Then, the basis vectors are generated with a few iterations in each of
the auxiliary subproblems. When designing a truss with 132 members, they showed a

33% time reduction with a 26% increase in optimum objective value. A reduced basis

representation is an excellent approach to modelling shapes for optimization, although it

is highly dependent on a proper choice of basis vectors. The initial implementation of this
idea is due to Vanderplaats (1979) who used it to model an airfoil shape by superposition

of shapes of basis airfoils. The same ideas has since been used in structural optimization;

Barthelemy et aL (1991), for example, compare different trigonometric functions as basis

for the representation for the shape of a hole in a plate.

Envelope Function The use of envelope functions is one approach to reducing the

number of functions in an optimization problem. It essentially reduces the number of

constraints handled by the optimizer and makes it more efficient. It also makes it easier to

get global understanding of the problem. It can be combined with conventional constraint

deletion and regionalization techniques and can reduce the number of gradients to

calculate if and adjoint method is used for sensitivity analysis. One such envelope function

was introduced by Kreisselmeier and Steinhauser (1979). It replace the constraints

gj(X),j = 1,% by the function

(19)

where p is a user-specified parameter which controls how close the envelope is to the

original constraints. Hajela (1982) first proposed this approach to fold all the constraints

of a problem in a single envelope. In the shape optimization of a three-dimensional solid,

Barthelemy et aL (1988) used this formulation to reduce the total number of constraints

handled by the optimizer from 421 to 14.
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MID-RANGE APPROXIMATIONS

Mid-range approximations are an attempt to endow local function approximations

with a wider range of applicability. Two general devices are used for this purpose. The
first is the use of information at several points, and the second is the combination of

a local approximation and a global approximation. There are no mid-range problem
approximations.

Multlpolnt Approximations Because the optimization process requires the calculation

of constraints and their derivatives at more than one point, it makes sense to try and

use the information and construct approximations based on that data, that would have a

wider range of accuracy than approximations based on information at a single point. Early

work in this area was limited to using the values of the constraint functions generated
in a line search to construct a polynomial approximation along that line (e.g., Kirsch and

Toledano, 1983). More recent work investigates the use of data generated during several

optimization iterations for the purpose of generating approximations in an entire region
of the design space. Haftka et al. (1989) examined approximations based on two and

three points. One approach that they employed was based on the modified reciprocal

approximation, Eq. (4), where the information on the derivatives at a second point was
used to estimate the best values of the z,_,'s. However, the results indicated that while the

approximation was good when it represented interpolation (for example, at points inside

the triangle formed by three data points in a three-point approximation), the improvement
in accuracy was marginal when it represented extrapolation.

A two-point approximation that shows more promise was proposed by Fadel et aL
(1990). The approximation is a linear approximation in the variables

P' (20)Yi = X_ ,

as suggested by Prasad (1983). However, while Prasad suggested the choice of arbitrary

exponentials, here the exponentials p_ are selected to match the data at a second point.

The linear approximation in terms of yi may be written in terms of the original variables
xi as

±[(,,),,go,(X) = g(Xo) + _ - 1 (21)
i=1 \ Pi / _xi Xo

If we have the value of the derivatives at another design point, X=, we can now impose
the condition that

Oz, ) Xl

From this equation p_ can be extracted

Xt \ Zo, / \ Ozi ) Xo

pi = l + Iog \ Oxi J Xt Xo
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Belegundu et aL (1990) developed a two-point posynomiai approximation (Eq. 8).

They used a least-square approach to find the approximation parameters, matching not
only the value of the function and its gradient at the current point but also the value of the

function at a second point. Except for one set of frequency approximations, they showed

significantly improved approximations for small conventional problems when comparing
their results with linear, quadratic, reciprocal and one-point posynomial approximations.

Another multipoint approximation has been proposed by Rasmussen (1990). The
so called cumulative approximation assumes that values of the constraint function g are

available at m points XI,..., X,,,, and seeks to improve the linear approximation at Xo

based on this data. The influence of Xp on the approximation is determined by an

exponentially decaying influence function, Cp, given as

Cp(X) = e-!Ix-x'IIV'' , (24)

where sp is a positive number that defines the range of the influence, and the Euclidean

norm is used. It is suggested that a good choice for sp is

=  llXo - x,,il , (25)

where a is a constant. The cumulative approximation gc is given as

gL(X) 1-L_=, [t - _,(X)] + [t - Co(X)] E_%, ¢,(X)g(X,)

g (x) = [L%, It - + It - (26)

where gL(x) is the linear approximation (Eq. 1) based on data at Xp. The exponential
decay is an attractive feature of the approximation because it limits the influence of

far away points. However, the cumulative approximation fails to take advantage of the

derivatives at the other points, which are typically available.

Finally, it is worth noting that in many cases in optimization, it maybe unnecessary
to combine the data from several point into a single approximation. Instead a constraint

g < 0 is replaced not only by its most recent linearization, but by several of its previous

linearizations (see, for example, Mistree et al. (1981)).

Scaling or Local-Global Approximations Because of computational constraints, op-

timization is often performed on the basis of a model of the structure that is simpler than
the one which is used for analysis of the same structure. Such a simpler model is based

on a simpler theory (e.g., beam theory versus shell analysis), or a coarser discretization
of the numerical model associated with the same theory. This simpler model can be

viewed as a global approximation, as discussed earlier. Here we consider the complex

model to provide the exact value of the function g(X), while the simple model is assumed
to provide a global approximation go(X). A local flavor can be injected into the approxi-

mation by calculating a scale factor associated with the simple and complex model at a

point Xo. That is the scale factor ._ is given as

= g(Xo)/jc(Xo). (27)
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Then the scaled globaiapproximation, g,,o, is given as

g,o(X) = _ogc(X). (28)

The scaling is likely to improve the quality of the global approximation near Xo, but it

may increase the error far from Xo if the scale factor varies significantly with X. Haftka
(i991) Suggested using a linear approximation to the scale factor. That is,

" (29)
sd = s_o+ _-'_(zi - x_ol\o=i)X °

i=1

and then the linear-scale-factor approximation is given as

g,, = sc_¢c(x). (30)

where

Os_'_ { Og /g OgG /gc) (31)

o=,)Xo /Xo'

Chang et aL. (1991) have applied this approach to a plate theory approximation of a built
up wing structure where the refined analysis is based on a finite element model. Their
results indicate that the linear scale factor is better than either the constant scale factor

or the linear approximation based on the refined model.

Other Mid-Range Approximations In a departure from the use of response surfaces

as global approximations, Free et al. (1987) used the theory of experiments to develop

an optimization algorithm which constructs local approximations in the vicinity of the

current design point, solves the approximate design problem and then updates the current

approximation, contracting or expanding its range as appropriate. Using this algorithm

on standard nonlinear programming problems and a ten-bar truss design they showed
performance comparable to that of a very efficient SQP/GRG algorithm for noise-free

problems. When noise was present in the problem formulation, they showed significantly

improved performance.

CONCLUDING REMARKS

This paper reviews the main approximation concepts in applications of nonlinear
programming to structural optimization. It shows that approximation concepts can be

classified according to their range into local, medium-range, and global approximations.

Approximations can be designed to approximate the functional relationship between

dependent variables (objective function and constraints) and independent variables. Also,
they can aim at approximating the problem formulation by reducing the number of problem

variables or constraints, effecting changes of variable or response definition to improve

functional relationships or simplifying structural model.
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There is not enoughdata in the open literature to establish a comprehensive com-

parison of the effectiveness of various approximation concepts. Often, a particular ap-

proximation is compared for accuracy only in extrapolations about a given design point.

The question of overall performance, as indicated by the number of reanalyses required
in reference test problems or that of overall cost, as indicated by comparison of CPU

requirements are not always addressed. However, available results show that computa-

tional cost can generally be reduced by the use of approximation concepts, particularly
if several of them are combined. Recently, structural optimization programs have begun

to offer as options combinations of the approximation concepts described herein.

The more recent contributions found for this review focus on two specific areas:

i) careful selection of intermediate variable and response quantity and ii) improvement
of the traditional Taylor sedes expansion by inclusion of some higher-order terms or of

information at different points in the design space.

However, newer methods may emerge and older approaches may be revisited in light

of development of new computer hardware. For example, the construction of response
surfaces may become cost effective even for large problems with the advent of massively

parallel computers. On the other hand, neural networks may also provide a unique

opportunity to build inexpensive approximations to expensive analytical models.
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