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Summary

A multivariable control design method based on constrained parameter optimization

has been applied to the design of a multiloop aircraft flight control system. Specifi-

cally, the design method is applied to

• Direct synthesis of a multivariable "inner-loop" feedback control system based

on total energy control principles,

• Synthesis of speed/altitude-hold designs as " outer-loop" feedback/feedforward

control systems around the above inner loop,

• Direct synthesis of a combined "inner-loop"and "outer- loop" multivariable con-

trol system.

The design procedure offers a direct and structured approach for the determination of

a set of controller gains that meet design specifications in closed-loop stability, com-

mand tracking performance, disturbance rejection, and limits on control activities.

The presented approach may be applied to a broader class of multiloop flight control

systems. Direct tradeoffs between many real design goals are rendered systematic

by this method following careful problem formulation of the design objectives and

constraints. Performance characteristics of the optimized design have been improved

over the current autopilot design on the B737-100 Transport Systems Research Vehi-

cle (TSRV) at the landing approach and cruise flight conditions; particularly in the

areas of closed-loop damping, command responses and control activity in the presence

of turbulence.

xi



Chapter 1

INTRODUCTION

Recentdevelopmentin multivariable control designtechniqueshavebeenfocused

on the improvementof controller performanceand robustnessto uncertaintiesin the

plant model. Modern control system designmethods suchas LQG/LTR, H°°, and

#-synthesiscan provide controllers with high levelsof performanceand robustness

[Refs.l-3]. ttowever, the controllers obtained with these techniquesare usually of

high order. The number of controller states is usually greater than or equal to the
numberof states in the plant model. Controller order must subsequentlybe reduced

for the final designimplementation. In addition, thesedesignmethods do not pro-

vide direct tradeoffsbetweenmany real designperformanceand robustnessmeasures.

Alternative methodsbasedon output feedbackare available [Refs.4-6]to synthesize
controllersof low dimensionality. In particular, the designalgorithm developedin

Reference 6 provides a convenient framework for designing optimal low-order con-

trollers. Recent extension of this method [Ref.7] and the use of constrained nonlinear

optimization [Ref.8] enable designers to address conveniently those requirements, for

example, eigenvalue and covariance constraints, that are not easily exprcssible in

terms of an objective function based on quadratic performance indices.

Traditionally, classical design procedures based on single-loop closure and root-

locus have been applied to the design of multiloop control systems. Designs obtained

with conventional methods can have minimally achieved performance and inadequate

robustness to plant model uncertainties. Tradeoffs between performance and robust-

ness requirements are far from simple and can be time-consuming; especially when

the designer lacks appropriate past design experiences or when he is faced with a non-

conventional design case. Furthermore, the classical design procedures often overlook,

due to their single-input/single-output nature, the intrinsic multivariable aspects of

the design problem. As a result, the controllers may not contain appropriate cross-

feed among individual feedback loops, and thereby limiting the maximally achievable

performance.
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Complexities in presentautomatic flight control systems(AFCS) for commercial
transport aircraft are generally associatedwith the lack of suitable control system

design integration, i.e crossfeedamong different control paths. Recent work by

Lambregts [Refs.9-11]on the NASA B737-100Transport System ResearchVehicle

(TSRV), in improving the operation of the AFCS, has led to the developmentof a

total energy control system (TECS) for an integrated autothrottle/autopilot design.

The design philosophy incorporates fundamental aspects of the aircraft dynamics in

the formulation of a multiloop controller structure. This innovative design approach

has led to a controller structure that contains key cross-coupling between the elevator

and throttle control loops for improved performance. Selection of the feedback gains

was still performed using classical design procedures [Refs.9-14]. To satisfy multiple

design requirements such as closed-loop stability, control and command bandwidths,

control activities in the presence of turbulence, design robustness to modeling uncer-

tainties, the one-loop-at-a-time iterative procedure can be overly time-consuming.

Initial design and evaluation of the TECS concept were performed on the NASA

B-737-100 Transport Systems Research Vehicle (TSRV) [Refs.12-14]. Selection of

the feedback gains was still a labor-intensive process even though the philosophy of

TECS has inherently reduced the number of design parameters in the control-law

structure. Again classical SISO design procedures without the benefits of past design

experiences provides little insight into the design tradeoff; particularly when the num-

ber of constraints and design variables become large. Resulting "inner-loop" designs

may possess unnecessarily high bandwidths in the control paths. Furthermore, gain

scheduling to different flight conditions and robustness to plant model uncertainties

pose additional complexities to the design problem; hence making the SISO design

procedure lesser attractive than a direct procedure based on constrained parameter

optimization.

Multivariable control design techniques could potentially provide a systematic ap-

proach to the solution for a set of feedback gains that achieve simultaneously de-

sign performance and robustness to plant model uncertainties. One such approach

is provided by the unified design algorithm for robust low-order controllers [Ref.6]

using constrained parameter optimization as fully implemented in the computer pro-

gram SANDY. The design method has found numerous applications in flight controls

[Refs.15-17] and control of flexible mechanical systems [Ref.18]. The work conducted



in this study is to demonstratethe application of the designalgorithm to the syn-

thesisof an integrated autothrottle/autopilot "inner" structure basedon the TECS

design philosophy. In addition, we perform autopilot designs for speed and altitude

holds based on an existing optimized inner-loop and compare the results with those

obtained from simultaneous redesign of both the inner (i.e TECS) and outer-loops.

The main objective of this work is the formulation of an optimal control problem

addressing the same design objectives as those achieved under classical design ap-

proaches; in this case the design solution is based on direct constrained optimization.

Within this formulation, a systematic approach is developed allowing the design-

ers to achieve multiple design objectives such as damping of system modes, shaping

of loop frequency responses, disturbance rejection, command tracking, and robust-

ness to modeling uncertainties. Using this design technique, feedback gains have

been obtained for the integrated autothrottle/autopilot design on the TSRV vehicle

at two flight conditions. Linear analysis indicates that the design procedure using

constrained optimization yields comparable and improved results in closed-loop sta-

bility, aircraft responses and control activities to turbulence, and robustness in terms

of single-input/single-output gain and phase margins.

This study is divided into three parts:

1. Synthesis of an integrated autothrottle/autopilot "inner"-loop structure based

on the TECS design philosophy,

2. Synthesis of airspeed-hold and altitude-hold "outer"-loops with the previously

designed "inner'-loop,

3. Synthesis of an integrated autothrottle/autopilot using simultaneously design

parameters from both the "inner" and "outer"-loop structures.

A systematic approach to multivariable controller design is developed allowing the

designer to perform tradeoff among different performance objectives such as damping

of system modes, command tracking, shaping of loop frequency responses, disturbance

rejection, and robustness to modeling uncertainties. Direct tradeoffs between design

criteria are conducted in a systematic manner, enabling the designer to explore the

full potentials of the control system. The TECS control system designed under this



approachis found to be sufficiently insensitiveto variations in the plant model, while

disturbancerejection requirementsto clear-airturbulenceand responsesto flight path,

acceleration,airspeedand altitude commandsare simultaneouslyimproved.



Chapter 2

INTEGRATED AFCS DESIGN

2.1 Review of AFCS Designs

Development of automatic flight control systems (AFCS) for modern transport air-

craft has resulted from the need to reduce pilot workloads and, at the same time,

improve performance and fuel efficiency. The first flight control systems consisted of

a pitch attitude hold system through simple feedback of pitch attitude and pitch rate

to the elevator control. Speed-hold and altitude-hold modes followed soon afterwards

as extentions of the basic flight control system. Design of new control modes has often

proceeded with little or no consideration of existing modes in the AFCS. As a result,

there is numerous replication of the basic flight-path and spe_d control functions in

the navigation and control computer systems [Ref.10].

In recent years, the need to resolve fundamental operational and performancc

deficiencies of current AFCS designs has become apparent. Extensive development

programs [Ref.13] have shown that the conventional AFCS design has reached a

fundamental limit such that further improvements cannot be easily obtaincd within

the existing system architecture.

The fundamental limitation resides in the traditional single-loop design approach

where the throttle and elevator commands are developed separately without regard

to cross-coupling effects in the longitudinal aircraft dynamics. This type of single-

loop approach is evident in the underlying structure of conventional AFCS designs,

Figure 2.1. Flight-path control by the autopilot is achieved through feedback to the

elevator while the autothrottle independently controls speed through the throttles.

The basic AFCS structure has serious design deficiencies. 'I._ the longitudinal air-

craft dynamics both the elevator and throttle controls produce responses in flight path

and speed. This effect may lead to adverse cross-coupling between the autothrottle

and autopilot when both feedback loops are closed. Performance and stability of the

autothrottle loop may significantly degrade in the presence of the autopilot loop. In



fact, for large flight-path angle commands, the much larger control authority and
bandwidth of the elevatorcan easily out strip the throttle's ability to maintain the

commandedspeed.

As a result, in 1979NASA directed the Boeing Company to begin conceptual

developmentof an integrated flight path and speedcontrol systemincorporating many

existing designobjectiveswhile avoiding duplication of control functions. Numerous

types of "energy compensation"techniqueswere investigated and led to the design

and implementation of the so-called total energy control system (TECS) [Refs.9-

11]. The total energy control concept provides an effectivemeans of dealing with

aircraft operational requirements,control nonlinearitiesand performancelimitations

[Refs.12-X4].

Key featuresof TECS are

• Integration of vertical control modes into a single control concept designed

arounda fixed "inner-loop" structure,

• Useof cross-feedpaths betweenflight path and accelerationto both the elevator
and the throttles, henceformulation of a multiloop control designstructure,

• Control strategiesbasedon total energy rate and total energy distribution rate,

• Command paths for control of flight path and longitudinal acceleration.

These contrast with the conventional approach to AFCS design involving separate

pitch autopilot and autothrottle designs; in which the elevator is directed to control

flight path while airspeed regulation is acquired separately through the throttles.

2.2 Design Objectives

Developmental studies have been directed toward integrating numerous functions of

the flight control system into a single control concept. Several important considera-

tions in the redesign of the AFCS are

• Integration of all vertical control modes into a single control-law concept. The

system should be designed around a fixed inner-loop configuration with outer-



loop control modesgeneratingsignalscompatible with the inner-loop command

inputs.

• Minimization of transient errors due to cross coupling between commanded in-

puts in the inner-loop structure. The control system should produce a "coor-

dinated" response between the throttle and the elevator controls to command

inputs.

• Elimination of functional overlaps in the AFCS design.

• Protection against exceeding aircraft performance and structural limits by pro-

viding an intelligent hierarchy in control system modes.

• Provision of overshoot-free responses to step command inputs.

• Constraint of closed-loop damping of dominant poles to an acceptable level.

• Minimization of control activities to turbulence in accordance with meeting

flight-path and speed tracking requirements at each flight condition.

2.3 Review of the Total Energy Control Concept

Numerous variations of "energy compensation" techniques have been investigated

for improving the simultaneous operation of the autothrottle and autopilot designs

[Ref.13]. Energy compensation becomes the foundation of an integrated AFCS "inner-

loop" structure in TECS. One formulation of the energy compensation technique is

to develop the engine thrust command as a function of the aircraft total energy

rate, while the elevator command is expressed as a function of the distribution rate

between kinetic and potential energies. Key equations governing the total energy

control concept were developed by Lambregts [Refs.9-11]. They are included here for

completeness and to define the structure of the control system used in the constrained

parameter optimization that follows.

The total energy E(t) of the aircraft treated as a point ma,_'s is given by

E(t) = lmv(t)2 + rngh(t) (2.1)



where

m = mass of aircraft

V(t) = aircraft total velocity along the flight path

h(t) = altitude

g = gravitational acceleration

The total energy rate _:(t) is found by differentiating E(t) in equation (2.1) with

respect to time as,

E(t) _ rngV(t) (_-_ + _/(t)) (2.2)

for small flight-path angle 7(t) in radians and assuming that the aircraft mass m is

constant or slowly varying. If we write the equation for the thrust required from thc

equations of motion along the flight path, we have

Assuming that initial thrust is trimmed against drag and the variations in drag with

time are generally slow, then it follows that the short-term thrust requirement for

a desired level of total energy rate is obtained from the acceleration and flight-path

angle quantities as

 xrr q(t) mg + (2.4)

This implies that the aircraft total energy can be regulated directly using thrust

control. However the distribution between kinetic and potential energies cannot be

effectively controlled with the throttles. To distribute the total energy rate between

flight path and acceleration as desired, elevator control must be used. The elevator

primarily provides control of angle-of-attack and thus lift while contributing little to

the aircraft total drag, thereby having little effect upon the total energy rate•

Using proportional and integral control on the total energy rate and energy rate

distribution, we develop command strategies for both the thrust and the elevator

controls as



where%(s) = "7(s)-%(s) and _(s) = _'(s)- I)'c(s) represent the errors of flight-path

angle "y and acceleration _' from the commanded values % and Vc respectively. The

parameters KTp, I(TI, KEp, and KEI are the proportional and integral feedback gains

to thrust and elevator controls respectively. The basic implementation of this system

is shown in Figure 2.2. The engines can be made to produce the required thrust by

converting the total thrust command into an equivalent engine pressure ratio (EPR)

command and closing an EPR feedback loop around the engine [Ref.ll]. Notice that

proportional paths on the flight path % and acceleration i)'= commands have been

left out of the current implementation. It was found that direct feedthrough of thc

commanded inputs to the controls would produce undesireable overshoots, ttowever

such a problem can be resolved with proper feedforward control as evident in this

study.

2.4 Analysis of the Current Total Energy Control Structure

A careful study of the TECS structure and its characteristics is crucial to the for-

mulation of an optimal control design procedure. The NASA TSRV B-737 research

aircraft was used to dcfine linear longitudinal aircraft dynamic models at two flight

conditions (Appendix E). The chosen flight conditions are listed in Table 2.1. The

first flight condition FLT1 is a typical approach to landing configuration, and the

second flight condition FLT2 is a cruise condition.

Table 2.2 shows the inner-loop and pitch-damper gain selection for thc current de-

sign implementation on the NASA TSRV [Refs.12-14]. The gains I(o and Kq provide

feedback of pitch attitude and pitch rate for stabilization of the aircraft longitudinal

rigid-body modes. Notice that the value of KTp was set to zero, thus eliminating

the proportional feedback path to the throttles. Classical analysis indicates that this

feedback gain is not neccessary for closed-loop stability. Furthermore, by eliminat-

ing direct feedback to the throttle, the broken-loop control bandwidth and throttle

activity to turbulence are reduced. Actually this restriction on I(Tp iS not needed

as demonstrated in the optimal TECS design. The additional degree-of-freedom pro-

vided by the gain KTp can be used to further improve stability of the phugoid and

short-period modes, and to achieve better command tracking performance without

increasing control activity response to turbulence.
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The integral gains I(Tt and KEI were chosen to be approximately equal so as to

obtain equal bandwidths in both the % and _/9 feedback paths. Gain scheduling of

the control system to different flight conditions is achieved through the gains Kcas

and Kaw in the elevator and throttle control loops respectively (Figure 2.2). The

gain schedules are a function of calibrated airspeed (CAS) in fps and gross weight in

pounds and they are given as follows,

. ( 200 "_
I_CAS- \CAS] (2.7)

Kaw = rng (2.8)

With these gain schedules the control-law when implemented will clearly be nonlinear

and time-varying. However in the neighborhood of a design condition, one can still

examine the responses in terms of those from a linear time-invariant system.

The TECS structure as shown in Figure 2.2 introduces an uncontrollable pole at

the origin in the closed-loop system. This results from the additional integration of

the aircraft acceleration variable l)'(t) in the control system. This means that the

TECS design provides only one integral control action effective on the flight-path

response and not on velocity. Integral control of the velocity variable can only be

obtained through feedback of the velocity error to the inner-loop commands % and

_'c/9, as found in an outer-loop control of a speed-hold type autopilot. Design of

outer-loops for different autopilot modes (i.e speed-hold and/or altitude holds) will

be discussed in chapters 7 and 8. In this section, we are primarily concerned with the

redesign of the TECS "inner"-loop gains for improved performance and robustness

using a procedure based on nonlinear constrained optimization.

Figure 2.3 shows frequency responses from flight-path angle and acceleration com-

mands to the respective outputs for the closed loop system at flight condition FLT1.

Note that at zero frequency the transfer function of "v'(s)/Vc(s) has a gain less than

one. Consequently the controller will not maintain the comrqanded acceleration in

steady state. The TECS architecture simply cannot provide a constantly increasing

thrust command (i.e. a type 2 system in the acceleration command path) when the

error quantities lk,(t) and 7,(t) become zero, i.e. when l)'(t) = l)'c(t) and 7(/) = %(0-
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FLT1

FLT2

Table 2.1: TSRV B-737 Flight Conditions

Altitude Weight

(ft) (lbs)

1,500 80,000

25,000 80,000

CAS Flaps FPA Gear

(kts) (deg) (deg)
120 40 -3 down

450 0 0 up

Table 2.2: Current TECS Inner-Loop and Pitch Damper Gains

[(TI KEI KTp KEp Ko Kq

0.4 2.52 0.0 3.36 6.0 4.0

_ Thrust Command
Processor ] -

v_

h_........___ Elevator Command

-y-, Processor

Aircraft

Dynamic
Model

Figure 2.1: Conventional AFCS Autothrottle/Autopilot
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g

S H Thrust CommandK6w Processor

S KCAS _--_ ElevatorActuator

Kq __

Pitch Damping

Figure 2.2: Basic Total Energy Control System

0



13

o

¢a

0

-10

-20

-30

-40

: : :::::: i ! _iiili : ! ! ii!!!! : ! ! i!!!i

...... •.... :" • ":" .:- ":. ; -:.:.: ....... :.. _;..__._- • ..... ; • .:. • ;. >-''-T .... _ -' -'_ 1_' _" ;' ";':"

: : : :::::: : ! _i!ii\ _ : : :: AcceleraUo ::::
i i i i iliii i -: iiiiii i i i iCommandLoop i ii!

......iiii....i iiii!Fli_Patiiiii......i!i_i....nii!___iiiii !iiliii..... _ii!ii ......i!i!!i!iiiiiiiii
i i i iii!CommandEo0pilil i :iiii! i i iiiiii

10-1 10o 101 102

Frequency (Rad/Sec)

Figure 2.3: TECS Command Loop Frequency Responses



Chapter 3

OPTIMAL CONTROL DESIGN ALGORITHM USING

CONSTRAINED PARAMETER OPTIMIZATION

Development of techniques for multivariable control-law synthesis is aimed at pro-

ducing controllers with desired performance in command tracking and disturbance

rejection along with adequate robustness to plant uncertainties. Numerous multi-

variable control design techniques are available such as standard linear quadratic

gaussian (LQG), linear quadratic gaussian with loop transfer recovery (LQG/LTR),

H_"-optimization and /z-synthesis [Refs.l-3]. However, simple design procedures for

low-order controllers addressing direct tradeoff between performance and robustness

are Still lacking. The procedure based on nonlinear constrained optimization as imple-

mented in the computer program SANDY [Rcfs.6,7,15,21] seems to offer a practical

alternative amidst the abundance of multivariable robust control design schemes. In

this section, we describe the formulation of models for control-law synthesis, and the

definition of various performance indices and constraints used in the design algorithm.

3.1 Formulation of Models for Control-Law Synthesis

Aircraft dynamic models for linear contt:ol-law synthesis are usually obtained from the

linearization of a full nonlinear model in real-time simulator about some predefined

equilibrium points. A linearized plant at the i th condition is modelled as a continuous

linear time-invariant system of the form

:_ip(t) i i i i i i= Apxp(t) + Bpup(t) + l"pwp(t) (3.1)

y (t) '' '' ' '= C, xp(t) + D,up(t) + fl,wp(t) (3.2)

y_(t) i i i i i i= Cpxp(t) + Dpup(t) + f_pwp(t) (3.3)

where the matrices A_,, B_, r_,, C_, D_, f2_, C_, D_ and f'/_, contain the plant dynamics,

actuator and sensor models, disturbance and command generator filter models, etc.,

(i = 1,..., Np) and Np is the total number of design conditions. The output vector
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y_(t) represents the sensor variables of the i 'h plant condition. The vector y_(t) in

equation (3.2) contains not only the measured feedback quantities such as pitch rate,

pitch attitude, airspeed, etc..., but also the tracked commands (Appendix B) which

are outputs of a command generator model. This model is often imbedded as part of

the augmented plant description. For example, y,(t) = {q, 0, 7, V, %, _(}. The output

vector yip(t) contains those outputs used in the performance index of section 3.2 .

The design method based on nonlinear constrained optimization requires a-priori

the setup of a predefined controller structure for both the feedback and feedforward

control systems. The form of the controller is quite general. The complete arbi-

trariness allowed in the controller structure means that designers will have the direct

responsibility to:

1. Setup a control-law with adequate number degrees of freedom so that the design

algorithm will converge to a solution that meets the desired performance goals

and the specified set of design constraints and,

2. Avoid overspecifying the design parameter set (especially in the case of a nonmin-

imal state realization of the controller). This could lead to nonunique solutions

or to the breakdown of the search algorithm.

A typical feedback/feedforward controller has the form

kc(t) = Acxc(t) + Bout(t) (3.,1)

y_(t) = C_z_(t) + D_uc(t) (3.5)

where the state matrices Ac, B_, C_ and D_ describe the form of dynamic compen-

sation (i.e. proportional, integral, derivative, leads, lags, etc.) applied to the input

vector u_(t). The controller output vector yc(t) contains the feedback controls and

those output variables that are expressed as linear combination of controller states

xc(t) and controller inputs u¢(t). Most linear time-invariant controllers can be put

into this form with individual feedback gains appearing in the elements of the state

matrices A¢, B_, Co, and De. Note that a closed-loop system is formed by connect-

ing:(1) the outputs yc(t) in equation (3.5) of the controller state model to the inputs

uip(t) in equations (3.1)-(3.3)of the plant model and, (2) the plant output vector y_(t)
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to the input vector uc(t) of the controller state model. This action of loop closure

between the plant and the controller models is automatic and carried out inside the

design package SANDY.

In chapter 4 we will describe the formulation of a TECS controller using equations

(3.4) and (3.5).

3.2 Description of a Design Algorithm Based on Nonlinear Constrained Optimiza-

tion

As mentioned in the introduction, the design method proposed in this study is based

entirely upon the minimization of a performance index for a set of closed-loop systems

subjected possibly to additional design constraints such as closed-loop stability, co-

variance responses to process and sensor noises, and bounds on robustness measures.

A nonlinear programming technique [Ref.8] implemented in the numerical library

NPSOL is used to solve the control problem with nonlinear design constraints.

Typical performance measures in optimal control are quadratic penalties on the

closed-loop system output and control responses to random disturbances. Three types

of random disturbances are considered in the design problem: initial conditions, im-

pulse inputs and white-noise inputs. Depending on the types of disturbances, different

formulations of the performance index will be used. For the i th plant condition, the

performance index to initial conditions or impulse inputs has the form

1

Ji(tl) = -2 for' e2_'tE[yivT(t)Qiyip(t) + uipT(t)Riuir'(t)]dt (3.G)

and for white-noise inputs the performance index is

iT i iJ_(tf) = E_,[y_T(tl)Qyip(tl) + up (tI)R up(t/)] (3.7)

where y_(t) and u_(t) are respectively the closed-loop responses of the performance

and controller output variables (since u_(t) = yc(t)). The operator E_,[-] is the

expected-value operator corresponding to a closed-loop system destabilized by a factor

a_. The matrices Qi and R _ are the usual penalty weighting matrices on the system

performance outputs and control inputs respectively. Evaluation of the performance

index in equation (3.6) is done using the equivalence relation established in Appendix
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A. The parameter o_, is used to ensure that, when a steady-state optimal solution has

been found, the closed-loop system eigenvalues of the controllable modes will have

real parts less than -a, at the i th plant condition. The formulation of the outputs

y_(t) in equation (3.3) is general and can be defined to include the plant states x_(t),

the controller states zc(t) and the controller inputs uc(t). The plant states z_(t) are

modeled in the performance outputs yip(t) by letting C_ = [, D_ = f_ip = 0. The

controller states xc(t) and the controller inputs uc(t) are modeled through the term
i

D_ in equation (3.3) and with up = yc established in the feedback connection.

Design gains from selected parameters within the controller matrices are deter-

mined such that a performance index of the form

Np

J(tl) = _-_I'ViJi (3.8)
i=1

is minimized. Individual performance index J,(i = 1,Np) is one of those shown

in equations (3.6) and (3.7). Performance indices are evaluated to an a-priori se-

lected finite terminal time t j- during the initial optimization. Efficient algorithms to

evaluate the performance index d(tl) and its gradients with respect to the design pa-

rameters have been developed [Ref.6] that are comparable to those in the evaluation

of the steady-state performance index (i.e based on Lyapunov solutions) in terms of

computational time and accuracy. In fact, steady-state covariance responses can be

accurately calculated by using a sufficiently large t! (e.g. at least 4-times the slowest

time-constant of the closed-loop system modes). The terminal time t I is increased

following each successful convergence in order to recover the steady-state solution.

This gradual process of recovering the steady-state solution ensures that the final

optimal solution will be a stabilizing one. The criterion for determining whether a

steady-state solution has been reached is based on the condition that value of the

optimized objective function will not vary by more than .1 percent from its previous

value obtained for a smaller terminal time t I. Experiences gathered so far seem to

justify the use of a performance index based on a finite terminal time. This procedure

avoids the difficulties encountered by conventional methods based on the Lyapunov

equation for the steady-state covariance responses, requiring special provision to han-

dle the case when the controller design becomes destabilizing during the search. Note

that by starting with a sufficiently small terminal time t! our design method can even
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be initiated with a controller design guess that is not stabilizing.

The performance index J given in equation (3.8) enables designers to incorporate

classical measures of design robustness or sensitivity to plant modeling uncertainties

of the following types,

1. Gain and phase margins in the control and sensor paths,

2. Roll-off in the broken-loop frequency responses evaluated at the control and

sensor feedback paths,

3. Sensitivity of the closed-loop eigenvalues and the closed-loop performance mea-

sures to perturbation in the plant modcl parameters.

The first and second items are useful measures of robustness to unmodelled dynamics.

The third item is a measure of robustness to uncertainties in the coefficients of the

plant model.

As seen in equation (3.8), our design algorithm for robust low-order controllers

[Ref.6] involves an objective function that combines together several quadratic penal-

ties of closed-loop system responses at different plant conditions. A simultaneous

control-law synthesis to a set of multiple plant conditions allows the direct inclusion

of robustness measures of type 3 into the design objective. Design to robustness

measures of types 1 and 2 can be handled through the use of frequency-weighted

performance functions and H°°-norm bounds on selected system transfer function

matrices [Refs.7,19].

Specifically, robustness to plant parameter uncertainties or variation in design

condition is achieved by using a set of quadratic performance indices that encompass,

in addition to the one at the nominal design condition (i= 1), other off-nominal design

conditions weighted by the design parameters Wi (i = 2, ..., Np) as in equation (3.8).

To impose design robustness to unmodeled dynamics, one may define additional plant

conditions that have performance indices representing penalties on control and sensor

loop responses to high-pass noises injected separately into the control and sensor

paths, or on the H_-norm of desired system transfer function matrices.

Design for command following and tracking problems is done by formulating syn-

thesis models and performance indices that penalize transient responses of the errors
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betweenthe actual and the commandedoutputs. The commandedoutputs (e.g fil-

teredstep, ramp, sinusoidalfunctions) arederived from a commandgeneratormodel,

a part of the augmentedplant model, by using a combination of initial conditions

and impulse inputs. If proportional and integral controls are desiredin the feedback

design,it is crucial that formulation of the designperformanceindex reflectsthe need

for an integral control action. The integral gains in the controller matrices tend to

becomeineffective (i.e convergeto small values)whenthe objective function consists
of responsesto gaussianrandom disturbancesof zeromean. In general,integral con-

trol requirementsmust be defined in terms of a performance index that penalizes

transient error responsesof the controlled variablesin the presenceof parameterized

random disturbance inputs where the generating time functions have nonzerocon-

stant steady-statecomponents.That is, integral action is meaningful in the optimal
designwhenit is usedto compensateplant responsesin the presenceof parameterized
random constant disturbances.

Many types of parameterized random commands, such as impulse, step, and ramp

inputs, are derived from responses of linear time-invariant shaping filters to random

initial conditions or to impulse inputs of random magnitudes (Appendix B, section

B.1). Outputs of these filters are interpreted as parameterized random commands

whose magnitude ycma is a random vector with zero mean E[ycma] = 0 and covariance

E[ycmdYfma] = t_ma. Elemcnts of the magnitude vector Y_d are uncorrelated whcn

its covariancc matrix Ycmd is diagonal.

Random disturbances, such as Dryden or approximate Von Karman turbulences,

are outputs of stable linear shaping filters excited by white-noise inputs w(t) (Ap-

pendix B, section B.2) with zcro mean E[w(t)] = 0 and covariance E[w(t)wT(r)] =

,).
Design requirements which cannot be easily handled through a quadratic perfor-

mance index are enforced through linear constraints, nonlinear constraints, and direct

bounds on the design parameters. Nonlinear constraints on the closed-loop stability,

performance, and robustness are defined as follows,

• Closed-loop stability of selected eigenvalues:

>__ (i = 1,...,n)

O"i __ O'imax , (i = 1, ..., n)

(3.9)

(3.10)
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where _'i is the damping ratio and cri is the real part of the i th eigenvalue. For-

mulation of these non-linear constraints is described in Appendix C.

• Closed-loop mean-square responses:

2 < lim E[y_,(tl) ] < _r2 (3.11)
O'Pi rain _ t].-*O0 _ Pi ms_

where the parameters _r,,2.,_. and ap,_m.. define respectively the allowable lower

and upper bounds on the mean-square response of the i th plant output yp, to

random disturbances.

• Desired H°°-norm bounds on closed-loop performance variables:

_m,n < IIG_(j'_)II_ _< _-,°_ (3.12)

where IIG  (J )lloo = supw and G_,,o(s) is the transfer function ma-

trix of the closed-loop system between the plant disturbance inputs w(s) and

the plant outputs yp(s).



Chapter 4

TECS PROBLEM FORMULATION

4.1 Formulation of Synthesis Models

The NASA B-737 TSRV aircraft [Refs.12,13,24] is used in this study of a total en-

ergy control system design based on nonlinear constrained parameter optimization.

Longitudinal aircraft models are generated for the landing-approach and cruise flight

conditions described in tables E.1 and E.2 (Appendix E). The linearized aircraft

dynamic models have the form

kp(t) = Apzp(t) + Bp%(t) + Fpwp(t) (4.1)

yp(t) = Cpzp(t) + Dpup(t) + flpwp(t) (4.2)

where zp(t) contains the aircraft rigid-body states, up(t) the elevator and throttle

control inputs, wp(t) the wind components and the command inputs, and yp(/) the

measurement and the performance criterion outputs. The aircraft models are subse-

quently augmented with appropriate linear control actuation models of the form

k_c,(t) = A_c,z_a(t) + B_ctu_¢t(t) (4.3)

up(t) = C_ax_ct(t) + D_,u_a(t) (4.4)

Turbulence and command generation models are described by

_d(t) = Adxa(t) + B,twa(t) (4.5)

war) = Cdxd(t)+ Ddwd(t) (4.6)

They contain the commonly used Dryden or approximate Von Karman turbulence

spectra [Ref.23]. Power spectral densities for Dryden turbulence models are given by

¢_(w) = a 2 L_ 1 (4.7)
"rV 1 + (L,,w/V) 2

2 L,,, 1 + 3(L,,,w/V) 2 (4.8)

= [1+
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where a_ and at, are the root-mean-square intensities of turbulence (figure 4.2) with

2 2
O"u O"w

- (4.9)
L. L_

The parameters L,_ and L,_ are turbulence scale lengths defined as a function of

altitude:

• For altitude above 1750 ft: L, = L_ = 1750 ft

• For altitude below 1750 ft: L_ = 145h ID, L_o = h where h is the altitude in feet.

Aircraft rigid-body dynamics are augmented with models for the control actuators

and disturbances; the latter variables contain not only the wind inputs but also the

command signals (Appendix B). The resulting plant model forms a synthesis model

in the form of equations (3.1)-(3.3). An automated procedure for formulating the

synthesis model is implemented in a user-defined function for the MATLAB 1 control

system software• A listing of the command procedure is given in Appendix F.

4.2 An Optimal Design Approach for TECS

The design algorithm for robust low-order controllers [Ref.6] implemented in the com-

puter design package SANDY is applied to the design of an integrated AFCS. The

total energy concept defines the "inner-loop" structure for an integrated autothrot-

tle/autopilot control system and provides a basis for a multiloop control design. The

basic TECS feedback controller shown in figure 2.2 with a pitch damper can be for-

mulated into a controller state-space model of equations (3.4) and (3.5) as follows,

0 0

0 0

0 0

0 ZlL

0 xv¢

-1

+ 1

0

-1/g 0 0 1 1/g

-1/g 0 0 -1 1/g

0 0 0 0 1

XlL --"

xv¢

q

0

%

(4.1o)

1 MATLAB is a trademark of The MathWorks, Inc.
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(_thc I

_ec

v:

+

KGW t(TI 0 0

0 KCASKEI 0

0 0 kl
XlE I

XlL

xy_

-KGwKTp --](GwKTp/g 0 0 0 0

KcAsKEp --KcAsKEp/g KcAsKq KcAsKo 0 0

0 0 0 0 k2 0

q

0

v_

(4.11)

Proportional and integral gains KTp , ](EP, KTI and ](El along with the pitch damper

gains ](q and ](0 and the additional gains kl and k2 are design parameters in the

controller state matrices. The gain schedule parameters Kaw and I(CAS are assumed

fixed at each plant condition and their contribution to the overall feedback gains can

be absorbed into the other feedback gains. The design parameters are selected from

the minimization of a performance indcx J of the form

Np

J = _ WiJi (,1.1o_)
i=l

where
NR

J, = _ J!k)(i = 1,...,Np) (4.13)
k--I

and Wi is a weighting factor assigned to the performance index Ji at the i th plant

condition. Within each individual plant condition, performance indices j[k) (k =

I,...,NR) are used to address NR different control design requirements. Design re-

quirements defined in j_k) may be conflicting. Compromises among the conflicting

requirements are usually made in the final design solution through iterative adjust-

ment in the penalty weighting matrices.

In the optimal TECS design problem, the objective function at each flight condition

is made up of at most three different performance indices J[k)(k = 1,2,3),

J, = _ J_ (4.14)
k----I
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The first performance index j[x) is formulated to address design requirements in

command tracking performance. It is given by

= 1[ ttJ}') lim E[Q,(7(t ) - %(t)) s + Qs(V(t) - Vc*(t))2]dt
tr-'oo 2 Jo

(4.15)

This performance index is evaluated to parameterized random filtered step commands

in Pc and ")'c with _'c(t) = V_oae-"'#(t) and 7c(t) = %o(1 -e-"t)#(t) where it(t)is the

unit-step function. The parameter a determines the bandwidth of both the acceler-

ation and the flight-path commands. In this design case, we use a = 1.2rad/sec, a

typical value for flight-path and velocity command bandwidths. The variables V_o and

%o are random parameters with zero means and covariances E[V_o ] = a_c = l.O(fps) 2

2 = 1.0(de9)2. The command V_(t) is computed simply as the integraland Eb o] = %
of the acceleration command _'_(t), i.e.

Z'vo(t) = 9c(,-)d,- (4.16)

The quantity V_'(t) is an output of the controller model given in equation (4.11). It

is used in the criterion output V(t) - Vc°(t) and is defined as a linear combination of

the commanded velocity Vc(t) and flight-path angle %(t), namely

v:(,) = vc(t) + (4.::)

The parameter kl depicts the achieved level of commanded velocity in steady-state.

Recall that the TECS design structure in figure 2.2 does not include feedback of veloc-

ity error, hence it is a type 0 system in the velocity variable V. Thus, in steady-state

the aircraft velocity V(t) does not settle to the command value l/_(t), and the param-

eter kl is always strictly less than one (i.e k: < 1). The parameter ks is the amount of

cross-coupling between flight-path command 7c(t) and aircraft steady-state velocity

V(t). Either parameter kl and/or k2 can be set to lie within some desired values us-

ing direct bound constraints. For our design, the inequality constraint -1 _< ks _< 1

ensures that for one degree of flight-path angle command 7c(t), the change in air-

craft steady-state velocity is less than one foot-per-second in magnitude. Clearly,

for perfect decoupling where one does not allow changes in aircraft velocity during a

flight-path angle command, ks would be constrained to be equal to zero. The parame-

ters kl and k2 are determined during the optimization such that bound constraints on
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k, and k2 are satisfied and the term (V(t)- V:(t)) in the integrand of the performance

index j_l) in equation (4.15) vanishes in the limit as tf --* co.

The second performance index j(2) is set up to perform trade-off in the control

bandwidth of the throttle loop. It is defined as

j_2)= lim _E[R,_2thc(tf)] (4.18)
t l -..* oo

The performance index j[2) is evaluated to a high-pass noise input in the thrust

command loop [Ref.25]. The noise input is generated from the response of a first-

order filter to white-noise with zero mean E[_th_(t)] = 0 and covariance E[6th,,(t +

r)Sth_,(t)] = a_h_,8(r ). The quantity 8the(t) is the thrust feedback control as shown in

figure 4.1. Cut-off frequency of the high-pass filter is set approximately equal to the

desired broken-loop throttle control bandwidth (i.e. We,h,, = 0.2 rad/sec). Frequency-

shaping of the disturbance input to the thrust command ensures that only control

responses at high frequencies are penalized in j[2).

Similarly, the performance index j[z) is used to perform trade-off in the control

bandwidth of the elevator loop. It is given by

j_3)= lira 1E[R_6_c(t])] (4.19)

In this case, j}3) is evaluated to a high-pass noise input in the elevator command loop.

Again the noise input is obtained from the response of a first-order high-pass filter

to white-noise with zero mean E[6,,,,(t)] = 0 and covariance E[6¢,,(t + r)8,_,(/)] =

cr_,,6(r). The quantity (_,c(t) is the elevator feedback control. Cut-off frequency of

the high-pass filter is approximately equal to the desired broken-loop elevator control

bandwidth (i.e. w6._ = 2.0 rad/sec). Note that the elevator control has a higher

bandwidth than the throttle control.

Other design considerations besides those depicted in the quadratic performance

indices j_l), j_2), and j_3) are defined with the use of direct constraints. For example,

desired closed-loop damping is achieved using the eigenvalue constraint defined in

equation (C.41). Nonlinear damping constraints provide a direct means to achieve

satisfactory damping of aircraft rigid-body modes. And covariance responses of se-

lected outputs to clear air turbulence of Dryden spectra with RMS intensities from
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the 99%probability level (figure 4.2) canbe boundedusing the covarianceinequality

constraint in equation (3.11). Nonlinear covarianceconstraints on control outputs

ensurethat the resulting optimal designhas reasonablecontrol activities to turbu-
lence.

4.3 Control System Design Tradeoff

The design task involves a proper tradeoff among the following design performance

goals:

• Damping of system eigenvalues,

• Command frequency response bandwidths,

• Broken-loop crossover frequencies in the control paths,

• Covariance responses of performance criteria,

• Command tracking/following performance,

• Disturbance rejection,

• Robustness to plant parameter uncertainties and unmodeled dynamics.

Performance objectives must be identified and established by the designer during the

design tradeoff. If the desired objectives are not attainable, the NPSOL optimization

[Ref.8] would most likely fail to arrive at a feasible solution, e.g. design constraints

are unattainable with the specified controller structure or design constraints are too

stringent and need to be relaxed.



27

Minimum dampingof theclosed-loopsystemeigenvaluesisobtained directly through

specification of the nonlinear damping constraint _ >_ (,,in. If damping requirements

are too stringent then performance in other areas will be sacrificed. We found that

it is generally easier to achieve the desired damping level through the use of non-

linear constraints on system modes than with output penalties in the cost function.

Penalties on outputs which are partially related to lightly damped modes may un-

necessarily degrade other system responses. Furthermore, outputs associated with

lightly damped closed-loop modes will be different for different controller designs.

Selection of desired command-loop frequency responses can be achieved through

the penalties Q1 and Q2 in the performance index j_l). Bandwidths of individual

command-loop frequency responses V(s)/_'c(s) and "r(s)/Tc(s) relate to the ability

of the system to track the respective commands. If the bandwidth in a particular

command loop is too low, increasing the penalty Qi (i = 1,2) on the respective

commanded output error in equation (4.15) will produce a higher bandwidth in that

command path [Ref.25]. This systematic procedure enables designers to achieve sat-

isfactory trade-off of performance in different command loops.

Crossover frequency of a loop transfer function for a system broken at a control

path defines approximately the control bandwidth of that path. Selection of the

control-loop crossover frequencies is accomplished through the penalties Ri (i = 1,2)

in equations (4.18) and (4.19). If the loop crossover frequency of a particular control

path is too high, then higher penalty R, in. the respective performance index, i.e. J(_)

or j[3), would lead to a design with a lower bandwidth [Ref.25]. Note that require-

ments for simultaneous low control-loop crossover frequency and high command-loop

bandwidth are generally contradictory. Usually, decreasing control-loop crossover

frequencies will inevitably result in lower command-loop bandwidths.

Upper bounds on root-mean-square (RMS) responses of selected performance cri-

teria and control outputs to Dryden turbulence spectra may be specified to ensure

adequate RMS responses. For the TECS design, throttle and elevator control activ-

ities are the two variables of primary importance. Inequality bounds are therefore

placed on covariance responses of tSthc(t ) and 6ec(t) to Dryden turbulence. The upper

bounds are selected from the closed-loop control covariance responses of the current

TECS design. In flight condition FLT2, one has to increase the elevator control activ-

ity in turbulence by a small amount in order to achieve the desired level of closed-loop
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damping.

Designrobustnessin terms of closed-loop stability and performance measures to

plant parameter uncertainties can be improved by using a performance index of the

form given in equation (4.12), i.e.

Np

J = _-'_WiJi (4.20)
i=l

where each performance function Ji(i = 2,..., Np) reflects design considerations at

an off-nominal plant condition. Note that the index i = 1 corresponds to the nom-

inal design condition. Stability in the presence of plant model parameter variations

is defined in terms of damping constraints placed on closed-loop eigenvalues at the

off-nominal plant conditions. When these constraints are satisfied, the resulting con-

troller will then be robust to the given changes in plant conditions. However if the

posed problem is overly constrained, then most likely a feasible solution cannot be

found; in this case, a smaller set of uncertain plant models ought to be tried instead.

An alternative formulation for the robustness criteria is through the H°°-norm

bounds of selected system transfer function matrices, e.g Ila  (J )lloo. The H°°-norm

llG(j o)lloo is defined as the supremum of the maximum singular value of G(j_) for

a_ E [0, cxz). From the small gain theorem, H °° bounds on specific transfer function

matrices give guaranteed gain and phase margins for nominally stable systems [Ref.3].

Nonlinear constraints of the form

IIG, (j o)lloo _< (,1.21)

can also be specified in the extended version of the SANDY design algorithm [Ref.7]

for robust stability and performance. Evaluation of this robust design procedure is

left for a future study.

4.4 Gain Schedule at Other Flight Conditions

The design procedure described in section 4.3 will produce controller design gains

optimal at one flight condition. Gain scheduling of the design at other flight conditions

is usually required for optimum performance and may be achieved in one of three

ways:
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. Design optimum controller gains at individual flight conditions separately. A

gain schedule is developed for each controller gain. Usually it involves some form

of curve-fitting with respect to airplane parameters such as calibrated airspeed

or gross weight in the final design implementation.

. Preselect a gain schedule for each of the control or sensor paths. Design remain-

ing controller parameters to satisfy all requirements with the preselected gain

schedule structure over the entire set of design conditions simultaneously.

. Design a set of controller gains for a nominal flight condition. Redesign at

other flight conditions based on gain scheduling a subset of controller gains.

This procedure is simple and involves less computational effort in the actual

implementation.

The first method is straightforward and involves doing a separate design for each

flight condition. However, this may result in a gain schedule which is too cumber-

some to implement. In the TECS inner-loop structure, this method would require

scheduling of six separate gains.

The second approach involves deciding upon an a-priori gain schedule for the

control or sensor paths, independent of the optimal design. These gains may be

factored into the synthesis models at each flight condition. A single controller is

then designed to satisfy all flight conditions with the pre-selected gain schedule. The

design method involves defining a performance index similar to equation (4.20) that

covers the entire range of flight conditions. It should be noted that this method

depends upon the selection of a predefined gain schedule and provides no insight into

how the gain schedule should be formulated. If the number of degrees-of-freedom

is not adequately defined in the a priori selected controller structure, then most

likely an optimal solution cannot be found that will meet all the design constraints.

Thus, this method is generally not desireable since it sets the gain schedule around a

predetermined structure that may be overly constrained.

A more practical approach is to select a few gains in the controller which are to be

gain scheduled. These gains are often introduced at the control input paths to provide

compensation for changes in control effectiveness. The procedure in the third method

begins with a set of gains optimized at a nominal flight condition perceived to be the
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most important. Then the gain scheduleis determinedby optimizing only a selected

subsetof gainsto other flight conditions while leavingthe remaining controller gains

fixed at their nominal values. For example, in the TECS inner-loop structure, the

scheduledparametersare I(cas and Kaw while the gains KEP, IfTp, KEl, Ifrt, Ko,

and Kq are fixed at the values optimized for the landing approach condition. The

design procedure for optimizing the scheduled parameters and conducting design

tradeoffs at each off-nominal flight condition is the same as described in section 4.3.

This is a preferred approach since it provides insights into the level of improvement

a gain schedule can offer with the selected degrees of freedom.

4.5 Issues for Numerical Convergence

Solution of the minimization problem is based upon a state-of-the-art nonlinear pro-

gramming algorithm implemented in the NPSOL library [Ref.8]. Numerical condi-

tioning of the TECS optimization problem is essential for successful convergence.

Some key considerations are:

• Convergence of the performance integral. The designers must verify that the in-

tegrands of the quadratic performance index will approach zero in steady-state

to the given set of input functions (i.e. white-noise, impulse, step, etc.).

• Formulation of the constrained optimization problem.

• Construction of the plant synthesis models.

Performance indices in equations (3.6) and (3.7) and their gradients with respect

to the design parameters are needed for optimization. The design algorithm imple-

mented in the computer design package SANDY evaluates the performance indices

and gradients to a finite terminal time t I. In steady-state (i.e. t! _ oo), the perfor-

mance index in equation (3.6) or (3.7) would become unbounded when the closed-loop

system contains neutrally stable or unstable modes that are both disturbable from
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the input excitation and detectablein the performancefunction. Selectionof an ap-

propriately small finite terminal time t I would help avoid problems associated with

lightly damped or unstable closed-loop poles in the initial phase of the numerical

search.

Design optimization to step commands or constant disturbance inputs requires

careful formulation of the performance index, making sure that the integrands will

settle to zero in the limit as tl _ oo. Otherwise, the performance integral will be

unbounded. For example, in the TECS problem formulation, the variable V_* given

in equation (4.17) was used instead of V_ since the error (V - Vc) does not approach

zero in steady state for a type 0 system and the performance integral of equation

(4.15) would otherwise be unbounded.

In problems dealing with constrained optimization, the possibility of having an

overconstrained problem always exists. Careful formulation of the design objectives

will definitely minimize problems encountered with nonlinear constraints and thereby

speed up the design convergence. A helpful rule is to start the initial design with

a minimal number of nonlinear constraints. Additional constraints can later be in-

troduced in a systematic manner by order of relative importance and need. In the

TECS design, damping in the aircraft rigid-body modes is of primary importance.

Nonlinear constraints are henceforth used to achieve adequate closed-loop damping.

Constraints on control covariance are included only when the initial design is found

to be unsatisfactory.

Modern nonlinear optimization techniques as found in the NPSOL library require

that design parameters be of approximately the same order of magnitude. If some

parameters are significantly larger than the others, then gradients of the cost function

with respect to these parameters may appear too small; consequently the true opti-

mum may not be reached to a given level of optimality tolerance. Proper selection

of physical units in both the controller and the plant synthesis model ensures that,

at the start, design parameters will have the same relative magnitudes, ttere in our

TECS problem, we found that the quantities 7(tad) and 9/9 have the same order of

magnitude and the feedback gains on these variables have the same size.

Finally, it is crucial that the controller matrices in equations (3.4) and (3.5) form a

minimal realization [Ref.6]. A nonminimal system will contain redundant parameters

that lead to multiple local minima in the optimization. As a rule of thumb, the
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maximum possiblenumbern,,,_, of independent controller parameters is, for Dc -_ 0,

._= = (_ + p)_+ r_p (4.22)

and for Dc = 0,

n.,= = (m + p)_ (4.23)

where r is the number of controller states, p is the number of controller inputs and rn

is the number of controller outputs. For example, in the TECS inner-loop structurc as

given in equation (4.11), a valid set of design parameters would be Co(l, 1), Cc(2,2),

D_(1,1), D_(2,1), D_(2,3) and D_(2,4) while the parameters De(l,2) and D_(2,2)

are related to the above set through linear constraints, i.e De(l,2) = De(l, 1) and

D_(2,2) = -D¢(2, 1).

_)thw _ Ss+a

s+b

-- Plant

Synthesis

_ Model

TECS I_
_,h,=(s)Inner & Outerl'_---

Loops ]

Figure 4.1: High-Pass Frequency Shaping of Control Loop Activities
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Chapter 5

INNER-LOOP DESIGN -- SYNTHESIS AND ANALYSIS

In this chapter we examine the synthesis of a TECS inner-loop design at two flight

conditions FLT1 and FLT2 (Appendix E). Results presented in the following sections

illustrate the application of the design procedure described in section 4.2.

5.1 Design for a Nominal Flight Condition

For AFCS designs, tight airspeed and path control is important in the presence of

windshear, particularly at low altitudes and during landing approach conditions. In

this respect, the landing approach flight condition FLT1 was considered most im-

portant and is selected to be the nominal design condition for the TECS inner-loop

gains. These TECS gains are designed to yield optimum performance at this flight

condition.

Designs at other flight conditions are synthesized around this nominal controller

using the gain schedule parameters KCAS and Kcw (figure 2.2). When optimizing

the TECS inner-loop gains, the gain schedule parameters are not considered as in-

dependent parameters and must be fixed at some selected values. Without loss of

generality, gain schedule at the flight condition FLT1 is selected to be the same as

that of the classical design.

Design parameters in the TECS structure are determined following the procedure

described in section 4.2. Arrival at a final design using constrained parameter op-

timization involves compromise among different design performance goals. For the

landing approach flight condition FLT1, the following design objectives were used:

• The performance indices J_(i = 1,3) described in equations (4.15), (4.18) and

(4.19) are given below.

(a) Command frequency response bandwidths and command tracking perfor-
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mance:

J_) lim E[2(7(t) - %(t)) 2 + (V(t) - V_'(t))2]dt
tl -oo 2 Jo

(5.1)

This performance index is evaluated to parameterized random filtered step com-

mands in I/c and % with l¢'c(t ) = V_oae-_tl_(t) and %(0 = %o(1-e-_t)#(t) where

/l(t) is the unit step function. The parameter a determines the bandwidth of

both the acceleration and the flight-path commands. In this design case, wc

use a = 1.2tad/see, a typical value for flight-path and velocity command band-

widths. The variables V_o and %0 are random parameters with zero means and

2 = l.O(deg)2.covariances E[V_] = a_, = 1.O(fps) 2 and E[7_o] = a_c

(b) Broken-loop crossover frequency in the throttle control loop:

j_2)= lim 1E[106t2hc(Q)]
t1"*c_ 2

(5.2)

The performance index j_2) is evaluated to a high-pass noise input in the thrust

command loop. The noise input is generated from the response of a first-order

high-pass filter to white-noise with zero mean E[6th,,,(t)] = 0 and covariance

E[6th_(t + r)6th_(t)] -- a,2h,_*(r). In this design, we choose o'th,_ -- 1. The quantity

6the(t) is the thrust feedback control as shown in figure 4.1 . Cut-off frequency of

the high-pass filter is set approximately equal to the desired broken-loop throttle

control bandwidth (i.e. W6,h,_ = 0.2 rad/sec).

(c) Broken-loop crossover frequency in the elevator control loop:

j_3)= lim 1E[3_(tl)] (5.3)
t f--*c_

The performance index j(3) is evaluated to a high-pass noise input in the elevator

command loop. The noise input is generated from the response of a first-order

high-pass filter to white-noise with zero mean E[6¢,,,(t)] = 0 and covariance

E[6_,_(t+r)Se,_(t)] = a_,_6(r). In this design, we choose a_ = 0.16. The quantity

6_,(t) is the elevator feedback control as shown in figure 4.1 . Cut-off frequency of

the high-pass filter is set approximately equal to the desired broken-loop elevator

control bandwidth (i.e. ws,,o = 2.0 rad/sec).



36

• Stability of the closed-loopeigenvalues:
(a) Real part of the eigenvalues must be less than zero,

ai _< 0 (i = 1,n) (5.4)

(b) Damping ratio of the eigenvalues must be greater than 0.7, i.e

(; > 0.7 (i = 1,n) (5.5)

• Mean square responses of control activities to clear air Dryden turbulence of

a,, = 6.6 f ps and a_o = 6.3 f ps,

E[ti_h_] _< 7.56 × lO-4(lbst/Ibsw): (5.6)

E[6_c ] < 6.735 × 10-4(rad) 2 (5.7)

The above constraints will produce an optimal design (listed under SANDY

in table 5.4) with a covariance in the speed variable V exceeding that of the

classical design. To remedy this design problem, we include in the next design

an additional constraint on the covariance response of the speed variable as

E[V 2] < 0.5122(fps) 2 (5.8)

The optimal design with this additional covariance constraint is shown in tables

5.1 and 5.4 as the optimal design SANDY*.

Sample of an input data file for the computer program SANDY corresponding to

the above design formulation at flight condition FLT1 is given in Appendix F. The

data file contains the plant synthesis model, controller model, disturbance specifica-

tions, penalty weighting matrices, linear constraints, nonlinear constraints and direct

bounds on parameters. The resulting optimal feedback gains and associated design

parameters kl, k2 are summarized in table 5.1. The following paragraphs discuss de-

sign results obtained at flight condition FLT1 corresponding to the final optimized

design SANDY*.

In the optimal design SANDY*, the proportional gain KTp to the throttle, pitch

damper gain I(0 and the decoupling parameter k2 differ significantly from the classical
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design. Improvedperformanceand dampingareachievedwith a nonzerovalueof KTp

and a lower gain Ko. Recall that the magnitude of the parameter k_ represents the

degree of cross-coupling between flight-path command to steady-state speed error.

This value is reduced in the optimal design in comparison to the classical design.

Gains in the pitch damper have been reduced while those in the proportional and

integral paths to the elevator are kept at the same level as the classical design; hence

maintaining the desired command bandwidth and tracking performance.

Table 5.2 gives the damping ratio and natural frequency of the closed-loop system

eigenvalues. A minimum damping of 0.7 is achieved through the use of nonlinear

constraints; this is an improvement over the minimum damping of 0.64 in the classical

TECS design.

Figures 5.1 and 5.2 show the command and broken-loop control frequency re-

sponses of the classical and the optimized TECS designs respectively. Command and

control-loop bandwidths for these designs are summarized in table 5.3. One design

consideration is to have equal bandwidths in both the flight-path and acceleration

command loops. Equal bandwidths in these command paths imply that transient

errors in the total energy rate and energy distribution rate will decay exponentially

to zero at a same time constant (i.e. coordinated flight-path and speed command re-

sponses). The command bandwidths for the optimal design are similar to those of

the classical design. Notice that the command bandwidths are achieved with a lower

bandwidth in the elevator control path.

Control-loop bandwidths give measures of control sensitivity to unmodeled high-

frequency dynamics in the control paths. Lower control-loop bandwidth means less

sensitivity to these types of unmodeled dynamics. The elevator loop bandwidth in the

optimal design is smaller than that of the classical design at flight condition FLT1.

Figures 5.3 to 5.6 show time responses of the closed-loop systems to step commands

in flight-path angle and velocity. Velocity command is derived from an acceleration

command as in equation (4.16). Results to a velocity command are shown in fig-

ures 5.5 and 5.6. Both the flight-path angle and velocity commands are implemented

through first-order command shaping filters with bandwidths equal to those used

in the control-law synthesis (i.e. a = 1.2 rad/sec for both commands). Improved

damping in the transient responses of flight-path angle and velocity errors is seen in

figures 5.4 and 5.6. Responses to flight-path angle and velocity commands are similar
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to step responsesof a first-order filter. And there is lesscross-couplingbetweenthe
flight-path commandand velocity.

Table5.4 comparesthe closed-looprms responsesof the classicaland the optimal

designsto Dryden clear air turbulence at the 99% probability level of intensities.

Resultsclearly illustrate the effectiveusageof direct boundson the respectiveoutput
covariances. By imposing inequality constraints on the control covariances,one is

guaranteedat the outset that the optimal design, when converged,will have the

sameor lower control activities than the classicaldesign. Furthermore, covariance

responsesof other aircraft variablesare loweror equal to thoseof the classicaldesign.

In particular, the covarianceresponseof the speedvariableV is equal to the valueof

the classicaldesigndue to the inequality constraint definedin equation (5.8).

Conventionalsingle-looprobustnessI analysisgivesallowablevariations of gain or
phaseat either the control or sensorpaths, while other remaining loops are closed

at the nominal gains. Gain and phasemargins determined from Bode or Nyquist

plots yields the largest allowable variations (one-loopat a time) in loop gain and
phaserespectivelystarting from a nominally stable closed-loopsystem. Table 5.5

summarizesvaluesof single-loopstability margins. Single-loopstability margins are

found to be satisfactory for both the optimal and classicaldesigns.

Multivariable robustnesstests (Appendix D) based on singular values of loop
return-differencematricesprovide additional measuresof designrobustnessin terms

of guaranteedmultivariable gainand phasemargins[Ref.20].The resultsmaybe con-

servativebut they are applicableto simultaneous variation of gain and phase in each

loop. Figures 5.7-5.12 show plots of minimum singular values of the return-difference

and the inverse-return-difference transfer matrices respectively at both the control

and sensor paths. In these plots, diagonal scaling [Ref.23] on the transfer function

matrices has been used to reduce conservatism and thereby improve estimates of ac-

tual multiloop stability margins. Table 5.6 gives guaranteed multivariable stability

margins in both the control actuator and sensor paths according to equations (D.8)

and (D.14) of Appendix D. Both the optimal and classical designs possess similar

multivariable stability margins. Note that requirements for robustness have not been

1 Robustness margins are defined as the amount of allowable gain and phase increases prior to the

onset of instability.
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defined in the control-law synthesis. Systematic methods for improving design ro-

bustness are discussed in section 4.2. Robust control-law synthesis using H°°-bounds

or p-measure will be the subject of a future study.

5.2 Determination of Gain Schedule

Gain scheduling of the TECS inner-loops is necessary in order to satisfy performance

and stability requirements at other flight conditions. Gain scheduling between a

landing approach condition and one other cruise condition FLT2 is considered in this

study. The objective is to demonstrate the usage of nonlinear constrained optimiza-

tion in the design of gain schedule. Design results are discussed in the following

paragraphs. The gain schedule design is obtained by re-optimizing the gains Kow

and KCAS in the throttle and elevator paths respectively. The TECS proportional,

integral and pitch damper gains KTp, KEp, KTI, KEI, gq, and Ko are held constant

at the values optimized for the landing-approach condition FLT1. Another set of

design objectives are established for the cruise condition similar in form to that given

in equations (5.1)-(5.8). They are as follows,

• The performance indices J_(i = 1,3) described in equations (4.15), (4.18) and

(4.19) are given below.

(a) Command frequency response bandwidths and command tracking perfor-

mance:

j(l)= lim 1 f0'1,,-oo - 2+ 2(V(t) - (5.9)

This performance index is evaluated to parameterized random filtered step com-

mands in _'c and % with _'_(t) = V_,ae-*tl_(t) and %(t) = %o(1 -e-"t)p(t)

where /_(t) is the unit-step function. The parameter a determines the band-

width of both the acceleration and the flight-path commands. In this design

case, we use a = 1.2tad/see, a typical value for flight-path and velocity com-

mand bandwidths. The variables V_o and %o are random parameters with zero

2 = 1.O(deg)2.means and covariances E[Vgo ] = a_,o = 1.O(fps) 2 and E[72o1 = a,r,

(b) Broken-loop crossover frequency in the throttle control loop:

= , im½Et206,L(t )I (5.1o/
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The performance index J_) is evaluated to a high-pass noise input in the thrust

command loop. The noise input is generated from the response of a first-order

high-pass filter to white-noise with zero mean E[3th_(t)] = 0 and covariance

E[Sth,_(t + r)Sth_(t)] = a_hJ(r). Again, we choose ath_, = 1. The quantity _thc(t)

is the thrust feedback control as shown in figure 4.1 . Cut-off frequency of the

high-pass filter is set approximately equal to the desired broken-loop throttle

control bandwidth (i.e. o's,h,, = 0.2 rad/sec).

(c) Broken-loop crossover frequency in the elevator control loop:

j[3)= lim 1E[65_c(tl)l (5.11)

The performance index j_3) is evaluated to a high-pass noise input in the elevator

command loop. The noise input is generated from the response of a first-order

high-pass filter to white-noise with zero mean E[5,,,,(t)] = 0 and covariance

E[_,o(t + r)5_w(t)] = a_5(r). Again, we choose a_, = 0.16. The quantity 5_¢(t)

is the elevator feedback control as shown in figure 4.1 . Cut-off frequency of the

high-pass filter is set approximately equal to the desired broken-loop elevator

control bandwidth (i.e. w6,,_ = 2.0 rad/sec).

• Stability of the closed-loop eigenvalues:

(a) Real part of the eigenvalues must be less than zero,

ai < 0 (i = 1,n) (5.12)

(b) Damping ratio of the eigenvalues must be greater than 0.6, i.e

_i _ 0.6 (i -- 1, n) (5.13)

• Mean square responses of control activities to clear air Dryden turbulence of

_r, = 4.7fps and a_ = 4.7fps,

E[5_hc] <_ 1.804 × lo-s(Ibstlibsw) 2 (5.14)

E[5_c] < 3.2 x lO-3(rad) 2 (5.15)
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It turns out that no feasiblesolution can be found to satisfy simultaneouslythe

closed-loopdamping constraint of at least0.6 and anelevator control activity to

turbulence lessthan or equal to that achievedunder the classicaldesign. Thus
the covarianceboundon the elevatorcontrol is set to a value slightly higher than

the value obtained from the classical design. Note that the selected bound on

the elevator control activity to turbulence still yields acceptable level of control

activity to the given level of turbulence. Recall that in the gain schedule design,

the optimization has only two design parameters Kaw and KCAS. As we have

demonstrated in flight condition FLT1, results of the classical design at flight

condition FLT2 could similarly be achieved if we re-optimize all the inner-loop

gains. Re-optimization of all the inner-loop gains at the flight condition FLT2 is

presented in chapter 7 along with an altitude and speed-hold autopilot design.

Gain schedule developed for the parameters Kaw and KCAS at the two design flight

conditions and associated design parameters kl and k2 are shown in table 5.7. As

previously mentioned, gain schedule at the nominal flight condition FLT1 is chosen

to be the same for both the optimal and classical designs.

At flight condition FLT2 the optimized gain schedule based on the inner-loop

design optimized at flight condition FLT1 is quite different than the one chosen

in the classical design. Design procedure for the selection of gain schedule in the

classical design is usually based on closed-'loop stability. It may not consider other

design objectives such as tracking performance and control activities in the presence

of turbulence.

Table 5.8 shows the damping ratio and the natural frequency of the closed-loop

system eigenvalues. A minimum damping of 0.6 is achieved in the optimal design

through the use of nonlinear constraints on the closed-loop system eigenvalues. The

result is improved over the conventional TECS closed-loop damping of 0.45. It is

found by increasing the minimum damping requirement that higher damping of 0.7

for all modes is not achievable with simple gain scheduling of the parameters I(cw

and KCAS. Furthermore, the covariance constraint on the elevator control activity to

turbulence with upper bound set equal to the value obtained in the classical design

cannot be satisfied together with a minimal damping of 0.60 using only the design

parameters Kaw and KCAS.
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Figures 5.13 and 5.14 show the command and the broken-loop control frequency

responses at flight condition FLT2. Command and control-loop bandwidths are sum-

marized in table 5.9. Bandwidths in the flight-path and acceleration command loops

are made nearly equal in the optimal design through adjustment of the design weight-

ing parameters Qx and Q2 in the cost function Jo(1). The throttle control-loop band-

width is significantly reduced in the optimal design; however, this result comes at

the expense of an increased bandwidth in the elevator control path. The increase

in elevator control bandwidth did not result in significantly higher elevator control

activities to turbulence as seen in table 5.10. This design result illustrates the bene-

fit of control covariance constraints in maintaining a given level of control activities

while control bandwidths are optimized (i.e. increased) for improved damping and

frequency of the longitudinal modes.

Figures 5.15 to 5.18 show the time responses to step commands of the flight-path

angle and velocity variables. Velocity command is developed from an acceleration

command according to equation (4.16). Results associated with the velocity command

are shown in figures 5.17 and 5.18. Both the flight-path angle and velocity commands

are implemented through first-order command shaping filters with bandwidths equal

to those used in the design synthesis (i.e. a = 1.2 rad/sec for both commands).

Improved damping in the transient responses of flight-path angle and velocity errors

is seen in figures 5.16 and 5.18. Command overshoots in flight-path angle responses

have been nearly eliminated in the SANDY" design.

Table 5.10 lists the closed-loop rms responses of the optimal and classical designs

to Dryden clear air turbulence at the 99% probability level of intensities. Control rms

responses are constrained with nonlinear inequality bounds on the control covariances.

Results indicate that the optimal design possesses significantly lower throttle activi-

ties. Nearly the same rms turbulence response in the elevator control is maintained

in spite of significantly higher elevator control bandwidth.

Table 5.11 gives values of single-loop type gain and phase margins. Single-loop

stability margins are found to be satisfactory for both the optimal and the classical

gain schedule designs.

Figures 5.19-5.24 show respectively plots of minimum singular values of the return-

difference and the inverse return-difference transfer matrices for the optimal and

classical designs at both the control and sensor paths. Diagonal scaling has been
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usedto improveestimatesof actual multivariable stability margins. Table 5.12show

guaranteedstability margins in both the control actuator and sensorpaths obtained
accordingto equations(D.8) and (D.14) in Appendix D. Note that the designrobust-

nesswas achievedwithout direct designconsiderations. As pointed out in section

4.2, H°° boundson appropriate loop transfer matricescanbe set up to addressdesign

robustnesswhensuchan improvementis needed.

In the next chapters, we discussthe designof an altitude and speed-holdcon-
trol system using the TECS controller structure as inner-loop. The objective is to

demonstratethe design featuresand the usageof nonlinear constrained parameter

optimization in autopilot designs.There are two basic approachesone can adopt in

the autopilot design:

The outer-loop design can be developedbasedon an existing (i.e previously
designed) inner-loop TECS controller. This approach is simple and involves

a fewer number of design parameters. But it does not yield the maximally

achievableperformancethat would be possible if the inner-loop gains are re-
optimized together with the outer-loop control functions. As seenin chapter 6,

this method yields excessivethrottle and elevator control activities to altitude
command.

The outer-loop designis integrated with the synthesisof the inner-loop control-

law. This latter procedureprovides a better overall control designas demon-
strated in chapter 7.
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Table 5.1: Inner-Loop FeedbackGains (FLT1)

Parameter SANDY SANDY" Classical

KTp 0.09694 0.14189 0.0

KEp 3.3760 3.4312 3.36

KT! 0.3499 0.3835 0.4

KE! 2.4037 2.3360 2.52

Kq 3.0071 2.9788 4.0

K0 3.1240 3.1184 6.0

kl 0.9194 0.9060 0.8932

0.2465k2 -0.1633 -0.0950

Table 5.2: Closed-Loop System Poles (FLT1)

Design

Mode

Phugoid mode

Short period

SANDY r

( w,, (rad/sec)

0.7 0.81

0.7 2.23

Classical

( w,, (rad/sec)

0.64 0.61

0.79 3.01

Table 5.3: Command and Broken:Loop Control Bandwidths (FLT1)

Command/Control Path Bandwidths (rad/sec)

SANDY" Classical

% 0.8 0.7

l)'c 0.7 0.8

8_c 3.1 4.3

8the 0.37 0.37
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Table 5.4: Closed-Loop RMS Responses to Turbulence (FLT1)

(a_ - 6.6 fps,a_ --6.3 fps)

Variable

(deg)

SANDY

0.9243

SANDY"

0.9025

Classical

1.0531

V (fps) 0.7915 0.7157 0.7157

n_ (g) 0.0805 0.0803 0.0800

6,h (lbst/lbsw) 0.02570 0.02605 0.02725

6_ (deg) 1.3324 1.3311 1.3324

Table 5.5: Single-Loop Type Stability Margins (FLT1)

Design SANDY" Classical

Margins Gain Margin Phase Margin Gain Margin Phase Margin

(dB) (deg) (dB) (deg)

Actuator Paths (-42, +oo) -60 (-44, +31) -57

Sensor Paths (-15, +14) (-64, +62) (-17, +20) (-63, +74)

Table 5.6: Guaranteed Multivariable Stability Margins (FLT1)

Design S A N D Y" Classical

Margins Gain Margin Phase Margin Gain Margin Phase Margin

(dB) (deg) (dB) (deg)

Actuator Paths (-14.9,+5.2) +50.2 (-14.8,+5.2) +48

(-5.3,+16.4) (-5.1, +14.6)

Sensor Paths (-2.8, +4.2) 4-22 (-3.3, +5.4) 4-27
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Table 5.7: Inner-Loop Gain Scheduleand DesignParameters

Parameter FLTI FLT2

SANDY" Classical SANDY" Classical

KCAS 0.9322 0.9322 0.1950 0.07006

Kaw 80,000 80,000 67,328 80,000

kl 0.9060 0.8932 0.9801 0.9717

-0.0950 0.2465 -0.3208 0.1795k2

Table 5.8: Closed-Loop System Poles (FLT2)

Design

Mode

Phugoid mode

Short period

SANDY"

¢ w,., (rad/sec)

0.6 0.64

0.68 3.95

Classical

¢ w. (rad/sec)

0.45 0.42

0.47 3.43

Table 59: Command and Broken-Loop Control Bandwidths (FLT2)

Command/Control Path Bandwidths (rad/sec)

SANDY" Classical

7c 0.65 0.55

l)'c 0.65 0.63

6_ 4.3 2.7

6_h 0.29 0.37
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Table 5.10: Closed-LoopRMS Responsesto Turbulence (FLT2)

_s,a,_ = 4.7 fps)

Classical
(a,,r= 4.7 f

Variable SANDY*

3' (deg) 0.2095 0.2094

V (fps) 0.1369 0.2060

nzcg (g) 0.0862 0.0805

6th (lbst/lbsw) 0.00355 0.004142

6, (deg) 0.2222 0.1667

Table 5.11: Single-Loop Type Stability Margins (FLT2)

Design SANDY" Classical

Margins Gain Margin Phase Margin Gain Margin Phase Margin

(dB) (deg) (dB) (deg)

Actuator Paths (-56, +co) -83 (-51, +30) -70

Sensor Paths (-_, 21) (-68, +105) (-_, 24) (-48, +124)

Table 5.12: Guaranteed Multivariable Stability Margins (FLT2)

Design SANDY* Classical

Margins Gain Margin Phase Margin Gain Margin Phase Margin

(dB) (deg) (dB) (deg)

Actuator Paths (-15, +5.2) /=51.6 (-11.24, +4.7) +51.2

(-5.4, +17.8) (-5.4, +17.4)

Sensor Paths (-3.6,6.3) +29.9 (-3.1,5.0) :t:25.3
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Chapter 6

AIRSPEED AND ALTITUDE-HOLD AUTOPILOT

AROUND AN OPTIMIZED TECS INNER LOOP

In the previous chapter, we have described the use of a total energy concept in

the design of an "inner-loop" for an integrated autothrottle/autopilot control system.

This controller possesses essential and physically intuitive feedback paths to achieve

the following design specifications :

• Stability of closed-loop eigenvalues,

• Minimum damping ratio of eigenvalues,

• Acceptable mean square responses of control activities to turbulences,

• Command frequency response bandwiths and command tracking performance.

The following study covers the development of autopilot designs for an airspeed-

and altitude-hold system using the TECS control-law as the inner loop. It was

described in chapter 4 that the basic structure of the TECS controller does not include

feedback of airspeed and/or altitude errors. The primary function of the inner-loop

TECS (including the pitch damper) is to provide appropriate tracking bandwidths

in the flight-path and longitudinal acceleration variables along with adequate closed-

loop stability. To ensure that the airplane will indeed provide steady-state tracking

of airspeed and altitude, we need to design an outer-loop that involves feedback

of airspeed and altitude errors as shown in figure 6.1. In this chapter we present

the synthesis of such an autopilot design around the existing optimal TECS inner

loop discussed in chapter 5. In the next chapter 7, our design for the airspeed and

altitude-hold system will also include the design parameters of the inner loop for

improved tracking performance. This latter design approach for an integrated control-

law synthesis covering simultaneously the inner and outer loops is clearly the preferred

approach as indicated by the results of chapter 7.
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In the airspeed-hold design, the airspeed error AV = V(t)- V_(t) (where V(t)

is the actual airspeed and V_(t) is the commanded airspeed) is fedback through a

feedback gain K_ to the acceleration command I?c of the TECS "inner loop" as shown

in figure 6.1. While in the altitude-hold design, the altitude error Ah = h(t) - he(l)

(where h(t) is the actual altitude and hc(t) is the commanded altitude) is fedback

through a feedback gain Kh to the flight-path command 7c. The outer-loop feedback

gains I(,, and Igh are selected simultaneously from the minimization of the following

performance index,

d_ = lim 1 f0tl E[Q_(V(t) - V_(t)) 2 + Qh(h(t) - h_(t))2]dt (6.1)
t/--*oo

subjected to an additional damping constraint of ( >__(rain. The performance index d_

is evaluated to parameterized random filtered step commands V_(t) = Vco(1 - e-_t)#(t)

and h_(t) = hco(1 - e-_t)#(t) where #(t) is the unit-step function. The parameter a

describes the bandwidth of both the airspeed and altitude commands. In this case,

we use a = 1.2tad/see similar to the bandwidths used for the inner-loop TECS design

described in chapter 5. The variable V_o is a random variable with zero mean and

covariance E[V_o ] = cry,c = 1.O(fps) 2. And the variable h_o is a random variable with

zero mean and covariance E[h_o ] = a_,c = 1.0(ft) 2.

Note that if we have only one design parameter, say I_'_ in an airspeed-hold system

or Kh in an altitude-hold system, then either the gain/iv or lt'h can be conveniently

designed by simple root locus techniques. In fact, the root-locus method is very useful

even in an optimization-based design setting. It provides us valuable information on

the type of trade-offs occurred in the outer-loop design when the inner-loop is fixed

at an existing controller design. In particular, one can examine by root locus the

degradation of closed-loop damping when we add the outer loop. Root locus plots

are shown in figures 6.2 and 6.3. As we observe from these plots, increasing either K,,

or Kh will eventually result in a reduction of the minimum achievable damping in the

closed-loop system eigenvalues. Particularly the gain If,, has always a destabilizing

effect. Therefore one can no longer expect to retain the damping achieved by the

inner-loop design when the outer-loop is closed. Trade-off between minimum damping

of the closed-loop eigenvalues and command tracking performance is arrived at by

varying the desired minimum damping (,,,i,_ and the respective penalty weightings

Q1 and Q2 in the performance index d_ of equation (6.1). For example, we have to
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reduce(_i,_ from 0.7 to 0.6 in order to achievesatisfactory tracking performance.An

outer-loop designis developedfor eachof the two flight conditions consideredin this

study.

6.1 Outer-Loop Design at Flight Condition FLT1

At flight condition FLT1, the performance index J_ used in the design of the outer-

loop feedback gains I(, and Kh is given by

J3- lim l_otSt,...oo "2 E[(V(t) - Vc(t)) _ + O.l(h(t) - hc(t))2]dt
(6.2)

subjected to a damping constraint of _ >__0.6. The penalties Q,, and Qh are deter-

mined after a few design iterations and they are chosen to give comparable tracking

performance between airspeed and altitude commands. For example, if transient re-

sponses in the airspeed error is large then increasing Q. in equation 6.1 would improve

the tracking of airspeed command.

The final design gains are shown in Table 6.1. The following analysis have been

carried out on the final design:

• Frequency and damping ratio of closed-loop eigenvalues,

• Time responses to airspeed and altitude commands,

• Command and broken-loop control bandwidths,

• Closed-loop rms responses to turbulences,

• Single-loop type stability margins,

• Multivariable stability margins.

Notice that the inner-loop gains are fixed at the values obtained in chapter 5 for

the optimal TECS controller at this flight condition. Table 6.2 gives the frequency

and damping ratio of the closed-loop eigenvalues. Notice a slight reduction in the

closed-loop damping as to be expected according to the root-locus plots of figure 6.2.
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Howeverin the next chapter, where the inner-loop gains are redesignedalong with

the outer-loop gains in an integrated manner, we are able to increasethe damping
back to at least 0.7.

Figure 6.4showsthe commandand broken-loopcontrol frequencyresponseswhile

table6.3summarizesthe commandandbroken-loopcontrol bandwidths. The control-

loop bandwidths are essentiallythe sameas thoseobtained in the inner-loop design.

However,as expected,the commandbandwidths of the outer loop is generally lower
than thoseof the inner loop.

Table 6.4 gives the rms responsesof the closed-loopsystem to Dryden clear air

turbulenceat the 99%probability levelof intensities. Resultsarecomparableto those

achievedby the optimized TECS inner-loopdesign.

Table 6.5 gives the single-looptype gain and phasemargins at the actuator and

sensorpaths. The correspondingmultivariable stability margins are shown in ta-

ble 6.6. All theserobustnessresultsare found to be satisfactory.

Figures 6.5 and 6.6 show the time simulation to step commandsin altitude of

1000ft and airspeedof lOfps respectively. Note that in both casesthe commanded

value has beenreachedin about 100seconds. Evaluation of time responsesto the

respectivecommandsprovide insights into the iterative designproceduresincethese

responsesreflect directly the effectsof varying the penalties Qo and Qh. It is seen

that comparable performance is achieved between speed and altitude commands. One

advantage of our outer-loop design is that there is small coupling between the speed

and altitude variables. That is, there is little change in altitude when we apply an

airspeed command and vice versa. Both the elevator and throttle control excursions

in the altitude command responses are rather excessive. This is due to the fact that

we have achieved a tight tracking on the altitude response and the outer loop has

been synthesized around an existing (i.e fixed) inner loop.

6.2 Outer-Loop Design at Flight Condition FLT2

The discussion of the outer-loop design at the cruise condition FLT2 follows an outline

similar to the one presented for the landing approach condition FLT1. At flight con-

dition FLT2, the performance index Jl a used in the design of the outer-loop feedback
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gains K,, and Kh is given by

1 it/3"3 = lim E[IO(V(t) - V_(t)) 2 + (h(t) - h,(t))2]dt
tl-o_ 2 Jo

(6.3)

subjected to a damping constraint of _ _> 0.6.

The final design gains are shown in Table 6.7.

been carried out on the final design:

The following analysis have also

• Frequency and damping ratio of closed-loop eigenvalues,

• Time responses to airspeed and altitude commands,

• Command and broken-loop control bandwidths,

• Closed-loop rms responses to turbulences,

• Single-loop type stability margins,

• Multivariable stability margins.

Notice that the inner-loop gains are fixed at the values obtained in chapter 5 for the

optimal TECS controller at this flight condition. Table 6.8 gives the frequency and

damping ratio of the closed-loop eigenvalues. In this design, we are able to maintain

the same level of closed-loop damping of 0.6 as the inner-loop gain schedule design

at the flight condition FLT2. However, in the chapter 7 where we consider the re-

design of the inner-loop gains together with the outer-loop gains, an improvement in

closed-loop damping of 0.65 can be obtained.

Figure 6.10 shows the command and broken-loop control frequency responses while

table 6.9 summarizes the command and broken-loop control bandwidths. The control-

loop bandwidths are essentially the same as those obtained in the inner-loop design.

However, as expected, the command bandwidths of the outer loop are generally lower

than those of the inner loop.

Table 6.10 gives the rms responses of the closed-loop system to Dryden clear air

turbulence at the 99% probability level of intensities. Results are similar to those

achieved by the TECS inner-loop design.
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Table 6.11gives the single-looptype gain and phasemarginsat the actuator and

sensorpaths. The correspondingmultivariable stability margins are shown in ta-
ble 6.12. All theserobustnessresultsare found to be satisfactory.

Figures6.11and 6.12showthe time simulation to step commandsin altitude of

1000ft and airspeedof lOfps respectively. Note that in both casesthe commanded

value has beenreachedin about 100 seconds. Evaluation of time responsesto the

respectivecommandsprovide insights into the iterative designproceduresincethese

responsesreflect directly the effectsof varying the penalties Q_ and Qh. It is seen

that comparable performance is achieved between speed and altitude commands. One

advantage of our outer-loop design is that there is small coupling between the speed

and altitude variables. That is, there is little change in altitude when we apply an

airspeed command and vice versa.

In this chapter we have developed a design procedure applied to the synthesis of

an autopilot design using an a-priori designed inner loop. A performance index based

simply on tracking errors to step commands in airspeed and altitude was used. We

are able to achieve good tracking performance and adequate closed-loop damping

requirements. In some situation, it may be required to re-design the inner loop at

the same time one is designing the outer loop in order to accomodate more stringent

requirements in closed-loop damping and control activities to turbulence. Tile next

chapter, we consider the problem of simultaneous inner and outer loop design in an

airspeed and altitude hold autopilot.
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Table 6.1: Outer-Loop Gainswith Existing Optimal TECS Design (FLT1)

Parameter SANDY

KTp 0.1419

KEp 3.4312

I(rl 0.3835

KEI 2.3360

I(q 2.9788

Ko 3.1184

Kv -7.5202 x i0 -a

Kh -1.1223 xl0 -a

I(C AS 0.9322

Kaw 80,000

Table 6.2: Closed-Loop System Poles (FLTI)

Design

Mode

Phugoid mode

Short period

Altitude Mode

Integral Speed Mode

SANDY

(tad/see)
0.6 0.43

0.7 2.23

1 0.124

0.6 0.37

Table 6.3: Command and Broken-Loop Control Bandwidths (FLT1)

Command/Control Path SAND}"

Bandwidths (rad/sec)

h, 0.6

V_ 0.35

5,_ 3.19

5,he 0.40
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Table 6.4: Closed-LoopRMS Responsesto Turbulence (FLT1)

(au = 6.6 fps, a,, = 6.3 fps

Variable SANDY

3' (deg) 1.2491

V (fps) 0.5487

h (ft) ll.3

nzcO (g) 0.09335

_,h (lbst/lbsw) 0.03558

6_ (deg) 1.6901

Table 6.5: Single-Loop Type Stability Margins (FLT1)

Design SANDY

Margins Gain Margin Phase Margin

(dB) (deg)

Actuator Paths (-19.6,+_) -42

Sensor Paths (-8.3, +8.6) (-43, +62)

Table 6.6: Guaranteed Multivariable Stability Margins (FLT1)

Design SANDY

Margins Gain Margin Phase Margin

(dB) (deg)

Actuator Paths (-8.5, +4.2) 4-38.5

(-4.4, +9.3)

Sensor Paths (-2.2, +2.9) 4-16.4
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Table 6.7: Outer-Loop Gainswith Existing Optimal TECS Design (FLT2)

Parameter SANDY

I'(Tp 0.10895

KEp 9.8268

KTI 0.29446

K_t 6.6903

Kq 8.5310

Ko 8.9311

Kv -2.1231 xlO -3

Ifh -2.1016 X10 -4

KCAS 0.07006

Kaw 80,000

Table 6.8: Closed-Loop System Poles (FLT2)

Design

Mode

Phugoid mode

Short period

Altitude Mode

Integral Speed Mode

SANDY

( ¢0. (rad/sec)

0.60 0.508

0.68 3.95

1 0.08578

0.8 0.26

Table 6.9: Command and Broken-Loop Control Bandwidths (FLT2)

Command/Control Path SANDY

Bandwidths (rad/sec)

hc 0.10

V_ 0.30

_5_c 4.26

6th_ 0.29
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Table 6.10: Closed-Loop RMS Responses to Turbulence (FLT2)

(a,, = 4.7 fps, a_, = 4.7 fps

Variable SANDY

0.25963' (deg)

V (fps) 0.1438

h (ft) 8.1443

0.09089(g)

6,h (lbst/lbsw)

5_ (deg)

0.004549

0.2418

Table 6.11: Single-Loop Type Stability Margins (FLT2)

Design SANDY

Margins Gain Margin Phase Margin

(dB) (dog)

Actuator Paths (-16, +c_) -58

Sensor Paths (-12, +11.4) (-50, +81)

Table 6.12: Guaranteed Multivariable Stability Margins (FLT2)

Design SANDY

Margins Gain Margin Phase Margin

(dB) (deg)

Actuator Paths (- 11, +4.6) 4-47

(-5.1, +14)

Sensor Paths (-2.6, +3.6) 4-20
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Figure 6.1: Airspeed and Altitude-Hold Design with an Optimized TECS Inner Loop
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Chapter 7

SIMULTANEOUS DESIGN OF TECS INNER AND
OUTER LOOPS

In chapter 5 wehave describeda designprocedure for the synthesisof a TECS

controller at two flight conditions FLT1 and FLT2. In theseinner-loop designs,con-

troller designparametersweredeterminedsothat the closed-loopsystemssatisfy the

desiredstability, bandwidth and turbulence requirements. In chapter 6, an airspeed

and altitude-hold autopilot designwasconsideredusingthe existing optimized TECS
inner-loop designparameters. In this chapter, we re-examinethe autopiiot design

from the point of view of improving its performancebeyond that achieved by the

outer-loop designof chapter6.

Someof the areasthat one can improve by re-designingthe TECS inner loop are:

• Closed-loopdampingof systemeigenvalues,

• Closed-looprms responsesto turbulence,

• Control activities to commands,

• Designrobustness.

The control designstructure consistsof the TECS control-laws augmentedwith, in
the outer loop, feedbacksof velocity and altitude errorsasshown in figure 6.1. Note

that we adopt the designphilosophy that errors in airspeedwill be fedback to the
accelerationcommandlkcthrough afeedbackgain If,, and altitude errors are corrected

through feedback signals to the flight-path command % via the gain Ifh. A state-

space representation of this controller is given below:

: [0kIL 0 0 zrZ
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(7.2)

where At" = V - V_ is the velocity error' in fps and Ah = h - hc is tile altitude

error in ft. Design parameters in the simultaneous inner and outer loop design are

the proportional and integral gains KTP, KTI, KEp and KEr, the pitch damper gains

Kq and Ko, the velocity-error gain K_ and the altitude-error gain Kh. For each

flight condition we will determine a new set of feedback gains, hence without loss of

generality we use the same gain schedule values for Kaw and KcAs in the control-law

synthesis. In fact, their contribution to the overall feedback gains are accounted for

by the other feedback gains.

Following the design procedure described in chapter 4, the objective function for

the airspeed and altitude-hold design consists of the sum of three performance indices

J#(k = l, 2,3),
3

,/1 = _ g_ (7.3)
k=!
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The first performance index j(1) is formulated to address design requirements in

airspeed and altitude command tracking performance. It is given by

j}x) lim 1 it,
= t,-_ 2 Jo E[QI(V(t) - Vc(t)) 2 + Oz(h(t) - hc(t))2]dt

(7.4)

This performance index is evaluated to parameterized random filtered step commands

in Vc and hc with V¢(t)= Vco(1 -e-_')/_(t) and h_(t) = hco(1 -e-_')u(t) where #(t)

is the unit-step function. The parameter a determines the bandwidth of both the

airspeed and the altitude commands. In this design case, we use a = 1.2rad/scc,

the same value as the flight-path and velocity command bandwidths. The variables

V_o and hco are random parameters with zero means and covariances E[V]o] = a_, =

1.O(fps) 2 and E[h_o]--a_,, = 1.0(ft) _.

Note that this autopilot design formulation includes feedback of velocity error,

hence making the system type 1 in the velocity variable V. In steady-state the aircraft

velocity V(t) will settle to the command value V_(t) if the feedback gain K. is nonzero

and stabilizing. Similarly, the altitude variable introduce an additional integrator

in the altitude loop hence making it also a type 1 system. The altitude response

will therefore settle to the commanded value if the system has a nonzero stabilizing

feedback gain /(h. Thus the integrand of the performance index j_l) in equation (7.4)

vanishes in the limit as t/_ oo.

The second performance index j_2) is set up to perform trade-off in the control

bandwidth of the throttle loop. It is defined as

j_2)= lim 1E[R,_i_h_(tf)] (7.5)
t l -.-*oo

The performance index j_2) is evaluated to a high-pass noise input in the thrust

command loop. The noise input is generated from the response of a first-order high-

pass filter to white-noise with zero mean E[di,h,o(t)] = 0 and covariance E[,5,h_,(t +

r)6th,o(t)] = a_h_,6(r ). The quantity 6,h¢(t) is the thrust feedback control as shown in

figure 4.1. Cut-off frequency of the high-pass filter is set approximately equal to the

desired broken-loop throttle control bandwidth (i.e. ws,h,. = 0.2 rad/sec). Frequency-

shaping of the disturbance input to the thrust command ensures that only control

responses at high frequencies are penalized in j_2).
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Similarly, the performance index j[3) is used to perform trade-off in the control

bandwidth of the elevator loop. It is given by

j(a)= lim _E[R26_¢(t])]
t l -..*oo

(7.6)

In this case, j[3) is evaluated to a high-pass noise input in the elevator command loop.

Again the noise input is obtained from the response of a first-order high-pass filter

to white-noise with zero mean E[5,,_(t)] = 0 and covariance E[6,,_(t + r)5,,_(t)] =

o'_,,,6(r). The quantity 5,c(t) is the elevator feedback control. Cut-off frequency of

the high-pass filter is approximately equal to the desired broken-loop elevator control

bandwidth (i.e. w6,,_ = 2.0 rad/sec at flight condition FLT1 and w6,, = 0.1 rad/sec at

flight condition FLT2). The lower bandwidth selected at the cruise condition FLT2

ensures that the elevator control bandwidth is of the same size as previous inner-loop

design.

Other design considerations besides those depicted in the quadratic performance

indices j_l), j(2), and J(3) are defined as before with the use of direct constraints.

For example, desired closed-loop damping is achieved using the eigenvalue constraint

defined in equation (C.41). Nonlinear damping constraints provide a direct means to

achieve satisfactory damping of aircraft rigid-body modes. And covariance responses

of selected outputs to clear air turbulence of Dryden spectra with RMS intensities

from the 99% probability level (figure 4.2) can be bounded using the covariance

inequality constraint in equation (3.11). Nonlinear covariance constraints on control

outputs ensure that the resulting optimal design has reasonable control activities to

turbulence.

In this design case, selection of initial guess for the design parameters and the

penalty weighting matrices is facilitated by the results obtained in chapter 5 for

the TECS inner-loop designs. All design gains were initially selected to be those

determined in chapters 5 and 6 since these solutions have shown to provide reasonable

stabilizing designs. Weighting matrices are also initially chosen to be those used in

the previous design cases. Starting from these, one can iterate until a satisfactory

autopilot design is attained.
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7.1 Simultaneous Design of TECS Inner and Outer Loops at Flight Condition FLT1

For the landing approach condition FLT1, the following design objectives were used:

• The performance indices J_(i = 1,3) described in equations (7.4), (7.5) and (7.6)

are given below.

(a) Command frequency response bandwidths and command tracking perfor-

mance:

= lim 1 fo q E[IO(V(t) - V_(t)) _ + (h(t) - hc(t))_]dt (7.7)jil)
t].-.,oo

This performance index is evaluated to parameterized random filtered step com-

mands in V_ and hc with _(t)= V_o(1 -e-"')p(t) and hc(t) = h_o(1 -e-_t)p(t)

where p(t) is the unit-step function. The parameter a determines the band-

width of both the airspeed and the altitude commands. In this design case, we

use a = 1.2rad/sec, the same value as the flight-path and velocity command

bandwidths. The variables V_o and h¢o are random parameters with zero means

and covariances Erv21,coJ = a_, = 1.O(fps) 2 and E[h_o ] = a 2he= l'0(ft) 2"

(b) Broken-loop crossover frequency in the throttle control loop:

j_2) = ,_imo° 2E[10_hc(t/)] (7.8)

The performance index j_2) is evaluated to a high-pass noise input in the thrust

command loop. The noise input is generated from the response of a first-order

high-pass filter to white-noise with zero mean E[gth_(t)] = 0 and covariance

E[_th,o(t + r)_th_,(t)] = a_h,,,_(r ). In this design, we choose _ro,_, = 1. The quantity

gth_(t) is the thrust feedback control as shown in figure 4.1 . Cut-off frequency of

the high-pass filter is set approximately equal to the desired broken-loop throttle

control bandwidth (i.e. cve,h, = 0.2 rad/sec).

(c) Broken-loop crossover frequency in the elevator control loop:

j_3)= lim 1E[3df_(tI)] (7.9)
q--,_o 2

The performance index j_3) is evaluated to a high-pass noise input in the elevator

command loop. The noise input is generated from the response of a first-order
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high-passfilter to white-noise with zero mean E[3,,,,(t)] = 0 and covariance

E[8,,,,(t + r)3,_,(t)] = a_,,,3(r). In this design, we choose a,_, = 0.16. The quantity

8,c(t) is the elevator feedback control as shown in figure 4.1 . Cut-off frequency of

the high-pass filter is set approximately equal to the desired broken-loop elevator

control bandwidth (i.e. w6,,_ = 2.0 rad/sec).

• Stability of the closed-loop eigenvalues:

(a) Real part of the eigenvalues must be less than zero,

o'i _< 0 (i = 1,n) (7.10)

(b) Damping ratio of the eigenvalues must be greater than 0.7, i.e

('i _> 0.7 (i = 1, n) (7.11)

• Mean square responses of control activities to clear air Dryden turbulence of

a,, = 6.6 f ps and a_ = 6.3 f ps,

E[_h¢] _< 7.56 x lO-4(Ibst/Ibsw) 2 (7.12)

E[3_c ] < 6.735 x lO-4(rad) 2 (7.13)

The resulting set of optimal feedback gains is shown in table 7.1. Overall these gains

differ significantly from those where the inner and outer loops are designed separately.

Improved performance and damping are achieved with higher values of KTp, Kq, Ko

and K,,. Table 7.2 gives the damping ratio and natural frequency of the closed-

loop system eigenvalues. A minimum damping of 0.7 is achieved through the use of

nonlinear constraints; this is an improvement over the minimum damping of 0.60 in

the optimal outer-loop design in chapter 6.

Figures 7.1 shows the command and broken-loop control frequency responses of the

optimized design. Command and control-loop bandwidths for these designs are sum-

marized in table 7.3. Note that the design has slightly higher command bandwidth

in the velocity variable than the outer-loop design in chapter 6, while the altitude

command bandwidth is significantly reduced. This is primarily due to the fact that
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we have limited the control activities to the values defined by the classicalTECS

designdescribedin chapter 5 and we are imposing a higher damping requirement.

Control-loop bandwidths aresimilar in the two designs.

Figures7.2 and 7.3showtime responsesof the closed-loopsystemsto a step com-

mand in altitude of 1000ft and in airspeedof lOfps respectively. Control activities
are lessthan half of thoseshownin table 6.5 for the previousouter-loop design.Ta-

ble 7.4 summarizesthe closed-looprms responsesto Dryden clear air turbulence at

the 99% probability level of intensities. Results clearly illustrate the effectiveusage

of direct boundson the respectiveoutput covariances.By imposing inequality con-

straints on the control covariances,one is guaranteedat the outset that the optimal

design,when converged,will havethe sameor lower control activities than the clas-

sical design. Furthermore, covarianceresponsesof other aircraft variablesare lower
or equal to thoseof the classicaldesignshownin table 5.4.

Table 7.5summarizesvaluesof single-loopstability margins. Single-loopstability

margins are found to be satisfactory and improved over those in table 6.5 of the

previouslyoptimized outer-loop design.

Figures7.4-7.6 showplots of minimum singular valuesof the return-differenceand
the inverse-return-dlfferencetransfer matrices respectivelyat both the control and

sensorpaths. In theseplots, diagonal scalingon the transfer function matrices has

beenusedto reduceconservatismand thereby improveestimatesof actual multiloop

stability margins. Table 7.6givesguaranteedmultivariable stability margins in both

the control actuator and sensorpaths according to equations (D.8) and (D.l,t) of

Appendix D. Again theseresultsare better than those in table 6.6 for the optimized
outer-loop designof chapter6.

7.2 Simultaneous Design of TECS Inner and Outer Loops at Flight Condition FLT2

Instead of performing a simple gain schedule design based on the results obtained in

the previous section 7.1 for the landing approach condition, we choose to re-design

all the TECS inner and outer-loop gains at the cruise condition FLT2. The objective

is to see whether one can improve the design performance beyond those achieved in

chapter 5 and 6 combined. Another set of design objectives are established for the

cruise condition similar in form to that given in equations (7.7)-(7.13). They are as
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follows,

• The performanceindicesa_(i = 1,3) described in equations (7.4), (7.5) and (7.6)

are given below.

(a) Command frequency response bandwidths and command tracking perfor-

mance:

j_l)= lim l_t; E[5(V(0- + 2(h(t)- (7.14)

This performance index is evaluated to parameterized random filtered step com-

mands in V_ and hc with V_(t)= V_o(1 - e-a')p(t) and hc(t) = hco(i - e-a')#(t)

where p(t) is the unit-step function. The parameter a determines the band-

width of both the airspeed and the altitude commands. In this design case, we

use a = 1.2rad/sec, the same value as the flight-path and velocity command

bandwidths. The variables V_o and h_o are random parameters with zero means

and covariances E[Vgo] = a 2 = 1.0(fps) 2 and E[h_o] = cr_], = 1.O(ft) =v=

(b) Broken-loop crossover frequency in the throttle control loop:

J(_)= lim !E[0.0361_(ts) ] (7.15)
tl"*oo 2

The performance index j[2) is evaluated to a high-pass noise input in the thrust

command loop. The noise input is generated from the response of a first-order

high-pass filter to white-noise with zero mean E[6th_o(t)] = 0 and covariance

E[6th,_(t + r)Sth,o(t)] = a_h,oS(r ). In this design, we choose a,hw = 1. The quantity

5the(t) is the thrust feedback control as shown in figure 4.1 . Cut-off frequency of

the high-pass filter is set approximately equal to the desired broken-loop throttle

control bandwidth (i.e. oa6,h, = 0.2 rad/sec).

(c) Broken-loop crossover frequency in the elevator control loop:

j_3)= lim 1E[lOO61(tl)] (7.16)
t l -..*oo

The performance index j_3) is evaluated to a high-pass noise input in the elevator

command loop. The noise input is generated from the response of a first-order

high-pass filter to white-noise with zero mean E[6,,,,(t)] = 0 and covariance



9O

E[6_,_(t + r)6,_,(t)] = a_,o6(r ). In this design, we choose _re_ = 1.0. The quantity

_Sec(t) is the elevator feedback control as shown in figure 4.1 . Cut-off frequency of

the high-pass filter is set approximately equal to the desired broken-loop elevator

control bandwidth (i.e. ws,,_ = 0.1 rad/sec).

• Stability of the closed-loop eigenvalues:

(a) Real part of the eigenvalues must be less than zero,

o'i < 0 (i = 1,n) (7.17)

(b) Damping ratio of the eigenvalues must be greater than 0.65, i.e

_; _> 0.65 (i = 1,n) (7.1s)

Note that no feasible solutions can be found that will satisfy damping require-

ment exceeding 0.65 and at the same time maintaining the covariance responses

achieved under the classical design (Table 5.10).

• Mean square responses of control activities to clear air Dryden turbulence of

a,, = 4.7fps and a,o = 4.7fps,

We are restricting our design to provide the same levels of covariance responses

as the classical design shown in table 5.10.

E[6_hc] < 0.18037 × lO-4(Ibst/lbsw) 2 (7.19)

E[g_c ] < 0.17581 × lO-2(rad) 2 (7.20)

E[V 2] < O.0424(fps) 2 (7.21)

E[n_co] < 0.648 x 10-2(9) 2 (7.22)

The set of optimized feedback gains is shown in table 7.7. These gains differ signif-

icantly from those shown in table 6.7 where the inner and outer loops are designed

separately. Table 7.8 gives the damping ratio and natural frequency of the closed-

loop system eigenvalues. A minimum damping of 0.65 is achieved through the use of
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nonlinear constraints; this is an improvementover the minimum damping of 0.60 in
the optimal outer-loop designin chapter 6.

Figures 7.7 showsthe commandand broken-loopcontrol frequency responsesof

the optimized design. Commandand control-loop bandwidths for thesedesignsare

summarized in table 7.9. Note that the design has equal bandwidth in both the

airspeed and altitude paths. The command bandwidth in the velocity variable is

slightly less than the one of the outer-loop design in chapter 6, while the altitude

command bandwidth is improved. Control-loop bandwidths are similar in the two
designs.

Figures 7.8 and 7.9 show time responsesof the closed-loopsystems to a step

commandin altitude of 1000ft and in airspeedof lOfps respectively.Both command

responseshavealmost the sametime constant confirming the resultsof table 7.9.

Table 7.10 summarizes the closed-loop rrns responses to Dryden clear air turbu-

lence at the 99% probability level of intensities. Results clearly illustrate the effective

usage of direct bounds on the respective output covariances. By imposing inequality

constraints on the control and output covariances, one is guaranteed at the outset

that the optimal design, when converged, will have the same or lower control and

output covariances than those of the classical design in table 5.4.

Table 7.11 summarizes values of single-loop stability margins. Single-loop stability

margins are found to be satisfactory and similar to those in table 6.11 of the previously

optimized outer-loop design.

Figures 7.10-7.12 show plots of minimum singular values of the return-difference

and the inverse-return-difference transfer matrices respectively at both the control and

sensor paths. In these plots, diagonal scaling on the transfer function matrices has

been used to reduce conservatism and thereby improve estimates of actual multiloop

stability margins. Table 7.12 gives guaranteed multivariable stability margins in

both the control actuator and sensor paths according to equations (D.8) and (D.14)

of Appendix D. Again these results are comparable to those in table 6.12 for the

optimized outer-loop design of chapter 6.

From the above results, one can deduce that to maximize tracking performance

along with other requirements such as closed-loop damping, covariance responses to

turbulence in an autopilot design problem, it is often necessary to re-examine the

inner-loop design gains in conjunction with the outer-loop gains. We have demon-



92

strate in this chapter the usageof constrainednonlinear optimization in the synthesis
of an airspeedand altitude-hold autopilot. Here the inner and outer-loop gains are

optimized simultaneouslyto yield an overall improveddesignover thosepresentedin
chapters5 and 6.
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Table 7.1: Optimal Inner- and Outer-Loop FeedbackGains (FLT1)

Parameter SAND:¢

KTp 0.56168

KEp 3.2326

KT! 0.33981

KEI 2.2854

Kq 3.2620

Ko 5.0000

Kv -0.010517

Kh -2.3882 x 10 -4

KCAS 0.9322

I(aw 80,000

Table 7.2: Closed-Loop System Poles (FLT1)

Design

Mode

Phugoid mode

Short period

Altitude Mode

Integral Speed Mode

SANDY

¢ w. (rad/sec)

0.8 0.58

0.74 3.13

1 0.065

1 0.125

Table 7.3: Command and Broken-Loop Control Bandwidths (FLT1)

Command_/Control Path SANDY

Bandwidths (rad/sec)

he 0.06

Vc 0.42

6¢c 3.67

6the 0.40
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Table 7.4: Closed-Loop RMS Responses to Turbulence (FLT1)

(a,, = 6.6 fps, a,_ = 6.3 fps

Variable SANDY

7 (deg) 0.9538

V (fps) 0.4755

h (It) 13.1

,_, (g) 0.07585
0.027185t_ (lbst/lbsw)

5_ (deg) 1.2982

Table 7.5: Single-Loop Type Stability Margins (FLT1)

Design SANDY

Margins Gain Margin Phase Margin

(riB) (deg)

Actuator Paths (-35, +ec) -57

Sensor Paths (-19, +14.5) (-55, +70)

Table 7.6: Guaranteed Multivariable Stability Margins (FLT1)

Design SANDY

Margins Gain Margin Phase Margin

(dB) (deg)

Actuator Paths (-14, +5.1) 4-47.9

(-5.2,+14.5)
Sensor Paths (-2.7, +3.95) -t-21
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Table 7.7: Optimal Inner- and Outer-Loop Feedback Gains (FLT2)

Parameter SANDY

KTp 0.3965

KEp 6.549

KTt 0.27233

KEj 1.5469

Ifq 5.3573

Ko -0.09335

Kv -3.593 xl0 -3

Kh -1.2038 x10 .4

I(C AS 0.07006

Kaw 80,000

Table 7.8: Closed-Loop System Poles (FLT2)

Design

Mode

"Phugoid mode

Short period

Altitude Mode

Integral Speed Mode

SANDY

w,, (rad/sec)

0.65 0.28

0.65 3.27

1 0.165

0.65 0.16

Table 7.9: Command and Broken-Loop Control Bandwidths (FLT2)

Command/Control Path SANDY

Bandwidths (rad/sec)

hc 0.20

0.20

6_c 4.0

6th_ 0.27



96

Table 7.10: Closed-LoopRMS Responsesto Turbulence(FLT2)

a, = 4.7 fps, a,, = 4.7 fps)

Variable SANDY

7 (deg) 0.1562

V (fps) 0.2059

h (It) 5.5316

n=_ (g) 0.08050

&h (lbst/lbsw) 0.003878

6, (deg) 0.1388

Table 7.11: Single-Loop Type Stability Margins (FLT2)

Design

Margins

SAND}"

Gain Margin

(aB)

Phase Margin

(deg)

Actuator Paths -68

Sensor Paths (-8.6, +12.7) (-50, +73)

Table 7.12: Guaranteed Multivariable Stability Margins (FLT2)

Design SANDY

Margins Gain Margin Phase Margin

(de) (deg)

Actuator Paths (-11, +4.7) 4-55

(-5.7, +22)

Sensor Paths (-2.9, +4.42) 4-23
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Chapter 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

Traditionally, classical methods for control system design via successive single loop

closure using root locus or Bode diagrams have been applied to the synthesis of

feedback controllers for multiloop systems. Such designs often lack performance and

robustness to uncertainties in the plant model. Automatic flight control systems

(AFCS) on commercial aircraft are a prime example. Current AFCS design based

on the single loop approach is evident in the architecture of the autothrottle and

autopilot control systems. The autopilot is designed to regulate altitude through

feedback to the elevator control surfaces while the autothrottle separately controls

speed through feedback to the engines.

The basic problem with classical design procedures is that they usually overlook

the multiloop aspects of the system dynamics, neglecting significant cross-coupling

among different feedback control systems. In the case of the AFCS, flight path and

speed errors are produced by both the throttle and elevator controls such that closure

of both the autothrottle and autopilot control loops may be destabilizing. Further-

more, classical design procedures applied to multiloop controllers yield little insight

into the problem of design tradeoff between performance and robustness to modeling

uncertainties. Obtaining a satisfactory design with classical procedures is far from

straightforward, and can be quite time consuming if previous design experiences are

lacking. What is needed is a multivariable design procedure that directly incorporates

design objectives in terms of closed-loop stability, performance, and robustness into

the design tradeoff.

Development in multivariable design techniques have concentrated on improving

controller performance and robustness to modeling uncertainties. Modern control

design methods such as LQG, H _°, and p-synthesis allow designers to synthesize

controllers that meet different measures of performance and robustness. Controller
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designs obtained with modern techniques are usually of high order (i.e. the order

of the controller is greater than or equal to the order of the plant model). Conse-

quently, controller model reduction must be considered for practical implementation.

Furthermore, design tradeoff between many real design goals (i.e. damping of system

poles, disturbance rejection, command tracking, etc. ), while easier than with classical

procedures, is still far from simple.

In this study, the design method SANDY for robust controller design described in

reference 6 is successfully applied to the design of an integrated autothrottle/autopilot

control system. A complete design procedure encompassing key concerns such as

closed-loop stability, control and command bandwidths, limited control activities to

disturbance and command tracking performance has been developed for the synthesis

of an integrated autothrottle/autopilot design based on the TECS concept. The

usefulness of the procedure has been extensively demonstrated in actual design of an

airspeed and altitude-hold system for a TSRV vehicle at two typical flight conditions.

It should be noted that the constrained parameter optimization method implemented

in the computer software SANDY has found wide application in aircraft flight controls

and control of flexible mechanical systems, and provides a systematic approach for

incorporating many real design objectives into the design tradeoff. Design goals

such as damping of system modes, disturbance rejection, and command tracking

are directly included into the design procedure. Direct tradeoffs are found to be

systematic, and satisfactory designs are obtained with few iterations.

The philosophy of total energy control (TECS) enables us to define a multiloop

AFCS feedback control structure. Previous TECS designs use classical methods for

obtaining the controller feedback gains and gain schedule. Results in this research

demonstrate the application of the SANDY design algorithm to a practical flight

control problem; design of an integrated autothrottle/autopilot control system. The

procedure allows designers to address a number of objectives such as stability, distur-

bance rejection and command tracking. Robustness to plant modeling uncertainties

are maintained in the optimal design as compared with previous designs.

Contributions of this research are in the following areas:

• Formulation of performance indices for trade-offs in command and control band-

widths.
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Innovative formulation of the nonlinear constraints for the closed-loopsystem

eigenvalues.

Definition of a designvariable V_(t) in terms of linear combinations of flight-

path angle and velocity commands, and appropriate constraints on the design

parameters to synthesize different levels of decoupling between the flight path

command and velocity errors. This approach has a broad implication in the area

of output decoupling control where cross-coupling between command paths can

be systematically formulated.

Development of systematic design procedure for the TECS control laws with

clearly defined design trade-offs using multiple performance indices, direct bound

constraints, constraints on closed-loop stability and gain schedule across different

flight condition.

Development of an integrated "inner loop" and "outer loop" design procedure

for the TECS controI-laws.

8.2 Recommendations for Future Research

Areas for future investigation include,

• Examination of sensor implementation issues such as filtering of signals and

estimation.

• Extension of design procedures to directly include robustness measures into the

design tradeoff.

• Application of the design procedure to flexible-body aircraft with low structural

damping.

In this study, we have chosen to ignore the issue of sensor implementation for

feedback of acceleration, flight path angle, and pitch damping variables. In practice,

filtering of sensor signals is usually required. In fact, present TECS designs have

included complementary filters for estimation of certain feedback quantities. The
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designproceduredevelopedin this investigationmaybeusedto simultaneouslydesign
the feedbackcontroller and the associatedfilter/estimator for the feedbacksensors.

Dynamic modelsof sensorsignal conditioning canbe incorporated into the synthesis

model. The sensorfilter/estimator parametersare then optimized along with gain

parametersin the feedbackcontroller.

The designprocedureoutlined in this researchallows for the direct tradeoff be-

tween controller designgoalsof stability, performance,and robustnessto modeling

uncertainties, ttowever,applicationof methodsfor incorporating robustnessmeasures

into the controller designprocedure have not been extensively investigated. These

techniquesconsistof including additional plant modelsfor off-nominal conditions into

the designprocedure,and specificationof tI °° boundson outputs of selectedsystem

transfer matrices for unstructured plant uncertainties.
A usefulextensionof this researchwould be to investigatethe designtradeoff with

robustnessto modelinguncertainties. Available techniquesfor analysisof structured

singular valuescould beusedin defining "worst-case"designconditions for inclusion

asoff-nominalplant modelsinto the designprocedure,asdiscussedin section4.3. Fur-

thermore,methodsfor improving multivariable stability marginsthrough H°° bounds
on selectedsystem transfer matricescould be explored.

The designproceduredevelopedin this researchis well suited to the synthesisof

controllers for flexible mechanicalsystems.An interesting application of this proce-

dure would be to the designof an AFCS for a highly flexible aircraft, such as for

modal suppression, gust alleviation, and ride quality control. Nonlinear inequality

constraints for damping of system eigenvalues would be useful for ensuring minimal

damping in the flexible-body modes. Numerical algorithms need to be extended to

handle systems with repeated eigenvalues that are not diagonalizable.
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Appendix A

EVALUATION OF A QUADRATIC PERFORMANCE

INDEX TO RANDOM INITIAL CONDITIONS AND

IMPULSE INPUTS

The finite-time performance index in equation (3.6) evaluated to random initial

conditions or impulse inputs can be evaluated as in equation (3.7) for white-noise in-

puts when certain conditions are met. This equivalence is established in the following

sections.

A.I Random Initial Conditions

The closed-loop system associated with each plant condition has the following form

_,'(t) = A'x'(t) (A.1)

u,,(t) = c'/(t) (A.2)

x'(O) = x'o (A.3)

where the initial conditions x'(0) are gaussian random variables with zero mean

E[X'o] 0 and covariance , IT ,= E[xoX o ] = Xo. The feedback control inputs can also

be expressed in terms of the states of the closed-loop system as

up(t)=yc(t)=C:z'(t) (A.4)

The performance index evaluated to random initial conditions is

1

J'(tf) = 2 fo" e2a'E[yT(t)QyP(t) + uT(t)Rup(t)]dt (A._)

Using equations (A.2) and (A.4), the performance index d_(tl) becomes

(A.6)
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Solution of the closed-loopsystemresponsesto initial conditions is simply

x'(t) = eA'tzo' (A.7)

Combining equations (A.6) and (A.7) yields

Jl(_]) __. 2,?'{_Otl -(A'+aI)rftY'_tTy'lPt c:TRc:)c(A'+aI)Id_. .¥:}_p _p + (A.8)

The feedback controller must provide an asymptotically stable closed-loop system

so that the limit in equation (A.8) exists and is finite.

A.2 White-Noise Inputs

For random white-noise inputs, we consider the following closed-loop system

_'(t) = A'x'(t) + V'w(t) (A.9)

yp(t) = C'px'(t) (A.10)

x'(O) = 0 (A.11)

where the disturbance inputs w(t) are gaussian random processes with zero mean

E[w(t)] = 0 and covariance E[w(t)w(r) T] = Wo,3(t- r). The feedback control inputs

can be written as

%(t) = y¢(t) = C;x'(t) (A.12)

The finite-time performance index to random disturbance inputs is

J2(tl) = _Eo[yT(tl)Qyp(tl) + uT(tl)Rup(tl)] (A.13)

where E,,[-] is the expectation operator for a closed-loop system destabilized by a

factor a.

Substituting equations (A.10) and (A.12) into the expression for J2(tf), we obtain

after some manipulations

J,(t,) = ltr {(CZQC'p + CJRC:)Eo[x'(t/)xtr(,l)]} (A.14)
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wherethe time responsez'(t) is given by

x'(t) = _(A'+oo(,-,)r,w(T)& (A.15)

The performance index J_(tl) becomes

1 er _ er
J2(tI) = -_tr{(C_ QC_ + C'_ RCc) (A.16)

fo '! fott e(m'+e'l)(tt-')F'E[w(r)wT(s)]["re(A'+e'I)r(t.t-')drds}

Recalling that E[w(r)w(s) r] = Wo6(r-a), and with some rearranging d2(tl) becomes

1 . ftl

G(tl) = 7trtJo e(a'+°z)_(''-') (A.17)

(GROG + c_Rc'c)_(a'+,,z)(,,-T)&r"wor 'r }

If we perform a change of variable t = t! - r, then

1 rtl

J_(t+)= _rra_{j ° j+o,)T,

(C_QC;+ c_Rc')_<"'+o')',ttr'Wor'_}

Therefore it can be seen from equations (A.8) and (A.18) that if

(A.18)

r'wor'_ = Xo' (A.19)

then Jl(ty) = J2(tl). With this equivalence established, the problem associated with

random initial conditions can be formulated as the one corresponding to random

white-noise inputs.

A.3 Parameterized Random Impulse Inputs

For random impulse inputs, the closed-loop system has the following form

k'(t) = A'x'(t) + B'w(t) (A.20)

yp(t) = C_x'(t) (A.21)

z'(0) = 0 (A.Z2)
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where the inputs w(t) are parameterized random impulses w(t) = yc,,,d6(t) with

amplitude vector y_,,n being random with zero mean E[ycmd] = 0 and covariance

E[y_aY[,_] = Y_,,,a. The feedback control inputs can be written as

,,,,(t) = uo(t)= c'z'(t) (A.23)

The finite-time performance index to random impulse inputs is

1

re" J°'E[yT(t)Qyp(t)+ uT(t)Ruv(t)ldt (A.24)

Substituting equations (A.21) and (A.23) into the expression for J3(tl) , we obtain

after some manipulations

&(tj) = 2

where the time response x'(t) is given by the time-convolution integral as

/o'z'(t) = eIa'+°t)('-')B'w(r)dr (A.26)

and since w(r) = yc,,,a6(T), we have

x'(t) = e(A'+°1)tB'y_a (A.27)

The performance index J3(tl) becomes

L..{f" j+o,l',J_(tj) = 2 Jo

(c._Qc.' c_nc')J+o'_'dtE[u'yom,yT_,u'_l}+

Recalling that E[y_dyTd] = Y_d, we have

1{_ tle(A'+°I)Tt(CeTC)C' }J3(tl) = -t,-2 ,-v -_ J, + C_RC;) e(A'+_t)'dtB'Y_,'eBcr (A.29)

It can be seen from equations (A.18) and (A.29) that if

r'Wop'r = B'y_,,_ B rr

(A.2S)

(A.30)

then we have J3(tl) = J2(tl). Thus, the problem associated with parameterized

random impulse inputs can also be formulated as one corresponding to white-noise

inputs if we use the equivalence relatlon of (A.30).
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CONTROLLER DESIGN FOR COMMAND TRACKING

AND DISTURBANCE REJECTION

Two commonclassesof control designsto external inputs are: commandtracking

or model-followingand disturbance rejection. Control-law synthesisfor thesedesign
problemscan be formulated in terms of the minimization of a quadratic performance
index of the form

J = lim E[yr_(t)Qy,(t) + ur_(t)Ru,(t)]dt (B.1)

The quadratic performance index J contains penalties on transient responses of

the closed-loop system to random commands and/or disturbances. For command

tracking, the variables y_(t) and u_(t) in equation (B.1) are the tracking errors defined

by

y,(t) = y,,(t)- y,,(t) (B.2)

u,(t) = up(t) - u_,,,,_(t) (B.3)

where ym(t) are the outputs of a command generator model and uc,,d(t) are the con-

trol inputs that produce zero tracking errors in y,(t) at steady state. In order to

ensure that the performance index in equation (B.1) be bounded, all the penalized

variables in y,(t) and u,(t) corresponding to the nonzero weighting matrices Q and R

must converge asymptotically to zero as t ---, oz. For example, in the case of output

commands y,,,(t) having nonzero constant steady-state values (i.e ym(t) = y_a0#(t)

where #(t) is the unit-step), it can be shown through the set point calculations (sec-

tion B.3) that the required controls u_,,,d(t) at steady state are linear functions of

Ycrnao .

For the problem of disturbance rejection, the tracking errors y,(t) and u_(t) in

equation (B.1) are defined as

u,(t) = y,(t) - u,..(t) (B.4)
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= ,+,(0-,,,,..(t) (B.5)

where yp.o(t) are the desired output responses while up,,(t) are the necessary control

inputs to maintain the desired outputs yp,.(t) in the presence of disturbances w(t).

The relationships between up,,(t), yp..(t) and the disturbances w(t) are derived in

section B.4.

Command outputs y,,,(t) and disturbance outputs w(t) in the form of impulses,

steps, ramps or a combination of these can be derived from linear time-invariant

models with appropriately choosen initial conditions and impulse inputs. Details are

given in sections B.1 and B.2.

B. 1 Models for Parameterized Random Commands

Commands y.,(t) in the form of impulses, steps or ramps can be generated using a

linear time-invariant model of the form,

iOta(t) = A,,,Xm(t) + B,,,y_,,,a(t) (B.6)

y_(t) = C_xm(t) + Dmy_(t) (B.7)

with x,,(0) = Xm0 and Ycma(t) = ycmaoS(t). The quantities z,,,0, Ycma0 along with the

state matrices Am, Bin, Cm and Dm define the desired outputs ym(t).

For example, a command vector of impulses can be created using

(B.S)

where the state vector z_(t) is of zero dimension and the matrix Dm = I. The

impulse magnitude Yo,,do is a vector of gaussian random parameters with zero mean

E[y_ao] = 0 and covariance E[Y_aoyT ao] = Y_,,,ao.

On the other hand, a vector of step commands can be obtained from

&_(t) = (O)x,,,(t) + y_,,_5(t) (B.9)

ym(t) = xm(t) (B.10)

x,_(O) = 0 (B.11)
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yielding a step commandvector y,n(t) = y_aol_(t) where #(t) is a unit-step function

and Ycmao is a vector of gaussian random parameters with zero mean E[ycme0] = 0

and covariance E[y_meoYrmeo] = )_eo.

An alternate formulation for the vector of step commands is

k_(t) = (O)x_(t) (B.12)

ym(t) = xm(t) (B.13)

xm(0) = xm 0 (B.14)

In this case, the resulting step command is ym(t) = x_op(t ) where z_ 0 is a vector of

gaussian random parameters with zero mean E[x_o] = 0 and covariance E[zmoZr_o] =

X!ql •

Filtering of command outputs can be done by introducing additional dynamics

into the command generator model described in equations (B.6)-(B.7). The choice of

the state matrices Am, B_, C,n and Dm will completely define the command signals

y_(t). For example, if the system matrix An has a pair of eigenvalues at A = +jwo

(i.e on the imaginary axis), then the outputs y_(t) will have components of sinusoidal

functions of frequency Wo. Figures (B.1) and (B.2) show time responses of a stable

first-order filter to a scalar impulse command and a step command respectively.

B.2 Models for Parameterized Random Disturbances

In a similar manner, external random disturbances w(t) in the form impulses, steps

and ramps can be generated using a linear time-invariant model of the form,

ke(t) = Aexe(t) + Bewe(t) (B.15)

w(t) = Cdxe(t) + Dewe(t) (B.16)

with xe(0) = xe0 and we(t) = Wo6(t). The quantities xeo, Wo along with the state

matrices Ae, Be, Ce and De are parameters that define the disturbances w(t).

For example, a disturbance vector of impulses can be created using

w(t) = Woe(t) (B.17)
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where the state vector xa(t) is of zero-dimension and the matrix Da = I. The

amplitude Wo is a vector of gaussian random parameters with zero mean E[w0] = 0

and covariance E[wow T] = Wo.

On the other hand, a vector of constant disturbances can be obtained from

id(t) = (o)z.(t) + woe(t) (B.18)

w(t) = zd(t) (B.19)

• d(o) = o (n.20)

yielding a disturbance vector w(t) = Wold(t) where w0 is a vector of gaussian random

parameters with zero mean E[wo] = 0 and covariance E[wow [] = Wo.

Note that an alternate formulation for the vector of constant disturbances can be

done using random initial conditions as described below,

&d(t) = (O)xd(t) (B.21)

w(t) = _(t) (B.22)

zu(0) = x_o (B.23)

In this case, the resulting step disturbance vector is w(t) = xdop(t) where xa0 is a

vector of gaussian random parameters with zero mean E[Xdo] = 0 and covariance

E[_doX_ro]= X_0.

Other parameterized random disturbance functions can be produced, similarly to

the command generator models of section B.1, by introducing additional linear filters

into the disturbance model of equations (B.15)-(B.16).

Random stochastic processes can also be modeled using equations (B.15)-(B.16)

where, in this case, the disturbance inputs wd(t) are white-noises with zero mean

E[wd(t)] = 0 and covariance E[wd(t)wT(r)] = WoS(t - r). Outputs w(t) of the dis-

turbance model are depicted as colored noises having power spectral characteristics

defined by the disturbance state matrices Ad, Bd, Ca and Dd.

B.3 Steady-State Responses to Command Inputs

Command tracking and model-following designs involve the formulation of a perfor-

mance index that contains tracking errors y,(t) = y_,(t) - y.,(t) and control feedback
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errors u,(t) = up(t) -u_a(t) as depicted in equation (B.1). These error variables

can always be written as outputs of a closed-loop system. The quantities ym(t) are

commanded outputs while ucmd(t) are the control inputs used to maintain zero steady-

state tracking errors in y,(t). We would like to establish the necessary relationships

between the commanded outputs ym(t) and the control inputs u_,,,,_(t).

Let's consider a linear time-invariant plant model with control inputs up(t) and

outputs yp(t),

_,p(t) = Apxp(t) + B, up(t) (B.24)

yp(t) = Cpxp(t) + Dp%(t) (B.25)

In the following derivation, we restrict ourselves to the case where the commanded

outputs ym(t) have only constant steady-state components; that is, we exclude any

commanded outputs that are sinusoidal or grow unbounded with time such as ramp

functions. This assumption enables us to treat this problem as one corresponding to

the calculation of setpoints. Steady-state system responses are determined by letting

]%(t) = O, up(t) ---, uc,na(t) and yp(t) .-, ym(t) in the limit as t --, co. Dimension of

yp(t) (and thus ym(t)) must be equal to the dimension of up(t) so that we have

( ) [ ]( )xp(t) = Ap Bp 0 (B.26)

or

( ) [ ]-(xp,,(t) = Ap Bp 0

u_d(t) Cp Dp ym(t)

where the notation (.),, denotes the quasi-steady values.

(_.9_7)

We should emphasize

that these relationships are correct only when the steady-state conditions have been

reached. Nonetheless one can use relations in equation (B.27) to express the desired

states and control command inputs as a function of the commanded outputs ym(t)

for all time t >__0. The control command inputs u_d(t) and the state vector Zpo,(t)

are therefore functions of time since the commands y,,,(t) may be time-varying, and

they will settle to constant values as t _ _. Note that the system matrix formed

by the quadruple Ap, Bp, Cp and Dp in equation (B.27) is square and it must also
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be invertible for the setpoint calculation. The quantities ym(t) are outputs of a com-

mand generator model and the values xp,o(t) and u_,,_a(t) are computed according to

equation (B.27).

Let's denote the inverse of the system matrix as

[ ]1 [ ]Ap Bp K M

Cp Dp L N
(B.28)

where the matrix partitions K through N have the same dimensions as their coun-

terparts Ap through Dp on the left-side of the equation. With these definitions, the

command inputs u_a(t) in equation (B.27) can be written explicitly in terms of ym(t)

as u_u(t) = Ny,n(t). The plant synthesis model in equation (B.24) for a command

tracking problem is given by,

}p(t) = Apxp(t) + Bpuv(t ) + (O)ym(t) (B.29)

y_(t) = Cpxp(t) + Dpup(t) - Iy_(t) (B.30)

u¢(t) = (O)zp(t) + Iup(t) - Ny_(t) (B.31)

where y,,,(t) is the command input vector discussed in section B.1. The tracking

errors y,(t) and u((t) in the performance index of equation (B.1) are now outputs of

the plant model in equations (B.29)-(B.31).

To complete the problem formulation, plant model in equations (B.29)-(B.31) must

be augmented with a command generation model as described in section B.1 to form

the final synthesis model in a command tracking probtcm.

B.4 Steady-State Responses to External Disturbances

The design problem for disturbance rejection involves the formulation of a perfor-

mance index as in equation (B.1) that contains tracking errors y,(t) = yp(t) - yp..(t)

and control feedback errors u¢(t) = up(t)- Upoo(t). These error variables can be writ-

ten as outputs of a closed-loop system. The quantities yp°°(t) are the desired outputs

of the closed-loop system in the presence of disturbances. The control inputs up..(t)

are used to reject the unwanted disturbances in the output responses and thereby



124

enforcezerotracking errors in y,(t) at steady state. We need to establish a set of re-

lations similar to equation (B.27) of the tracking problem for the desired state vector

zp,,(t) and control inputs up,o(t).

Let's consider a linear time-invariant plant model with control inputs up(t), dis-

turbance inputs w(t) and outputs up(t),

_p(t) = Apxp(t) + Upup(t) + rpw(t) (B.32)

yp(t) = Cpxp(t) + Dpup(L) + f_pw(t) (B.33)

As before, the desired steady-state system responses are determined by letting kp(t) =

O, yp(t) ---, yp,(t), up(t) --+ up,,(t) and w(t) ---, w,,(t) in the limit as t --+ ec. Again,

the dimension of yp(t) must be equal to the dimension of up(t) so that we have

[ ]( )
up(t) ,, C_, Dp yp(t) - a,w(t) °,

where the notation (.),, again denotes the quasi-steady values. The control input

up,o(t) and the state vector xp,,(t) are now functions of the external disturbances

w°°(t) and the desired outputs yp,,(t). And they may be time-varying.

Note that the system matrix formed by Ap, Bp, Cp and Dp in (B.34) is a square

matrix and it must have full rank for its inverse to exist.

We denote the inverse of the system matrix as

[ ] [ ]Ap Bp = K M (B.35)

Cp Dp L N

where the matrix partitions K through N have the same dimensions as their counter-

parts Ap through D. on the left-side of equation (B.35). The plant synthesis model

in equation (B.32) for a disturbance rejection problem is given by

_,(t) = a,_,(t) + B,,p(t) + (o)u,..(_) + r,m..(t) (B.36)

y,(t) = Cpzp(t) + Dpu,(t)- Iyp..(t) + apw,°(Q (B.aT)

u,(t) = (0)xp(t)+ lup(t) - Nyp.,(t) + Nftpw,,(t) (B.38)

The tracking errors y,(t) and u,(t) in the performance index given in equation (B.1)

are now outputs of the plant synthesis model in equations (B.36)-(B.38).
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To completethe problemformulation, the plant model in equations(B.36)-(B.38)
must beaugmentedwith a disturbancemodelasdescribedin sectionB.2 to form the

final synthesismodel in a disturbancerejection problem.
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Figure B.I: Response of a First-Order Stable Filter to an Impulse Command
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Appendix C

NONLINEAR CONSTRAINTS ON SYSTEM

EIGENVALUES

Design requirements involving damping ratio and frequency of closed-loop eigen-

values are one of many important design criteria that a feedback control system must

satisfy. For example, flying qualities in the longitudinal axis are often expressed in

terms of desired locations of the short-period and phugoid modes. To achieve the

desired characteristics in the closed-loop eigenvalues, one common design procedure

based on optimal control would be through the use of output penalty variables in the

quadratic performance index. Clearly, a design procedure for closed-loop stability via

a performance index is indirect and necessitates numerous trials before arriving at a

reasonable set of penalty variables.

The reason behind this difficulty is that there is no one-to-one correspondance

between location of closed-loop system eigenvalues and transient responses of output

variables to disturbances. A more direct approach for the assignment of closed-loop

eigenvalues is with the use of direct constraints. The following sections will describe

the formulation of two types of eigenvalue constraints: one type of constraint is on

the real parts of the eigenvalues, and the other is on their damping ratio parameters.

Other variation or extension from these set-ups can be easily implemented by a simple

modification of the proposed schemes; for example, the case involving damping and

frequency constraint requirements that are frequency-dependent. The advantage of

the proposed formulation of eigenvalue constraints is that the constraint functions

in both cases are continuously differentiable with respect to the design parameters

in the system matrix. However the above statement holds only for systems that are

diagonalizable, i.e having a non-degenerate Jordan structure.
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C.I Constraints on tile System Eigenvalues

Consider a linear time-invariant system described by the following state model

k(t) = Ax(t) (C.1)

where x(t) is a state vector of dimension n, and A is a system matrix of dimension

n × n. System stability is governed by the eigenvalues of the system matrix A defined

by

av, = _,v_,(i = l,...,n) (C.2)

where A_ is the ita eigenvalue of the system matrix A and v, is the corresponding

eigenvector. For practical purposes and from hcrc on, we assume that the system

matrix A is diagonalizable, i.e. there exists a nonsingular similarity transformation T

constructed from a set of n completely independent eigenvectors [v;]i=l .....,_ such that

T-'AT = A (C.3)

- diag()_,)i=l ....., (C.4)

In this appendix, we examine constraint formulation on two basic parameters of an

eigenvalue _ = a_ + jw,, (i = 1,..., n) where j - _'_', namely: (1) its real part a_

and, (2) its damping ratio _i defined as

¢_= -_' (C.5)

Clearly for stability, one must have at least a_ < 0 or _; > 0, (i = 1,..., n). Usually

requirements for closed-loop stability are expressible in terms of desired real parts

and damping of system eigenvalues as indicated in figure C.1.

The corresponding constraint inequalities are

a, <_ a,_,,,(i = 1,...,n) (C.6)

_i > _min,(i = 1,...,n) (C.7)

where am_,,, and _mi, are design specification parameters. Equations (C.6) and (C.7)

constitute a set of 2n inequality constraints on the system eigenvalues. For conve-

nience and simplicity of implementation, one can employ an equivalent formulation
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that yields basicallythe sameresults, but would involve only a single inequality con-
straint. To understandthe achievedaccuracylevelof a constrainedeigenvalueunder

a given toleranceon the inequality constraint, we needto examine,as given in the

following sections, the results correspondingto the constraints on its real part and

its damping ratio separately.

C.I.I Constraints on the Real Part of System Eigenvalues

An equivalent formulation of equation (C.6) is as

1 2

o _< _< (c.s)

where c is a preselected tolerance level and the variable cr is defined as

1 _ [max(ai a,_x, 0)] 2
o'= 2i=1

(c.9)

with cr,_x being the desired maximum real part of the eigenvalues. Note that eigen-

values that satisfy the constraints in equation (C.6) do not contribute to the variable

a; only those eigenvalues that violate the constraints are accounted for in equation

(C.9). Clearly, when the constraint in equation (C.8) is satisfied then the real parts

of tile active eigenvalues ai(i = 1, ..., n) (i.e. those that contribute to a in equation

(C.9)) are within a tolerance q-_ from the desired bound amax. Note that the parana-

cter cr is a continuously diffcrcntiablc function with respect to tile design parameters

in the system matrix A. Section C.2 derives the sensitivity function 0_ with respect

to a parameter p in the system matrix A that is diagonalizable.

C.1.2 Constraints on the Damping Ratio of System Eigenvalues

An equivalent form of equation (C.7) is

(C.10)

where e is a preselected tolerance level and the variable _ is defined as

ll

¢= _ _"_ [max(a,+ Iwi I cota, O)] 2
i=l

(C.11)



130

with coso: Cmi,_and sin o: _/1 - 2= = _'min where Cml. is the desired minimum damping

ratio applied to all the system eigenvalues. Physically the constraint variable ( is the

sum of the square of the horizontal distance d, for the eigenvalues with nonnegative

imaginary parts (i.e. w_ > 0) that are located above the damping line Cmin (figure C.2).

Any eigenvalue with nonnegative imaginary part that falls below the damping line

does not contribute to the constraint variable ¢. Those eigenvalues with negative

imaginary parts (i.e. w_ < 0) will contribute the same amount as their complex

conjugate counterparts. When the constraint in equation (C.10) is satisfied, the

damping ratio Q of each active eigenvalue A_(i = 1, ..., n) (i.e. one which contributes

to ( in equation (C.11)) will be bounded by

(,+,+(,+.,

icos o+/,+
,+(,+ )Cmin

0-  ) sino 

- 1 < 0 (C.13)

Ot 2

- 1 > 0 (C.1 1)

Figure C.3 shows relative levels of accuracies (i.e values of ¢/¢m;,, - 1 ) achieved from

the constraint equation (C.10) as a function of the ratio I_-_' i.e. plots of (5+ (i-_, (mi,) .

Thus for an actively constrained eigenvalue A,, the desired damping ratio (rain is

satisfied to within an acceptable level of accuracy, say 0.01, if the parameter ¢ is

selected such that

'± (1-_/1, era;n) <0.01 (C.15)

To ensure that all eigenvalues Ai(i = 1,...,n) have the desired damping ratio (mJ,

to within a relative accuracy of at least 0.01, the parameter e must be chosen based

on the minimum value of [ o-; [ (i = 1,...,n). Together with the constraint equation

(C.8) for the real part of the eigenvalues, a reasonable estimate for the minimum of

[ai [(i = 1,...,n) would be O'max [.
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C.2 Gradients of the Constraints with Respect to Parameters in the System Matrix

To apply the constraints of equations (C.8) and (C.10) into a control design prob-

lem using parameter optimization, it is often required that gradients of the con-

straint functions (e.g. a and () with respect to a system matrix parameter (e.g.

element (a_j),,j= 1.....,) be supplied to the nonlinear optimization algorithm (in this

case, NPSOL [Ref.8]). Determination of gradients using finite-difference approxima-

tion can be time-consumming and numerically inaccurate. Whenever possible, it is

more efficient and accurate if expressions of constraint gradients can be derived and

evaluated analytically.

Recall that constraint on real part of the system eigenvalues is formulated as a

constraint on a (equation (C.9)) where

1 _2_ [max(a; _ a,_,,0)]_
O" _ _ i=1

Gradient of a with respect to a parameter p in the system matrix is given by

Oa Oa i

= N
i=1

(C.16)

(c.17)

Constraint on damping of the system eigenvalues are formulated as a single constraint

on ( (equation (C.11)) where

n

¢" = _ _ [max(a,+ [w, I cot a,O)] _ (C.18)
i=l

Gradient of ( with respect to a parameter p in the system matrix is given by

_ (Oai )OWicota ) (C.19)°Z - f,,,,Icot ,O) Op+ apOp _=,

where sgn(.) is the sign function (i.e. sgn(x) = 1 if x > 0, s9n(x) = 0 if x - 0, and

sgn(x) = -1 if x < 0).

C.2.1 Sensitivity Function of System Eigenvalues

In this section we derive analytically the sensitivity function of the system eigenvalues

Xi, (i = 1 n) with respect to a parameter p in the system matrix, i.e. _
' ""' Op "
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From the definition of system eigenvalues given in equation (C.2) we have

Avi = _ivi, (i = 1, ..., n) (c.20)

Differentiating both sides of equation (C.20) with respect to a parameter p (where p

is an element (aij)i,j=l .....,_ of the system matrix A) to yield

or

OA A Ovi OAi Ovi
Op- Nv'+ 'N (c.21)

(A -AiI) Ovi
O )q OA

Op Op vi = - O---_vi

Let T be a transformation that diagonalizes the system matrix A as

(C.22)

T-'AT = A (C.23)

= diag(Ai)i=, ..... , (C.2,1)

Multiplying both sides of equation (C.22) by T -1 and after some manipulations we

h ave

0

0

0 _,__ 0

0 0 0

0 Ai+_

0 0

= -T-' OA (C.25)
O----_vl

Clearly, one can solve for the sensitivity _ from the i thop row of equation (C.25) as

(T-1 oAv '1
0)q _, N ili (C.26)
-_p = (T-'v_),
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where the notation (.)_ denotes the i 'h row of the enclosed quantity. Recall that

the i th eigenvalue is A_ = a_ + jw,, thus the sensitivities 0_, and P-_ are simply
Op Op

the real and imaginary parts of -_p respectively. Note that the computation of the

sensitivity function involves the determination of a transformation T consisting of

system eigenvectors vl(i = 1,...,n). For the case where some of the eigenvalues are

repeated and the system does not have a complete set of eigenvectors corresponding

to these eigenvalues, then the sensitivity function associated with these eigenvalues

does not exist.

For a feedback controlled system, one is usually interested in obtaining the sen-

sitivity of the closed-loop eigenvalues with respect to the controller design gain pa-

rameters. In the next section we will establish the relation between the closed-loop

system matrix and the controller state matrices.

C.3 Sensitivity of the Closed-Loop System Matrix with Respect to Controller State

Matrices

Consider a plant model with the following state equations

ip(t) = Apx (t) + n,,,,(t) (C.27)

y,(t) = Cpx,(t) + (C.2S)

where xp(t) is the plant state vector of dimension n, uc(t) the control input vector

of dimension rn and yp(t) the sensor output vector of dimension p. A linear time-

invariant feedback controller for the above plant is of order r (where r < n) and has

the following state-space description,

:_c(t) = Acz=(t) + B_uc(t) (C.29)

yc(t) = C_z¢(t) + Dcuc(t) (C.30)

where z_(t) is a controller state vector of dimension r and (At, Be, C_, D_) are the

controller state matrices of appropriate dimensions. Note that, in a feedback config-

uration, the plant sensor output vector yv(t) is connected to the input vector uc(t)

of the controller, and the outputs y¢(t) of the controller are the inputs up(t) of the
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plant. For convenience,we definea matrix ff that contains in a compact form the

quadruple (Ac, Be, Co, De) as follows,

(C.31)

In this formulation, when we refer to an element of the matrix K, we actually address

one of the elements of the controller state matrices Ac, Be, C_, and De.

With the feedback control loops closed and assuming that D_D v = O, we obtain

the following state model for the closed-loop system,

ice(t) B¢(I + DpDc)C, Ac + B_D,,Cc x_(t)

= Aclosed (:cp(t)
xo(t) )\

(c.32)

(C.33)

where Acto,ed is the closed-loop system matrix. Stability of the closed-loop system

is determined by the eigenvalues of the matrix Ado,,d. The sensitivity of the matrix

Aclo,,d with respect to a parameter in the controller state matrix K (equation (C.31))

can be easily computed if we rewrite the matrix Aclos,a as follows,

A_lo,,d = Ao + (Bo + IoKDo) KCo (C.34)

where the matrices Ao,/3'0, Co, Do and Io are independent of the controller matrix K

and they are given by

Ao = [ Ap 0

L 0 0

Bo = [ Bp 0

L 0 I

Co = [Cp 0

L 0 I

Do = [ Dp 0

L 0 0

(n+,)x (m+_')

] (p+_)x (_+,)

] (p+_Ix(._+,)

(c.35)

(C.36)

(C.37)

(c.38)



135

0 0 ] (C.39)
I0 = 0 I (n+_)x(,_+r)

Let p be the ijthclement of the controllermatrix K (i.e.p = kij)then the sen-

sitivityOAdos_a/Op isobtained by differentiatingequation (C.34) with respect to p

as

O Aclosed

Op - (go + IoA_jDo) KCo + (go + IoKOo) AqCo (C.40)

where Aq is a matrix of dimension (m + r) x (p + r) with zero entries except for the

ij th element where it is equal to unity. Finally sensitivity of the closed-loop eigenvaluc

with respect to a controller parameter p can be obtained using equation (C.40) and

equation (C.26) for the system matrix A,ao_ed.

Results presented in this appendix have been implemented in the design algo-

rithm SANDY which combines the two types of nonlinear constraints given in equa-

tions (C.8) and (C.10) into a single inequality constraint. Precisely, the eigenvalue

constraint is defined as

1

-o¢ < ca < 2 e_ (C.41)

71

where ca is given by ca = i _ with

._az(m+ I_, Icoto,0) ,_, >__0d_ = maz(o', -O'm_,,) , Z_ < 0
(C.,12)

and xl = o',_+ I w_ I cota. Design specifications on tile system cigenvalues are

defined in the parameters _r,,,_, > 0 and 0 < a _< lr]2 where coso_ = _,,,_,_.



136

DampingLine_,X I jo_

°
v

(3

Figure C.I: Constraint Boundaries for System Eigenvalues
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Figure C.2: Definition of Eigenvalue Real-Part and Damping Ratio Constraints
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MULTI"VARIABLE ROBUSTNESS MEASURES

Multivariable stability margins are defined in terms of maximum allowable varia-

tions of gain and phase in the feedback loops according to figure D. 1 for multiplicative

type uncertainties. The complex gain matrix K is given by

K = (kq_e j°'')q,,=, ..... ,,, (D.1)

where m is the number of feedback controls. Note that /( is not a function of the

complex frequency s. The border-line for closed-loop stability is when the return-

difference transfer matrix of a nominally stable closed-loop system becomes singular

at some frequency s = jw, i.e.

det [I + G(jw)K] = 0 (D.2)

D.I Robustness Test I

For multiplicative type uncertainties as depicted in figure D.2, instability occurs when

the return-difference matrix becomes singular for some value of s = jw, i.e.

det[l + G(jw)(I + L(jw))] = 0 (D.3)

or

det [G-'(jw) + I ÷ L(jw)] = 0 (D..1)

Closed-loop stability is therefore guaranteed when

6"(L(jw)) <o'(I +G-X(jw)) (D.5)

for w > 0. The operators _(.) and a_(.) denote the minimum and maximum singular

values respectively. In terms of the complex gain matrix K of equation (D.1), the

above bound becomes

gr(K - I) <_ o" (I + a-'(jw)) (D.6)
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If the complexgain matrix is restricted to a diagonalmatrix of the form

= diag ,kqqd°q*. q=l() ..... ,nK

then the inequality bound reduces to

(D.7)

max k/(1-k,q)_+2kqq(1-cosOqq)<r_na(I+G-'(jw)) (D.8)
:<q_<m - --

With this relation, gain and phase margins for type I unccrtaintics are easily computed

from a plot of minimum singular values of the inverse return-difference matrix of the

nominal system. Note that this test requires that the nominal loop gain matrix G(jw)

be nonsingular. If G(jw) becomes singular at some frequency w then this robustness

test is not possible.

D.2 Robustness Test II

For multiplicative type uncertainties as depicted in figure D.3, instability occurs when

the return-difference matrix becomes singular for some value of a = jw, i.e.

det [I + G(jw)L(jw)] = 0 (D.9)

or

det [I + G(jw) + L-'(jw) - I]

Closed-loop stability is thcrcfore guaranteed when

=0 (D.10)

6 (L-'(jw)- I) <_:(I + G(jw)) (D.II)

for w > O. In terms of the complex gain matrix K of equation (D.1), the above bound

becomes

_r(K-' - I) < a(l + G(jw)) (D.12)

If the complex gain matrix is restricted to a diagonal matrix of the form

K = diag (k d °''_
k qq ] q=l ..... m

(D.13)
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then the inequality bound reducesto

ma×
2

,<qgm - kqq + _-_-qq(I - cos Oqq) _< mjn __(I + G(ja_)) (D.14)

With this relation, the gain and phase margins for type II uncertainties are easily

computed from a plot of minimum singular values of the return-difference matrix of

the nominal system.

Both equations (D.8) and (D.14) will yield bounds which are applicable to simul-

tanous gain and phase variations in every control loop. Stability margins associated

with each test may be combined to produce less conservative bounds. For example, if

the smallest a_q.(l + G(jw)) is 0.7 and ff.(I + G-l(jw)) is 0.6, then in the presence of

phase uncertainties of +30 degrees, the closed-loop system will toleratc simultaneous

gain changes of -2.64 dB to 8.49 dB and -5.44 dB to 1.57 dB respectively. Remem-

ber that robustness test I requires a nonsingular loop system matrix G(jw). If this

is not the case, then robustness test I can not be used to improve the estimates of

multivariable stability margins.

D.3 Effects of Scaling on Robustness Bounds

Estimates of multivariable stability margins of type I and type II computed from

equations (D.8) and (D.14) can be improved by scaling the system matrices G(jw),

since singular values are not invariant under a similarity transformation. IIowever,

the characteristic equation of the nominal closed-loop system is unaffected by scale

changes. This follows from thc fact that, while det (I + RG(jw)R -1 ) = 0 is equivalent

to det(l + G(jw)) = 0 for any nonsingular transformation R, their singular value

norms a_(I + RG(j o)R-') and + a(j,,,)) can be much different.

In fact, bounds on gain and phase variations determined from equations (D.8)

and (D.14) can be improved by rescaling the loop transfer matrix G(s). If the type of

loop uncertainty is restricted to a diagonal complex gain matrix in equation (D.7) and

we only consider diagonal scaling matrices D = diag(di)i=l,...,m, then the left-hand

side of equations (D.8) and (D.14) remain unchanged from the scaling of the return-

difference and inverse return-difference transfer matrices. Increasing the minimum

singular values through diagonal scaling will give less conservative estimates of the

multivariable stability margins determined from equations (D.8) and (D.14).
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D.4 Osborne's Method for Pre-Conditioning of Matrices

Reference 22 describes a method for pre-conditioning of matrices. The procedure

involves the minimization of the euclidean (or Frobenius) norm of a square matrix

through diagonal similarity transformations. The method is easily programmed for

numerical solutions and is seen to converge quite rapidly. The euclidean norm of the

matrix A is defined as

i=1 j=l

The minimization problem becomes

(D.15)

min [[DAD-'[[_ (D.16)
D

over all real diagonal scaling matrices D. For simplicity, we can take each diagonal

element d3 of D = diag(dt , ...,d,_) as a free variable. Tile product of DAD -1 is

DAD__)ij d, aij (D.17)

Thus, as the element dj varies, only the jth column and jr^ row of the matrix DAD -1

are affected, leaving the jth diagonal element of the product unchanged. The square

of the euclidean norm ]]DAD -_ []_ can be rewritten to explicitly show the dependency

on the single varying parameter dj as

IIDAD-'I]_ = _-_.._a_j (D.18)
i=1 j=l d_3

= d_, la_jl= 1 d_la,kl2 d_la,jl2
,=, _ +_ + _ +lakkl _ (9.19)

jgk \igk j_k

±s
= d_R+_ +C (D.20)

This expression is minimized when

d_ = _ (D.21)
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Therefore the euclideannorm of A may be minimized with respect to the element

dk of D inone step. Osborne's algorithm consists of stepping through each element

dk from k = 1, ..., n, and repeating the process over again until the norm HDAD-' [[_

can no longer be improved and therefore has converged to the global minimum. It

should be noted that the method is guaranteed to work only if the matrix A is in

a form that is irreducible by permutation matrices. Otherwise, the algorithm would

fail with either quantities S or R being equal to zero.

D.5 Improving the Multiloop Stability Margins through Diagonal Scaling

Our problem for improving the estimates of multivariable stability margins with di-

agonal scaling is stated as

max a (D( I + G(jw))D-')
D

Recall that the minimum and maximum singular values are related by

1
__(A) =

_(a-')

so that our problem can be reformulated as

(D.22)

(D.23)

rain 0 (D( I + a(flo) )-' D-') (D.24)
D

The maximum singular value of a matrix A is related to the euclidean norm of A

as

_(A) < Ilalle (D.25)

Hence, minimizing the euclidean norm of D(I + G(jw))-ID -1 would lower the upper

bound on _ (D(I + G(jw))-ID -_) in equation (D.24). So if the loop transfer matrix

is poorly scaled, Osborne's method provides a way for improving the estimates of the

actual multivariable stability margins.



143

a(s) v

Figure D.I: Feedback System for Evaluation of Multivariable Stability Margins

G(s) v

Figure D.2: Type I Multiplicative Perturbation where L(s) = 0 (nominal)

L(s) G(s) v

Figure D.3: Type II Multiplicative Perturbation where L(s) = I (nominal)



Appendix E

TSRV B-737 DYNAMIC MODELS

Longitudinal aircraft rigid-body dynamic models are obtained for the NASA Lan-

gley Transport Systems Research Vehicle (TSRV). It is a highly modified Boeing

737-100 aircraft for research in advanced guidance, navigation, control and display

concepts [Refs.12-14,24]. Linear dynamic models in the wind-axis are given in the

form

kp(t) = Apzp(t) + Bpur,(t )

State and control input vectors are

xT(t) = {u(t),a(t),q(t),O(t)}

and

q(t)

o(t)
_ST

= forward velocity component (fps)

= angle of attack (rad)

= pitch attitude rate (rad/sec)

= pitch attitude (rad)

= total engine thrust (lbs)

= elevator control position (deg)

respectively, where

(E.I)

(E.2)

(E.3)

Ap

-0.4697 x 10-I 17.09 0 -32.12

-0.1524 x 10-2 -0.7136 0.9995 0.8295 x 10-2

-0.4397 x 10-3 -1.235 -0.5020 -0.3233 x 10-3

0 0 1.0 0

(E.4)

Two flight conditions were chosen for this investigation. One is an approach to landing

condition and the other is a high-altitude cruise flight condition. Parameters for each

flight condition are listed in tables E.1 and E.2 for trimmed flight. The state dynamic

matrix Ap and control input matrix Bp for flight condition FLT1 are
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Bp

0.40177 x 10-3 0

-0.89059 x i0-' -0.77001 x 10-3

0.63002 x I0-s -0.19737 x i0-'

0 0

(E.5)

For flight condition FLT2, the matrices Ap and Bp are

Ap

Up

-0.7055 x lO-2 21.30 0

-0.1275 x 10-3 -i.032 0.9976

0.3532 x 10-4 -6.948 -I.009

0 0 1.0

0.40210 x 10 -3 0

-0.10185 x l0 -T -0.10562 x 10 -2

0.62982 x 10 -5 -0.99133 x 10-'

0 0

-32.17

0.8341 x I0-14

0

0

(E.6)

(E.7)

Control actuation dynamics are modeled as a continuous linear time-invariant

system of thc form

},a(t) = A,ax,a(t) + B_au_a(t) (E.8)

up(t) = C._,X_c,(t) + D.au_a(t) (E.9)

where x.a(t) contain the actuator model states and u_ct(t) the actuator command

inputs. For both flight conditions, we use the following actuator dynamic model,

_,(t)
:_:(t)

ST(t)_o(t) )

-2 2

0 -I0

0 0

1 0

0 0 o]l

0

0

-16

:_,(t)
_(t)
x_(t)

0 0

i0 0

0 16
(arc(t)5_c(t)) (E.10)

(E.11)

where
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_Tc(t) = total thrust command(lbs)

_ec(t) -= elevator position command(deg)

3T(t) = total thrust output (lbs)

3_(t) = elevatorcontrol position (deg)

Table E.I: TSRV B-737Trim Parametersat

Parameter

Altitude (ft)

GrossWeight (lbs)

Calibrated Airspeed (kts)

Center of Gravity Position

Flap Position (deg)

Flight-Path Angle (deg)
Gear Position

Flight Condition FLT1

Value

1500

80000

120

0.2

4O

-3

down

Table E.2: TSRV B-737 Trim Parameters at

Parameter

Altitude (ft)

Gross Weight (lbs)

Calibrated Airspeed (kts)

Center of Gravity Position

Flap Position (deg)

Flight-Path Angle (deg)

Gear Position

Flight Condition FLT2

Value

25000

80000

45O

0.2

0

0

up



Appendix F

COMMAND PROCEDURES FOR DESIGN AND

ANALYSIS

Command procedures to set up the design synthesis models and perform robustness

analysis for the AFCS controller design are writtcn for the control system analysis and

design software MATLAB l . Command m-files for MATLAB are used to develop the

appropriate plant and controller models for use with the computer program SANDS,"

and to perform multivariable robustness analysis. SANDY command files listed here

contain the actual design values used in the final optimized AFCS designs.

F. 1 MATLAB Command Files

F.I.I Formulation of the Synthesis and Controller Models

A MATLAB function command file was used to compute state-space representations

of the plant and controller models to be used as input data files to the computer

program SANDS,". A listing of this command file called msystem is given below.

function msystem(filename,filenamel ,filena_e2)

Z//

Z// syst em(f ilename, f ilename 1, f ilename2)

Z// computes the state-space representations of

_// the plant (B-737) and controller (TECS) and closed loop system

_// for optimization to step commands in the constrained parameter

_// optimization program SANDY.

Z//

_// Data Input: A737N - Windaxis aircraft model (fps,rad,sec)

_// B737N - Nindaxis aircraft model (fps,rad,sec,lbs,deg)

_// VTBO - True airspeed (fps)

_// GRAVITY - Gravitational acceleration (fpss)

Z// ALT - Altitude (ft)

_// LU - Ugust factor at altitude (fps)

1 A trademark of MathWorks, Inc.
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ZII

ZII

ZII

ZII

ZII

ZII

ZII

ZII

ZII

ZII

ZII

ZII

ZII

_//where xp =

ZII

ZII u

Zll w

ZII y
Z//

Z//
Z//

_//where: x =

Zll uc =

ZII

LW

kgw

kti

ktp

kei

kep

- WEust factor at altitude (fps)

- Aircraft gross weight (Ibs)

- thrust integral gain

- thrust proportional gain

- elevator integral gain

- elevator proportional gain

kv - Outer loop gain

kh - Outer loop altitude error gain

Output Systems:

***** Formulate the Plant State-Space Matrices *****

System model : xpdot = Ap*xp + Bp*u + Gp*w

yp = Cp*xp + Dp*u + Omegap*w

[Y(fps),Alpha(deg),Q(deg),Theta(deg),Xdthl(Ibs),Xdth2,Xde3(deg),

Xgustv(fps),Xgustwl(fps),Xgustw2,H(ft)]

= [Dthc(Ib),Dec(deg),Vc*(fps)]

= [Etav(fps),Etaw(fps),Gammac(deg),Vdotc(ft/sec'2),Vc(fps),Hc(ft)]

= [Gamma(rad),Vdot(g),Q(rad/sec),Theta(rad),(V-Vc)(fps),

(Gamma-Gammac)(deg),(H-Hc)(ft),Gammac(deg),Vdotc(ft/sec'2),

V(fps),Alpha(deg),Xdthl(ibs),Xde(deg),Xgustv(fps),

Xgustwl(fps),H(ft),Nz(g)]
[xIE,xIL,xVc]

[Gamma(rad),Vdot(g),Q(rad),Theta(rad),(V-Vc)(fps),

(H-Hc)(ft), Gammac(deg),Vdotc(ft/sec'2)]

Z// yc = [Dthc(ibs/Ibs),Dec(rad),Vc*(fps)]

ZCreate the Plant Model and Controller Design Gains

eval(['load '0 filename]);

_Conversion Constants

r2d=180/pi; _ //Radians to degrees

d2r=pi/180; _ //Degrees to radians

ZDryden Turbulence Filters

alphau=vtbO/lul;

numv=[sqrt(2*alphau)];_ //numerator coefs, for u-gust filter

denv=[l alphau]; _ //denominator cowls, for u-gust filter

alphaw=vtbO/lw;

numw=sqrt(3*alphaw)*[i alphaw/sqrt(3)];_ //num. cowls, for w-gust filter

denw=[l 2*.95*alphaw alphaw'2]; _ //den. cowls, for w-gust filter

w2alpha=r2d/vtbO; Z //conversion factor from w-gust to alpha-gust(deg)

[av,bv,cv,dv]=tf2ss(numv,denv);

[aw,bw,cw,dw]=tf2ss(numw,denw);

[agust,bgust,cgust,dgust]=append(av,bv,cv,dv,aw,bw,cw,dw);

��State-Space Realization of u,w-gust Filters

ZGain Schedules
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kg.=wg; Z// Gross weight

kcas = (200/vtbO)'2;Z

_Actuator Dynamic Models

aact = [-2 2 O;

0 -10 O;

//elevator gain schedule

//actuator state model

// x = [Xdthl,Xdth2,XdeI]

bact

cact

o o -le];g // u =

= [ o o; X //

lO*kgw O;

0 18*kcas*rRd];

: [I 0 O;

0 0 I];

ap = [a737 b737*cact

zeros(3,4) aact

zeros(3,4) zeros(3,3)

Addition of the Altitude State

aplant = [ap zeros(iO,l);

[Dthc(lbs/lbs),Dec(rad)]

y = [Dth(lbs),De(deg)]

gp =

bplant =

X//

cplant =

bp =

0 -vtbO*d2r 0 vtbO*d2r 0 0 0 0 0 0 0];

[zeros (4,3) ;

[bact, zeros (3,1) ] ;

zeros(4,3)] ;

[a737(:, [1,2])*dgust;

zeros (3,2) ;

bgust

00];

[bp _p zeros(11,4)];

y = [Gamma(tad) ,Vdot(g) ,q(rad/sec) ,Theta(rad), (V-Vc) (fps),

(Gamma-Gammac) (deg), (B-Hc) (ft), Gammac (deg) ,Vdotc (ft/sec "2),

V(fps), Alpha(dsg), Xdthl (ibs) ,Xde (deg), Xgustv (fps),

Xgust. %(fps), H(ft), Nz (g) ]

[0 -d2r 0 d2r 0 0 0 0 0 0 0

aplant (1, : )/gravity
0 0 d2r 0 0 0 0 0 0 0 0

0 0 0 d2r 0 0 0 0 0 0 0

100000000 O0

0-10 I0000000

00000000001

dact = O,eye(2);

ZAirplane Longitudinal Dynamics

a737 = a737g;

a737([2 3 4],:) = a737([2 3 4],:)*r2d;

a737(:,[2 3 4]) = a737(:,[2 3 4])*d2r;X //Convert A737w to fps and deg.

b737 = b737w;

b737([2 3 4],:) = b737([2 3 4],:)*r2d;Z //Convert B737w to fps and deg.

a737(:,[I 2])*[i,O;O,w2alpha]*cgust;

zeros(3,3);

agust];
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00000000000

000000000 O0

1OOOOOOO0O0

01000000000

O000iO00000

O00000iO000

[zeros(2,7),c_st,zeros(2,i)]

00 O0000000 i

vtbO/gravity*d2r* (aplant (4, : )-aplant (2, : ) ) ] ;

dplant = [zeros(iT,B)];

dplant(5,3) =-i;dplant(5,8) =-i;

dplant (6,6) =-i ;

dpla_t(7,9) =-i;

dplant(8,6) = i;

dplant(9,7) = i;

dplant (17, : ) = vtbO/gravity* (bplant (4, : )-bplant (2, : ) ) ;

Y,Save the Plant Synthesis Model into filen_ei

eval(['save ',filenamei,' aplant bplant cplant dplant']);

X//

_,// ***** Formulate the Controller State-Space Matrices *****

Y,// Initial

Y.// System model : xcdot = Ac*xc + Bc*uc

X// yc = Cc*xc + Dc*uc

Z//where: x = [xIE,xIL,xVc]

Y,// uc = [Gamma(rad) ,Vdot(g) ,O(rad) ,Theta(rad), (V-Vc) (fps),

7.// (B-Hc) (ft), Gammac(deg) ,Vdotc(ft/sec'2)]

Y,// yc = [Dthc(lbs/ibs),Dec(rad),Vc*(fps)]

Z//

acont = [zeros(3,3)];

bcont = [-i -I 0 0 kv kh d2r I/gravity

i -i 0 0 kv -kh -d2r I/gravity

0 0000 0 0 I ];

ccont = [kti 0 0

0 kei 0

0 0 kl ];

dcont = [-ktp -ktp 0 0 000 0

kep -kep kq ktheta 000 0

0 0 0 0 OOk20];

ZSave the Controller State model in filename2

eval(['save ',filename2,' acont bcont ccont dcont']);
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F.I.2 Multivariable Robustness Analysis

Multivariable robustness measures described in Appendix C.3 involve computation

of the minimum singular values of the return difference and inverse return difference

transfer function matrices at different frequencies. MATLAB function files were

devised for computing the minimum singular values of these transfer function matrices

from the state-space representation of the broken-loop systems. Osborne's method

[Ref.22] is used to improve the minimum singular values through diagonal scaling of

the loop gain transfer function matrices. The MATLAB command files svdrtd and

svdirtd are user-defined functions for computing the minimum singular values of the

return-difference and inverse-return-difference transfer function matrices respectively.

Their listings are shown below.

funct ion [OMEGA, SIGMA] =svdrtd(A, B,C,D)

clg;

J=sqrt (-1) ;

[NIO, NIO] =size (D) ;

[NS, NS] =size(A) ;

DEL=O. 00001 ;

NPTS = i O0 ;

OMEGA =logspace(-2,2, _IPTS) ;

R = eye(_lIO);

RoldIMl=eye(NIO) ;

for I=I:NPTS;

M = eye(_IO) + (C*inv(3*OMEGA(I)*eye(NS)-A)*B+D);

MI = inv(M);

Roldl = eye(NIO);

rk = 2;

k= 1;

while abs(rk-l) > DEL;

rsum = 0.0;

for I=| :NIO;rsum=rsum+abs(MI (k,l))'2.0; end;

rsum = rsum - abs(MI(k,k))'2.0;

csma = 0.0;

for I=I :_IO ;csum=csum+abs (MI (I ,k) )"2.0 ;end ;

csum = csum- abs(MI(k,k))'2.0;

if rsum "= 0.0;

if csum "= 0.0;

rk = (csum/rsum)'0.25;

R = eye(NIO);

R(k,k) = rk;
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RoldI = RoldI*R;

end;

elseif rsum == 0.0;

rk = 1.0;

R = RoldIM1;

RoldI = R;

elseif csum == 0.0;

rk = 1.0;

R = RoldIM1;

RoldI = R;

end;

M = R*M_inv(R);

MI = inv(M);

k=k+1;

if k > NIO; k = l;end;

end;

SIGMA(I)=min(svd(M));

RoldIM1=Roldl;

end

axis(I-2,2,0,2]);

semilogx(OMEGA,SIGMA);

xlabel('Frequency (Rad/Sec)');

ylabel(_Sigma');

grid;

title('Minimum SinEular Value of the Return-Difference Matrix');

rmin=min(SIGMA)

_Multivariable stability margins

MIMOGM=[-20_log10(1+rmin),-20_log10(1=rmin)]

MIMOPM:[-acos{1-rmin'2/2)*180/pi,acos(1-rmin'2/2)_180/pi]

function [OMEGA,SIGMA]=svdirtd(A,B,C,D)

clg;

J=sqrt(-1);

[NIO,NIO]=size(D);

[NS,NS]=size(A);

DEL=O.00001;

NPTS=IO0;

OMEGA =logspace(-2,2,NPTS);

R = eye(_IO);

RoldIMl=eye(NIO);

for I=I:NPTS;

M = eye(NIO)- inv(C*inv(J*OMEGA(I)*eye(NS)-A)*B+D);

MI = inv(M);

RoldI = eye(NiO);
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rk = 2;

k = 1;

while abs(rk-1) > DEL;

rs_m = 0.0;

for l=l:NIO;rsum=rsum+abs(MI(k,1))'2.0;end;

rsum : rsum - abs(MI(k,k))'2.0;

csum = 0.0;

for l=i:NIO;csum=csum+abs(MI(l,k))'2.0;end;

csum = csum - abs(MI(k,k))'2.0;

if rsum "= 0.0;

if csum "= 0.0;

rk = (csum/rsum)'0.25;

R = eye(NIO);

R(k,k) = rk;

RoldI = RoldI*R;

end;

elseif rsum == 0.0;

rk = 1.0;

R = RoldlMI;

RoldI = R;

elseif csum == 0.0;

rk = 1.0;

R = RoldIMi;

RoldI = R;

end;

M = R*M*inv(R);

HI = inv(M);

k=k+l;

if k > NIO; k = l;end;

end;

SIGMA(I)=min(svd(M));

RoldIM1=RoldI;

end

axis(I-2,2,0,2]);

semilogx(OMEGA,SIGHA);

xlabel('Freqnency (Rad/Sec)');

ylabel('Sigma');

grid;

title('Minimnm Singular Value of the Inverse-Return-Difference Matrix');

rmin=min(SIGMA)

XMultivariable stability margins

MIMOGM=[20*loglO(1-rmin),20*logiO(1+rmin)]

MIMOPM=C-acos(l-rmin'2/2)*180/pi,acoe(l-rmln'2/2)*i80/pi]
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F.2 SANDY Design Data Files

Data files for use with the computer program SANDY contain design information

such as weighting matrices in the performance indices, linear constraints and nonlinear

constraints. The SANDY data file for the optimized TECS inner-loop design in

chapter 5 at flight condition FLT1 is shown in Appendix G, while tile one for flight

condition FLT2 is shown in Appendix It.



Appendix G

DESIGN DATA FILE FOR TEES INNER-LOOP

PLIGHT CONDITION FLT1

AT

'Nfcmax'

'Tf'

JTfctor'

'Npm'

'Wp'

'F'

1 1

2000

1 1

100

1 1

2

1 1

4

4 1

1

1

40 10

-0.04697

-0.560599755740579

8.5931e-14

0.00423385423749794

0.9995

0

-0.127046218711467

-1.235

0.000360974870088321

-0.0125855088626523

0

0

0

0

0

2

0

0

0

0

0

0

1

0.298276769165831

0.00040177

-0.0234645506584104

-0.0873187679779375

0.008295

-0.0441183231828685

-0.0101291105986159

-0.502

0

-0.219873991183662

0

0

0

0

0

0

0

0

-10

0

0

0

1

-4.00727596257898e-13

0

0.0531038896468495

-0.7136

-5.1027048276556e-06

-0.0436213679933638

-0.0251929542519023

-0.0003233

-1.13084680054971

-0.0175300610836472

1

0

0

0

-2

0

0

0

0

0

0

0
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-16

0

0

0

0

0

0

0

0

0

0

0

-4.00727596257898e-13

0

0.0631038896468495

-0.7136

-5.1027048276556e-06

-0.0436213679933638

-0.0251929842519023

-0.0003233

-1.13084680024g71

-0.0175300610836472

1

0

0

0

-2

0

0

0

0

0

0

0

0

0

0

-0.124782409638554

0

0

0

-0.0190695477624178

0

0

0

0

0

0

0

0

-0.262376813333333

0

0

0

-0.04697

-0.560599755740579

8.5g31e-14

O.O04233854237497g4

o.ggg5

0

-0.127046218711467

-1.235

0.000360974870088321

-0.0125855088626523

0

0

0

0

0

2

0

0

0

0

0

0

-16

0

0

0

0

0

0

0

0

0

0

0

0

-0.124782409638564

0

0

0

-0.01g0696477624178

0

0

1

0.298276769165831

0.00040177

-0.0234645506584104

-0.0873187679779375

0.008296

-0.0441183231828685

-0.0101291105986169

-0.502

0

-0.219873991183662

0

0

0

0

0

0

0

0

-10

0

0

0

0

0

0

0

0

0

0

-0.262375813333333

0

0
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0

I

0.298276769165831

0.00040177

-0.0234645506584104

-0.0873187679779375

0.008295

-0.0441183231828685

-0.01012911059861S9

-0.502

0

-0.219873991183662

0

0

0

0

0

0

0

0

-10

0

0

0

0

0

0

0

0

0

0

-0.262375813333333

0

0

0

-0.04697

-0.560599755740579

8.5931e-14

0.00423385423749794

0.9995

0

-0.127046218711467

-1.235

0

0

-4.00727596257898e-13

0

0.0531038896468495

-0.7136

-8.1027048276556e-06

-0.0436213679933638

-0.0261929542819023

-0.0003233

-1.13084680024971

-0.0175300610836472

1

0

0

0

-2

0

0

0

0

0

0

0

0

0

0

-0.124782409638554

0

0

0

-0.0190695477624178

0

0

1

0.298276769165831

0.00040177

-0.0234648506584104

-0.0873187679779375

0.008295

-0.0441183231828685

-0.0101291105986159

-0.502

0

-0.04697

-0.560599755740579

8.5931e-14

0.00423385423749794

0.9995

0

-0.127046218711467

-1.235

0.000360974870088321

-0.0125855088626523

0

0

0

0

0

2

0

0

0

0

0

0

-16

0

0

0

0

0

0

0

0

0

0

0

-4.00727596257898e-13

0

0.0531038896468495

-0.7136

-5.1027048276556e-06

-0.0436213679933638

-0.0251929542519023

-0.0003233
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'G'

0.000360974870088321

-0.0125855088626523

0

0

0

0

0

2

0

0

0

0

0

0

-t6

0

0

0

0

0

0

0

0

0

0

0

40 3

0

0

0

0

0

800000

0

0

0

0

0

0

0

0

0

800000

0

-0.219873991183662

0

0

0

0

0

0

0

0

-10

0

0

0

0

0

0

0

0

0

0

-0.262375813333333

0

0

0

0

0

0

0

0

0

8S4. 63307130Bg22

0

0

0

0

0

0

0

0

0

-1.13084680024971

-0.0175300610836472

1

0

0

0

-2

0

0

0

0

0

0

0

0

0

0

-0.124782409638554

0

0

0

-0.0190695477624i78

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
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DESIGN

Appendix H

DATA FILE FOR TECS INNER-LOOP
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