N91-22159

THE CENTAUFI PROJECT: AANNED INTERSTELLAR TRAVEL

Thomas M. Ciesla
Outer Space Environments
Houston, Tx. 77388

Abstract

The devolopment of antimatter ongises for spacecraft propulsion will allow man to expand to our nearest stellar neighbors such as thr Alpha Centauri system. Compared to chemically powered rocitets like the Apollo mission class which wolld take 50,000 years to reach the Centauri system, antimatter propulsion would reduce oid way trip time to 30 years or liss

The challonges encounterad by manned interstellar travel will be formidable. The craft must be combination sub-iight speed transportation system end a traveling microplanet serving an expanding population. As the population expands from the initial lǘ penple to ~ 300, the terraformed asteroid, enclosed by a man-made she:1 :!!! m!ion for expansion over its surface in the aasmion of amell terrestrial town. All aspects of human life birth, death, physical, omotional and educational needs, government and law must be met by the structure, systems and institutions on beard.

INTRODUCTION

Interstellar space exploration is at once profoundly exciting and profoundly frightening. The isolation and vast distances along the paths of these starlines are beyond the understanding of today's civilizations. The Alpha Centauri star system, our Sun's closest stellar reighbor, lies 4.3 light years away from us. This is the equivalent of just over twenty-five triilion miles. A one way trip to Proxima Centauri, the closest nimioer of this three star system, will require 30-50 years, deperaing on the minimum cruise velocity required (between 10 to 30\% of the speed of light).[ref. 7]

If the exploration of the solar system is the Thind Great Age of Discovery as suggested by Pyne [ref. 12], the exploration of star systeme will herald the dawn of the Fourth Age of Discovery. Though each age ultimately deals with worlde beyond the terrestrial sehere, the discovery and exploration of stellar systems is fundementally difserent from the aiscovery of abiotic n ?anets within the sular syston. The rift valleys, ice caps and red deserts of Niurs, the volcances of Io and the great cliffs of Miranda are images thic our civilization can understand through torrestrial counterparts. Images of stellar systems bear fer: if any chysical, temporal or social symbols recognizable to our civilization.

It is necessary for the structure of a paper such as this to make assumptions. The time frame of this mission is placed in the latter part of the twenty first centimi - mioni we assiume diat man has explored and cozonized the majoritiy of Solar Systems. This colonization effort has established a network of manufacturing plants and O'neill type colonies amongst the Jovian planetary systems.[ref. 11] Construction in space is a mature technology, as is materials processing and the use of antimatter engines for propulsion. Finaliy, it is assumed that non-centrifugal artificial gravity has been cieveicped and implenented in a number of vessels and orbiting colonies.

THE INTERSTELLAR VGSSEL

The interstellar vessel for the Centauri project will consist of an asteroid of the stony carbonaceous choncuit te class, with a rominal diameter of approximately two miles. Surrounding this asteroid will be a man-made shell, best defined as a ' 2 -manifold in 3 space' [ref. 8], which folds in on itself at each end along the primary axis. (See figures 1 \& 2). This shell, approximately 60 feet thick and containing three graduated pressure levels, encloses an atmosphere that allows the crew to live on the surface of the asteroid.

FIGURE 1: EXTERIOR VIEW OF INTERSTELLAR VEAICLE

Upon enclosure, the surface of the asteroid will be terraformed to contain a variety of Earth ecosystems: forests, Farmiancis, small lakes, etc. Highly automated food production techniques will be incorporated to ountrol highly automated agriculture, fish farming, tusbandry and hydroponics. An asteroid measuring slightly less than four kilometers acros's has a surface area of roughly 9,000 acres, satisfying Nasa's cidelines for area requirements of habitation, and food production. [ref. 2,9]

Livability Requirements

The habitable surface of an asteroid serving as a microplanet creates an environnent which will appear quite Earth-like. The importance of Earth-like living conditions becomes evident through positive effects of privacy, mobility and the reduction of the closed environment feeling. Provisions for long lines of sight, views of a horizon and large overhead clearances - all possibie with this vessel style - offer enormous benefits to intellectual and emorional well being of crews on long duration missions. [ref. 6] Combining these provisions

FIGURE 2: CROSS SECTION THRU INTERSTELLAR VEHICLF.
with a variability factor in the environment will provide the stimulation necessary to suppress the symptoms of Solipsism. Solipsism is a state in which a person feeis that everything is a ctream and nothing is real. This state of mind often occurs in the Arctic winter when darkness lasts 24 hours a day. A person feels lonely and detached, eventually bucoming apathetic and indifferent. Variability will be enhanced by proper asteroid selection which will provide varied topography allowing for views of natural objects such as hills and valleys on the terraformed surface.

The ability to invoke randomized environnental patterns is crucial to the goal of allowing this vessel to simulate a microplanet. To achieve randomized patterns, a 'unpredictability factor' is included in the systems programing. The program then controls day/night illumination cycles, iemperature variations and even the creation of breezy conditions. Of the randomized systems discussed, the day/night rosle - serving as a zeitgeber is pertraps the most important. Zeitcjebers are physical, tenporal and social cues that help to establish rhythmicity in the sleep/ wake cycle. Social cues such as daily meais, work/rest scheduies and evening leisure time also reinforces the circadian rhythm, which enhances performance.

The Shell

The shell of our vessel bears a resemblance in appearance and function to the shell of an egg. Attached to the asteroid at only two points - where the manifold folds in on itself - the shell rotates with the asteroid for spin stabilization around the primary axis. As an extension of the asteroid's terraformed surface, the shell provides livable spaces throughout selected zones of the triple level structure. These three levels, having the potential of providing habitable space will serve as laboratory, communications and scientific research spaces, as well as distribution corridors for various environmental and recycling systems.

The involuted areas at each end of the shell provide specialized areas for propulsion systems on one end and space port facilities on the other. The inward folds of this shell which reach the surface of the asteroid will serve as main traffic and systems corridors between the surface and the shell. Elevator systems within the involutions and in the shell proper will provide access to habitable shell zones as well as the activities zones housed within the involutions.

The spaceport (see Fig. 3), will provide the crew with the ability to launch a variety of shuttles, space probes and experiment packages, as well as accept incoming personnel and cargo vessels. As the leading sodge of the vessel, a concentration of navigation and scientific decks will also be located here.

P:GURE 3: DETAIL OF SPACEPORT

Antimatter Propulsion \& Fower Systems

It is highly probible thet first generation interstellar vessels will use multiple energy sources to fulfill the needs of a vessel of such magniturse. Antimatter engines for propulsion will be required during the boost phase for between one to two
years of constant acceleration. During this boost phase and through the mission, power requirements for light, heat and life support systems will be large, given the vessels volume. The antimatter engines may not be the best source of erergy for daily power demands. Multiple fusion reactors distributed within the shell and below the surface of the asteroid may be a practical configuration.

The viability of antimatter as a propulsion source has been under investigation by many [ref.'s 5,14,15]. When a particle and its antiparticle collide at a sufficiently low energy level, annihilation results in a high conversion of their mass into kinetic energy of other particles, photons and neutrinos. To harness and control this energy only kinetic energy and photons may be utilized. Therefore a matter - antimatter annihilation propulsion system is a device which would use these to produce thrust.

Since stable, long lived particle-antiparticles should be considered for propulsion - only electron-positron and nucleon-antinucleon annihilation reactions have potential for space propulsion. The advantage of the latter pair is the larger amount of energy released by these collirions. For this discussion, we will therefore assume that an antiproton-proton or antiproton-neutron annihilation will be used for the propulsion system, stored perhaps as magnetically levitated diamagnetic balls of antihydrogen, or a levitated ball of hydrogen with molecules of antihydrogen embedded in the crystal lattice of the ball.[ref. 12]

In general, matter-antimatter engines utilize the mixing of antimatter(antihydrogen) and matter(hydrogen) together in an annihilation chamber to interact, annihilate and exhaust a high velocity energetic plasma. Figure 4 shows one such concept of a matter-antimatter engine design.

FIGURE 4: CONCEPT FOR ANTIMATTER ENGINE
(REF. 14)

THE CREM

We will assume that this interstellar vessel is cuniipesa with highly automated systems. Though not attaining the sophistication of a 'von Neuman probe'*[ref. 1], these systems will nonetheless be capable of self monitoring and autonomous repair. With this level of automation in power, life support, food production and other critical functions, smaller crew sizes become practical. One benefit of this automation is the time available for research and experimentation during the mission.

Crew Size

The social dynamics of small groups, staffing repuirements, and long term population growth must be considered before establishing initial crew size. Too small a group may create understaffing during a crisis situation. Social variety, necessary for individual fulfillment, is dependent ot the number of available social contacts. A crew of thirty or less may be incapable of providing this social variety. On the other hand too large of a group may create control problems for the leadership and may contribute to runaway birth rates.

For this discussion, our crew size will total one hundred people: forty men, forty women and 20 children. Because we will need a young healthy crew for the start of this mission, the adults will be between 21 and 26 years old. The children will range from five to ten years old. There are positive and negative aspects regarding the inclusion of children at the beginning of this mission. On the negative side, children reguire a great deal of time and attention, something that may ide scarce early in the mission. They must also be educated, requiring the dedication of crew members to this task.

On the positive side, these children represent the first of the next generation of adult crew members. This reduces the need for females to produce offspring almost inmediately after the mission begins. It could be argued that the stresses involved in nregnancy and childbirth would outweigh those associated with raising chilctren. The inclusion of children will also create a social structure closer to the mix of peoples on Earth. It has been speculated that this inclusion of the family structure early in this mission will provide social stability to the crew. [ref. 4]

* The von Nueman probe' is a self-reproducing universal constructor, capable of making any device. given the materials and construction programs.

THE SOCIAL ENVIROHMENT

'ine crew or an interstellar vessel embarking on a long duration mission will enter a nicrosociety which wiii nave its own rules, benefiis and hardships. Analogous to air-born seed pods of terrestrial plants, this social pod will take the elements of humariity into the yalaxy. The remoteness of an interstellar crew possess special problems for mission planners, particularly in the area of organizational and management structure.

Leadership

Almost all of the space efforts by the USA and the USSR have used military personnel to staff the missions. The use of a military organizational and management structure has proved successful in almost 100% of these missions, especially in those missions where crises has occurred. This military authority structure may not work however, for a crew marde up of non military personnel.

It is probable that on a multi-decade mission, the authority structure in place at the outset of the mission may have been completely abandoned for an alternate style later. The isolation, confinement and risk of long duration missions may proves to undermine autiority structures and increase demands on the leaders. In adition there is the issue of a malti-generational crew coming of age on an interstellar vessel. The challenge will be to instill a commitment to the mission.

The point is that whether a military based model or a community democracy model is used, each has advantages and disadvantages of its own. No one model will work the best for all situations. As mankind populates the Solar System, novel alternatives may evolve which may be better adaptable to interstellar travel.

The Life Cycle

Unlike most space efforts today, the drama of the life cycle will be a predominant part of the Centauri project. Birth, aging and death will be present as will the many anomalies associated with the zrocess. As the populat: on expands, crime will likely exist, perhaps even murder; requiring social systems to be in place to deal with events which could efiect the performance of the crew. The existence of marriage and the family unit also presuposes the existence of divorce. The practicality of divorcing a spouse in such a closed society is an unknown factor, but, it will certainly recuire contingency planning.

Unique ic this type of mission is the simple act of living out a life in space. The da; to day activities and demands of mental. pinysical and social msturation must be dealt wich in acalition to resporsibilities of a crew member on the mission. An aside to this life cycle is the uiprocedented fact. that humans will bes boln with lives totally disassociated from the planet Earth. For those crew members born as part of the first Centauri generation, the microplanet serfing as their starship may well be all they will know of iife.

Space travel, particularly long duration missions, involves the sacrifice of personal freedoms. For those individuals ion aborard the Centauri vessel another basic freedom will be lost, - free choice of a profession. Because the vessel and systems must be maintained, many positions must be manned for the entire length of the mission. Tinis means that replacements nust be trained for the original crew, requiring a portion of the descendants to be selected for a specific function. The process and timing of this selection may best be left to social norms developed withir the society.

TABLE 1: SUMmARY OF VESSEL PARAMETERS
suphary or design considerutions

LCNG LINES OF SIGH?
LARGE OVERHEAD CLEARANCE
VIEWS OF LARGE NATYRAL OBNECTS POETION OF MABITAT HIDDEN FROM VIEN WATER VISTASI SMALL LAKES Acoustics of chameen cesated ay sheld

> AvaILAEILITY OF PRIVACX

PLACEMENT OF MAMUFACEMIMG FAGIEITIES UNDERGROUND
UNPRFDICTABILITY FACTOR OF THE ENVIRONENT

TABLE 2:
SUMMARY OF DESIGN CONSIDEGATIONS

THE MISSION

Following the enclosure of the asteroid and the establishment of an atmosphere and a terrafoimed surface, a pre-flight shakedonn will likeiy be undertaken in our Solar System. Navigating the planets at low speeds for twelve months, the shakedown will allow hardware, software and crew to be checked before leaving the Solar System. Minor problems in any systems hartware could quickly be repaired and serve as hands on experience for the crew. This iwelve month period will also allow crew members to become acquainted with one another and discuss scciai norms and mission guidelines.

Boost and Coast Phase

Once vessel and crew have passed the shakedown portion of the mission, the antimatter engines will accelerate them to approximately thirty percent oif the speed of light. Once this veiocity is attained the engines will be shut down as the vessel enters the coas: picise of the mission, traveling at sidh-relativistic speeds for approximately three decades. After a decade of travel, one way comunication time will exceed a year, l. imiting comminication to the transfer of data on recent events or disccueries. As the vessel nears the Centauri system, one way message times will be roughly four years.

During this coast. phase, the crew will have the freedom to define sociai noms, estaiolish routines for govermment and ecucation of the children, and refin the physical aspects of their. environent. Is the coiony settles down to living normal lives on this nicrop!anet early planning can begin for the eventual need to expaius habitats as the population grows. In conjunction with the sociolayical ta'sks of the crew, an itinerary of specific research goals and programs will have been established by mission planners. It is arsumed however, that the crew will be allowed the flexibility ta develop schedules, pursue new lines of research, launct space probes and develop new mission goals and hardware as nerded.

The forced autonony of this vessel after leaving the Solar system makes freedom of schectule planning an absolute necessity. Cognitive zonflicts between Earth based planners and the vessel would quickly develop, should any group based in our Solar system attempt to dictate behavior patterns to an interstellar crew. Cognit tve conflicts are caused by differences in information and rules regarding situations having no single concrete solution. This will

This will be particularly true with interstellar travel where tre information and experiences of the people living or this micro planet will be vastly different from mission control back in near solar space. Indeus, it may be the case that the need for a 'mission control' as we now define it, will no longer exist. Other than serving as a rational voice from a distance, there is little else that we here in the Solar Eystem could do to influence or assist this crew once they are on their way.

Major activities of this phase of the mission will likely centex around long term research effcrts in astronomy, astrophysics, huran sociology, particle physics, and constant analysis and rofinement of the star vessel and systems. In addition to looking back at our Sun and planetary system, the research teams will also be looking ahead to probe the Centauri system to better define its structure and formalice a plan of action upon arrival. Much of tinis phase of the mission planning must be done by the crew itself, for they will have access to the best data as they close in on the system.

Decelexaition and Exploration Prase

As the interstellar vesse! nears the appropriate distance from the Centauri star system, corputers programmed by the crew will automatically begin to slow the vessel at a deceleration rate no greater than 1 S . Based on years of observations during the cruise phase of tine nissior, an exploration plan will have been developed to best utilize the peciliarities of this three star system.

Arriving at this starc system will be a crew in transiicion as the second generation prepares to takeover an increasing responsibility for the rission. The population of this microworld having at least doubled by arrival time, will be influencing socia? and leadership dynamics as wel' as the physical environment.

The exploration finase will affond a level of excitement for the crew after a long period of pulet research and social development. Travel within the centauri system will allow the vessel to utilize solar energy to power various on-board systems, and perhaps even disiribute natural light throughout the vessel rturing the daylight phase. Spaceport activity will likely increase as shuttles anc experimental cods are orbited around the indivicimal stars. If planetary bodies or asteroids are found, landers may well be deployed to explcre their surfaces and coilect samples.

The five to ten year stay within the Centauri system will allow the crew to draw on the natural resources there to replenish stocks of raw materials. The presence of solid bodies in the system would allow mining operations to provide elements facing exhaustion from the vessels asteroid or stores.

CONCLUSION

Given the proper assumptions, intexstellar flight apoears feasible. At least it is no less feasible than any of the thousands of explorational sorties undertaken by mankind over the centuries. What is unique and somewhat astounding is the level of complexity and the vastness of the distances.

While most of us want interstellar flight to be successful, we realize that even with quantum technological advances, travel to the stars will never be easy. Risks will abounc. within technology and within mar himself. Structural decay of the vessel, fire, epidemic diseases and collisions with uncharted members of interstellar space would put the mission at risk. [ref. 13] Equally threatening is the prospect of this isolated microsociety developing along a perverse social pati?.

The exploration efforts of these missions into areas previously uninhabited or visited by mankind is part of the continuing moral drama of discovery. Mankind places himself in a vulnerable position as he takes with him news of his own existence to places that are likely to be abiotic and insentient. lbdeniably, part of the risk of this moral drama is the chance of mankind losing its an'hropocentricity witr the discovery $\%$ other civilizations amongst the stars. Should intelligerit life be found - though it is inconceivable that it will be in the Centauri systern - assimilation of that information into our cuitures could have devastating effects on the status guo of institutions and the collective intelligence of mankind.

Refenences

1. Barrow, J.D. and Tipler, F J. The Rethopic Cosmological Principal, Oxford University Press (1988)
2. Billingham, J. and Gilbreath; W. editors, Spece Rescureont and spece Settlementes, NASA SP-428 (1979).
3. Boorstin, D.J. The Diocrearers, Vintage Books, N.Y., N.X. (1985).
4. Bloonfiald, M. "Sociology of An Interstellar Vehicle:", Journal of the Bxitist. Interplanstary Scciety, Vol 3y, pp. 116-120, (1986).
5. Bova, B. 'To Mars and Beyond"', Air \& Spece, Oct.. Nov. (1989).
6. Connors, M, M, Harrisori, A A, Akins, F.R., Livirg Alort: Humer Reguiremerita For Bxtended Spaceflight, NASA, Ames Research Center, (1y35).
7. Forwerd, R.L., "Feasit! $\mathrm{j} i \mathrm{ty}$ of Interstellar Travel: A Review", Journal of the Britist Interplanetary Society, vol. 39/9, pps. 379-384, (1986).
8. Heppenheimer, T.A. "The Nethematics of Manifolds", Nosaic, Vol. 19/2, pps. 32-43, (1988).
9. Martin, A.R., "Space Recources and the Limits To Growth", Joumal of the British Interplamtary Society. Vol. 38/ה, pps. 243-252, (1985).
10. Miller, D.R., A Study of folationshipe: Situations, Identity and Social Interacilion Psphology. in Suxiy of science, ivi 5, S. Koch Ed., MCSraw Hill Pook Co.: pps. 639-737 (1963).
11. O'Neill, G. The High Frontiex, Aichor Bonks, Garden City,

12. Pyty, S.J. "The Third Great Age Of Discovery", in That Scientific and Historica: Rstionales for Solar System Pxpionaticn, Space Policy Institute, George Washington University, (1988).
13. Smith, A.G. 'Failuces, Setbacks and Compensation In ImtexStellar Expansion", Journal of the British Intexplamenary Siciety, Val 38/5, pps. 265-269, (1985).
14. Mipetti, G., "Antimatter Propulsion for Space Explofation". Jorrian? of the Britisti Intenplanctary Society, Vris. $37, \%$, pexs 391-409, (1236).
15. Hagstaff, B., "A Spaceship Naned Orion", Air and Spaci", Oct /Nov., pes. 70-75 (1988).
16. A sferial thanks to David Ellins for ris assistance and comments with this stuxly.
