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CHARACTERIZATION OF BLOOD DRAWN RAPIDLY FOR USE 'l
IN BLOOD VOLUME EXPANSION STUDIES:

AN ANIMAL MODEL FOR SIMULATED WEIGHTLESSNESS
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JILL CLODFELTER, PHIII.IP M. HUTCHINS
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This study demonstrates that up to 8ml of blood can be drawn from donor rats without significantly increasing
volume anti stress sensitive hormones and thus, can be used for volume expansion studies. !nfusion of whole

blood allows more physiological changes than can be seen with volume expansion by saline or other .mic
solutions. I:urthermore, the infusioq of whole blood to induce hyf'xtrvolemia may provide an improved model

to study the fluid balance and control mechanisms operative in weightlessness. In this study, blood samples were
drawn as rapidly as possible from femoral artery catheters (microrenathane) chronically implanted in Spra.gue

Dawley rats and analyzed for hematocrit, plasma sodium, potas.sium, osmolalitv, corticosterone, epinepheriee,
nompinephrine and vasopmssin. The levels were found to be comgarable to those of normal rats. Future studies
ofsimulated weightlessness utilizing compatible and physiologically comparable whc;le blood will provide data

that can be u.md to develop protective measures for the det:ilitating effects of space flight

INTRODUCTION

Blood volume expansion studies have been conducted to examine fluid adaptation and cardiovascular

control mechanisms using numerous fluids including hyt'mrtonic, hypotonic and isotonic saline, water, dcxtran
solution, albumin and polyethylene glycol (references 1,2). Less frequently, investigators have used _,a.)le
blood, plasma or packed ted blood cell.", from compatible donors (references 3,4) Infusu m of whole blood

allows the composmon of the recipient's blood to remain relatively unaltered. Infusion of saline or other
solutions mzy cau._ intracompartmental fluid shifts that modify the normal physiological adaptive processe s

To prevont the introduction of aberrant hormones and ions that may alter or skew the adaptation processes,
the bit d infused must oe as close as possible ,n composition to that of the recipient. It is well kn(;wn that
surgery, handling, restraint, inlectiorLs and commonly used blood sampling techniques can cause fluctuattcms

and changes in the levels of plasma catecholamines and other stress and w_lume det-_'ndent horm_mes, such
as ACT1 T,rcnin, corticosterone and prolactin (references %8). i lowever, little work I,as been done to determine

at what point in time and/or at what quantity t_f blood drawn, the blood levels of the volume and stress sensitive
hormone.s change significantly.

In these sludies, blood samples were drawn as rapidly as possible from fem(,ral artery cannulated
unaneslhetizcd rats. The blood samples were analyzed fi)r hcmatocrit, plasma sodium, potassium, osmolality,

corticosterone, epinephrine, norepinephrine and vasopre,ssin. The data wcrc analyzed in regard to the volume
drawn to examine the effects (_fblood sampling on the revels of hormones and electrolytes listed above

METHOD

Male Sprague l)awley rats weighing between 3S0-400 grams were obtained from Charles Riw:r l.at)oratorics
(Raleigh, NC) All the rats were housed in single cages and maintained on a 12:12 hour light:dark cycle, with

the lighted phase beginning at 6 a.nl. They were used in the studies when they achieved a m/n/mum t-c)dy weight
of 51S grams, 0reviously determined to Ix: an optimum size for cannulation Standard rat chow and water were

available ad _ throughout the ex[x2riment. Room temperature and humidity were controlled as s[×'cified
by the National Institutes of I lealth Animal (;are (.;uide (reference 9).

"ltle rats were anesthetized using a 1:1 mixture of KI!'I'ASET (kelamme h),dr()chloride Avcco Co., Inc.) and

GIt_llNI (xylazine-The Butler (.'.o) for the cannulation procedure The cocktail was injected (() Iml/10Ogr)
;ntramuscularly (references 10, 11). Micr_)renathane (td 002S" o.d 0 0,'0()"- Braintree Scientific, Inc ) catheters

were in,_rted into the fcnn)ral artery m the right leg ()f 17 rats and from there k.'d subcutaneously under the skin

toemerge from the back of the neck Microrcnathanc has tmcn reported to reduce the probability ()fmtravascular
thrombosis (reference 12) The catheters were filk'd wilh hcparin t() maintain patcncy, heat sealed and c_nlvd

in a protective stainless steel button ou the animal's bat!.. Immediately after surgery, the ammals rccctvcd 0 1ml/
100gr infection _f I)I/I'RIM (.trimethoprim sulfadiazmL Syntex Animal 1R ahh) subcutanc_)usly, as a pr_phylacttc
agent against infection (reference 13) The rats were allowed to reower from the surgery for _me "xeck l')uril'ag
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this week, they were conditioned to the manipulation of their catheters by daily handling, in the morning This ._
has t'een reported to prevent the stress-induced release of corticosterone (reference 14) Non-specific stressful

stimuli (i.e., sudden or loud noises, exces.sive movement, unnecessary handling) were kept to a minimum during 1
the experiment.

At _e end of the rec<),erf period, blexxl samples (.3ml samples, n=4; 6ml samples, n=7 or 8ml samples, n=6)

were drawn as quickly as possible from conscious animals. Tile blood samples were obtained between 9 a.m.
and 2 pal. to avoid the effects of circadian variations (reference 15). Prior to obtainin_ the sample fo,' ;he assays,

the heparin solution filling the dead space of the cannula (about 0.25ml) was removed Approximately one-
third of each of the blood samples was mixed with the anticoagulant EGTA (Ethylene glycol-his tetraacetic acid)

for the catecholamine assay specimen. Approximately 150ul was used to fill three heparinized microhematocrit
tubes and the remaining portion of whole blood was mixed with lithium heparin for the other as.says. The blood

was centrifuged immediately (I500 rpm) at 4°C. The EGTA and heparinized plasma specimens were removed

front the red blood cells and frozen in separate microcentrifuge tubes at -20°C until assayed

The hematocrit was assayed using a previously described microhemamcrit procedure (reference 15) The
plasma o.smolali,y was determined using vapor pressure osmometry (reference 16). The plasma electrolytes

(sodium and potassium) were assayed by flame photometry (reference 17). The catecholamines (epinephrine
and norepinephrine ,,,ere analyzed using a radioenzymatic as.say method (reference 181. The other hormones,

corticosterone and arginine vasopressin, were determined using a radiomm_unoassay method
(references 19,20).

Statistics

The data was analyzed in two different ways. Analysis of tht .atistical difference between the 3ml, 6ml and

8ml samples was I:x;rformed by one-way analysis of variance. The Mann Whitney Confidence Inte_al and Test
was used to compare each of the blood parameters a)_t tl_e blood sampling time for the 3ml blood sample to

the 6ml and the 8n-I blood samples individually, since the 3ml sample was the best control for these experiments

Differences were considered significant wht q p < 0.05 (reference 211

RESULTS

One way analysis of variance was used to determine the statisucally sigruf)canl difference l×:twccn each of

the blood parameters for the volumes of blood obtained The ': test was calculated at a 9_,% confidence ,ntcrval
for the mean differences ateach volume collected (3ml, 6ml 8ml) R)r each <)fthc bk> M assays d_emal()crit, plasma

s_>dium, potassium, epin('phrine, norepinephrine, osm()lality, cor'_c<)sterone an,! vas(_ptcssm) and the time
required ;.o obtain the volume. "111eobserved I" for each of the blood parameters was less than th(' critical F
(19.4) determined from the F table [hemat()cril: 1:(2,16) = 0.13; osmolality: F(2,101 : O29; s()dJum F(2, 15)= 5 26;

potassiu m: 1:(2,151= 12.51 ; corticosterr,qe: 1"(2,16) = 0.68; epinephrine: F(2, 1())= 1.3v; n( )rcplr/ephrine F(2, 16)=

1._,4; vasopressin: F(2,16) = 0.071 including time: 1:(2,161= 2.89[ "lt_ere((_re., there is n() signit]_.: nt d:ffert'nce

between the groups (i.e., blood volumes drawn).

"llm Mann Whitney Conf, dence Interval and Test was also c()mpt_tcd f()r the mean <hHt u'nces m the t)l()<)d
parameters listed above. In '.his analysis, the 3ml blood samples were c()mpared versus first the (_rnl bl<)<)d

samples and then versus the ,qml blood samples. The time required to draw the w)lumes rang('d fr<)m 17 2 (3ml
sample) to 106 seconds (8ml sample) "Itle time [equired to draw sufficient blood fr()m the d()nor an(reals does

increase as a functi<m of irate, as anticipated l l<_wever, there was <rely a sLgmficant difference m the hme

required t() draw the 8ml sample as compared to the 3ml sample, not the (;rr_lsample lntcrvslmgly, thvre wa_,
a significant difference in the s<)diurn and potassit,m levels for the 3ml bl_)_)d samples verstls b,_th 'he 6rnl and

the 8ml samples (Table 1).

461

L

- . ,,, |_ = , , , i m ............

'- "'"' 1991012826-461



TABLE 1. Blood Volumes Drawn in Respect to Time, Plasma Electrolytes
(Sodium & Potassium), Osmolality and Hematocrit Levels.

t

',lr, h =m_ Iml_ "_ _ J_ Dc, fc, rc,nrn, V"*h t,'.e

(n=4) (n-7) (n-6)

Time 28.8 _+7.26 4,c,." .1 +_7.54 61.3 __+10.2 .........

(sec.)

Sodium 136.5 + 1.00" 141.9 ± 1.33* 142.7 + 0.9* 138-146 (x =143)
(mEq/L)

Potassium 3.9 ± 0.29" 5.01 _+0.165" 4.39 + 0.11" 4.0-9.2 (_ = 6.6)
(mEq/L)

Osmolality 281.9 + 7,5 277.4 + 3.37 278.2 _+2.19 294 _+1,4
(mosm/kg)

Hematocrit 41.9 ± 3.83 42.57 +_3.17 41.8 ± 0.93 49 ± 4
(%)

Value-* are t S E M

Statistical analysis performed using the Mann Whl_ey U Test.
.n=3

• S,gmficantdifferencecotm_:_eredversus3mlb4oodsample,p<005

The values were comparable with the range of the reference values reported for normal rats (reference 22) The
values for hematocrit, plasma osmolality, epinephrine, norepinephrine, corticosterone and vasopre,_sin
measured in the 3ml samples were not significantly different from the 6ml or 8ml samples (,_e Figures 1,2 and
3).

Corticosterone

40o

[ FIGURE 1. Plasma levels of corti-
!

costerone in 3ml, 6ml, and 8ml

300 t--"-'-'-'--"-" _ sample volumes. Samples wereremoved from cannulated animals
as quickly as possible (< 2 minutes)
and analyzed for corticosteroP.e

using a radioimmunoassay. There2O0
was no significant difference be-
tween the three groups.

too

o ;----; 5 6 , 8 ,
Volume
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Vasopresslr, FIGURE2. Plasmalevelsof vaso- "t
pressinin31hi,6ml,and8ml sample "1

s] volumes.Sampleswere removed
fromcannulatedanimalsasquickly
as possib=_(< 2 minutes)and ana-
lyzedfor vasopressinusinga radi-J

41 oimmunoassay.Therewas no sig-
/ nificantdifferencebetweenthethree

groups.
3
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FIGURE 3. Plasma level., of cat-
7oo _ echolamimes(epinephrine& norep-

soo _,,,,,,, inephrine) in 3ml, 6ml, and 8ml

samplesvolumes. Sampleswere
500' removedfrom cannulatedanimals

- asquicklyas andpossible analyzed
forthecatecholaminesusinga radio-4._'

enzymaticassay.Therewasnosig-
,._oo• nificantdifferencebetweenthethree

•----e'-- Norepne,nl"rlne groups.

200 1 --w-. Epinephrine

100

0

Volume

Furthermore,thevalues for cortico_i.crone,epinephrine and norepinephrine appear to be withinthe limiLSgiven
in oi'her investigations (references 7,8).

463

.._a, - _..........

..............I II I II I - I i II III .....

199101285;6--46-3



D_ON

As expected, the time required to draw blood from donor animals did increase as a function of volume.

Surprisingly, there was a significant difference (p < 0.05) in the sodium and potassium levels for the 3ml blood
samples versus the 6ml and 8ml samples. However, these values were comparable to the reference values
observed in blood samples obtailied from control animals in other studies (reference 22). The mean hematocrit,

osmolality, corticosterone, epinephrine, norepinephrine and va.sopressin levels for the 3m], 6ml and 8ml samples
were not significantly different from each other. Moreover, the mean values for the volume and stress sensitive

hormones appear to be comparable to tee reference levels reported in other studies (references 7,8).

Investigators have studied the numerous and complex adrenocortical and adrenomedullary responses to
hemorrhage and transfusion, but, little has been done regarding the plasma electrolyte responses (reference 23).

It has been postulated that the electrolyte responses during weightlessness are the result of endocrine changes
acting on the kidney to restore "normal" cardiopulmor_ry volume. The electrolyte response and the endocrine
interrelationships need to be clarified.

Plasma catecholamines are a sensitive indicator of sympatho-adrenal medullary activity. The source of the
epinephrine has been demonstrated to be predominately from the adrenal medulla (reference 8). The source

of the norepinephrine has been demonstrated to be l_dmarily from the sympathetic nerves (reference 8). A
recognized component of the immediate physiological response to stress is the release of catecholamines into

the blood. Conventional animal manipulations are well known stressors that elicit changes which release
catecholamines. The opening of the cage, transfer of animals into another room and short term handling has
been reported (reference 24) to cause epinephrine and norepinephrine levels to increase as much as eight fold.
In the current studies, withdrawing blood from the femo_! artery catheter elicited an increase in the

catecholamine levels that correspond with the animal manipulations reported in other studies. Although the
values tend to increase concomitant with the volume of blood drawn from the animal, the values for the 3ml

_amples are not significantly different from the values for the 6ml or 8mi samples.

Corticosterone is secreted by the adrenal cortices of rats and controlled by a complex negative feedbacl-
system involving the central nervous system, hypothalamus, pituitary and adrenals (reference 23). Increased

plasma corticosterone levels can be induced by the same stress inducing manipulations that increase plasma
ca:echolamine levels (references 7,8). Coracosterone is also a volume sensitive hormone. Studies by Garm in
dogs (ref. 23) h_.ve demonstrated that plasma cortisol levels a.'e the function of a semi-logarithmic relationship
with ACrH and an exponential relationship with the magmtude and rate of the hemorrhage. Other studies have
shown that up to 10 minutes is required to allow stimulation of the aforementioned feedback mechanisms to

significantly alter the blood levels of corticosterone (reference 25). In the current study, the values for

corticosterone in the 3ml samples was not significantly different from the levels in the 6ml or 8ml samples. These
samples were drawn in less than 2minutes, which was not adequate time to stimulate the mechanisms that would
significantly influence the corticosterone blood levels.

Arginine vasopmssin (AVP) is a hypothalamic hormone, synthesized primarily by hypothalmic neurosecre-
tory neurons whose axons terminate in the pars nervosa of the posterior lobe of the pituitary gland. Vasopressin
secretion is controlled by osmotic and nonosmotic factors (reference 26). Vasopressin release is stimulated by
a fall in blood pressure, an increase in plasma osmolality or a decrease in plasma volume (reference 27). Them

is an exponential nature to AVP release in response to hypovolemia, much like the corticosterone respot_se
(reference 28). The threshold for stimulation of vasopressin relea_ in hypovolenaia is generally to be between

10 and 20% of the blood volume (reference 27). Ginsberg and Brown (ref. 29) studied changes in vasopressin
activity after slow and rapid hemorrhages in anesthesized animals and found greater increases in the antidiuretic
activity in blood samples drawn more slowly. In the current study, there were no significant dilfercnces in the

vasopressin levels of the 3ml, 6ml and 8ml samples, which represents hemorrhages of 7.9%, 15.8% and 21%
respectively. It can be speculated that in the current study, the degree of hemorrhage or the time for collection
was not sufficient to elicit an increase in plasma vasopressin.

This study and the values reported in other studies seem to indicate that "donor" rats' blood values reflect
levels that are seen under standard experimental conditions. Therefore, a maximumof8mlofblood fromdonor

rats can be used for infosion into recipient rats to study the physiological adaptation mechanisms of volume
expansion with whole blood.

In space flights, a re&_stribution of body fluid toward the head and chest as a result of a decrease in hydrostatic
i,m,c,sure in the vasculature of the lower limbs (relerence 30) has been ob¢erved. As blood from ,he lower
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extremities shifts to the cardiopulmonary space dt.e to loss of gravity, there is an e:_gorgement of t,he central
circulation where the mechanoreceptors involved in plasma relume regulation are located (reference 30). In
essence, the body perceives a volume expansion. The short term cardiovascular response mechanisms include
an increased venol_ return, cardiac output, arterial pressure and individual organ b!ood flow (reference 31.32).
• ,c- resultam ovcrperfusion of individual organs, may bring about long-term autoregulatory changes in arteriolar
and venular diameter, number and length (reference 33). "me long-term regulatory mechanisms al_o involve
the volume regulating hormones (renin, vasopressin, aldosterone and atr£al natriuredc factor). The short-term
effects involve the autonomic nervous system and the plasma electrolytes, such as, sodium, potassium and
_Aaloiide. Alterations are also seen in urine and/or blood levels of kinins: corticosterone and catecholamines
(reference 34).

Numerous st,idles of the effects of microgravity or the weightlessness of space flight have demonstrated that
the body's homeostatic mechanisms adapt reasonably soon (days) after exposure to it. Although readaptation
also occurs upon return to normal gravity, the process is sit, / (weeks) and cardiovascular deconditioning (i.e.
tachycardia, impaired locomotion, reduced exercise to|eranc _.and c _b.ost_tic intolerance) has caused problems
for astronauts returning from space ( reference 32).

These same changes have been seen in simulations of wei;htlessness (i.e., bedrest, head-down tilt or
immersion) (reference 35). In human and animal studies alike, consistent simulation conditicns are difficult to
maintain for long periods. Thus, the current dam is incomplete, inconsistent and conflicting. Furthermore, the
findings during space flight are often difficult tc imerpret because of the lack of data from the start of launch,
reduced possibility to obtain blood samples every day and the lack of simultaneous collection 9f hemodynamic,
hormonal and electrolyte data. It is also diffioalt to compare the fluid shift data between missions because of
the difference between the duration of the flights, nature of the missions and the exercise regime, eating habits
and genetics of the individual astronauts (and cosmonaut). Therefore, improved human and animal models
need to be developed for simulated weighdessne:,s to better standardize and control the experimental conditions
so that the cardiovascular and hormonal adaptations can be fully characterized.

We propose that rats infused with 20-25% excess blood from donor rats will mimic the increased
cardiopulmonary volume seen in weightlessness and thus constitute a model for the study of fluid shifts and
cardiovasc, alar changes. We speculate that ).he hypervolemic/volume expansion model will not have the
previously d_cribed defiaencies. Use of an animal model will allow blood collection and cardiovascular
monitoring that isnot feasible on human subjects. Direct comparisons can be made between these animal studies
and those conducted during space flight. Furthermore, these ground support studies will provic'e valuable data
to help differentiate and distinguish the fluid balance and control adaptation mechanisms from the bone and
muscle changes observed in other animal models of weightlessness and during space flight.

In future studies, we will infuse compatible and physiologically comparable donor blood, as described and
characterized above, into recipient rats, to simulate the fluid shifts of weightlessness. These experiments will
describe the fluid balance factors (cardiovas_-ular, rettal and hormonal) operative in simulated weighdessness.

i

In this manner, we will obtain a complete picture of the fluid shifts during simulated weightlessness and the
attendant compensatory adjustments. These experiments may also provide data that can be used to develop
)rotective measures for the debilitating effects of space flight and determine whether weightlessness will
accelerate or ameliorate some cardiovascular diseases.
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