
N91-223Jii

Querying Databases of Trajectories of Differential Equations II"
Index Functions

Robert Grossman*

University of Illinois at Chicago

June, 1990

Abstract Suppose that a large number of parameterized trajectories 7 of a dynamical system evolving in R N are
stored in a database. Let t/C R N denote a parameterized path in Euclidean space, and let II' II denote a norm on
the space of paths. In this paper, we define data structures and indices for trajectories and give algorithms to answer
queries of the following forms:

Query 1. Given a path 7/, determine whether t/occurs as a subtrajectory of any trajectory 7 from the database. If
so, return the trajectory; otherwise, return null.

Query 2. Given a path 77,return the trajectory 7 from the database which minimizes the norm

1 Queries about trajectories

Suppose that a large number of parameterized trajectories 7 of a dynamical system evolving in R N are

stored in a database. Let r/C R N denote a parameterized path in Euclidean space, and let I1' tl denote a

norm on the space of paths to be specified later. In this paper, we define a data structure and indices to

represent trajectories of dynamical systems and sketch algorithms to answer queries of the following forms:

Query 1. Given a path r/, determine whether r/occurs as a subtrajectory of any trajectory 7 from the

database. If so, return the trajectory; otherwise, return null.

Query 2. Given a path r/, return the trajectory 7 from the database which minimizes the norm

117- 711.

The paper is a successor to [2], which describes the data structure to store trajectories which is used here.

Efficient algorithms to answer these type of queries should prove useful for a number of applications.

As an example, consider the path-planning problem for a robotic arm. Suppose that a large number of

feasible trajectories of the robotic arm have been stored in a database. Let r/ be the desired path of the

arm. It is not necessary that r/itself be a feasible trajectory. Query 2 would return the feasible trajectory

7 of the arm which is closest to the desired path 7.

As another example, consider a database containing control trajectories for an aircraft. Assume that

those trajectories which enter into an unstable control regime somewhere along their flight path are tagged.

*This research is supported in part by grant NAG2-513 from NASA and by grant DMS-8904740 from the National
Science Foundation and by the Laboratory for Advanced Computing. Address: Department of Mathematics, Statistics,
and Computer Science, Mail Code 249, University of Ilhnois at Chicago, Box 4348, Chicago, IL 60680, (312) 413-2164,
grossman @uicber t.eecs.uic.ed u.

https://ntrs.nasa.gov/search.jsp?R=19910012998 2020-03-19T17:53:20+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42818535?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Let q denote a measured portion of the flight path. Then Query 1 would return the nearest full control

trajectory in the database, which includes information about the stability of the trajectory. More generally,

one could imagine retrieving from the database those stable trajectories which avoid a given obstacle, such

as a turbulent region of space. In other words, the query could be used as part of a supervisory control

system and be viewed as a means of extracting qualitative or summary information about the control
system.

The data structure we use to represent trajectories is closely related to hashing methods for curves that

have been used in computer vision; see [7] and [8]. A related means of extracting qualitative information

from dynamical systems is described in [1]. We are concerned in this paper with data structures and

indexing for object oriented databases consisting of trajectories. For general methods of indexing in object

oriented databases see [3], [4], [5], and [6].

In Section 2 we review the relevant facts about trajectories of differential equations and define different

data structures to store trajectories. In Section 3, we show how these data structures can be used to answer

the queries above. Section 4 contains some concluding remarks.

2 Paths, trees and vector fields

In this section, we describe a data structure for paths following [2]. The point of view is to assume that

the path arises from a trajectory of a differential equation and to base the data structure upon the initial

value problem for the differential equation.

We begin by recalling some basic facts and definitions about trajectories of differential equations. Let
Dt_ = O/Ox u. A vector field

N

E = Z aUDu
_=1

on R N is determined by specifying N functions

a u : RN ---_ R.

We also denote the vector field by E_. A parameterized path

7 : [to ,tl] C R _ R N

is called a trajectory of the dynamical system

k(t) = Ea(x(t)) (1)

in case it is the unique solution of the initial value problem

= °) = 7(t°). (2)

We define the vectorfield/reference point representation or VEFREP of a path r/to be the pair (E, R),

consisting of a vector field E and a reference or initial point R, where the trajectory is the solution of the
initial value problem

x(t) = ,(t °) = n.

Note that this representation is not unique. Indeed, several different vector fields could have a given spatial

curve as a trajectory, while any point along the spatial curve could serve as the initial value.

We now give an algorithm whose input is a parameterized path

r/: [t °, t 1] C R ---* R N ,

36



and whose output is a labeled, rooted binary tree. We assume for convenience that to -- 0 and t 1 = 1;

if not, we can reparameterize. We do not assume that r/is a trajectory of the dynamical system (1). To

define the tree, we first fix a tolerance e > 0. The tree we define is a subset of the complete rooted binary

tree. There are 2k children at height k from the root: number them left to right from 1 to 2k. We assign

two labels to the jth node v from the left at height k:

tc(v) = (1/2k) (rl(_)-- rl(_kl)) E R N

and

We use the following stopping criterion to grow the tree. If a node has children v and v' with labels _ and

_', respectively, and if I1_ - _'11 -< e, then the nodes v and v' are leaves. Here I[' II denotes the Euclidean

norm. We denote by T(r/) the tree that arises in this fashion. This tree has a simple interpretation: the

0 labels represent points on the path q, while the x labels represent approximate tangent vectors at those

points. The tree is grown until the difference between two adjacent tangent vectors is uniformly small.

Using the tree T(r/), we now define a vector field E(rl). The vector field E(r/) is simply the vector field

which interpolates the labels (O(v), Tl(v))

E(_l)(O(v)) = _(v), (3)

andfor all leaves v in T(r/). Recall that O(v) is the point on the curve rI corresponding to the node v,

is the approximate tangent to the curve at that point.

For some applications, it is better to impose an upper bound on the degree of the interpolating functions.

Let q denote this bound. In this case, we can define the vector field E(r/) by requiring that the coefficients

b_ minimize the quantity

y_ IIE(q)(O(v)) _ tc(v)l[, (4)

leaves v

where the minimum is over vector fields with interpolating functions of degree less than or equal to q.

We conclude this section by defining a specific point R(r/), associated with a parametrized path

r/: [to ,t 1] C R _ R N.

Let T(r/) the corresponding tree and E(r/) the associated vector field. Consider the trajectory defined by

the initial value problem

_(t) = Eo(x(t)), z(0) = 0(t°).

Let 7 denote this trajectory. In general, 7 is only an approximation to the path r/. Define R(r/) E R N as

follows: if the path 7 and the unit sphere in R N intersect precisely once, let R(rl) denote this intersection; if

they intersect several times, let R(_/) denote the intersection which occurs first when the list of intersections

is ordered in lexigraphical order; otherwise, let R(r/) denote the closest point between the unit sphere and

the trajectory 7.

3 Query Algorithms

Let r/ C R N denote a path. In this section, we define an index I(r/) that can be used for storing and

accessing the path r/. First, fix injective functions

h, : It" {1,2,...},

37



for each n =- l, 2,... Given a path r/, first compute its VEFREP (E(q), R(r})) from its rectifying tree T(T/).

Assume the tree T(r}) has K leaves. Next, view the coefficients of the vector field E(q) as a K • N vector,

so that the pair (E(q), R(TI) ) has (g + 1)g components. Then the hash index Y(_) associated with r/is
defined by

H(q) = h(K+I)N(E(rl) , R(rl) ).

We can now assign indices I(r/) to trajectories sequentially: use the hash index HQI) to determine

whether the path r/has an index assigned to it. If so, use that index; if not, use the next available index.

Suppose that 71,-.-, 7P are trajectories of the dynamical system

x(t) =

as a ranges over some parameter space. To each such trajectory 7, let

(E(7),

denote its VEFREP representation. Given a parameterized path r/, Algorithm 1 below returns the trajec-

tory 7 from the database which contains a segment equal to the path 71. If there is no such trajectory, null
is returned.

Algorithm 1. The input is a parameterized path q, and the output is the trajectory 7 from the database

answering Query 1. Fix e > 0 and q > 1.

Step 1. This step is a precomputation. For each trajectory 7i, i = 1,...,P, compute its VEFREP

representation (E(7i) , R(7i)). This depends upon q and e.

Step 2. Given a query path q, compute its rectifying tree T(r/). This depends upon e. Using T(r/) and

Equation 4, compute its VEFREP representation (E(r}), R(q)). This depends upon q.

Step 3. Using the VEFREP (E(r/), R(r/)), compute the hash index H(r/). If there is an index in the row

H(q) of the index table, retrieve the VEFREP representation (E,R) corresponding to this index;

otherwise, return null.

Step 4. If Step 3 yielded a VEFREP (E,R), return the trajectory 7 which is the solution to the initial
value problem

x(t) = E(x(t)), x(O) = R;

otherwise, return null.

Theorem 3.1 Assume that the database contains n trajectories. Algorithm 1 answers Query 1 in time
0(1).

Easy modifications of Algorithm 1 can be used to answer Query 2 in time O(n).

4 Conclusion

In this paper, we have described preliminary work concerned with queries of databases containing trajec-

tories of differential equations. Trajectories of differential equations have many different representations.

For the types of queries considered here, we have chosen to represent parameterized trajectories

7 : [s0, 51] C R ------*R N

38



by a pair, consisting of a vector field E on R N with polynomial coefficients and a point R C R N such that

the trajectory is the solution of the initial value problem:

i(t) = E(x(t)), x(t °) =

We call this a VEFREP representation. Using the VEFREP representation, we have introduced an index

I(7) and algorithms to answer queries which retrieve subtrajectories and close by trajectories of a given

query trajectory.

References

Ill H. Abelson and G. J. Sussman, Dynamicists' Workbench I: "Automatic Preparation of Numerical

Experiments," R. Grossman (editor), Symbolic Computation: Applications to Scientific Computing,

SIAM, 1989.

[2] R. Grossman, "Querying Databases of Trajectories of Differential Equations h Data Structures for

Trajectories," to appear in Proceedings of the 23rd Hawaii International Conference on Systems Sci-

ences, IEEE, 1990.

[3] W. Kim, J. Banerjee, H. T. Chou, J. F. G. Garze, and D. Woelk, "Composite Object Support in an

Object Oriented Database System," Proceedings of OOPSLA 1987.

[4] W. Kim, K-C Kim, and A. Dale, "Indexing Techniques for Object-Oriented Databases," in Object-

Oriented Concepts, Databases, and Applications, W. Kim and F. H. Lochovsky, editors, ACM, New

York, 1989.

[5] D. Mater and J. Stein, "Indexing in an Object-Oriented DBMS," Proceedings of the 1986 International

Workshop on Object-Oriented Database Systems, Pacific Grove, California, 1986.

[6] N. Paton and P. M. D. Gray, "Identification of Database Objects by Key," in Advances in Object-

Oriented Database Systems, K. R. Dittriek, editor, Springer-Verlag, Berlin, 1988, pp. 280-285.

[7] J. T. Schwartz and M. Sharir, "Identification of Partially Obscured Objects in Two Dimensions by

Matching of Noisy Characteristic Curves," International J. Robotics Research, 6 (1987), 29-44.

[8] H. Wolfson, "On Curve Matching," Proceedings of Workshop on Computer Vision, Miami Beach,

IEEE, 1987, 307-310.

39


