
NASA Contractor Report 187114

/// -.CJ0

Study of Orifice Fabrication
Technologies for the
Liquid Droplet Radiator

David B. Wallace, Donald J. Hayes,
and J. Michael Bush

MicroFab Technologies, Inc.
Piano, Texas

May 1991

Prepared for
Lewis Research Center
Under Contract NAS3-25275

National Aeronautics and

Space Administration

(NASA-CR-IB7]!G) STUDY OF ORIFICE

FABRICATIQN TECHNOLOGIES FOR THE LIQUID

DROPLET RADIATOR Final Report (Microfab

Technologies) 55 p CSCL 20D

G3/20

N91-22372

Unclas

0011697

https://ntrs.nasa.gov/search.jsp?R=19910013059 2020-03-19T17:50:14+00:00Z



Report Documentation Page
Nahonal Al_rOmJ_lhCS ano

Space Admmlstrahon

1. Report No. 2, Government Accession No. 3. Recipient's Catalog No.

NASA CR-187114

4, Title and Subtitle

Study of Orifice Fabrication
Liquid Droplet Radiator

Technologies for the

7. Author(s)

David B. Wallace
Donald J. Hayes
J. Michael Bush

9. Performing Organization Name and Address
11.

MicroFab Technologies, Inc.
1104 Summit Avenue, Suite II0

Piano, Texas 75074 13.

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135

5. Report Date

May 1991

I 6. Performing Organization Code

8. Performing Organization Report No,

10, Work Unit NO.

506-41-51

Contr"ct or Grant No,

NAS3-25275

Type of Report and Period Covered

Contractor Report Final

14. Sponsoring Agency Code

15. Supplementa_ Notes

Project Manager, K. Alan White,
NASA Lewis Research Center

Power Technology Division,

16. Abstract

Eleven orifice fabrication technologies potentially applicable for a liquid droplet radiator are discussed. The
evaluation is focused on technologies capable of yielding 25-150p.m diameter orifices with trajectory
accuracies below 5 milliradians, ultimately in arrays of up to 4000 orifices. An initial analytical screening
considering factors such as trajectory accuracy, manufacturability, and hydrodynamics of orifice flow is
presented. Based on this screening, four technologies were selected for experimental evaluation. A jet
straightness system used to test 50oorifice arrays made by electro-discharge machining (EDM), Fotoceram,
and mechanical drilling is discussed. Measurements on orifice diameter control and jet trajectory accuracy
are presented and discussed. Trajectory standard deviations are in the 4.6-10.0 milliradian range.
Electroforming and EDM appear to have the greatest potential for Liquid Droplet Radiator applications.
Finally, the direction of a future development effort is discussed.

' 17. Key Words (Suggest_ by Author(s))

Orifice Fabrication;

Radiator; Radiator
Liquid Droplet

18. Distribution Statement

Unclassified - Unlimited

Subject Categories 20, 31

19. Security Classif, (of this report) 20. Security Class#. (of this page) 21. No of pages

Unclassified Unclassified 55

NASA FORM 1626 OCT 86 "For sale by the National Technical Information Service, Springfield, Virginia 22161

22, Price"

A04



Table of Contents

Table of Contents ...................................................... iii

1.0 Summary ....................................................... 1

2.0 Introduction ...................................................... 1

3.0 Phase I: Analytical Evaluation of Jet Straightness Effects, Pressure Drop Considera-
tions, Fabrication Methods Survey, and Vendor Survey ...................... 3
3.1 Analytical Evaluation of Jet Straightness Effects ....................... 3

3.1.1 Structurally Induced Straightness Effects ....................... 3
3.1.2 Hydrodynamically Dependent Straightness Effects ................ 7

3.2 Pressure Drop Considerations ................................... 10
3.3 Fabrication Methods Evaluation .................................. 10

3.3.1 Electroform - Plating ................... . ................. 10
3.3.2 Chemical Milling ........................................ 12
3.3.3 Laser Drilling ............................. .............. 13
3.3.4 Electro-Discharge Machining ............................... 14
3.3.5 Mechanical Punching (or Broaching) ......................... 16
3.3.6 Mechanical Drilling ...................................... 17
3.3.7 Soluble Core Glass Fibers ................................. 18
3.3.8 Microchannel Plates ..................................... 19
3.3.9 Electron Beam Machining ................................. 20
3.3.10 Ion Milling ............................................ 21
3.3.11 Fotoceram ............................................ 23

3.4 Ranking of Fabrication Methods ................................. 24
3.5 Vendor Evaluation ........................................... 24
3.6 Recommendations ........................................... 25

4.0 Phase I1:Orifice Plate Design; Test System Design and Fabrication; and Orifice Plate
Experimental Evaluation ............................................ 27
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

Orifice Plate Design .......................................... 27
Orifice Plate Vendor Quotations and Orders ......................... 28
Drop Generator Design ........................................ 28
Orifice Plate Assembly Process .................................. 28
Jet Straightness Test System ................................... 29
Stork-Veto (Electroform) Orifice Plates ............................ 31
Buckbee Mears (Electroform) Orifice Plates ......................... 33
Coming (Fotoceram) Orifice .................................... 38
Creare (EDM) orifice Plates .................................... 41
Lee (Etched Sandwich) Orifice Plates ............................. 43
Galileo (Multichannel) Orifice Plates .............................. 45
NASA (Mechanically Drilled) Orifice Plates .......................... 45
Summary of Orifice Plate Testing Result ........................... 47

5.0 Discussion and Conclusions ......................................... 49

6.0 Recommendations ................................................ 49

7.0 References ..................................................... 50

Appendix I: Vendor List ................................................ 51

iii

PRECEDING PAGE BLANK NOT FILMED



1.0 Summary
Eleven (11) fabrication methods were identified, de-
scribed, and evaluated for their suitability to fabricate
the large scale (105-106 holes per system) orifice arrays
required for an operational Liquid Droplet Radiator
(LDR). The methods were ranked based on past exper-
ience with jet straightness, projected experience,
manufacturability, pressure drop, hydrodynamic charac-
teristics, and diameter control. When various finishing
processes were factored into the evaluation, the resul-
ting rankings were as follows:

I. Electroform
2. Soluble Core Glass Fibers
3. Fotoceram
4. Microchannel Plates
5. Punching

Chemical Milling
7. Mechanical Drilling and Finishing
8. Laser Drilling and Finishing

Mechanical Drilling
10. Laser Drilling

EDM and Finishing
12. EDM
13. E-Beam Drilling

Based on the results of the evaluation, four (4) methods
(and five vendors) were selected for experimental
evaluation. An orifice plate was designed and parts
were purchased from the five vendors. During the
evaluation of these orifice plates, two more vendors and
fabrication methods were added to the experimental
study, bringing the totals to six (6) methods and seven
(7) vendors.

A drop generator and jet straightness test system were
designed and fabricated. All seven orifice plate types
were evaluated for orifice diameter control and jet
straightness performance. Twenty-one (21) orifice
plates were measured for orifice diameter control,
nineteen (19) were qualitatively evaluated for jet
straightness performance, and eleven (11) were quan-
titatively evaluated for jet straightness performance.
Best overall results were obtained with the Stork-Veco
electroform orifice plates. The Creare EDM and NASA
mechanically drilled results were almost as good as the
Stork-Veco results. Recommendations are made for

further development efforts and specific Phase Iii tasks
are described.

2.0 Introduction

Before the Liquid Droplet Radiator (LDR) can be
demonstrated, a successful method of orifice array
fabrication must be developed. Liquid Droplet Radiators
are expected to have a very large number of individual
streams in their final configuration. Straightness of the
streams is very critical and even a few misdirected jets
can result in serious fluid loss. The straightness re-
quired will not allow any jet to be 5mrad or more out of
straightness. Even though jet straightness is the most
difficult specification, the arrays must meet other
requirements. To date, almost all of the LDR work has
been focused on the heat transfer performance of
LDR's. The objective of this study is to evaluate existing
orifice fabrication methods, and to recommend the
method or methods most suitable for production of LDR
orifice plates.

In order for a fabrication technology to be acceptable,
it must satisfy a number of requirements. These re-
quirements can be broken into three main areas:
functionality, reliability, and manufacturabiJity. Func-
tionally, the orifice array must be able to meet the drop
size, frequency and straightness requirements. It must
perform acceptably over the required temperature
range. It must be made of a material that is inert to the
fluids jetted, Reliability requirements demand that no
degradation of the functionality be observable over the
life of the LDR. This puts additional requirements on
the design and materials. Since an LDR system may
contain up to several million orifices, a fabrication
process that can be scaled up to volume production is
required.

Typical specifications for an orifice array are given in
Table I. The actual requirements will vary from one
application to another. The goal is to find one or more
orifice array technologies that will satisfy all of the
requirements.

Table h
Typical Orifice Array Specifications

Diameter 50 - 200t_m
Diameter Tolerances -5%
No. of Orifices 12 rows X 400

Typical 20 rows X 250
Temperature Range 25°C to 425°C
Jet Straightness <5 mrad
c to c spacings >5 x diameter
Plugged holes <1%



An evaluation and testing program comprises a system
of criteria and tests which will measure the orifice
arrays against the specification. Jet straightness is the
most critical performance criterion and is also the most
difficult to test. Therefore jet straightness performance
was the focus for both analytical and experimental
evaluations.

Some of the factors that affect jet straightness include
orifice shape, surface finish, flow characteristics in the
orifice area, rigidity of the substrate, particle generation
and cleaning, and surface wetting characteristics. Some
of these are discussed in detail below.

Phase I of this effort reviewed orifice array fabrication
technologies, structural and hydrodynamic influences on
jet straightness, testing and selection criterion, and
vendor evaluations and recommendations. In Phase II,
vendors were selected, orifice plates designed and
purchased, a drop generator was designed and fabri-
cated, and orifice plates tested for jet straightness.

2



3.0 Phase I: Analytical Evaluation of Jet Straight-
ness Effects, Pressure Drop Considerations,
Fabrication Methods Survey, and Vendor
Survey

3.1 Analytical Evaluation of Jet Straightness
Effects

Even if an orifice array is fabricated such that all of the
orifices are geometrically equivalent and each orifice is
perfectly symmetric, errors in jet straightness can occur
due to structurally and hydrodynamically induced
effects. The general nature of these errors are dis-
cussed below and their relation to specific orifice array
fabrication methods is discussed in section 3.3.

3.1.1 Structurally Induced Straightness Effects
It is highly desirable to use multiple row orifice plates in
a Liquid Droplet Radiator in order to minimize radiator
and catcher size and weight. Heat transfer analysis
indicates that up to twenty (20) rows of orifices could be
employed and not materially degrade heat transfer ef-
ficiency. However, bending of the orifice plate will cause
a row-to-row jet straightness error to occur. The mag-
nitude of this error will depend on the operating con-
ditions of the array (i.e. pressure), and will be a sig-
nificant factor in determining the choice of an orifice
plate fabrication method and/or the number of rows in
an orifice plate.

the shape of the beam exists. The angle of rotation of
the beam as a function of position is given in equation
(1). 1

0 = _--_(-xL2+3x_L-2x _)

G = absolute angle of beam at x
W = unifom pressure value
E = beam material elastic modulus
L = beam length

(1)

Figure 1 shows a schematic of the structural analysis
configuration and shows the general shape of the
beam.

For a multiple row orifice plate, the beam length (which
would probably be referred to as the orifice plate width)
would be a function of the number of rows and the
orifice diameter. From heat transfer considerations, the
center-to-center distance between orifices, or the pitch,
P, must be greater than or equal to 5 times the orifice
diameter. For this analysis, a ratio of pitch to orifice
diameter of 5 will be utilized. This represents a bes._.!
case from a structurally induced straightness effects
standpoint.

The analysis discussed here is presented in non-
dimensional form in order to be useful for any operating
condition, material property, plate
thickness, and number of rows.
General conclusions resulting from
this analysis will be discussed in this
section. In the sections on the indivi-
dual orifice plate fabrication methods,
specific results will be pointed out.

Analytical Development
The deviation from perfect straight-
ness of a multi-row array of jets due to
bending of the orifice plate under
manifold pressure was examined by
modeling the orifice plate as a uniform
beam clamped at both ends and
under a uniformly distributed load.
Initially, the effect of the holes was
ignored, both in determining the load
and the strength of the beam. The
effect of the holes will be discussed at
the end of this section.

In addition to the distance between orifice rows, there
must be some distance between the outside rows and

i_" Xmax =I -'_ P_'- -,_ 8_-
N max_

Using the assumptions in the previous
paragraph, an analytical solution of

Figure 1: Structurally Induced Straightness Effects
Analysis Configuration

3



the end of the plate.Thisdistance,
referredto as themargin,a, wasset
totwicethepitchinthisanalysis.

Overallbeamlength(platewidth)is
thengivenbyequation(2).

Usingthevaluesfor pitchandmargin
discussedabove,the lengthof the
beammaybeexpressedasafunction
oforifice diameter. Dividing both sides
of equation (2) by the orifice diameter,
d, equation (3) is obtained in non-
dimensional form.

Using the values discussed above for
the pitch and margin (shown in equa-
tions (4) and (5)), and substituting in
equation (3), equation (6) is obtained.
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Number of Orifice Rows

Figure 2 shows the value of L/d as a
function of the number of orifice rows
on the plate. To use equation (6) in e-
quation (1), the beam length must be
expressed in terms of the plate thickness, as in e-
quation (7).

L = 2a + [N,_-I]

Figure 2: Plate Length and Location of Maximum Angle
vs. Number of Orifice Rows

L
L _ 15+5N,_

w

t t t
d d

(7)

(2)
L = beam length(plate width)
a = margin(distance from edge

of plate to 1"' row
P = pitch(distance between orifice rows)

-- = + [N,_-I]
d d

(3)

P
_ = 5.0 (4)
d

a_ = 10o (5)
d

L " 5[n,o_-1 ] = 15 + 5N,_ (6)-- = 20 +
d

Equations (6) and (7) may now be used in equation (1)
to evaluate beam deflection as a function of thickness

ratio (t/d), number of rows (N,oJ, load to strength ratio
(W/E).

From a system design viewpoint, only the maximum
angle of the beam is of interest: more precisely, the
maximum absolute angle of one of the orifice rows. The
location of the maximum absolute angle is given as in
equation (8).

x_._ 0.511+0.577] (8)
L

The smaller of the two maxima is shown in Figure 2 as
a function of the number of orifice rows.

x. = a +

XN = location of i;_,
i;o,, = row number

(9)

In general, there will not be an orifice located at the
maximum angle location. Solving equations (1), (6), and

4



(7) at the locations of the orifice rows,
an expression (equation (9)) for the
row number with the maximum ab-
solute angle is obtained. Figure 3
shows this row number as a function
of the number of orifice rows in the

array.

4

• 3
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Parametric Evaluation
A parametric evaluation of structurally
induced jet straightness effects was
performed over the range of expected
values of t/d, W/E, and N,o,,.The maxi-
mum number of rows is limited to

approximately 20 by heat transfer
considerations. Orifice plate thickness

ratio (t/d) for the manufacturing pro- o
cesses considered ranged from 0.4 to z
10. Operating pressures were
assumed to be in the 20 to 100 psi
range. Elastic moduli for the manufac-
turing processes considered range
from 8xl06psi (glass) to 28x108psi
(steel). Given these ranges, equations
(1), (6), and (7) were solved for the maximum absolute
angle at an orifice row location using the values shown
below.

N,_ = 1,2,3,4,5,6,,7 ..... 18,19,20
t/d = 0.4,0.6,1,2,4,7,10
W/E = 0.000001,0.000004,0.000007

The results of the evaluation are shown in Figure 4
through Figure 9. Note that there are two figures for
each W/E case and the only difference between them
is the maximum angle scale.

' _ ' _ ' -_ ' $ ' £1' {3 ' is ' _ ' _9
Numberof Rowsof Orifices

Figure 3: Row Number of Maximum Angle
vs. Number of Orifice Rows

previous experience with orifice plate tolerance al-
locations, it is likely that 10-20% of the total error would
be allocated to structurally induced effects. Assuming a
20% allocation, an allowable error of 1 mrad would be
assigned to structurally induced effects if the total
allowed error is 5 mrad, and 0.2 mrad if the total
allowed error is 1 mrad. These are the values indicated
on Figure 4 through Figure 9 as the maximum allow-
able error.

By examining Figure 4 through Figure 9, several
general conclusions may be made:

Discussion (1)
The results of the parametric evaluation study are
shown in Figure 4 through Figure 9 using two sets of
scales to illustrate the magnitude of structurally induced
straightness effects relative to two maximum overall jet
straightness criteria: 5 mrad and 1 mrad. Since other
factors will contribute to the overall jet straightness, the
allowable error due to structural effects must be less
than the total error. Because the error is coherent (i.e., (2)
all jets in that row will have the same structurally
induced jet straightness error), it will add arithmetically
to all the other jet straightness error sources, rather
than adding statistically if it were a random error (3)
source. This implies that structurally induced straight-
ness errors must be much less than the total

straightness criterion. Depending on the magnitude of
the other sources of error, the allowable structurally in- (4)
duced error could vary significantly. However, based on

Even for a low loading/high stiffness/large
straightness error case (W/E=0.000001, H_.,_=5
mrad), only the highest thickness ratios (t/d=7
and t/d=10) would allow 20 orifice rows to be
employed. For the lower straightness criteria and
low loading/high stiffness, only a t/d=10 would
allow 20 orifice rows.

Orifice plates with thickness ratios less than 1
can only be employed in single row con-
figurations.

For a high loading/low stiffness case at the lower
straightness criterion, the number of rows will be
limited to 10 or less.

Thickness ratio dominates the structurally in-
duced straightness error because of its cubic

5



relationtoH,asopposed to the
linear effect of W/E. However,
in the real case, an increase in
orifice plate thickness would
probably increase the operating
pressure required to produce a
given jet velocity, so some of
the benefit of a thicker plate
would be lost. This would be an
especially important effect for
orifice plate types that would
add the additional thickness by
increasing the length of the
minimum diameter section. For
a given orifice type, the depen-
dence of operating pressure on
thickness could be modeled
and an optimum thickness ob-
tained.

Effect of Holes

The placement of holes in the orifice
plate reduces the stiffness of the
beam from the value used in deriving
equation (1). However, the loading of
the beam is reduced. For this analy-
sis, it will be assumed that to first
order the reduced "stiffness and the

reduced pressure offset one another.

The stresses in the plate, however,
are much more influenced by the
holes than is the deflection. For a
beam under uniform load, the moment
distribution is given by equation (10))
The maximum moment occurs at x=0.
The maximum bending stress at any
location on the beam is given in e-
quation (11).

The stress calculated using equation
(11) will be increased due to stress
concentration around the holes. The
stress for a single row of holes is
increased by a factor of k/{1-d/P},
where k ranges from 1.1 to 1.85 as
a/b increases from 0 to 0.7.2

• t/d=0.6

E 4-1 I / f + t/d-z.o
$ t I k / o t/_-=.o

_=3t t / _ x ,/,-7.0

' -I I t / .u,,.._=_ ,_1ow,=1..,,;_ _o_/
II I /r- s ,_adto=aZst,_ighu_es./

I1/ / \ _,,=,,oo

a 3 s _ 9 az 13 is a'7 a9
Number of Rows of Orifices

== _igure 4: Maximum Absolute Jet Angle vs. Number
of Orifice Rows: P/d=5, a/d=10, W/E=10 "6

0.9 6

_- IJ _ t / J o t/d-2.o

° 11/ / / -,>,:;o
°'11/ I / 1_/_-_.0

" osJIl 1 /

"'"]11 / /v zo,I_ad tot,1 . /

/ / / ,,,s,..,,,,,,,,...

1 3 5 7 Ii 13 15 17 19

Number of Rows of Orifices

Figure 5: Maximum Absolute Jet Angle vs. Number
of Orifice Rows: P/d=5, a/d=10, W/E=10 "6

M = l_[6Lx-6x2-L2]

M = moment at location x

Mt W 6Lx_6x2_L 2]
(10) _ = -_'[ (11)

I = moment of inertia
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For a matrix of holes, two types are
relevant to stress concentration analy-

sis: rectangular and triangular. 5 / / / /Figure 10 illustrates the two types of "_ • t/d=O.6

'tlt /
From stress concentration factors "_ // I / /ot/_-=.0
determined for plates under tension '¢ || t / / , t/d-_.o
(as opposed to bending), the rectan- _ 3 1) _ /* /" x t/d-7.o

gular array results in less stress con- i It/ / / vt/d-lo.ocentration than the triangular array, 2 -_
which would have a better view factor < /// _ J ,u_-t_ azlo_l, or_o_/
for radiation heat transfer. Both have _ III _ /_-_o= 5 ,_,,d tot=z /

...........a minimum factor of 4. For a rectan- 1 .......................

gu_with closely spaced holes, I V/__" "the stress concentration factor may be
as high as 10 and for a triangular o __ ; _ _ _--r .... • ,
array as high as 25. Thus, stress 1 3 s 7 9 1_ 13 15 _7 _9
concentration effects will probably Number of Rows of Orifices

dominate any fatigue failure analysis. - - F]'gure 6: Maximum Absolute Jet Angle vs. Number

of Orifice Rows: P/d=5, a/d=10, W/E=4xl0"
3.1.2. Hydrodynamically Dependent

Straightness Effects
If an orifice plate manufacturing pro-
cess could produce orifices whose

side walls were all parallel, the resul- E :LII J / /" t/d-C.6 Iting jets would not necessarily all be _ o.9

parallel. The phenomena that would _ 0"81/ / 1 / I* tld'1.0 1

cause the jets to be non-parallel will _ o.?tJ / / / Io t/d-2.0 /be referred to here as hydro-
dynamically induced straightness el- _ -_ l / / l, t/d-_.o // 1 / I
fects.These in general are caused in 0 t/ / / / I  /"10.01four ways:

(1) Asymmetric surface finish/- . ggest:ed al
roughness. E 0.3-'_ / / /x ___ error for 1 mrad total I

......./- ......................
(2) Misalignment of two parts (i.e. =E °'zl/____-__ _ ._ Iorifice plate and back-up plate)

or two processes (e.g. drilling ° _ 3 11 13 15 17 _9
the cone in a mechanical Number of Rows of Orifices
broaching process).

(3) Asymmetric flow separation Figure 7: Maximum Absolute Jet Angle vs. Number
from symmetric geometries, of Orifice Rows: P/d=5, a/d=10, W/E=4xl0 4

(4) Asymmetric wetting of the exterior surface of the
orifice plate.

The importance of all four of the above phenomena is
a function of the flow passage geometry and Reynolds
number. In general, the liquid metal LDR configurations
will have much higher Reynolds numbers, but given the
number of working fluids under consideration, the pos-

sible Reynolds number range is distributed over three
orders of magnitude. Table IP shows the properties for
six fluids and the Reynolds number for each for a
10m/s jet exiting from a 0.004 inch (1001_m) orifice.

Asymmetric Surface Finish/Roughness
Asymmetric surface roughness will cause the velocity
profile across the flow at the exit of the orifice to be



asymmetric,whichin turncan cause
the average of the velocity component
normal to the desired flight path to be
non-zero. After separation from the
orifice, the momentum of the fluid in
the jet will redistribute and the jet will
have a component of velocity normal
to the desired flight path, directed
away from the maximum roughness
surface.

At very high Reynolds numbers vis-
cous effects will not be important, and
at very low Reynolds numbers, the
flow at the exit of the orifice will be
parallel, even if it is asymmetric. Both
very high and very low Reynolds num-
bers result in the component of velo-
city normal to the flight path being
zero.

For the case where the Reynolds
number is such that the boundary
layer is approaching the diameter of
the flow channel, the effect of non-
uniform roughness, whether distrib-
uted or discrete, will be a maximum.
This will occur when the I/d of the
constant diameter section is equal to
approximately 0.02*Re, and thus will
probably be important only for the
applications using low vapor pressure
oils.

Misali,qnment of Two Part or Two
Process Orifice Plates
If an orifice plate assembly is made of
two parts, such as a pure Ni electro-
form or a low t/d thickness ratio sol-
uble core glass orifice plate bonded to
a relatively thick backup plate, or if the
orifice plate is made by a two step
process, such as the pre-drilling of the
cone in the mechanical broaching and
drilling processes, there will be some
misalignment between the two parts or

-- _ t/d-4.0

Jl/ / \" 7 iJJ

1 3 s NTumbe_ofRow%of 83rificeis iv 19 II
3

"-- Figure 8: Maximum Absolute Jet Angle vs. Number
of Orifice Rows: P/d=5, a/d=10, W/E=7xl0 e

i II I _ su,g,_t_ ,11o,,_,_1e7 /I ]

9 error for 1 mradt / /tll
 0.tl [ /°"'t ° / /I II

0.7

._ 0.6

_ 0.5 ___

0.4 • t/d-0.6

+ t/d-l. 0

_ 0.3

E 24_ ......... A t/d-4.0 I IIo.11-/.........7 .............................x
• v t/d-lO=01 _,' /_/_

Number of Rows of Orifices II

JJ
Figure 9: Maximum Absolute Jet Angle vs. Number

of Orifice Rows: P/d=5, a/d=10, W/E=7xl0"

process steps. This misalignment will result in an
asymmetry in the flow due to inertial and/or viscous
effects.

Misalignment of the two parts or processes would
cause the mean flow to negotiate a pair of turns that
would result in a velocity component normal to the
desired flight path downstream of the final turn. At very

high Reynolds numbers this effect would be compen-
sated for if the section downstream of the turning is
straight: the longer the Vd of this section, the less the
effect of the turning will be "remembered" at the exit of
the orifice. Since inertial effects dominate at high
Reynolds number, the decay of the effects of turning
would be similar to the decay of a disturbance in any
field described by an elliptic partial differential equation.
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Therefore, downstream I/d's of greater than 2-3 should
minimize this effect.

Asymmetric Flow Separation from Symmetric Geome-
trie.__ss
Even in a perfectly symmetric channel, the flow can be
non-uniform. This is usually illustrated by the unstable
or mufti-stable flow in a diffuser where the flow separ-
ates from one or both walls. Many of the orifice plate
processes considered here produce very sharp corners
at the entry to the orifice plate and asymmetric separa-
tion downstream of these corners, even if the orifice
geometry is perfectly symmetric.

This phenomenon will be significant at moderate to high
Reynolds numbers, since the corner will be smoothed
by a viscous layer that is large enough. At the
Reynolds numbers expected with some of the liquid
metals (10,000 to 40,000) this phenomenon could be
significant and therefore should be investigated analy-
tically for the configurations of interest.

Asymmetric Wettin.q of the Exterior Surface of the
Orifice Plate
As with the above phenomenon, asymmetric wetting of
the exterior surface of the orifice plate can cause an
otherwise perfectly straight flow to be deflected. This
can conceivably occur even if the surface finish is
uniform due to the hysteresis between leading and
lagging contact angles. In practice, a non-uniform
surface finish is usually the cause.

Previous experience with soluble core glass orifice
plates at a Weber number of around 50 indicates that
this phenomenon can be very important, especially
when a high surface energy material like glass is the
orifice plate material.

At moderate Reynolds numbers
where the boundary layer is less
than the channel width, but signifi-
cant enough to affect the mean
flow, the asymmetric distribution of
viscous effects will interact with the
inertial effects. In addition, this non-
uniform distribution of viscous ef-
fects will be "remembered" down-
stream of the turning for a distance
that depends on Reynolds number.
Again, a straight section down-
stream of turning, on the order of 2-
4 diameters, will decrease the ef-
fect of the misalignment. Quanti-
fying this effect is obviously highly
dependent on the geometry and
Reynolds number.

Table Ih Fluid Properties, Reynolds Number and
Weber Number for Candidate LDR Fluids

Fluid

Absolute
Viscosity

(poise)
Density
(kg/m 3)

Surface Typical
Tension Reynolds

(N/m) Number

Typical
Weber
Num-
ber

Dow 705 0.24 1090 0.037 45 300

Lithium 0.0055 500 0.35 900 14

Gallium 0.0016 6092 0.718 38,000 85

Aluminum 0.029 2300 0.90 770 25

Tin 0.012 6800 0.515 5,500 132

7550.0025 0.110 3,000NaK 7O
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3.2 Pressure Drop Considerations

Both power consumption and structural weight are
affected by viscosity induced pressure losses. As with
hydrodynamically induced straightness effects, 'he
relative importance of viscosity induced pressure losses
will be a function of passage geometry and Reynolds
number.

The typical Reynolds numbers listed in Section 2.4.0 for
the candidate liquid metals are all greater than 700. At
these Reynolds numbers almost all the viscous loss
would be due to entry flow effects, so the pressure loss
would be affected strongly by entrance geometry and
only weakly by the length (i.e, thickness) of the flow
passage.

Systems that use low vapo, pressure oils (typical
Reynolds number of 45) would have a much greater
interaction between orifice shape and viscous loss than
would liquid metal systems because of the much
smaller Reynolds number. In order to quantify this
variation in viscous losses between different orifice
plate types, a pressure loss coefficient was estimated
for each type of plate using the orifice flow model
shown in (12). 4

,,/ K / 64/ ,
c. -- t,.,, +..fi.+._a.j

actual pressure
Cp- /deal"

I = length at diameter d
d = orifice diameter

Re = Reynolds number based on
d and average jet velocity

K, K _ = loss constants

(12)

For the Reynolds number range of interest, the term
with K' can be neglected. For each orifice plate type, an
//d equal to average of the minimum and maximum
values possible was used in Equation (13). For smooth
and continuous contractions, K was estimated as 1.5s
For sudden contractions (I/d = 0), K was estimated to
be 2.3.e The pressure coefficient computed from (12)
was multiplied by ten and used as ranking for the
pressure drop category.

3.3 Fabrication Methods Evaluation
Based upon prior experience at both Microfab and
NASA and upon initial literature searches, eleven
fabrication methods were investigated during Phase I of
this effort. The methods selected are shown in Table III
and will be discussed in detail in Section 3 of this

report. Some of the fabrication methods investigated

Table II1: Orifice Fabrication
Methods Investigated

Electroform- Plating
Chemical Milling
Laser Dnlling
Electro-Discharge Machining
Mechanical Punching (or broaching)
Mechanical Drilling
Soluble Core Glass Fibers
Multichannel Plates

Electron Beam Machining
Ion Drilling
Fotoceram

have more than one process flow and/or design con-
figuration option. Moreover, the addition of a finishing
process to some of the mechanical and thermal
material removal processes will be necessary or
advantageous to enhance the manufacturability of the
nozzle arrays. In this section the eleven fabrication
methods are discussed in detail. Specific information
includes:

Description of Method
Geometric Sketch
Materials

Structurally Induced Straightness Effects
Hydrodynamically Induced Straightness Effects
Past Experience at Achieving 5 mrad Straightness
Straightness Estimate
Direction of Effort to Improve Straightness

3.3.1 Eiectroform - Plating
Description of Method
Figure 11 outlines the typical process steps for the
electroform process. The starting material can be purely
a mandrel where the Ni nozzles are electroformed and
then removed, or in some cases, the Ni is electro-
formed onto Cu, BeCu or other starting material to form
a bimetallic nozzle structure. In either case, the electro-
form metal (for orifice plates this is usually Ni or a Ni
rich alloy) is plated onto the substrate or mandrel. This
process begins by using a photolithography technique
to define a pattern of circular disks of photoresist on a
metal substrate.

Figure 11 a shows a substrate material coated on both
sides with a thin layer of photoresist material. A spin
coating process is used on small parts and a dip
process is usually used on large parts.
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Once the photoresist
is ready, a matched
pair of photomasks
are aligned above
and below the sub-
strate. The photo-
mask contains clear
and opaque features
that define the pattern
to be created in the
photoresist layer. The
areas in the photo-
resist exposed to the
U.V. light are poly-
merized and are
made insoluble to a
specific solvent
known as a develop-
er. This type of photo-
resist is known as a

negative photoresist.

After exposure to
U.V. light and the
development of the
resist, a pattern
shown in Figure 11c
exists. Now the pa'rt
is ready for Ni plating.

The plating occurs
everywhere except
where the photoresist
pattern exists. To
obtain high quality
parts, the plating rate,
uniformity, and time
must be controlled
very tightly. The
plating solution,
usually a nickel sul-
fumate or a Watts
nickel solution, is
monitored for pH and

A. Apply Photoresist to

Substrate Metal

B. Exposure of Photoresist

C. Development,

then Activation

D. Electroforming of Orifice

Inlet and Outlet

E. Strip Away Photoresist

F. Etch Through

Metal Substrate

photoresist

"2

photoresist

UV light

..... _

photozesist

NI

Ni

Ni

for assay of certain
chemicals. In doing
so, the plater can
control the film stresses, surface finish, and plating
rates. Figure 1ld shows the part after plating.

Next, the photoresist is removed (see Figure 1le) and
Ni is used as a mask and the substrate metal is etched
away inside the cavity as shown in Figure 1lf. The final
orifice geometry obtained is shown in Figure 12.

Figure 11: Electroform Process

Materials
The nozzles are typically formed of pure nickel or a
nickel alloy. The nozzle cavity can be either nickel, or
a Bimetallic where Cu or BeCu is used as a starting
material. The assay of the nozzles is influenced by the
nickel anode material assay, the plating bath chemistry
and the mandrel materials.
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Structurally Induced Straightness Effects
The two types of electroform orifice plates, pure Ni and
bimetallic, would have distinctly different structurally
induced straightness characteristics. With a modulus of
elasticity approximately half that of steel for both Ni and
Be-Cu, the load to strength ratio, W/E, would probably
be close to the middle of the range evaluated. Using
existing technology, the pure Ni plates would have t/d
ratios less than two. A method under current develop-
ment whereby the photoresist pegs can be made much
longer than is currently possible would permit plates to
be made with t/d ratios of up to approximately 5. In the
former case, use of the pure Ni plates would be restric-
ted to single row configurations. In the latter case, up to
4 rows might be possible.

For the bimetallic configuration, a t/d ratio of 5 probably
represents a minimum, and ratios well above 10 are
possible. Thus, from a structural standpoint, the bi-
metallic configuration is to be preferred since it should
allow for as many rows as is desired from heat transfer
considerations.

Hydrodynamically Induced Straightness Effects
From a hydrodynamic standpoint, the shape of the
orifice for electroform orifice plates is probably the worst
that could be imagined: not only must the entry flow
negotiate a sharp corner greater than 90 °, but the flow
channel downstream of the corner is divergent and
there is no clearly defined detachment location for the
jet. The divergent channel could result in asymmetric
flow separation and the lack of a clearly defined detach-
ment point could result in non-uniform wetting effects.

The above paragraph indicates that, by inspection,
electroform orifice plates could have poor jet straight-
ness due to hydrodynamic effects. Experience,
however, indicates the opposite. Electroform plates are
the most common type of orifice plate used in ink jet
printing systems, and by implication their jet straight-
ness performance is acceptable. Although drop-on-
demand systems do not require small values of jet
straightness to produce acceptable print quality, con-
tinuous systems do, and the experience of Microfab
personnel confirms that electroform orifice plates can
have acceptable jet straightness despite the inherent
shape. This is probably due to a high degree of unifor-
mify, both of the geometry and the surface finish,
resulting from the plating process. Also ink jet printing
systems operate at moderate Reynolds and Weber
numbers. An obvious area of concern is that electro-

form plate performance would change at the higher
Reynolds numbers and lower Weber numbers as-
sociated with some of the liquid metal applications.

BeCu

Ni

Figure 12: Bimetallic Eiectroformed
Orifice Geometry

Past Experience At Achieving 5 mrad Straightness
This method of nozzle fabrication has been used to

produce single nozzles and nozzle arrays at Mead
Office Systems, Xerox, IBM and other companies which
met straightness conditions of <5 mrad. Our personal
experience at Mead Office Systems includes jet
straightness results of <3 mrad over large numbers of
jets in a single array (>200 nozzles).

Straightness Estimates
Given the ability to plug 1 to 2 percent of the jets in a
given array, we feel that jet straightness in the 2 to 3
mrad range is possible with this fabrication method.

Direction of Effort To Improve Straightness
Improvements to the surface quality of the mandrel
materials and/or bimetallic starting materials could yield
a large number of jets which meet the 2 mrad straight-
ness criterion. In addition, improvements of airborne
particulate conditions by changing both filtration and
handling procedures could improve both average
straightness and the yield of straight jets. Thirdly, the
use of thick liquid photoresist (25-50_m) when creating
the nozzle mandrels could reduce the nozzle diameter
tolerance currently experienced.

3.3.2 Chemical Milling
Description of Method
This process utilizes photolithography (see
Figure 11a,b,c) to create an etchant resist pattern or
"mask" on the nozzle starting material. In the electro-
form process, the photoresist was used to define the
orifice area (Figure 11c) and expose the surrounding
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Two Side Etching

One Side Etching

Figure 13: Chemical Milling Geometry

metal. In the chemical milling process, the photoresist
is used to protect the surrounding metal and expose the
orifice area. Chemical etching removes the metal in the
orifice as shown in Figure 13. The subsequent etching
process is enhanced by using spray etchers, or by ap-
plying an electrical potential between the etchant
material and the substrate metal. Thus the term "Photo-

chemical Etching" is sometimes used in describing the
process. By _,arying etchant conditions and the number
of etch passes, some control of nozzle wall angle can
be achieved.

Materials
The chemical milling process works quite well with most
metals. Many formulations of stainless steels would be
good candidate materials for producing liquid droplet
nozzle arrays.

Structurally Induced Straightness Effe_'ts
If stainless steel is used as the plate material, the load
to strength ratio should be at the low end of the range
evaluated. The thickness of the plate can be selected,
allowing high t/d plates to be used, although there is a
trade-off between thickness and production time and
cost. Chemical milling should therefore allow the
number of rows to be selected from heat transfer
considerations.

Hydrodynamically Induced Straightness Effects
The two principle areas of concern for chemically milled
Orifice plates as far as hydrodynamically induced effects
are concerned are the sharp entry flow region and the
poor, and thus potentially non-uniform, surface finish. A
long Vd flow channel would probably decrease any
asymmetry associated with the entry flow.

Past Experience at Achieving 5 mrad Straightness
There is no direct experience or accounts of nozzle
arrays being fabricated using this technique.

Straightness Estimates
We have no available data on the straightness of
chemical milled parts. The quality of the final orifice
plates depends on the quality of the starting metal
substrate (grain structure, defects, etc.), the photolitho-
graphy process and the etching process. We feel that
it would be extremely difficult to obtain large chemical
milled parts with straightness better than 5 mrad.

Direction of Effort To Improve Straightness
Improvements to the surface quality of the starting
material would be a good starting point. In addition,
improvements of airborne particulate conditions would
reduce the nozzle defects that are photolithography in-
duced.

3.3,3 Laser Drilling
Description of Method
The output of a pulsed laser is an intense burst of
coherent monochromatic light. Using values typically
encountered in pulsed laser drilling, a 1.2 msec pulse
of 15J total energy focused on a .005" diameter spot
produces an instantaneous power density in excess of
90MW/cm 2. Such an intense pulse will melt and vapor-
ize a small portion of the target work piece. The tre-
mendous volume expansion of the vaporized material
generates pressures sufficient to blow the molten
material out, creating a hole. Multiple shots at a given
spot produce a progressively deeper hole.

The dimensions of a laser drilled hole are a function of
the material and part configuration, the pulse length
and energy, the beam focus, and the number of shots
taken per hole.

The characteristic shape of a laser ddlled hole when
drilled at the optimum parameters exhibits a tapered or
bell-mouthed entrance followed by a nearly uniform
diameter through the remainder of the hole. The taper
may add 10 percent to the nominal hole diameter. By
altering the drilling parameters appropriately, the hole
can intentionally be made to taper all the way from
entrance to exit or even to have a reverse taper with an
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materialsaswellasformetalsandceramics.

Structurally Induced Straightness Effects
If stainless steel is used as the plate material, the load
to strength ratio should be at the low end of the range
evaluated. However, with a maximum t/d of around 5,
the number of rows would probably be restricted to 8 or
less.

Hydrodynamically Induced Straightness Effects
The two principle areas of concern for laser drilled
orifice plates are the sharp entry flow region and the
poor, and thus potentially non-uniform, surface finish.
The long I/d of the flow channel would probably
decrease any asymmetry associated with the entry flow.

Figure 14: Laser Machined Orifice Geometry

enlarged exit following the bell-mouthed entrance.

Repeatability of hole diameter is a function of the
consistency of the operating parameters, primarily
energy per shot, focal distance and work piece thick-
Bess.

Figure 14 shows how a typical laser drilled hole might
appear in cross section in a metal sample. Uncontrol-
lable diameter variations exist, starting with the funnel-
shaped entrance to the hole. A thin layer of "recast"
clings to the side walls of the hole. This material has
been melted and resolidified in such a short time that
the frozen metal has a different structure than that of

the parent material. Depending on the alloy being
drilled, this recast is often of considerable hardness and
prone to developing micro-cracks.

The build-up of the recast layer can be minimized by
optimizing the operating parameters of the laser. In
some cases, finishing operations can be used to
remove this recast layer. Since amorphous materials go
from the solid phase directly to the vapor phase, they
don't show the same recast effect.

Materials

A wide variety of materials can be machined using
lasers. Neodymium-doped, Yttrium-Aluminum-Garnet
(Nd:YAG) lasers are used to drill holes in metallic
materials. All metals can be drilled, including high con-
ductivity onessuch as gold, silver and copper. Stainless
steel (incl. #316) as well as high melting point metals
such as tungsten, molybdenum and niobium, can also
be drilled.

CO 2 lasers can be used to drill holes in ceramics and
polymers. Excimer Lasers can be used for polymer

Past Experience at Achieving mrad Straightness
We know of no outside groups who have made arrays
using laser drilling. The principals at Microfab have had
some experience using this technology, but no parts
were ever made where the straightness was better than
10 mrad.

Straightness Estimates
These estimates are difficult to make because we feel
that to get the straightness <5 mrad will require post
processing steps such as electroplating. Based on this
assumption, our estimates are as follows:

1-2 Yr.

Now Effort
Standard Materials 10-20 mrad 10 mrad
Amorphous Materials 5-15 mrad ~5 mrad
Post Processing ? <5 mrad

Direction of Effort To Improve Straightness
To improve the quality of laser drilled orifice arrays, a
number of actions should be taken:

,

2.

3.

.

5.

Select a laser system that has extremely good
control over the power levels.
Select a high quality optical system that has
been designed specifically for this application.
Select the best substrate material for the ap-
plication and for the ability to obtain clean holes.
Amorphous metals may be the best selection.
Run designed experiments to study the interac-
tion among the various parameters.
Develop a finishing process to obtain clean,
smooth surfaces.

3.3.4 Electro-Discharge Machining
Description of Method
Electro-discharge machining, designated EDM, re-
moves metal through the action of high-energy electric
sparks on the surface of the work piece. The mechan-
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Figure 15: Electro-Discharge Machining (EDM) System

ical setup and the electrical circuit involved are shown
in Figure 15. The tool and the work piece are sub-
merged in a fluid having poor electrical conductivity-
usually a light oil. A very small gap, of approximately
25t_m or less, is maintained between the tool and the
work piece by means of a servosystem. When the
voltage across the gap becomes sufficiently high,
capacitors discharge current across the gap in the form
of a spark for an interval of from 10 to 30 msec and
with a current density of the order of 1,500 A/mm 2 (106
A/in.2). When the voltage has dropped to about 12
volts, the spark discharge is extinguished and the
capacitors start to recharge. This cycle is repeated
thousands of times per second, and thousands of
spark-discharge paths occur between the surface of the
tool and its mating work surface. Each discharge
removes minute amounts of material from both the tool
and the work piece. The resulting workpiece surface is
composed of extremely small craters, so small that a
surface finish of about 3.81 microns (150 microinches)
is obtained on roughing cuts and about 0.762 microns
(30 micro-inches) on finishing cuts. A typical EDM
orifice geometry is shown in Figure 16.

The mechanism of metal removal by electro-discharge
machining is not completely understood and appears to
involve more than one phenomenon. Most of the
removal is by fusion of minute particles of metal that

are thrown from the surface by the thermal action
accompanying the highly localized heating and cooling
of the metal surface as a consequence of the con-
centrated release of energy in the spark. However, not
all the particles released are fused, particularly in the
case of some metals. It appears that highly localized
thermal stresses also play a role in the metal-removal
process.

As with the laser drilling process, EDM usually requires
secondary finishing operations to obtain holes adequate
for fluid jet applications. Chemical machining, electro-
polish machining, and abrasive flow machining are
examples of secondary finishing operations.

m

.......,_/////////.,_

1
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Figure 16: Electro-Discharge
Machined (EDM) Orifice Geometry
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Electro-dischargemachiningis best suitedfor hole
diameters1251_mor above.It is capableof a depthto
diameterratioof 10:1.We havesourcesof precision
tungstenwireof251_m.Tungstenisusuallyusedasthe
electrodematerial.

Materials
Electro-discharge machining works for all metals. For
this application, a material such as 316 stainless steel
is a good selection. The selection process for material
should take into account the finishing operation.

Structurally Induced Strai.qhtness Effects
As with the laser drilled plates, if stainless steel is used
as the plate material, the load to strength ratio should
be at the low end of the range evaluated. The maxi-
mum thickness for EDM plates would be greater than
the laser drilled plates, allowing thickness ratios of up
to 10. This would allow the use of as many rows as
desired from heat transfer considerations. However, the
production time (and cost) would increase almost
directly proportionally to the depth to be drilled, making
high t/d EDM plates not quite as attractive.

Hydrodynamically Induced St.raightness Eff.ects
As with the laser drilled orifice plates, the two principle
areas of concern for electro-discharged machined
orifice plates as far as hydrodynamically induced effects
are concerned are the sharp entry flow region and the
potentially non-uniform, surface finish. The long Vd of
the flow channel would probably decrease any asym-
metry associated with the entry flow.

Past Experience at Achievin,q 5 mrad Straiqhtness
We know of no straightness information using electro-
discharge machining. Panasonic has sold an electro-
discharge machine MG-ED01 for creating
single ink-jet orifices. This machine is capable
of creating orifices (of good qualify) below
251_m.

Straightness Estimate
Based upon the quality of holes obtained using
the Panasonic MG-ED01, good jet straightness
could be obtained. It should be as good as
laser drilling.

Direction of Effort to Improve Straightness
To improve the quality of orifice arrays made
by the electro-discharge machine method, a
number of actions should be taken:

,

2.
Obtain a Panasonic MG-ED01

Develop an acceptable process using
the MG-ED01

3. Select the best substrate material for the ap-
plication

4. Run designed experiments to optimize the
process parameters

5. Develop a finishing process to improve the
quality of the surfaces

3.3.5 Mechanical Punching (or Broaching)
Description of Method
This technology is used for the manufacture of fibers
for the clothing industry. In that industry, it is referred to
as the spinneret technology. The fabrication process
consists of first drilling the taper section of the nozzle
and then high speed/high pressure mechanical punch-
ing. The surface finish of parts observed has been
outstanding. It is not known whether secondary opera-
tions were performed on those parts. The method has
flexibility in the taper length, taper angle, and the length
to diameter ratio. Length to diameter ratios from 0.5:1
to 5:1 are possible. A typical broached orifice geometry
is shown in Figure 17.

Materials
The quality of mechanically punched holes depends
upon the mechanical and flow characteristics of the
metals. A material of medium hardness is desired.
Successful holes are routinely manufactured using
stainless steel (316 is a good choice).

Structurally Induced Straightness Effects
If stainless steel is used as the plate material in
mechanical broaching processes, the load to strength
ratio should be at the low end of the range evaluated.
The need to predrill the cone forces the plate to high
thickness ratios. Therefore, broached plates should

/ -- Drilled Tape/ r

I

Orifice Exit

Figure 17:
Mechanically Punched Orifice Geometry
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allowfortheuseof as many rows as desired from heat
transfer considerations.

Hydrodynamically Induced Straightness Effects
Mechanical broaching requires the pre-drilling or
forming of a cone at the locations where the orifices are
to be made. This produces the potential for some
misalignment of the two steps, and thus a flow induced
jet straightness error. Note that any angle between the
axis of the cone and the axis of the broached section
will produce a flow pattern similar to a spatial misalign-
merit of the two processes.

Past Experience at Achieving 5 mrad Straightness
We have previously tested 200 jet arrays using plates
made by Kasen. These plates had most of the jets <10
mrad, with a few outside this range. Seventy-five
percent of the jets were within 5 mrad.

Straightness Estimate
The only data we have is 200 orifice arrays where 75%
of the orifices were within 5 mrad and 100% were
within 20 mrad. We feel that this could be improved to
the point where orifice plates with all jets within 8 to 10
mrad are possible.

Direction of Effort To Improve Straightness
Companies such as Celanese, DuPont, etc. use this
spinneret technology to make orifice arrays for pulling
fiber consider their processes a trade secret. Since we
do not understand the processes it would be necessary
to rely on these companies for improvements.

Figure 18: Mlcrodrilling Tooling Configuration

shown in Figure 18. Figure 19 shows a typical
mechanically drilled orifice geometry.

3.3.6 Mechanical Drilling
Description of Method
Certain aspects of drilling can cause considerable
difficulty, especially when drilling holes below 0.010" in
diameter. Most drilling is done with a tool having two
cutting edges, These edges are at the end of a rela-
tively flexible tool and the cutting action takes place
within the work piece. This requires that the chips must
come out of the hole while the drill is filling a large
portion of it. This especially complicates very small hole
drilling, Friction between the body of the drill and the
wall of the hole results in additional heating. Problems
can arise from poor heat removal. Lubrication and
cooling are difficult because of the counter flow of the
chips.

Even though companies manufacture drills down to
201_mthe quality of the cutting edges and the strength
of the tools are questionable. High speed drilling is
performed reliably in the PC board manufacturing
industry. Hole sizes range down to .004" to .016" with
aspect ratios of 8:1 or more. Tools are configured as

On some of the systems, drilling speeds have reached
200 in/rain @ 90,000 RPM. This is in epoxy based
PCB's. Multilayer boards containing 16,000 holes of
.006" diameter have been successfully drilled on one of
these systems. Even though PCB material is not
acceptable for the LDR application, these numbers give
a sense where the state-of-the-art is.

For the LDR application, small drill bits need to be used
drilling into harder materials. This requires slower
RPM's, lower feed rates and more specialized bits and
machines. Post processing finishing operations may
also be required.

Materials
Almost all metals can be mechanically drilled. Stainless
steel is a good choice.

Structurally Induced Straightness Effects
As with mechanical broaching, stainless steel can be
used as the plate material in drilling processes so the
load to strength ratio should be at the low end of the
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Figure 19:
Mechanically Drilled Orifice Geometries

range evaluated. The need to predrill the cone forces
the plate to high thickness ratios so that broached
plates should allow for the use of as many rows as
desired from heat transfer considerations.

Hydrodynamically Induced Straightness Effects
As with mechanical broaching, mechanical drilling
requires the pre-drilling or forming of a cone at the
locations where the orifices are to be made. This
produces the potential for some misalignment of the two
steps, and thus a flow induced jet straightness error.
Note that any angle between the axis of the cone and
the axis of the broached sec-
tion will produce a flow pat-
tern similar to a spatial mis-
alignment of the two proces-
ses. Also, a drilled orifice
plate would have the potential
for non-uniformly distributed
burrs.

Past Experience at Achieving
5 mrad Straightness
Orifice arrays have been
manufactured by a group at
Lawrence Livermore Labora-
tories. With an electropolish
finishing operation, they ob-
tained jet straightness num-
bers <5 mrad. NASA has also

manufactured arrays using the

mechanical drilling approach. To date, their results are
not as encouraging.

Straightness Estimates
Without finishing operations 10-30 mrad would be
expected.

Direction of Effort To Improve Straightness
The largest improvements would come from finishing
operations.

3.3.7 Soluble Core Glass Fibers
Description of Method
Glass fibers can be manufactured to very high preci-
sion. In the fiber optics industry, it is normal to fabri-
cate a fiber which has an inner glass (core) different
from the outer glass (clad). In optical fibers the intent
is to have a different index of refraction in the core and
clad glass. By taking advantage of the manufacturing
technology of fiber optics, fibers have been made in
which the core glass has a much higher solubility than
the clad glass in dilute acids. If the core and clad glass
are thermally matched, the core-to-clad diameter ratio
for the preform can be reproduced in the fiber. The

fibers are then aligned in parallel grooves and sealed
in place, as shown in Figure 20. Once the block and
fibers are sealed, the block is cross-sectioned into
wafers and these wafers are polished and bonded to a
supporting plate.

After bonding, the front surface of the plate is lapped
and polished, and finally the core glass is etched out to
form the orifices. The final orifice geometry is the same
as for the Microchannel arrays (see Figure 22).

Figure 20: Fabrication of Soluble Core Glass Orifice Array
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Materials
Special glasses must be fabricated to obtain
the fibers. Special thermal and mechanical
matching must exist between clad and core
glass. A material such as fotoceram can be
used to manufacture the grooved block. Solder
glass can be used to seal the fibers in the
block.

Because the center-to-center spacings for the
LDR application are not critical, grooves may
not be necessary. This would eliminate the
need for the fotoceram.

Structurally Induced Straightness Effects
With a modulus of elasticity only one third that
of steel, the load to strength ratio for soluble
core glass plates will be at the high end of the
range examined. Thus, even though thickness
ratios of up to 10 are possible, the number of
rows will probably be limited to 11 or less.

Hydrodynamically Induced Strai,qhtness Effects
Soluble core glass orifice plates have very
sharp corners in the entry flow region, but the
I/d of the flow channel can be long to compen-
sate. Because of the relatively high surface
energy of glass, the sharpness of the edge of
the orifice at the exit and the surface finish of
the outside of the orifice plate have been
found by Microfab personnel to be critical to jet
straightness performance.

Past Experience at Achieving 5 mrad Straight-
ness
Arrays with all jets <2 mrad have been ob-
tained with this technique.

Straiqhtness Estimates
Arrays can be made using this technique with
jet straightness better than 2 mrads. Improving
this would be difficult.

Direction of Effort To Improve Straightness
At this time, no company is set-up to utilize
this method. The experience base exists at
MicroFab.

3.3.8 Mlcrochannel Plates

Description of Method
The basic steps used are given in Figure 21
(courtesy of Galileo Electro Optics Corpora-
tion). Single fibers are drawn as solid glass fibers
having two components, an etchable core glass, and a
glass cladding which is insoluble in the core glass

Core Glass

Cladding Glass

O---,
Single-Fiber

Single-Fiber
Stacked Array

Hexagonal
Multi-Fiber

Solid Glass
Border

Active Area

MCP Wafer

Figure 21:
Fabrication of a Mlcrochannel Orifice Array

etchant. The fibers from this first draw are packed
together into an array (usually hexagonal), are tacked
together thermally, and are drawn again into hexagonal
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Figure22:
MicrochannelOrificeGeometry

multifibers. These hexagonal multifibers are then
stacked again and fused within a glass envelope to
form a boule. The boule is then sliced usually at a slight
angle (8° to 15°) from the normal to the fiber axes. The
resulting wafers then are edged, beveled and polished
into thin plates. The soluble core glass is then removed
by a suitable chemical etchant. A typical MCP orifice
geometry is shown in Figure 22.

Materials

The mechanical plates consist entirely of glass for-
mulations. Although the composition may be varied, a
lead oxide glass is most common.

Structurally Induced Straightness Effects
With a modulus of elasticity only one third that of steel,
the load to strength ratio for microchannel plates will be
at the high end of the range examined. Thus, even
though thickness ratios of up to 10 are possible, the
number of rows will probably be limited to 11 or less.

.Hydrodynamically Induced
_Straiqhtness Effects
As with soluble core glass orifice
plates, microchannel orifice plates
would have very sharp corners in the
entry flow region, but the I/d of the
flow channel can be long to compen-
sate. Because of the relatively high
surface energy of glass, the sharp-
ness of the edge of the orifice at the
exit and the surface finish of the out-
side of the orifice plate would be crit-
ical to jet straightness performance.

Past Experience at Achieving 5 mrad
Strai,qhtness
There is no direct experience or ac-
counts of nozzle arrays being fabri-
cated using this technique. However,
one would expect that the experience

with soluble core fibers at Mead Office Systems, IBM
and elsewhere is applicable, due to the process similar-
ities.

Straightness Estimates
This process should yield straightness values as good
as the soluble core glass fiber process (2 mrad).

Direction of Effort To Improve Straightness
Improvements to the current lapping/polishing are
needed because of the small t/d ratios needed for

droplet formation. Typical t/d ratios for microchannel
devices are 50:1 whereas 3:1 to 1:1 is more common
in ink-jet applications.

3.3.9 Electron Beam Machining
Description Of Method
A beam of electrons (108 to 109 W/cm2) colliding with a
surface can transform solid materials into the gaseous
phase. In order to avoid molten pools resulting from
thermal conduction, short bursts are used. This process
is similar to laser drilling, using electrons instead of
photons. The process works in the following way:

If electrons collide with a solid material at a certain
speed, their kinetic energy will be immediately con-
verted to thermal energy. What happens within the
work piece after this initial effect depends not only on
the electron beam parameters such as total power,
power density, duration of impact, etc., but also on the
thermal properties of the target, such as heat capacity,
melting point and vaporization point, thermal conduc-
tivity, heat of fusion, etc. The material can be heated,
melted or vaporized.

Focused Electron Beam Exposure

Depresslon in the melt allows
beam to contlnue through material

A capillary Is produced
through the material

Figure 23: Electron Beam Machining Process
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For removingmaterialby ElectronBeam
machining,there are two differentmechan-
isms.Eitherthematerialisevaporatedor it is
meltedand the liquidphaseis removedby
additionalforces.

Ingeneral,a combination of fusion and evap-
oration is used in such a way that the vapor
pressure is used as additional force to remove
the liquid material.

The pulse interval and thus the time of impact
of the beam on the work piece is between
101_sand 10ms. The main task of the process
controller is to maintain suitable beam parameters
which allow the shape of the molten volume to be
controlled as well as the position of maximum tempera-
ture (the vapor source) so that the liquid material is
ejected completely and rapidly. The main control
parameters for shaping the hole are the pulse width for
the depth of the hole, the beam current for the diameter
of the hole and the power distribution within the beam
as well as the position of the focus with respect to the
work piece. These parameters can be combined in
many ways and each can be varied with respect to
time.

Many of the features of the electron beam machined
hole are similar to that of the laser drilled hole.
Figure 23 shows the typical process for e-bearn drilling.
In both cases, selection of materials and operating
parameters are important. EBM, like laser drilling, may
require secondary finishing operations. A typical
electron beam machined orifice is shown in Figure 24.

Materials
A wide variety of materials can be used with this
technique. All metals can be machined, including
stainless steels and titanium. Since there is a wide

range of choices with this technique, these can be
evaluated on the basis of reproducible hole formation
and debris formation.

Structurally Induced Strai.qhtness Effects
As with the EDM plates, if stainless steel is used as the
plate material, the load to strength ratio should be at
the low end of the range evaluated. The maximum
thickness for e-beam plates should be greater than 10,
thus allowing the use of as many rows as desired from
heat transfer considerations. However, the production
time (and cost) would increase almost directly propor-
tionally to the depth to be drilled, making high t/d
electron beam plates not quite as attractive.

Exit

Figure 24:
Electron Beam Machined Orifice Geometry

Hydrodynamically Induced Straightness Effects
As with EDM, the two principle areas of concern for e-
beam plates are the sharp entry flow region and the
potentially non-uniform, surface finish. The long Vd of
the flow channel would probably decrease any asym-
metry associated with the entry flow.

Past Experience at Achieving <5 mrad Straightness
There is no direct experience or accounts of nozzle
arrays being fabricated using this technique.

Straightness Estimates
This process has the capability of yielding parts like
laser drilling, except this is not a large industrial effort
to drill small, high quality holes with E-beam. Even with
post processing, we feel 5 mrad is out of reach in the
foreseeable future.

Direction of Effort To Improve Straightness
There is a current minimum hole diameter limitation of

approximately .004". Efforts are in progress to get to
the .002" range.

In addition, material choices plus subsequent debris
removal (chemical polish, etc.) to improve the surface
finish and nozzle shape are required.

3.3.10 Ion Milling
Description of Method
Beams of ions have been used in two ways to form
orifices. First, they can be focused and used in the
same fashion as electron beams in the previous
section, The limited intensity of ion-beam sources have
in the past made this method slow. But stable, liquid
metal ion sources are changing this situation. Second,
unfocused beams can be used to etch away material
unprotected with a mask. This is shown in Figure 25.
This process is referred to as ion milling. It has been
used in the semiconductor related industry for some
time. In this process, a beam of accelerated ions
(usually argon) bombards the surfaces and imparts
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Substrate Atoms Ion Beam

Figure 25: Ion Beam Machining Process

enough energy to the substrate atoms to remove mater-
ial. The etching rate is a function of five major variables:
acceleration voltage, angle of incidence, type of gas
employed, type of material milled, and reactive gas
influence. Increasing the acceleration voltage raises the
milling rates almost linearly. For most materials, max-
imum milling occurs at an angle 40° - 60° from normal.
Ion milling etch rates are slow. Using Argon at 500
volts, normal incidence, and lmNcm 2 beam current
density, the following etch rates
have been obtained:

Structurally Induced Straightness
Effects
Because of the slow etch rates, only
very low t/d plates are practical if the
orifices are made entirely using ion
drilling. Therefore, only single row
plates could be used. If a secondary
process is used to open the entrance,
large thickness ratio plates could be
made, allowing heat transfer effects to
determine the number of rows.

Hydrodynamically Induced
Straightness Effects
The combination of low Vd and sharp
edge entry flow region would be of
concern for an entirely ion milled
plate. The formation of a tapered
entrance by a secondary process

would eliminate entry flow effects, but would create the
potential for misalignment of the two processes. The
short I/d downstream of the entrance would not be able

to eliminate the effects of misalignment.

Past Experience at Achievin,q 5 mrad Straightness
No past experience is known.

Stainless steel
Aluminum
Titanium
Glass (Na, Ca)

250-275 _min.
300-600 ,lVmin.
150-350 _min.
200-220 Jr_/min.

At 250 _min., it would take ap-
proximately 17 hours to drill a
251_mdeep hole in stainless steel.
This is one of the main drawbacks
to ion milling. The second problem
is that of finding a masking mater-
ial that is much more resistant to
the ion beam than the substrate
material. A typical ion milled ori-
fice geometry is shown in
Figure 26.

Materials
Almost any material can be used.
The etch rates are very slow and
when a mask is used, the etch
rate of the mask material must be
slower than the substrate.

Nozzle Cross-Section

With Entrance Opening
Made by a Secondary Process

Nozzle Cross-Section

Entirely Ion Milled

Figure 26: Ion Beam Machined Orifice Geometry

t
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Strai.qhtness Estimate
The process combines some form of photolith-
ography with ion milling. Both processes
should produce clean, uniform surfaces.
Therefore, the potential is good. 5 mrad could
be achieved if it were not for the process
limitations.

Direction of Effort To Improve Straightness
Because of the low process speed, this
method is not recommended.

3.3.11 Fotoceram
Description of Method
Fotoceram glass has one unique property.
Where it is exposed to UV light, it crystallizes
when heated in a furnace. The use of Foto-
ceram glass in orifice plate fabrication is as
follows:

U.V. Light

_Photomask

Only glass

exposed to U.V. light

Figure 27: Fotoceram Orifice Array Fabrication Process

A photomask would be made which exposes
only the areas where the orifices are desired,
as shown in Figure 27. A sketch of the typical
process flow is shown in Figure 28. This
material is then baked. Crystallization occurs
in the exposed areas. These crystallized areas
are subject to etch rates 15 to 20 times higher
than the uncrystallized material. After etching,
the substrate is fired into ceramic form for
strength. The main limitation of this method is
that shrinkage during the firing process cannot
be controlled accurately.

Materials

The starting material is a piece of photosen-
sitive glass. It will be fired later to produce
Fotoform opal or Fotoceram.

Structurally Induced Straightness Effects
As with microchannel plates, fotoceram plates
would have a modulus of elasticity only one
third that of steel. Thus the load to strength
ratio for fotoceram plates will be at the high
end of the range examined, and even though
thickness ratios of up to 10 are possible, the
number of rows will probably be limited to 11
or less.

¸¸ 11----3

Starting Glass

UV Masking Step

Controlled Heat

Treatment

Hydroflouric Etch

uv Expose

Fired to Form Opal or
Fotoceram

Hydrodynamically Induced Straightness Effects
As with soluble core glass orifice plates and
microchannel orifice plates, fotoceram would have very
sharp corners in the entry flow region. The I/d of the
flow channel is more limited for fotoceram, however,
Because of the relatively high surface energy of glass,
the sharpness of the edge of the orifice at the exit and

Figure 28: Fotoceram Orifice Array Fabrication Process

the surface finish of the outside of the orifice plate
would be critical to jet straightness performance.

Past Experience at Achieving 5 mrad Straiqhtness
No past experience known.
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Strai,qhtness Estimate
This process could produce parts today in the 10 to 15
mrad range. With further development 5 mrad could be
obtained. This would most probably require post
processing operations.

Direction of Effort To Improve Straightness
Working closely with Coming will be necessary to
obtain acceptable plates. Improved finishing operations
may need to be developed.

3.4 Ranking of Fabrication Methods
In order to compare the various methods of orifice array
fabrication, eight items were identified. These are listed
on the left hand side of Table V. The fabrication
methods are listed across the top. Most items were
evaluated on a scale from 1 to 5, where 5 is best.
Straightness past experience was weighted by using a
scale of 1-10, where 10 is the best. Each of the
measurement criterion is briefly reviewed below.

Straightness: Past Experience
If a method has produced arrays with straightness
better than 5 mrad, it gets a rating of 5. No experience
gets a 1.

Strai.clhtness: Projected
These estimates are applicable after a hypothetical one
year effort to improve the fabrication processes. A
rating of 5 indicates a high probability of meeting the 5
mrad specification. A 1 rating indicates a low probabil-
ity. In these estimates it is assumed that a small
number (-1%) of the holes may be plugged.

Manufacturability
This rating gives an indication of the adaptability of the
manufacturing process to volume production. A process
that produces all the holes at the same time is pre-
ferred over a one-at-a-time process. Tooling wear on a
one-at-a-time process is a negative. Cleanliness and
surface finish are also considered.

Availability
A good source of qualified vendors yields a 5 rating in
this category.

Mechanical

A good mechanical rating indicates a stiff plate and a
very small structurally induced straightness error. This
usually implies the process allows higher t/d orifice
plates.

Pressure Drop
The pressure drop rating was obtained by multiplying
the pressure coefficient (see section 2.5.0) estimated

Etched From Both Sides

Single Sided Etch

Figure 29: Fotoceram Orifice Geometries

for each orifice plate by 10. The maximum possible
rating was 10, but the maximum in value in this study
is 5. Thus a rating of 5 would indicate the lowest
pressure drop (best) and a rating of 0 the highest pres-
sure drop (worse).

Fluid Flow
This rating contains two characteristics that affect
hydrodynamically induced straightness errors. First is
the geometry of the orifice cross section which deter-
mines the flow properties. Second is the quality and
uniformity of the exit surface. Good ratings for both will
generate a 5.

Diameter Control
The specification on diameter is +5%. A process that
easily meets specification gets a 5. A process that
cannot be controlled to meet the specification gets a 1
rating.

Rankinq Result
The results from Table V are summarized below. Past

experience brings electroform and soluble core glass
fibers to the top of the list. Fotoceram and microchan-
nel plates are rated high because of the orifice
geometry, manufacturability, diameter control, and our
projections. We feel that processes that form orifices
one at time (laser, EDM and mechanical drilling) show
potential, but require a finishing process to get clean,
smooth surfaces. Using the process described above,
the result of ranking of the processes is shown in
Table IV.

3.5 Vendor Evaluation
Over fifty companies or organizations were identified
and approximately 70% of those were contacted. A list
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of thecompaniesidentifiedis shownin AppendixI.
Tripsweremadeto visitelevenof thesecompanies.
The listof companiesidentifiedis givenby process
type. Wherewe have enoughinformationto rank
companies in a given process area, the rankings are
shown to the left of the company name. Note that the
rankings are relative to LDR orifice array development
only.

3.6 Recommendations
Based on our evaluation of both the orifice array
fabrication methods and specific vendors, the following
vendors/processes were recommended for experimental
evaluation during Phase I1:

Electroform
Because of past experience in achieving jet straight-
ness <5 mrad, high volume manufacturability, and
availability of competent vendors, this method has to be
at the top of the list. Obtaining parts from both Buck-
bee-Mears and Stork-Veco was recommended.

Fotoceram
This process has the advantage of being capable of
volume manufacturing. If the material is fired to the
ceramic form, it has good temperature stability. The
orifice configuration has advantages in the fluid flow
characteristics ff etched from one side. Obtaining parts
from Coming Glass was recommend. Obtaining two
different configurations was also recommended. One
would be a single sheet with a cylindrical hole, and the
second configuration would utilize a backing layer with
a larger hole fused to the primary orifice for added
strength.

Table IV: Ranking of Orifice Array
Fabrication Methods

1. Electroform
2. Soluble Core Glass Fibers
3. Fotoceram
4. Microchannel Plates
5. Punching

Chemical Milling
7. Mechanical Drilling and Finishing
8. Laser Drilling and Finishing

Mechanical Drilling
10. Laser Ddlling

EDM and Finishing
12. EDM
13. E-Beam Drilling

recommended that NASA Lewis make some additional
orifice plates using the techniques developed at
Lawrence Livermore. We also recommended that an
outside vendor be found to aid in the finishing operation
(electro-polishing).

Chemical Milling
This technology has improved greatly over the last
several years, driven by the disk drive industry. Stain-
less steel prototype parts can be obtained inexpen-
sively and manufacturability is very good. We recom-
mended obtaining parts from Vaaco or Buckbee-Mears.

Microchannel Plates
Microchannel plates have very uniform cylindrical holes
with a large t/d ratio. Our past experience has shown
that this results in values of jet straightness much better
than 5 mrad. Obtaining these parts from Galileo
Electro-Optics was recommended because of their
experience in dealing with many different configurations
and outside customers.

Mechanical Punching
This process produces stainless steel plates of good
stiffness and flow characteristics. Based on our ex-
perience, Kasen has the best quality pads.

Mechanical Drilling and Finishinq
Based upon the reports from Lawrence Livermore
National Laboratories, we felt it important to take
another look at this process. The advantage of this
process is the attendant structural rigidities, the disad-
vantages are in the area of manufacturability. We
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4.0 Phase Ih Orifice Plate Design; Test System
Design and Fabrication; and Orifice Plate
Experimental Evaluation

Based on the Phase I results and recommendations,
NASA decided that four orifice array fabrication meth-
ods would be experimentally evaluated for jet straight-
ness performance:

,

2.
3.
4.

Electroform (two vendors)
Fotoceram
Mechanically Drilling
Microchannel Plate

In addition, two other processes (Lee Company's
etched sandwich process and Creare's EDM) were
evaluated because they were low cost "targets of
opportunity."

4.1 Orifice Plate Design
An orifice plate with 50 orifices of 75t_m diameter on
635_m centers was selected as the nominal design.
Fifty (50) orifices were selected to be large enough to
provide meaningful statistics and a reasonable test of
the fabrication process. At the same time, it was limited
enough to keep the purchase and testing costs
economical.

The 75#m diameter was selected as a compromise.
Droplet heat transfer performance increases with
decreasing droplet size. However, pressure drop
increases, the number of orifices required increases,
and contamination related failures increase as the
orifice diameter decreases. 7,8

The rather large orifice-to-orifice pitch (P/d=8.3) was
selected to produce an overall plate length significant
enough to test the fabrication processes. Also, there
was some concern that a smaller pitch would cause
some vendors to decline to furnish a quotation.

Figure 30 shows the nominal orifice plate design. The
orifice geometry detail shown is that a typical electro-
formed orifice. For processes other than electroform,
appropriate details were substituted.

The electroform orifice plates (Stork-Veco and Buckbee
Mears), the Fotoceram orifice plates, and the EDM
plates (Creare) were supplied in the nominal configura-
tion. Galileo attempted to supply a Microchannel orifice
plate in the nominal configuration, but failed. Mechani-
cally drilled (NASA), Microchannel (Galileo), and etched
sandwich (Lee) orifice arrays were supplied in "non-
standard" configurations. The geometries of these
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Figure 30: Electroform Orifice Array Drawing
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orificearraysaredescribedbelowin thesectionsthat
discusstheexperimental results.

4.2 Orifice Plate Vendor Quotations and Orders
Based on the result of Phase I, quotations were re-
quested from the vendors listed in Table VI (see
Appendix I for full company name and address). A
larger number of orifice plates were ordered for the
electroform and Fotoceram processes because most of
the cost was related to tooling charges. No quotations
were originally solicited from Lee and Creare since the
Lee process was not known to us and EDM ranked low
in the Phase I analysis. Both these companies con-
tacted MicroFab after Phase II had begun. The Creare
EDM process was being developed as a part of another
NASA heat exchanger development project. Both the
Creare and Lee plates represented very low cost
opportunities to expand the jet-straightness information
base generated during Phase II.

4.3 Drop Generator Design
Because of the relatively small size of the orifice plates
to be tested, a structurally transmitted stimulation
method g (as opposed to an acoustic method) was em-
ployed. This was accomplished by attaching the orifice
plate to an aluminum block that was excited in a length
mode (normal to the plane of the orifice plate) by two
long aspect ratio piezoelectric sheets attached to each
side of the aluminum block. The block was held at its
center so as not to restrict the desired motion. A fluid
manifold was machined into the block and fluid connec-

Table Vh Orifice Array Vendors, Quotes & Orders

Vendor Orifice
Plate Type

Stork-Veco electroform

Litchfield electroform

Buckbee Mears electroform

Coming Fotoceram

Galileo MCP

NASA drilled

Lee sandwich

Creare EDM

QR = quotation received
PR = number of orifice plates received
PT = number of orifice plates tested

QR PR PT

Y 15 4

N 0 0

Y 10 4

Y 14 3

Y 4 2

na 3 2

N 2 2

N 2 2

PZT

mounting
slot <

_-alignment pin
manifold slot

)O

38.1 mm t_

Figure 31: Drop Generator Design

tors added to both ends. Two fluid connections were
included so that high flow rate purging (or cross-flush-
ing) of the orifice plate could be used for contamination
control. Alignment pins, corresponding to the alignment
holes in the orifice plates, were pressed into the block.
Figure 31 contains a drawing of the drop generator
design and Figure 32 shows the drop generator in
operation.

4.4 Orifice Plate Assembly Process
The orifice plate/drop generator designs require that the
orifice plate be attached to the drop generator block.
Since the orifice plates are generally very thin, ad-
hesive bonding was selected as the attachment
method. A B-stage adhesive was selected. An air-brush
type sprayer was used to deposit a thin film (less than
15 microns) of epoxy onto the block. The orifice plate
was then attached, using the mounting pins for
reference. The block with the orifice plate attached was
placed into a fixture that applied uniform pressure to
the orifice plate. The fixture was then placed in a oven
to cure at 170°C for 30 minutes. Operating pressures
of up to 60 psig were used without causing failure of
the adhesive bond.
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4.5 Jet Straightness Test System
To evaluate jet straightness, a test system was
designed to hold the drop generator (with
assembled orifice plate) in a fixture so that the
jets could be observed through a microscope
with the field of view defined by the plane of
the jets. Figure 33 illustrates the system. As
illustrated by Figure 32, electronics to drive the
piezoelectric crystals and to stroboscopically
observe droplet formation behavior were
integrated with the test system. However, jet
straightness measurements were made on
unstimulated jets. All jet straightness measure-
ments were made using deionized water as
the working fluid and a pressure of 35 psig.

0

O

Quantitative jet straightness data was acquired
with this system as follows. While the jets were
flowing, the image, consisting of 4-6 jets in the
field of view, received by a CCD camera
attached to the microscope, was captured and
stored. A Targa M8 video board and the Java
image analysis system were used to accomp-
lish this. The microscope was then traversed
to the next field of view, keeping one jet in the field of
view as a reference, where the image was again
captured and stored. This process was repeated until
the images of all the jets had been captured and
stored. Each orifice plate thus required 10-11 images.

• • 0 • Q

l • l 0 t •
• • • • • •

• • • • • O
• • • • • •

q
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&

Figure 32, Drop Generator Operation,
Stork-Veco Orifice Array Driven at 40kHz

At this point, the jets were shut off and all data reduc-
tion occurred off-line.

First, the individual images of the jets were enhanced
to improve measurability. Then the centroid of each jet

DROPGENERATOR

CATCHER N I

• o

r'b-'_ ............. O'b-'}

UICROSCOPE

Figure 33: Jet Straightness test System Utilized in this Study
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at a distance of 25.4mm (along the jet) from the orifice
was determined in each captured field of view using the
object identification function of the image analysis
system. Finally, the locations of each jet at 25.4mm
from the orifice were computed using the positions calc-
ulated in each frame and the jet common to adjacent
frames.

The same process of image capture and measurement
was used to determine the locations of the orifices on
the orifice plate. While the orifice locations were being
measured, orifice area and effective diameter was
measured.

Given the starting and ending locations of the jets, the
relative jet straightness in th.e plane of the lets was
determined. Relative jet straightness is referenced to
the mean directionality of the jets whereas absolute jet
straightness is referenced to some reference plane,
usually a mounting surface of the drop generator. To
save money, a system capable of measuring only one
of the two (vector) components of jet straightness was
employed in this study.

Before acquiring quantitative jet straightness data as
described above, every orifice plate that was assembled
to a drop generator housing was qualitatively evaluated
and given a rating of A, B, or C. The grade of A meant
that, at 25.4mm below the surface of the orifice plate,
none of the jets merged or
crossed. The grade of B meant
that, at 25.4mm below the surface
of the orifice plate, <2 jets merged
or crossed. Finally, the grade of C
meant that, at 25.4mm below the
surface of the orifice plate, two or
more jets merged or crossed.
Screening plates in this manner
insured that the time consuming
quantitative measurements were
made on only the best orifice
plates.

described below.

The system, illustrated in Figure 34, uses two perpen-
dicular collimated light sources to illuminate each jet,
one at a time. The resulting diffraction/shadow patterns
are then imaged on two separate CCD arrays. The
location of the shadow on each CCD array is deter-
mined and used, along with the location of the orifice
on the array, to determine the vector jet angle. A linear
translation stage provides coarse motion (+l_m) to
locate each jet at the single focal point defined by the
CCD array optics. Location of the orifices can be
determined by measuring the orifice plate directly or by
duplicating the jet location measurement near the
orifice plate. An alternate method, made possible by
recent advances in two-dimensional CCD arrays, would
determine directionality directly from the shadow/diffrac-
tion pattern on the array.

4.6 Stork-Veco (Electroform) Orifice Plates
Fifteen (15) electroform orifice plates were received
from Stork-Veco. The overall appearance of the plates
was excellent. All of the orifices were very round with
sharp edges and smooth surface. Figure 35 shows an
SEM of a typical Stork-Veco orifice.

The orifice diameter distributions on five (5) Stork-Veco
plates were measured using the image analysis system
described above. The results are shown in Figure 36,

In our original proposal, both the
low cost system described above,
and a higher cost/performance
system were proposed as options.
The higher cost system was
based on a system built (by
MicroFab personnel) to test ink-jet
printer orifice arrays. For com-
pleteness and future reference,
the higher cost system, which
would be required for pilot or pro-
duction volume manufacturing, is Figure 35: SEM of a Stork-Veco Electroform Orifice
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and are summarized in Table VII. The varia-

tion of orifice diameter within a given plate is
very small (0.3-0.6_m), but the mean orifice
diameter varies several microns (3.2pro maxi-
mum) from plate to plate. This type of behavior
is caused by variations in the plating rate,
either over time (batch-to-batch) or at different
locations in the plating bath. Both of these
causes can be readily addressed by monitor-
ing and controlling the process closely.

Judgements about orifice diameter variation
must be made relative to the measurement
uncertainty. Repeated orifice diameter mea-
surements of orifice

plate SV-14 were

Table VII: Summary of Stork-Veco Plates
Orifice Diameter Measurements

average, p.m

std. dev., pm

std. dev., %

]lsv.,Isv21sv31,,v4IsvsI avg
|

69.3 70.5 69.8 I 72.2 67.3 69.8

0.5 0.5 0.6 0.3 0.6 0.5

0.7 0.6 0.8 0.5 0.8 0.7

std. dev. = standard deviation

made and the
measurement stan-
dard deviation was
determined (with 50
degrees of freedom)
to be 0.18p.m. Given
the lack of
sophistication of the
edge detection
method employed,
this is quite good.
However, it will be a
strong function of
orifice plate quality
(i.e., surface finish
and edge sharpness),
as will be seen with
the other orifice
plates.

Four (4) Stork-Veco
orifice plates were as-
sembled to drop gen-
erator housings and
installed in the jet
straightness test
system. Orifice plates
SV-1, SV-2, and SV-4
received an A rating
and plate SV-3 re-
ceived a B rating
(due to two jets mer-
ging) from the quali-
tative evaluation.
Quantitative measure-
ments were then
made on orifice plates
SV-2, SV-3, and
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SV-4. SV-1 was not Figure 36: Orifice Diameter Distributions, Stork Veco Plates
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testedbecauseit becamedegradedby a corrosion
problemwiththe systemthatwassubsequentlyrem-
edied.

Thequantitativejet straightnesstest results(jetangle
for eachorifice)forthethreeStork-Vecoorificeplates
areshownin Figure37 through Figure39, andare
summarizedinTableVIII.Thedatadoesnotshowany
clearly identifiable trends that might be eliminated or
improved by fabrication process modification and/or
control. This is confirmed by the histograms of the jet
straightness data shown in Figure 40 through
Figure 42. Given the number
of data points (50), the jet
straightness distributions for

!s
all three orifice plates are
approximately normal.

Only orifice plate SV-2 comes
close to meeting the require-
ments for a LDR orifice array:
99% of the jets <5 mrad.
However, the fact that the
results are fairly close to the
desired goal in the first at-
tempt is encouraging.

4.7 Buckbee Mears (Elec-
troform) Orifice Plates

Ten (10) orifice plates were
received from Buckbee

Mears. The overall appear-
ance of all the orifice plates
was good, but was consider-
ably poorer tnan that of the
Stork-Veco orifice plates. The
orifices were not as round, the
edges of the orifice were not
as sharp, and the surface was
not as smooth. Some of the
orifices had "lumps" of mater-
ial near the edge. These inter-
fered with the orifice diameter
measurements and are a

likely cause of jet straightness
degradation. It should be re-
emphasized that the quality of
the Buckbee Mears plates
was good, and only suffer
from the comparison with the
excellent quality of the Stork-
Veco orifice plates.

Table VIII: Quantitative Jet Straightness
Results Summary, Stork-Veco Orifice Plates

Standard Deviation of
Orifice Plate Jet Angle, mrad

SV-2 3.4

SV-3 5.6

SV-4 4.9

iaverage, 3 plates 4.6
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Figure 37: Jet Straightness Distribution, Stork.Veco Orifice Plate SV-2
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Figure 38: Jet Straightness Distribution, Stork-Veco Orifice Plate SV-3
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Orificediameterdistributions
on five (5) BuckbeeMears
orificeplatesweremeasured.
Theresultsfor two(2)of the
orificeplates are shownin
Figure43,andthedataforall
five orificeplates measured
aresummarizedin TableIX.
Only two of the five orifice
diameter distributions are
showninFigure43forclarity•
Theother threedistributions
aresimilarto thetwothatare
shown.The diametermea-
surementdeviationwasdeter-
mined(with 50 degreesof
freedom) from repeated
measurementsof orificeplate
BM-6to be 0.431_m.Thein-
creaseinmeasurementdevia-
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Figure 39: Jet Straightness Distribution, Stork-Veco Orifice Plate SV-4
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Figure 42: Histogram of Jet Straightness Data, Stork.Veco Orifice Plate SV-4

tion over that of the
Stock-Veco orifice
plates is attributable
to the lower quality of
the orifice plate sur-
faces and the less

sharp orifice edges
associated with the
Buckbee-Mears ori-
fice plates.

The variation of ori-
fice diameter within a
given plate is very
small (0.6-0.8_m), as
was the case with the
Stork-Veco orifice
plates. Only one of
the Buckbee Mears
plates had a diameter
variation as small as
the worst Stork-Veco
orifice plate. The
average diameter
variation from plate to
plate (2.6t_m maxi-
mum) was again
greater than the vari-
ation on any given
orifice plate, but was
less than the Stork-
Veco plate-to-plate
average diameter
variation. The com-
ments pertaining to
improvement in the
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plate-to-plate average Figure 43: Orifice Diameter Distributions, Buckbee Mears Plates (2 of 5)
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diametervariationmadein thediscussionof
the Stork-Vecoresult also pertain to the
BuckbeeMearsorificeplates.

Four(4) BuckbeeMearsorificeplateswere
assembledto drop generatorhousingsand
installedin the jet straightnesstest system.
OrificeplateBM-2receivedanA rating,plate
BM-1receiveda B rating,and platesBM-3
andBM-4receivedC ratings(dueto multiple
crookedjets) fromthequalitativeevaluation.
Quantitativemeasurementswerethenmade
on orificeplates BM-1and
BM-2.

The quantitativejet straight-
nesstestresults(jetanglefor
eachorifice)forthetwoBuck-
bee Mearsorificeplatesare
shown in Figure 44 and
Figure45, and aresummar-
izedinTableX.Theresultfor
orificeplateBM-2wouldhave
beenasgoodasthoseof the
bestStork-Vecoplate(SV-2)
if the four endjets had not
had such largeangles.His-
togramsofthejetstraightness
dataareshownin Figure46
and Figure47.Again,thejet
straightnessdistributionsfor
bothorificeplatesareapprox-
imatelynormal.

On average, the Buckbee
Mears orifice plates had
poorerjetstraightnessperfor-
mancecomparedtotheStork-
Vecoorificeplates.Theper-
formanceof the electroform
orificeplatesfromthesetwo
vendorswas close enough
(bothto eachotherandtothe
ultimate LDR performance
goal,99%of jet <Smrad) that
we do not advocate selecting
a single vendor for future
development at this time.

Table IX: Summary of Buckbee Mears Plates
Orifice Diameter Measurements

std. dev., %

JlBM'IBM21BM-3IBM-'IBM0Iavg
75.4 75.4 78.0 77.4 76.7 76.6

0.8 0.7 0.6 0.8 0.8 0.7

1.1 1.0 0.7 1.0 1.1 1.0

std. dev. = standard deviation
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Figure 44: Jet Straightness Distribution, Buckbee Mears Plate BM-1
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Figure 45: Jet Straightness Distribution, Buckbee Mears Plate BM-2
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Table X: Quantitative Jet Straightness
Results Summary, Buckbee Meats Orifice Plates

Standard Deviation of

Orifice Plate Jet Angle, mrad

BM-1 6.6

BM-2 6.0

average, 2 plates 6.3
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Figure 46: Histogram of Jet Straightness Data, Buckbee Mears Orifice Plate BM-1
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4.8 Coming (Fotoceram) Orifice
Fourteen (14) orifice plates were received from
Coming. Visual inspection revealed several
significant attributes of these plates.

1. Approximately half the orifices were fairly
round, while the rest had jagged, sawtooth
edges. The edges of the orifices were
rounded, not sharp.

2. The orifice diameter could be seen (under
a microscope, but without the use of a
scale) to vary greatly.

3. The minimum diameter on most of the
orifices was not at
the orifice exit.

Table Xh Summary of Corning Plates
Orifice Diameter Measurements

average, I_m

std. dev., pm

std. dev., %

std. dev. = standard deviation

IIOOl1oo-21oo-3Ioo,Ioo-+lay°
81.7 81.2 84.5 85.6 80.0 82.6

5.7 4.7 4.4 4.4 3.2 4.5

7.0 5.8 5.2 5.1 4.0 5.4

This indicated that
the orifices were
etched from two
sides. Having the
minimum diameter
in the interior ol
the orifice is a
likely cause of the
poor straightness
performance dis-
cussed below.

. The surface of the

Fotoceram plates
was granular (as
would be expec-
ted with this pro-
cess), flat, and
uniform. Figure 49
shows a SEM of a
typical Fotoceram
orifice.

Orifice diameter distri-
butions on five (5)
Cornlng orifice plates
were measured. The
distribution for one of
the orifice plates is
shown in Figure 48,
and the data for all

five orifice plates
measured are sum-
marized in Table Xl.
The orifice diameter
distribution for CO-5,
shown in Figure 48,
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had the least diam- Figure 48: Orifice Diameter Distributions, Corning Plate CO-5 (1 of 5)
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ORIGINAL PAGE IS

eter variation of the five plates
measured. The diameter mea-
surement deviation was deter-

mined (with 50 degrees of free-
dom) from repeated measure-
ments of orifice plate CO-1 to be
0.721_m. The large measurement
deviation is caused by the mini-
mum diameter occurring interior
to the orifice• Although the
measurement variation is much
larger than those determined for
the Stork-Veco and Buckbee
Mears orifice plates, it is still quite
small compared to the actual
diameter variation on the Coming
orifice plates.

The orifice diameter distributions
for the Coming plates had almost
five times the diameter variation

compared to those of the Stork-
Veco and Buckbee Mears (elec-
troform) orifice plates. Al-
though the amount of vari-
ation measured might be J
acceptable for an LDR ap-
plication, it is indicative of a
process that is not under
control, possibly an uncontrol-
lable process. Future LDR
orifice array development
effort should try to determine,
with Coming, if the current
results are characteristic of

what Coming can achieve, or
if the process can be signifi-
cantly improved•

Figure 49: SEM of a Fotoceram Orifice
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Five (5) Coming orifice plates
were assembled to drop gen-
erator housings. All five
cracked during curing
(170°C), probably due to
thermal expansion coefficient
mismatch. However, the
cracks on four (4) of the plates were at the edges of the
plates (ie., awaY from the orifices), and three (3) of
these did not leak. The cracks on the three plates that
did not leak had no effect on jet straightness.

A
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Figure 50: Jet Straightness Distribution, Corning Plate CO-3

The three (3) surviving Coming orifice plates/drop
generator assemblies were installed in the jet straight-
ness test system. All three received C ratings from the
qualitative evaluation. In order to have some quan-

Table XIh Quantitative Jet Straightness
Results Summary, Cornlng Orifice Plate

Standard Deviation of
Orifice Plate Jet Angle, mrad

CO-1 9.7
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titative jet straight-
ness data base for
the Coming orifice
plates, plate CO-3
was quantitatively
evaluated for jet
straightness.

The jet straightness
distribution for CO-1
is shown in Figure 50
and the overall results

are given in
Table XII. Given the
large variation in
orifice diameters and

the negative obser-
vations related to
orifice shape and the
location of the mini-
mum orifice diameter,
it is somewhat sur-
prising that the jet
straightness is only
about -50% larger
(worse) than the
average of the Buck-
bee Mears orifice

plates and -100%
larger than the Stork-
Veco orifice plates•
Figure 51 shows the
jet straightness distri-
bution for CO-3.
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Overall,the Corningorificeplateswere a surprising
disappointment.If the orificeplateshadbeenetched
fromonesideonly, the minimum diameter would be at
the orifice exit, removing one possible source of jet
straightness error. Before eliminating Corning and/or
Fotoceram orifice plates from consideration for future
LDR development efforts, discussions should be held
with Coming to determine the causes the poor orifice
quality and diameter control. In addition ,the impli-
cations of single sided etching should be discussed.

4.9 Cream (EDM) Orifice Plates
Electro-discharge machining
(EDM) was not rated very
highly during Phase land,
originalty, there were no plans
to evaluate EDM orifice plates
in Phase I1. However, Micro-
Fab was contacted during
Phase II by Creare Inc. per-
sonnel interested in providing
orifice plates for our evalua-
tion. They had developed an
EDM orifice fabrication pro-
cess for their High Heat Flux
Cold Plate for Space Applica-
tions project, a Phase II SBIR
contract (NAS9-17574). Two
orifice plates (with the correct
number of orifices and pitch)
were provided free of charge.
Since this represented a very
low cost opportunity to in-
crease the number of orifice

plate types experimentally
evaluated during Phase II, i
both of the Creare EDM
plates were measured for i
diameter distribution and jet
straightness performance.

The orifice diameter distribu-
tions for the Creare plates are
shown in Figure 52 and are

15

10

-51

-10

- 15_--- II0

summarized in Table XIII. The
diameter variation for CR-1
was the lowest (best) of the
50 hole plates measured in
this study. Taken together, the
two Creare plates had the
lowest diameter variation of

the orifice plate types evaluat-
ed in this study, along with
the Stork-Veco (electroform)
orifice plates. Diameter mea-

Table Xlll: Summary of Creare Plates
Orifice Diameter Measurements

CR-1 CR-2 avg.

average, _m 69.1 66.1 67.6

std. dev., I_m 0.3 0.7 0.5

std. dev., % 0.4 1.0 0.7

std. dev. = standard deviation
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Figure 53: Jet Straightness Distribution, Creare Plate CR-1
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Figure 56: Histogram of Jet Straightness Data, Creare Orifice Plate CR-2

surement deviation was not determined for the Creare
orifice plates, but based on the quality of the surface
finish and sharpness of the orifice edges, it is estimated
to be similar to that of the Buckbee Meats orifice plates
(0.441_m).

Both Creare orifice plates were mounted to drop gener-
ator housings and evaluated for jet straightness. Both
plates received an A qualitative jet straightness. Jet
straightness distributions for the two plates are shown
in Figure 53 and Figure 54, and the data are sum-
marized in Table XlV. Histograms of the jet straightness
distributions for both Creare orifice plates are shown in
Figure 55 and Figure 56. The average jet straightness
deviation for the Creare plates was the second lowest
(best) of the orifice plate types evaluated and was only
0.2% higher (worse) than the Stork-Veco orifice plates.

Table XlV: Quantitative Jet Straightness
Results Summary, Creare Orifice Plates

Standard Deviation of
Orifice Plate Jet Angle, mrad

CR-1 4.9

CR-2 4.6

average, 2 plates 4.8
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4.10 Lee (Etched Sandwich) Orifice Plates
During Phase II, a representative of the Lee Company
contacted NASA and MicroFab regarding their multiple
orifice ink-jet bar code printer. The print head has 64
orifices on 5081_m (0.020") centers in two rows. Lee
representatives would not discuss the fabrication
process, but by observing the orifice plate, the fol-
lowing description was surmised.

The orifices are fabricated by joining (method un-
known) thin metal plates, each with etched slots. A
photomasking process is probably used to control the
etched geometry. The slots in each plate are offset
from each other by half the pitch when the plates are
joined, producing a staggered array. After joining, the
front surface of the orifice plate is lapped, which
removes any indication
of the parts line. A

joined stainlessplates

etched channels

Figure 57: Lee Sandwich Orifice Plate Configuration

sketch of the orifice
plate design is shown in
Figure 57.

This fabrication method
was not known to us
previously, and was not
evaluated in Phase I. As
with the Creare orifice
plates, adding the Lee
orifice plates to the
Phase II evaluation
represented a very low
cost opportunity to ex-
pand the experimental
jet straightness data-
base. Two standard
orifice plates were or-
dered and received from
Lee.

The Lee orifices were
rectangular (with a 2:1
aspect ratio) and the
orifice edges were very
rounded. Both orifice
plates were measured
for orifice diameter distri-
bution, and the results
are shown In Figure 58
and summarized in
Table XV. The mean
orifice diameters are
seen to be almost
double the desired nom-

inal value, 751_m,due to
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the use of a standard Figure 58: Orifice Diameter Distributions, Lee Plates
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part.Obtaining parts with the
desired orifice diameter
would not have been dif-
ficult, if the straightness
results had been good (they
were not). The diameter
variation for one of the two
plates is fairly low (1.5%),
while the diameter variation
for the other plate is almost
3 times greater.

Table XV: Summary of Lee Plates
Orifice Diameter Measurements

average, I_m

std. dev., p.m

std dev., %

IILee,I'ee21avo
137.3 130.1 133.7

2.1 5.3 3.7

1.5 4.1 2.8

std. dev. = standard deviation

Table XVh Quantitative Jet

Straightness Results Summary,
Lee Orifice Plate

Orifice Plate
Standard

Deviation of
Jet Angle,

mrad

iI Lee-1 7.6

Because the Lee orifice

plates came already assem-
bled to their own drop gener-

ator housing, a special hol- ' 15I_ _

ding fixture was designed and
fabricated to adapt the Lee lo
drop generator to the jet
straightness test system. Both
plates were mounted in the jet ._ 5
straightness test system and

bothweregivenaCqualita-_'_ ii__

tive jet straightness rating. For
completeness, one of the two _,
Lee orifice plates was quan-
titatively evaluated for jet
straightness. Figure 59 and
Table XVI show the jet

straightness test results for -_5_ _
Lee-1. Figure 60 gives a his-
togram of the jet straightness
distribution for orifice plate
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Lee-1. As can be seen, the Figure 59: Jet Straightness Distribution, Lee Plate Lee-1

straightness results were very
poor. Based on our current understanding of the we do not recommend pursuing further development
fabrication process and on the test results of this study, efforts with the Lee orifice plates.

I I

-20 -10

__ Percentof Jets

{£;

0 10 20

Jet Stmiohtness, mind

20

16

;',tE/////_/t/. ,;//i ,_,

4, p"/,;y//,,/:_,k'/,///_

0 I0 15

Jet Straightness, mrad

rt_ _ve
_lt

rJ_J_

2O

t00

80

60

¢0

2O
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4,11 Galileo (Multichannel) Orifice Plates
The Microchannel Plate (MCP) fabrication process de-
scribed in section 3.3.8 was developed specifically to
produce a very high density of orifices in a small area.
For their normal electronic, optical, and internal hydro-
dynamic applications, the high orifice density of MCP's
is very advantageous. However, if used as an orifice
plate whose function is to produce distinct jets, as is the
case for this study, the very high orifice density has two
drawbacks. First, jet merging can occur at very short
distances from the orifice exit, even if the jets are all
<5 mrad, making jet identification and straightness
measurement difficult, if not impossible. Second,
transient wetting of the orifice plate during start-up can
cause two or more jets to merge in a pool of fluid at the
orifice plate. Some of these jet groups will not separate
after the start-up transient, again making jet identifi-
cation and measurement difficult. Both these conditions
are also undesirable for an operational LDR array.

In light of the above, discussions were held with Galileo
personnel to define a configuration that would be both
testable and manufacturable at a reasonable cost (and
time) in small quantities. To produce a custom orifice
plate for this study from stock microchannel material,
Galileo planned to mask off most of the fibers before
the etching process. Only fibers that were approxi-
mately in the desired locations would then have the
core glass etched out to produce an orifice. Total cost
was quoted at $2,100 per orifice plate. Because of the
high cost in small quantities, only two orifice plates
were ordered from Galileo.

To insure that a MCP orifice plate would be available
for testing even if the custom orifice plate was not
delivered, two standard configuration orifice plates
(glass capillary arrays in Galileo's terminology) were
ordered. The standard configuration arrays (circular)
were 13ram in diameter, l mm thick, and contained
100_m diameter orifices. The 1001_m diameters were

Table XVII: Summary of NASA Plates
Orifice Diameter Measurements

average, _m 67.3 90.2 na

std. dev., I_m 0.9 1.9 1.4

std. dev., % 1.4 2.1 1.8

std. dev. -- standard deviation

note: 15 orifices per orifice plate

the closest available stock parts. Galileo normally
makes this product in much smaller diameters
(10-201_m).

No functional custom parts were received from Galileo,
due to problems they had with the etching and laser
cutting processes they were using. Four (4) "best effort"
parts were received, but after assembling three (3) to
drop generator housings, it was discovered that none
of the holes were open. In addition, we noted that the
overall orifice quality was much poorer (out of round
orifices, rounded edges, and large variation on dia-
meter) than what we had expected, both from previous
experience and from Galileo's literature. We were in-
formed that Galileo uses two types of glass fibers in
their production. The fibers used in the parts sent to us
(soda lime glass) do not have the precise diameter
control that the other fibers have. Any future work with
Galileo should specify the type of fiber used and a
resultant orifice quality.

Since no custom plates were received from Galileo,
special drop generator housings were fabricated for the
13mm diameter standard pads. The drop generator
housing had a slot with dimensions 0.8mm x 32mm
over which the array was mounted. It was hoped that
a sheet of jets <4-5 jets thick would be produced and
some individual jets would be distinguishable enough to
make jet straightness measurements. However, even at
60 psi, no individual jets could be produced using either
Galileo standard arrays: the jets coalesced immediately
into one large "jet."

MicroFab personnel have fabricated soluble core glass
arrays, using Galileo optical fibers, with 220 orifices and
having all the jets <3 mrad. The current results are
therefore both surprising and disappointing. It appears
that producing quality glass fiber orifice plates for
evaluation for an LDR application will require a much
more time consuming (and expensive) effort than
anticipated. Based on the degree of difficulty Galileo
experienced in trying to modify their high density arrays
to produce a lower density array, as is required by an
LDR application, we recommend that future efforts with
soluble core glass fibers be directed toward arrays
fabricated in the manner described in section 3.3.7.

4.12 NASA (Mechanically Drilled) Orifice Plates
Three (3) mechanically drilled orifice plates were
received from NASA Lewis. Each had only 15-16
orifices on 6351_mcenters, due to fabrication difficulties.
One of the plates had some form of contamination in
seven (7) of the orifices which could not be removed,
even with vigorous and extended cleaning. One of the
two remaining orifice plates had a nominal orifice
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diameterof 70p.mand the
othera nominaldiameterof
901_m.Visualinspectionofthe
orifice plates indicatedthat
the orificequalitywasgood,
with roundholesand sharp
edges.

Thetwo (2) uncontaminated
orificeplatesweremeasured
for diameterdistribution.The
resultsareshowninFigure61
and are summarized in
TableXVII. The variationin
diameterforthemechanically
drilledorificeplateswasfairly
low (good),but greaterthan
thediametervariationfor the
electroformand EDMorifice
plates.Becauseof the low
number of holes (15, as op-
posed to 50 on the standard
orifice plates), care should be
taken in comparing the
mechanically drilled orifice
plate results (both diameter
and straightness) with the
other orifice plates.

94

90

o 86

r-

._ 69

I I i
2 4 6 8 10 12 14

OrificeNumber

1 • i ] I I I I I I I I I I ]
2 4 6 8 10 12 14

Orifice Number

Table XVllh Quantitative
Jet Straightness

Results Summary,
NASA Orifice Plate

Orifice
Plate

Standard
Deviation

of Jet
Angle,
mrad

NASA-1 5.7

NASA-2 4.0

average, 4.9
2 plates

15

i0

5

-i0

-15

Figure 61: Orifice Diameter Distributions, NASA Plates
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Figure 62: Jet Straightness Distribution, NASA Plate 1

Both NASA orifice plates were mounted to drop gener-
ator housings and evaluated for quantitative jet straight-
ness and both received an A qualitative rating. The
straightness distributions measured for each orifice

plate are given in Figure 62 and Figure 63, and are
summarized in Table XVIII. No histograms of the jet
straightness distributions are given because of the low
number of jets. Overall, the straightness of the NASA
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orificeplateswasasgoodas
any of the orifice plates
tested,butthe lownumberof
jets tempers this result
somewhat.

4.13 Summary of Orifice
Plate Testing Results

Diameter measurements for

the seven (7) orifice plates
resulted in a very clear dis-
tinction between orifice plates
with good orifice diameter
control and those with poor
orifice diameter control. Both

types of electroform (Stork-
Veco and Buckbee Mears)
plates, the EDM (Creare)
plates, and the mechanically
drilled (NASA) plates had
average diameter standard
deviations <1.51_m. In con-
trast, the Fotoceram
(Coming), etched sandwich
(Lee), and Microchannel Plate
(Galileo) plates all had aver-
age standard deviations
>3.5t_m for the orifice dia-
meters. The orifice diameter
measurement results are
summarized in Table XlX.
Note that the Galileo plates
were not actually me'asured
for orifice diameter and are
included in the >3.5p.m aver-
age standard deviation categ-
ory on the basis of visual
inspectionof the orifice plates.
Also note that inclusion of the
NASA orifice plates in < 1,5_m
average standard deviation
category is based on much
less statistically significant
data (15 orifices per plate as
opposed to 50 or greater on
the other orifice plates).

Table XlX: Orifice Diameter Measurements,
Summary of Results for All Seven (7) Orifice Plate Types

Orifice Plate Type
& Vendor Number of

Plates Measured
Average

Diameter, pmi

Electroform, 5 69.8 0.5
Stork-Veco

Eiectroform, 5 76.7 0.7
Buckbee Mears

Fotoceram, 5 82.6 4.5
Corning

EDM, 2 67.6 0.5
Creare

Etched 2" 133.7 3.7
Sandwich,Lee

Multichannel Plate 0"" na na
Galileo

2"" na 1.4Mechanically
Drilled, NASA

TOTAL 21

The jet straightness perfor-
mance of the seven (7) orifice
plate types generally followed
the orifice diameter results,
but did not produce as clear a division in quality. The
best orifice plates, the Stork-Veco electroform, the
Creare EDM, and the NASA mechanically drilled orifice
plates, all had average jet straightness standard devia-

Average
Standard

Deviation, pm

* Nonstandard arrays (64 orifices), but very similar to standard array.
** Nonstandard, high density orifice arrays.
*** Nonstandard arrays, 15jets per, 70pm and 90pm nominal diameters.

Figure 63: Jet Straightness Distribution, NASA Plate 2

tions <5mrad for the one component of jet straightness
measured. Although having a one component (_<5mrad
is respectable for a first attempt, the LDR requirement
that 99% of the jets be <5mrad is equivalent to
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Table XX: Jet Straightness Measurements,
Summary of Results for All Seven (7) Orifice Plate Types

Orifice Plate Type
& Vendor

Number of Plates
Evaluated for

Qualitative Jet

Straightness

Qualitative

Ratings

Number of
Plates Evaluated
for Quantitative

Jet Straightness

Average
Standard
Deviation,

mrad

Electroform, 4 3 - A 3 4.6
Stork-Veco 1 - B

Electroform, 4 1 - A 6.3
Buckbee Mears 1 - B 2

2-C

Fotoceram, 3 3 - C 1 9.7
Coming

EDM, 2 2 - A 2 4.8
Creare

Etched 2" 2 - C 1 7.6

Sandwich,Lee

Multichannel Plate 2°. 2 - C 0 na
Galileo

Mechanically 2"" 2 - A 2 4.9
Drilled, NASA

19 11
TOTALS

* Nonstandard arrays (64 orifices), but very similar to standard array.
** Nonstandard, high density orifice arrays.
*** Nonstandard arrays, 15jets per.

<_<l.9mrad for a normal distribution. For a rectangular
sheet LDR configuration, 3 only the jet straightness
component normal to the line of centers of the orifice
rows need be considered for all but the end jets.
Therefore, the G<l.9mrad requirement applies to that
component only. For a triangular sheet configuration, 3
both components of jet straightness are important and
the c<1.9mrad criterion applies to the total jet straight-
ness error. Assuming the two components of jet
straightness are independent, a total c<1.9mrad would
be equivalent to each component having _<l.3mrad.
Thus, even the best orifice plates in this study have a
long way to go before achieving the required straight-
ness.

The rest of the orifice plates tested fell into two groups:
the Buckbee Mears electroform and Lee etched sand-
wich orifice plates had straightness standard deviations
in the range 6-8mrad, and the Coming Fotoceram and

Galileo Multichannel plates had straightness standard
deviations >9.Smrad. Although the jet straightness for
the plates in both these categories was poor, these
plates had jet straightness performance as close to the
performance of the best plates as the best plates were
to the ultimate goal, the Galileo plate being the only
exception!

The jet straightness test results are summarized in
Table XX. Note that the Galileo plates were not actually
measured for jet straightness and are included in the
>9.5mrad average standard deviation category on the
basis of visual observations. Also note that inclusion of

the NASA orifice plates in <5mrad average standard
deviation category is based on much less statistically
significant data (15 orifices per plate as opposed to 50
or greater on the other orifice plates).
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5.0 Discussion and Conclusions
The results of this study would seem to indicate further
development efforts be concentrated on electroform,
EDM, and possibly mechanically drilled orifice plates.
Before proceeding along these lines, the results of this
study should be shared and discussed with the ven-
dors. Both EDM and mechanical drilling received low
ratings for manufacturability in the Phase I evaluation
and, unless these vendors have significantly improved
their processes, the favorable jet straightness results in
Phase II do not in themselves make these processes
candidates for further study. When manufacturability is
considered along with the experimental results, the only
fabrication process clearly recommended for further
development efforts is electroform, with Stork-Veco
being the preferred vendor.

As discussed above, the results for the Fotoceram
(Corning) and Multichannel Plates were extremely
disappointing. The Fotoceram process is one of the
most appealing for an LDR array application because
of its suitability to volume production of large arrays.
The Microchannel Plates are the commercially available
process closest to the soluble core glass fiber process,
which is the only process to have demonstrated the
ability to produce arrays with 100% of the jets <5mrad
(<3mrad in some cases). Therefore, before dropping
Fotoceram from further consideration, discussions
should be held with Coming personnel to see if minor
modifications to their process can significantly improve
jet straightness. In particular, modifications to improve
hole quality and to insure the minimum orifice diameter
is at the orifice exit should be addressed. In addition,
discussions should be held with Galileo personnel to
explore the possibility of their generating a low density,
high quality orifice array for the LDR application.

6.0 Recommendations
Most of the orifice arrays evaluated in Phase II were
single row, 50 hole arrays of 75_m diameter on 625_m
centers (nominally 3.2cm long). As currently envisioned,
a subassembly of a Liquid Droplet Radiator (LDR)
system will consist of a 4000 hole drop generator
configured in a 20x200 array of 75-1001_m diameter
with the orifice pitch/diameter in the 4-6 range. The next
logical step in.the development of an LDR orifice array
would be to obtain orifice plates with:

More rows

The most straightforward approach would keep the
number of orifices at 50, orifice diameter at 751_m,and
the orifice pitch at 625p.m, while increasing the number
of rows to 5. Depending on the response of the vendors

selected and the data obtained from 5 row arrays, the
number of rows might be increased to 10.

More orifices in one row
The length of a 200 hole per row array with 751_mdia-
meters and a pitch/diameter ratio of 4 (3001_m) would
be nominally 6cm. This represents a minimum array
length because of the small orifice diameter and the
low pitch/diameter. As a first step, this array length
would be used with the current 75p.m orifice diameter
and 6251_mpitch. Rounding up, this would result in 100
holes in a row. As this is not a large increase in the 50
holes used in the present study, two rows would be
desirable.

Smaller pitch/diameter
The pitch/diameter ratio affects the overall size, and
thus weight, of the drop generator. In addition, struc-
turally induced jet straightness effects are a function of
pitch/diameter. In both cases, low values are better, up
to the point where heat transfer performance is de-
graded. A simple extension of the current work would
be to obtain arrays of 100 orifice with 751_mdiameters
on 300_m centers. These arrays would require no
modification of the existing jet straightness tester.

Based on the above, the following future effort is
recommended:

Task h Low Pitch/Diameter
Orifice Plate Evaluation

From each of 2 vendors, obtain 5-10 single row orifice
plates, each with 100 holes with diameters of 75t_m on
3001_m centers. Fabricate drop generator housings,
measure orifice diameters, assemble the orifice plates
to the housings, measure jet straightness, and reduce
and analyze the data. Compare the results with the
Phase II results with single row, 50 hole plates with
751_mdiameters on 300p.m centers.

Task Ih Multiple Row
Orifice Plate Evaluation

From each of 2 vendors, obtain 5-10 multiple row
orifice plates (4-6 rows, depending on vendor response
to the RFQ), each row having 50 holes with diameters
of 75_m on 625_m centers. Design and fabricate drop
generator housings, design and fabricate modifications
to jet straightness tester mechanical and fluid systems,
measure orifice diameters, assemble the orifice plates
to the housings, measure jet straightness, and reduce
and analyze the data. Compare the results with the
Phase II results with single row, 50 hole plates with
75pm diameters on 3001_m centers.
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Task II1: Full Length Orifice
Plate Cost Estimate

From each of 2 vendors, obtain estimates for the cost
of producing 5-10 orifice plates with 5-10 rows, each
row having 100 holes with diameters of 751_m on
6251_m centers.
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Appendix I: Vendor List

Over fifty companies or organizations were identified
and approximately 70% of those were contacted. The
list of companies identified is shown below. Trips were
made to visit eleven of these companies. The list of
companies identified is given by process type.

Where we have enough information to rank companies
in a given process area, the rankings are shown to the
left of the company name. Note that the rankings are
relative to LDR orifice array development only.

Electroform - Plating
Stork-Veco
68 Harvard Street
Brookline, MA 02146

Buckbee Mears
245 E. 6th Street
St. Paul, Minnesota 55164

EMF
3025 Janitell Road
Colorado Springs, CO 80901

Optical Radiation Corporation
1300 Optical Drive
Azusa, California 91702

GAR Electroforming
Augusta Drive
Danbury, Connecticut 06810

AMT - Xerox
Jefferson Road
Rochester, New York

A.J. Tuck Company
10 Tuck Road
Brookfield, Connecticut 06804

GAR Electroforming
Augusta Drive Commerce Park
Danbury, Connecticut 06813

T.V. Jay Company
1771 W. Sunnyside Avenue
Chicago, Illinois 60640

Hanovia
100 Chestnut Street
Newark, New Jersey 07105

Chemical Milling
Optifab, Inc.
1550 W. Van Buren
Phoenix, Arizona 85007

Photo Milling Inc.
2437 Radley Court
Hayward, California 94545

Litchfield Prec. Comp., Inc.

MECH - TRONICS Corp.
1635 N. 25th Ave.
Melrose Park, Illinois 60160

Photo Fabrication Eng. Inc.
2 Granite Park
Millford, Massachusetts 01757

Tech - Etch, Inc.
45 Aldrin Road

Plymouth, MA 02360

Vacco Industries
10350 Vacco Street
South El Monte, CA 91733

Hutchinson Technology Inc.
40 West Highland Park
Hutchinson, Minnesota 55350

Laser Drilling
EBTEC
630 Silver Road
Agawam, Massachusetts 01001
Laser Fare Ltd., Inc.

f Industrial Drive South
Lan Rex Industrial Park
Smithfield, R.I. 02917

Precision Aperture
P.O. Box 10863

Fort Wayne, Ind. 46854

2

Raytheon Company
4th Avenue

Burlington, MA 01803

Control Laser
7503 Chancellor Drive
Orlando, Florida 32809

Chicago Laser Systems, Inc.
4034 North Nashville Avenue
Chicago, Illinois 60634

Lumonics
12163 Globe Road
Livonia, MI 48150

Coherent General Inc.
1 Picker Road
Sturbridge, MS 01566

Image Micro Systems
900 Middlesex Turnpike
Billerica, MA 01821

XMR
5403 Betsy Ross Dr.
Santa Clara, CA 95054-1102

Electro-Dischar,qe Machining
Panasonic
One Panasonic Way
Secaucus, New Jersey 07094

Creare
Etna Road, P.O. Box 71
Hanover, NH 03755

Electrocut - Pacific
1058 Terminal Way
San Carlos, California 94070

Aerospace Techniques, Inc.
5-A Pasco Hill Rd.
Cromwell, CT 06416
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WestHartfordTool& DieCo.
840HolmesRoad
Newington,Connecticut06111

NewEnglandDieCo.,Inc.
49FordAve.
Waterbury,Connecticut06111

SpectrumManufacturing,Inc.
140HintzRoad
Wheeling,Illinois60090

F.D.MillerToolCompany
RD1 Box282
Brodbecks,Penn.17329

Mechanical Punchin,q/Broachin,q
Accurate Products Company
404 Hillside Avenue
Hillside, New Jersey 07205

Chatham Precision Inc.
342 Union Street

Stirling, New Jersey 07980

Fairview Machine Company
427 Boston Street
Topsfield, MA 01983

Nikkoshi Co., Ltd.
151 East Post Road
White Plains, New York 10601

Dupont

Celanese

Kasen
Japan

National Jet

Nippon Nozzles, Japan
Frey, German
Ceccheo, Italian

Mechanical Drilling
NASA
Lewis Research Center
Cleveland, Ohio

1 Lawrence Livermore Labs

National Jet
10 Cupler Drive
LaVale, Maryland 21502

Ted PeUa Inc.
P.O. Box 510
Tustin, California 92681

M.A. Ford Company
Davenport, IA

International Carbide
Jamesv_le, Wl

Soluble Core Glass Fibers
None available

Multichannel Plates
Varian Image Tube Division
Microchannel Plate Operation
601 California Avenue
Palo Alto, California 94303

Galileo Electro-Optics Corp.
Galileo Park
Sturbridge, MS 01518

Electron Beam Machinin.q
M.G. Industries, Systems Div.
9427 Fountain Blvd.
Memomonee Falls, WI. 53051

Laybold Inc.
120 Post Road
Enfield, CT. 06082

Ion Drilling
Commonwealth Scientific Corp.
500 Pendleton Street
Alexandria Virginia 22314

IICO
3350 Scott Blvd.
Santa Clara, California 95051

Fotoceram
Coming Glass Works
MP 21- 3- 4

Coming, New York 14831

Hoya Glass
Japan
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