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Results

In this chapter the_resuhs of compositional and microstructural analyses of the so-
i_ *

lidified ingots are presented and discussed. The results are presented in two sectidns: 1)

Solidification with axial vibration, and 2) Current-induced perturbations. The Vibration

section consists of the microstructural and compositional analyses of the ingots solidified

with and without vibration, the vibration-induced dynamic acceleration measurements, and

the macroscopic growth rate measurements using an interface demarcation technique.

The Current-induced Perturbations section includes the results of solidifica-

tion of an ingot with alternating current pulses, the current interface demarcation in an

alloy of In0.:Ga0.sSb, and in - situ temperature measurements in the charges of GaSb and

ln0.2Ga0sSb during passage of electric current.

4.1 Solidification with Axial Vibration

Several ingots with a feed composition of In0.2Ga_.sSb were directionally solidified

with and without axial vibration of the ampoule. Table 3.l shows the experimental condi-

tions for all the runs (this table is given in the Experimental chapter). An axial temperature

gradient of 30-35 °C/cm (measured in using a K-type thermocouple in an empty ampoule)

and an ampoule lowering rate of 8 ram/day or 2] ram/day were used in these solidification

experiments. The actual axial temperature in the charge would be expected to be lower

than in an empty ampoule. Such a difference arises primarily from the higher thermal con-
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ductivityof a charge as compared to air.The temperature profileof the furnace used in

our experiments was "thermallystable_, meaning that the temperature increasesupward

intothe furnace.

The freezingtemperature of Ino.2Gao.sSbisabout 6g0°C. Due to rejectionof

IriSh,the freezingtemperature decreasesalong the ingot.For good mixing of the melt and

equilibriumat the freezinginterface,the freezingtemperature ispredictedto vary from

690°C initiallyto 530° near the end of growth. Comparing the furnacetemperature profile

and the range of freezingtemperature, the initialsolidificationfrontwas expected to be

near the heaterand adiabaticzone boundary. The freezingtemperature at the finalstages

of solidificationwould be in the vicinityofcoolerand adiabaticzone.

4.1.1 Constitutional Supercooling in InSb-GaSb

For solidification of In0.2Ga_ sSb feed composition, a growth rate of 8 ram/day and

an axial temperature gradient of 30-35°C/cm should avoid constitutional supercooling in

the InSb-Gagb growth system. However, the temperature gradient in a charge is expected

to be lower than 30-35°C/cm measured in an empty ampoule. At 21 ram/day growth rate.

an axial temperature gradient of 30-35°C/cm or less(as in an ampoule wi_h a charge under

the same furnace setting) may" not be large enough to avoid constitutional supercooling in

the InSb-GaSb system.

To show the ralidity of the above statement, we may use equation A.8 describ-

ing the conditions for avoidance of constitutional supercooling given as (see Appendix A

for more details):

mVXt Co(k,
Z) CI -l) (4.])

Here m isthe slope of the liquiduscurve,k, isthe interfaclaIdistributioncoefficient,Cc

and C! are the totalmolar concentrationof solutein the solidand liquid,respectively,A'_

isthe mole fractionof solutein the liquidat the interface,and V isthe growth rate.C_

and C! are calculated using the density and molecular weight data given in Appendix B

and C. Fitting the liquidus curve for the phase diagram of InSb-GaSb we obtain:
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T -- 709.5- 93.1Xj- 96.1X_ (4.2)

where X_ is the mole fraction of InSb in the liquid. The slope of the liquidus is determined

as:

dT (4.3)rn = _ = -93.1 - 192.2X_
dX_

From the phase diagram, the equilibrium distribution coefficient ko is determined as a

function of liquidus composition as:

X, = 0.12 + 0.721X_ - 2.3TX_ ÷ 2.57X 3 (4.4)
ko = X'-_

where X, is the mole fraction of solute in the solid at the equilibrium interface. Assuming

that equilibrium prex_ils at the interface, the interracial distribution coefficient is the same

as the equilibrium distribution coefficient, i.e. k, = ko.

Figure 4.1 shows plots of equation (4.1) for Gtc,,,c,l versus X_ mole fraction

of InSb in the liquid at the interface for growth rates of 8 mm/day and 21 mm/day and

an assumed diffusion coefficient of 2x10 -s crn2/$. The growth system is predicted to be

stable for imposed temperature gradients above the curves and unstable for values below

the curves for the given growth velocities. Interface breakdown is expected to appear as

a cellular or dendritic structure resulting in axial and radial compositional fluctuations.

The compositional _'ariations arise from trapping of solute within the cellular structure or

dendrites.
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Figure 4.1: A plot of Gu,i_i_t in equation 4.1 versus mole fraction of InSb in the melt for

InSb-GaSb system. Two growth rates were used: 8 ram/day and 21 ram/day. The system

is predicted to be stable for an imposed temperature gradient above the curve and unstable

for values below the curve for the given growth velocity.
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4.1.2 Axial and Radial Compositions

The axial and radialcompositionprofilesofthe ingotswere determined usingenergy

dispersivespectrometry (EDS). The mole fractionofInSb was measured at I mm inter_ls

along the longitudinalsections.The radialcompositionalprofileofingotswas determined at

I mrn interv'4lsacrossthe samples taken from positionsalong the ingot.The experimental

EDS analysistechniqueisdescribedin detailin Chapter 3. The EDS analysiscalculations,

a compositional model for good mixing in the melt, calculationof the longitudinalcon-

centrationprone, and the erroranalysisof the EDS spectradata, are given in Appendix

B.

Solidificationat 8 mm/day Translation Rate

Figure4.2shows axialcompositionsversuslongitudinalpositionofIntGai_rSb ingots

wit],feedcomposition of z_=0.2. These ingotswere directionallysolidifiedat $ ram/day am-

poule trans]alionrateand 30-35"C/cm axialtemperature gradient(measured in an emply

ampoule usinga E-Lvpe lhermocouple).The complete mixing theory curve was calculated

using the formulalionsgivenin Appendix B. Within experimeta]errorthe composition pro-

filesallcorresponded to good mixing in the melt forallingotssolidified,bo_h with and

without vibration.

The elevatedindium composition in the firstto freezeportion of the ingol

was probably due to rapid freezingfollowingnucleationfrom a supercooledmelt. Similar

initialcompositional_riationsdue to delayednucleationwere alsoobserved indirectional]y

solidifiedPbrSnx-=Te [84]and ]n=Gax_rSb [6]ingots.

Figures4.3 and 4.4show radialcompositionalprofilesofingotsD] (no vibra-

tion)and V5 (40Hz,0.1mm). The concentrationwas very uniform acrossthe ingot.Near the

lastportionof the ingotto freeze,the compositionalvariationacrossthe ingotsincreased.

This radialsegregationmight have been due to the shape of the interfacebecoming more

concave as compared to the intia]sectionsof the ingot. Such changes in the liquid-solid

interfaceshape were revealedby inlerfacedemarcation technique(detailsare given in the

sectionon Liqu)d-SolidInterfaceShape). A largerradialsegregationisexpected near the
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Figure 4.2: AxJa] composition profdes of ingots Dl(no vibration), Vl(10 Hz, 0.5 mm am-

plitude), V2(20 lqz, 0.5 mm amplitude), and V5(40 ]-Iz and 0.I mm amplitude). The mole

fraction of InSb is given versus mole fraction solidified along the ingot, All experimental

profiles correspond to good mixing in the melt.
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end of the ingot because the concentration change more rapidly near the end of ingot and the

interfacebecomes more concave. The wavy form of the radialcomposition at 90% fraction

solidified of ingot D1 (no vibration) could have been due to enhanced mixing induced by

MaragonJ convection near the top of the free melt surface. In ingot V5 (40Hz,0.1mm), the

radialcomposition variationsnear the end were largeand asymmetrical. These _ariations

could have been due to Maragoni convection at the free-meh surface, or oscillatory motion

_0.8

of the free melt surface by vibration.
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Figure 4.3: Radial composition profiles of ingot D1, which was solidified without vibration

Here g is the longitudinal mole fraction along the ingot•

The axial composit.;on profdes of ingots V3 (20Hz, 1.0 mm amplitude), V4

(30 Hz, 0.5 mm amplitude), and V6 (100 Hz, 0.05 mm amplitude) are given in Figures

4.5, 4.7, and 4.8. The composition profiles corresponded to good mixing in the melt. The

experimentM curve is a little higher than the theoretically calculated curve. This difference

could be due to EDS experimentM errors and to deviation of the initial feed composition

was from 20% mole InSb. Figure 4.6 shows the radial compositional profile of ingot V3 (20

Hz, 1.0 mm amplitude). The radial profile is uniform in composition. During solidification

of ingots V3, V4, and V6 the furnace was shut off after partial solidification of the melt
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in order to reveal the shape of the interface (results of interface shape are given in section

4.1.3).

The InSb-GaSb growth system is solutMly stable, since the density of the

rejected component, i.e. IriSh, is more than the preferentiMly incorporated component,

GaSh. All of these ingots were directionMly solidified under thermMly and solutMly stable

conditions. Vigorous convection is not anticipated under thermally and solutMly stable

conditions. The good mixing profile in the ingots solidified with vibration w_ due to

enhanced mixing by vibration of the ampoule. However, the axial composition profile of

ingot D1, solidified without vibration, corresponds to a profile for good mixing in the melt.

The good mixing could have been due to convection induced by radial concentration and

temperature gradients and/or molecular diffusion. Since the growth rate of 8 ram/day was

,'cry slow, there might have been sufficient time for diffusion to mix the rejected solute a_

the interface with the entire liquid (explained in the Discussion chapter).
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Figure 4.4: Cross-sectional composition profiles of ingot V5, solidified with vibratior, at 40

Hz and 0.1 mm amplitude. Here g is the longitudinal mole fraction along the ingot.

1.u in , , ,
L

cO.B F
I
F (_]_20 Hz, ! mm aml_iitude.t- ! Complete mixing _tbeory).

.£0.6 _-

_'0.4

"50.2

0"00. 0

Figure 4.5:

Ia demarcaLion

I

I

I

I

! r,

_ 0
!

!

_ 0
!

m

0 -

,l, _ 0
000 0

)oooor_oo_
1 , I _ ! _ 1 , .

0.2 0.4 0.6 0.8 1.0
Mole Fraction Solidified

Axial composition profile of ingot V3 directionMly solidified at 8 ram/day

ampoule translation rate and axial vibration of 20 Hz frequency and 1.0 mm amplitude.

The curve corresponds to good mixing in the melt.
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Solidificationat 21 mm/day Translation Rate

Three ingotswith In0._GaosSb feedcomposition were solidifiedat 21 ram/day am-

poule translationrateand 30-35 °C/cm axialtemperature gradient(measured in an empty

ampoule). One ingot was solidifiedwithout vibration,one with axial vibrationat 20 Hz

frequency and 0.5 mm amplitude,and one with 40 l-lzfrequencyand 0.1 mm amplitude.

Figure4.9shows the axialcompositionprofilesofingotsFI (without vibration)

and F2 (20 I'Iz,0.5ram) solidifiedat 21 ram/day. The profilescorrespond to good mixing

in the melt. Compositional fluctuationswere observed after75 to 807c mole fractionofthe

ingotshad solidified.The compositionfluctuationsmight have been due to constitutional

supercooling and morphological breakdown. An examination of the microstructure of bo_h

ingots showed a change in the microstructure from multi-grain with twins to a fine grain

structure at near where the compositional fluctuations began. After 90_ mole fraction had

solidified, the axial composition again began following a good mixing pattern. This behavior

occurred sooner in the ingot solidified with vibration compared to the one solidified with

vibration. Figures 4.10 and 4.11 show the radial composition profiles of ingots F1 and Y2.

Figure 4.1 (refer to the beginning of this chapter) shows the critical tempera-

_ure gradient, given in equation 4.1, in the melt plotted versus the mole fraction of lnSb in

the liqu]d at the interface for $ ram/day and 21 ram/day growth rates. This figure is used

to demonstrate the conditions for avoidance of constitutional supercooling in ]nSb-GaSb

for givrn growth rates. A detail of the constitutional supercooling formulation is given in

Appendix A and at the beginning of this chapter. An imposed axial temperature gradJen_

of 30-35°C/cm (measured in an empty ampoule) was used in our solidification runs. The

axial temperature gradient in an ampoule with a charge is expected to be lower than in an

empty ampoule.

For solidification runs at 8 ram/day, the temperature gradient of 30-35°C/cm

(the actual temperature gradient measured in a charge is lower than 30-35°C/cm) is above

the critical temperature gradient for the entire range of InSb composition in the liqu]d at

_he interface. This means that the interface should remain stable throughout solidification

of the entire ingot. As mentioned in section 4.1 for ingots solidified at 8 ram/day, the
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axial composition profiles corresponded to good mixing. No compositional fluctuations

or other evidence of morphological breakdown were observed. In the ingots solidified at

21 mm/day, some compositional fluctuations were observed at and beyond T5-80_ mole

fraction solidified. The compositional fluctuations might have been due to morphological

breakdown.

The location along the ingot that breakdown would take place could be related

to the information given in Figure 4.1. The mole fraction InSb in the liquid at the interface

can be determined at any given location along the ingot at the time solidification using the

plots in Figure 4.12. Figure 4.12 shows the theoretical solute composition profile for the solid

and liquid at the interface with equilibrium at the interface for good mi_ng of the me]_ for

In0.:Ga0 8Sb feed composition (calculation is given in Appendix B).The solute concentration

increases in the melt ahead of interface. The mixing by' free convection or vibration-induced

convection might not be sufficient to reduce the solute build-up. Referring to Figure 4.]2. the

liquid composition at the interface at $0_ mole fraction of ingot solidified was about 0.6 mole

fraction InSb. The criticalaxJaltemperature gradient for 0.6 mole fraction ofh_Sb ii_ the

liquid at 21 ram/day growth is about 100°C/cm. The actual growth rate _ith an ampoule

lowering rate of 21 mm/da.v is less than 21 ram/day near the end of growth. The imposed

a.'dal temperature gradient during all our solidification runs was less than 30-35°C/cm .

_hich is much lower than the critical temperature gradient of 100°C/cm. Consequently the

interface should have broken down. Such morphological instability is expected to manifest

itself as compositional fluctuations and finegrain structure, as observed in ingots F1 and

F2.

The interface breakdown in ingots F1 and F2 extended for 0.15 mole fraction of

the ingot solidified and then resumed a good mixing profile again. However, the composition

profile near the end did not follow the good mixing profile for 0.20 mole fraction InSb, since

the solute was trapped in the broken down region. This resulted in a change of composition

in the melt and consequently in the solid near the end. Such a recovery from morphological

breakdown could have been due to follo_ving; after the breakdown, the solute buildup ahead

of the interface would be reduced since the solute is trapped in the broken-down regions.
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The rate of growth also decreases due to interaction of the growth system with the furnace

thermal fields (the growth rate measurements are given in section 4.3).
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4.1.3 Liquid-Solid Interface Shape

Interface demarcations were generated in two ingots by ]ow'ering the heater tem-

perature from 800°C to 770 ° and then abruptly translating the ampoule down by 1 ram.

Afterward, the heater temperature was increased to 800°C again. The change of heater

temperature would modify" the thermal fields in the melt and charge, and cause fast freez-

ing during the temperature lowering period. The ampoule was moved down by 1 mm to

assure that the rapidly frozen demarcation would not backmelt.

The ingots were longitudinally sectioned, mechanically polished, and chemi-

cally etched in 1HF:IHNO3:IH20 for 30 sec to 2 minutes. A Longer etching time caused

extensive cracking of the ingots. The demarcations appeared as discontinuities in the mi-

crostructure across the ingot. The demarcated lines had a sudden change of composition.

The interface demarcations were not clear in the first half of the ingots, even after etching

for 1 to 2 minutes. The demarcations were more pronounced at the second half, and espe-

ciall.v near the end of the ingots. The less pronounced demarcations could be due to two

reasons: the cooling period to induced fast freeze was not long enough and/or the prefer-

ential etching of second half as compared to first half of the ingots (the end portion had

higher concentration of InSb compared to the first half of the ingots). At the first half of

the ingots the shape of the interface was near-concave, with a radius of curvature less than

0.1 ram. The radius of curvature of the demarcations increased as solidification proceeded.

In the last to freeze section of the ingots, the interface became more concave, with a radius

of curvature of 1 mm. In these experiments no significant difference was observed in the

demarcations' curvature in ingots solidified with or without vibration.

As mentioned earlier in the previous section ingots V3 (20 Hz, 1.0ram ampli-

tude) and V6 (100 Hz, 0.05ram amplitude) were quenched after partial solidification. The

shape of the interface in ingot V3 was convex, as shown in Figure 4.13. The first demar-

cation was made by lowering the heater temperature similar to the procedure mentioned

above. The second demarcation was generated by quenching the remaining melt by shutting

off the heater. The microstructure changed across the demarcation due to the discontinuity

in growth rate. The first demarcation was very clear. The second demarcation was not
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pronounced.The ingot crackedin the vicinity of the second demarcation during cutting.

The ED$ measurements showed the compositional variations across the demarcations. The

corresponding axial composition profile is given in Figure 4.14. The compositions profile of

the directionally solidified portion corresponded to good mixing in the melt. The interface

shape was convex with 0.25 mm radius of curvature. A convex interface is desirable for

better grain selection, since the grains tend to grow normal to the interface.

Figures 4.15 shows an interface demarcation generated by quenching the re-

maining melt during solidification of ingot V6. The ingot w_ chemically etched using

1HF:IHNO3:IH_O for 25 sec at room temperature to reveal the microstructure and in-

terface demarcation. The interface was concave with a radius cur_ature of 0.3 mm. The

interface was wavy and asymmetric. Figure 4.16 shows the axial composition profile in ingot

V6. The composition suddenly changed at the demarcation location. The location of the

interface demarcation along the ingot correspoded to freezing temperature of 600°C. The

temperature of 600°C in our furnace was in the lower section of the adiabatic zone. 1_ is

expected tha_ the interface shape would be near-concave in the boundary of adiabatic zone

and the cooler.
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Figure 4.13: Microstructure of ingot V3 translated at 8 ram/day with axiM vibration of

20 Hz frequency and 1.0 mm amplitude. The interface demarcations were made by rapid]y

freezing the melt. The ingot was sandblasted to reveal the microstructure and the interface

demarcations. The interface was convex with a radius of curvature of 0.25 ram. The ingot

diameter was 9 ram. Thc growth direction was from left to right.
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Figure 4.14: Axial composition profile of ingot V3.
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Figure 4.15: Microstructure of last portion of ingot V6 to freeze with a translation rate of

8 ram/day and axial vibrations of 100 Hz frequency and 0.05 mm amplitude. The interface

demarcations were made by rapidly freezing the melt. The ingot was chemically etched

using 1HF:]ttNO3:IH20 for 25 sec at room temperature to reveal the microstructure and

interface demarcation. The interface was concave with a radius of cur_zture of 0.3 ram.

The diameter of the ingot was 0.9 cm. The growth direction was from left to right.
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Figure 4.16: Axial composition profile of ingot V6.
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4.1.4 Macroscopic Growth Rate

The macroscopic growth rate was determined for two ingots with In0_Ga0.sSb feed

composition, one without vibration and with vibration at 20 ]-Iz frequency and 0.5 mm

amplitude. The quenching interface demarcation technique was used. Both ingots were

directionally solidified at 9.5 ram/day ampoule lowering rate.

In this technique the heater temperature was decreased from 800°C to 770°C

within 10 minutes by lowering the voltage to the heater. When the heater temperature

reached 770°C, the ampoule was abruptly moved downward by 1 ram. After the ampoule

was moved down by 1 ram. the heater temperature was increased again to 800°C and

maintained at that temperature. This procedure was undertaken ever}' 24 hours during the

entire solidification period of 15 to 16 days. After completion of a growth run. the ingo_

was removed from the ampoule. The ingot was sectioned axially and chemically polished

using 1HF:IHNO3:IH_O for 60 sec at room lemperature, to reveal the demarcations.

Figure 4.1, shows the measured distance belween the above demarcations

along the ingots. The measured distance versus time was fitted into a third degree polyno-

mial. The macroscopic growth velocity along the ingot was calculated taking the derivative

ofthe polynomial fit of the plots of distance versus time. A plot of macroscopic growth ve-

locit.v versus length fraction solidified along the ingots is shown in Figure 4.15. The growtll

velociLv was initially higher than the translation rate, possibly due to the end effects as

predicted by Sukanek [65]. As mentioned earlier in section 4.2, the axial composition profile

of all ingots directional]y solidified with and _'ithout vibration corresponded to good mix-

ing of the melt and equilibrium at the interface. As the growth proceeds, rejection of InSb

lowers the freezing temperature (as given by the phase diagram), resulting in _ariation of

the freezing temperature along the length of the ingot. The freezing temperature was ini-

tially about 690°C and gradually decreased to 530°C near the end of ingot. Consequently,

solidification would never reach a steady-state condition.
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4.1.5 Vibration-induced Acceleration

Vibration of the ampoule resulted in modulation of acceleration in the direction of

applied vibration. In our solidification experiments the growth ampoule was oscillated ax-

ially paraIlel to Earth's gravity. The dynamic acceleration induced by axial oscillation of

the ampoule was measured using an accelerometer attached to the ampoule holder. The

accelerometer's output signal was recorded at a sampling rate of 200 Hz using a data

acquisition system and a Zenith 280 computer. Table 4.1 shows a summary of dynamic ac-

celerations measured during axial vibration of the ampoule at different vibration paramters.

Figures 4.19 to 4.23 show the dynamic acceleration versus time for different

vibrational conditions. Figure 4.19 shows acceleration fluctuations of +0.005 x 9.81 re�s:

without any applied vibration. These fluctuations are caused by background noise in tLe

laboratory. The vibration at 10 Hz frequency and 0.5 mm amplitude caused periodic acceI-

era_ion variations of ± 0.1 x 9.__I m/s 2, as shown in Figure 4.20. A periodic variation of

= 0.2 × 9._1 m/s 2 was measured for vibration at 20 Hz frequency and 0.5 mm amplitude.

as showr_ in Figure 4..'21. Vibration at 40 Hz frequency and 0.1 mm amplitude resuI_ed i_

= 0.1 x 9._I m/s 2 acceleration _-ariations. as shown in Figure 4.22. Figure 4.23 shows the

dynamic acce]eration fluctuations of :i: 0.05 x 9.8I m/s 2 measured during axial vibration

a_ _100 Hz frequency and 0.0.5 mm amplitude.

The acceleration data were analyzed using the Power Spectrum option of Tern-

pleGraph software package (via C]arkson-NASA/Le_vis computational facilities). The max-

imum g-variation was determined at its respective frequency for dynamic acceleration data

of 20 Hz and 0.5 mm amplitude, 40 Hz and 0.1 mm amplitude, and 100 Hz and 0.05 mm

amplitude, as shown in Figures 4.24, 4.25, and 4.26, respectively.
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Table 4.1: D.vnamicaccelerationmeasuredusingan accelerometerat different vibration

conditions.Theaccelerationvariedperiodical],v.Similarvibration parameterswereu_edin

the solidification experiments.

Ingot

V1

\'2

V3

\'4

V5

V6

Vibration Parameters Dynamic Acceleration

(Hz),(mm) (g=9.81 m/s 2)

10.0.5 ±0.09g

20,0.5 ±0.1_g
,1

20,1.0 ±0.23

30,0.5 :I:0.25

40,0.1 ±0.10g

100.0.05 ±0.05g
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Figure 4.19: Plot of dynamic acceleration versus time without application of axial vibration.

The measured fluctuations were due to background noise in the laboratory. The acceleration

was measured using an accelerometer.
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Figure 4.20: Plot of dynamic acceleration versus time with axSal vibration at 10 Hz frequency

and 0.5 mm amplitude. The acceleration was measured using an accelerometer.
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4.1.6 Microstructura] Analysis

In this work, the entire ingot was sectioned longitudinally, as shown in Figure 4.27.

for compositional and mJcrostructura] analyses. The compositional analysis was performed

using a mechanical],,'polishedsample. For microstructuralanalysis,the longitudinalcross

sectionsofingotswere mechanicallypolishedand chemicallyetchedtorevealthe microstruc-

lure (detailsare given in Chapter 3).

Large number ofvoids(bubbles)were observed on the surfaceofthe ingots,as

shown in Figure 4.28.The number of bubbles was higheron the firsthalfof the ingotsas

compared to the remainingportion.There was no correlationbetween the appliedvibration

and tl,e number of bubbles on the surface of the ingots.

The microstructure of ingots was examined using optical microscopy at 200X

magnification and scantling electron microscopy at 200X or higher. All ingots were po].x-

crystalline. The microstructure consisted of man) straight and curved boundaries. Etching

of curved boundaries yielded a triangular groove. The straight boundaries appeared as

rectangular-shape grooves. Figures 4.29 and 4.30 show scanning electron microscop.v mi-

crographs of the curved and straigh_ boundaries after chemically etching of the sample it,

]'IF:HNO3:H20 solution for 25 sec at room temperature. Figure 4.31 shows a scanning elec-

tron microscopy m]crographs ofa straighl boundary at 1000X magnification. The roug]_

surfaces are possibly due to preferential etching of regions wJlh different orientation.

Figure 4.32 shows the microstructure of ingot D1 solidified without vibration.

The boundaries were revealed by chemical etching the sample in 1HF : 1H.NOa : 1H20

solution

for 45 sec at room temperature. A largenumber of small grainswas observed in the first

to freezesectionofingotDI. This ingotconsistedofa largenumber of curved and straight

boundaries,with scatteredsmall grainsthroughout the ingot.

Figure 4.33shows a photograph ofthe microstructureof the longitudinalsec-

tion of ingot V1 solidifiedwith axial vibrationof I0 Hz and 0.5 mm amplitude. The

boundarie_ _ere revealedby chemicallyetchingthe sample in IHF:IHNOa:IH20 so]ulion

for45 secat room temperature. Fewer smallgrainswas observed inthe firsttofreezesection
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radial profiles axial profile

Figure 4.27: Schematic diagram of a ]ongitudinalJy sectioned ingot used fo; compositio:,_

and microstructura] ana.l.vses.

Figure 4.28: SandbIa-sted In_Ga1__Sb ingot which was solidified with vibration at 20 H:

frequency and 0.5 mm amplitude. Bubbles were present on the surface of the ingot. Growtti

direction was from left to rigi_t.
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Figure 4.29: Scanning electronmicrograph of curved boundaries on a longitudinalsection

of In0.2G_0.gSbingotV6. The boundaries were revealedby chemicallyetchingthe sample

in IHF:IH.NO3:IH20 solutionfor25 secat room temperature. The magnificationsare 300x

and 900x forthe pictureson the leftand on the right,respectively.The pictureon the right

isan enlargement of the area enclosedinthe box inthe pictureon the left.The scalebar is

10 microns and 3.3 microns forthe 300X and 900X magnifications,respectively.The large

arrow to the right indicates the growth direction.
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Figure 4.30: Scanning electron micrograph of curved and straight boundaries on a longitu-

dinal section of In0.2Ga_.sSb ingot V6. The boundaries _ere revealed by chemically etching

in ]HF:lHNO3:lH20 solution for 25 sec at room temperature. The magnifications are 200X

and 1000X for the pictures to the left and to the right, respectively. The picture on the

right is a 5 times enlargement of the boxed area in the picture on the left. The longest bar

in the bottom of the picture is 100 and 20 microns for the 200X and 1000X magnifications,

respectively. The large arrow' indicates the growth direction.
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Figure 4.31: Scanning electron micrograpb of a straight boundary on a longitudinal section

of In0._Gao.sSb ingot V2. The surface was etched in IHF:IHNO3:IH20 for 25 $ec at room

temperature. The magnification is 1000X. The ]ongest bar at the bottom of the picture is

10 microns. The arrow indicates the growth direction.
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Figure 4.32: Photograph of the microstructure of a longitudinal section of ingot DI, which

was solidified at 8 mm/day translation rate without vibration. The boundaries were revealed

by chemically etching the sample in I'IF:HNOz:H20 solution for 45 sec at room temperature.

The samples were cast in a resin mold for polishing. The width of the ingot is 0.9 cm. The

growth direction was from left to right.
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of ingot V1 _ compared to ingot D1. Interestingly, growth of large grains was initiated

from the first to freeze section of Jngo_ V]. This ingot consisted of three grains ini_ial].v

and two grains near the end. A large number of twins initiated from the ampoule wall and

grew inward. No small grain was observed in ingot V1.

Figure 4.34 shows a photograph of the microstructure of a longitudinal section

of ingot V2, which was solidified with axial vibration of 20 Hz and 0.5 mm amplitude. Ingot

\'2 consisted of man}" small grains in the first to freeze section. Large twinned grains were

observed after 4 to 5 ram from the first to freeze section of ingot V2. The twins were mostly

initiated from the ampoule wall and grew inward until reached to a curved boundary. In

the second half of ingot V2. there were only two grains, but heavily twinned. The twins i::

lhe second half _ere parallel to the growth direction.

Figure 4.35 shows a photograph of the microstructure of a longitudinal sectio: _,

of ingo_ \'6. which was solidified a_ 8 ram/day with ax.ia] vibration of 100 Hz and 0.05

rr, n_ amplitude. In the first to freeze section of ingot V6. a large number of fine grains war

present. The microstruc_ure mostly consisted of grains in the first half of the ingo_ wit]_

on]y a few twins. In the second half of the ingot, the number of grains was reduced to three

_i_h several t_ins. The last portion of this ingot was quenched to reveal the liquid.soli_

interface. The/n_erface shape was near concave with a wavy configuration. The wavy shape

might have been due to oscillatory perturbations caused by vibration,
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Figure 4.33: Photograph of the microstructure of a longitudinal section of ingot V1 solidified

with axial vibration of 10 Hz and 0.5 mm amplitude. The boundaries were revealed by

chemically etching the sample in 1HF:IHNO3:IH20 solution for 45 sec at room temperature.

The samples were cast in a resin mold for polishing. The width of the ingot is 0.9 cm. The

growth direction was from left to right.
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Figure 4.34: Photograph of the microstructure of a longitudinal section of ingot V2, which

was solidified with axial vibration of 20 Hz and 0.5 mm amplitude. The structure was

revealed by chemically etching the sample in 1HF:lttNO3:IH_O for 45 sec at room temper-

ature. The samples were cast in a resin mold for polishing. The width of the ingot is 0.9

cm. The growth direction was from left to right.
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Figure 4.35: Photograph of the mlcrostructure of a longitudinal section of ingot V6, which

was solidified with axial vibration of 100 Hz and 0.05 mm amplitude. The structure was

revealed by chemically etching in 1HF:IHNO3:IH20 for 45 sec at room temperature. The

samples were cast in a resin mold for polishing. The last to freeze section shows a quenched

liquid-solid interface. The interface was near concave. The width of the ingot is 0.9 cm.

The growth direction was from left to right.
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4.1.7 Statistical Analysis of Grain and Twin Boundaries

A statistical ana].vsis was performed on the number of curved and straight boundaries

in different ingots. The curved and straight boundaries are reported as grain and tv,in

boundaries, respectively, in this work. The number of boundaries per millimeter across an

ingot was compared to other ingots. Also the total number of boundaries in each ingot was

compared to the other ingots.

The number of grain and twin boundaries was counted across the ingots along

the longitudinally sections at 2 mm intervals. Figures 4.36 and 4.37 show the number of

grain and twin boundaries per millimeter across the width of the samples for the entire

]englh of the ingots solidified whh and without vibration. The number of grain boundaries

was significantly lower for the ingots solidified with vibration compared to the one wit]_ou_

vibra;ion, especially in the second half of the ingots. The scatter in the data could be due to

the presence of sma]} grains along the examined sections. The last half of all ingots s}_owed

Jess scatter in the data as compared to the first half. Figures 4.35 shows the number of

grai_,, boundaries for the last half of the ]r_got_,

A one-sided Student's t-test with paired comparisons was used in this ana]y'si.,

The t.test was performed using a commercially available software package called the .Number

CrurJcber Statist]ca] System (.NCSS). A detailed description of the Students's t-test is as

follows: Consider two data sets v,lfich we desire to compare. Both of these sets are arranged

in two columns: the first column lists the length fraction of the ingot solidified and the secor_d

column contains the straight boundaries per mm width of ingot. In order to compare them.

the two data sets are paired based on equa] length fractions of the ingot solidified. These

pairs are listed under two columns, C1 and C2 as a separate data set. As described below

a the two sided t-test was performed on this data set.

1. Hypothesis proposed: The first step involved the proposal of an hypothesis, which

was as foDows: To check if the mean of the difference between C] and C2 is greater

than zero.
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Figure 4.37: Number of twin boundaries per mm counted across the samples at 2 mm

intervals along ingots solidified at 8 ram/day translation rate with and wi_},ou_ vibration.
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Figure 4.38: Number of grain boundaries per mm counted across the samples at 2 mm

inter_]s along ingots solidified at $ am/day translation rate with and without vibration.

The boundary counts are for the last half of the ingot.
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2. Calculate the differences X,.

X, - C1,- C2, (4.5)

3. Calculatethe mean differenced.

where n = number ofobservations.

(4.6)

4. Calculatethe varianceofthe differences_.

s2= E,"(,X',- d)2
_-i

(4.7)

5. Calculate the standard deviation of the difference s.

(4.. _ ,

6. Calculate the standard error of the difference sd

(4.9

7. Calculate the T value to.

S. Calculate the probabil.ity level.

d
to = -- (4.10

Sd

Probability let'el = P([t_] > O) (4.11

9. We can say that C1 was greater than C2 at the probability (confidence) level obtained

by the previous step.

10. All the above mentioned steps were performed by the NCSS software.

Table 4.2 shows the probability level that the number of grain boundaries

(curved) per mm across the ingot, as shown in Figure 4.36, listed in the row was greater

than the number of curved boundaries per mm in the ingots listed in the columns of the

table. Accordingly, with 99V¢ confidence, ingot Dl(no vibration) contained more grain
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boundariesper mm than all of the ingots grownwith vibration. Ingot V2(20Hz,0.5mn_i

had the leastnumberof grain boundaries.Ingot V1 (10Hz,0.5mm)and\'4 (30Hz,0.5mrn)

showedsimilarnumbersof grain boundaries,lowerthan in the ingotsV5 and V6.

Tab]e4.3 shows the probability level that the number of twin boundaries per

mm across the ingot, as shown in Figure 4.37, listed in the row was greater than the number

of twin boundaries per mm in the ingots listed in the columns. Ingot D1 (no vibration) shows

the least number of twin boundaries per mm among all ingots. Ingot V1 (10Hz,0.5mm) and

\'5 (40Hz,0./mm) showed the highest number of twin boundaries among all ingots. Ingot

V6(:100Hz.0.05mm) had the lowest number of twin boundaries among ingots solidified with

vibration.

Table 4.4 shows the probability level that the total number of boundaries.

i.e. grain and twin boundaries (curved and straight), along the full length, per mm across

the ingot listed in the row was greater than the total number of boundaries per mm in

the ingots listed in the columns. Ingot D1 (no vibration) showed the highest number of

total boundaries per mm among all ingots. Ingot V2(20Hz.0..Smm) solidified gith vibration

J_ad the lowest number of total boundaries per mm among all ingots. The total number

of boundaries per mm in ingot VS(40Hz.0.1mm) was highest among ingots solidified with

vibratJor_ and comparable with ingot D] solidified without vibration.

TabJes 4.5, 4.6. and 4.7 show the probability level that the number of grair_

boundaries, twin boundaries, and total number of boundaries along the last half of the

ingots listed in the rog was greater than the boundaries per mm in the ingots listed Jn the

columns.

The mean of the number of grain and twin boundaries and total boundaries

are given in Figures 4.39, 4.40 and 4.41, respectively. The error bars represent the standard

error of the means. The standard error of the means is defined as the standard deviation

divided by the square root of the total number of observations. The mean of the number of

grain boundaries per mm was highest for ingot D1 (no vibration) as compared to all other

ingots. Ingot V2 (20Hz,0.Smm) had the lowest mean number of grain boundaries per mm

among all ingots. The mean number of twin boundaries per mm was lowest in ingot D1
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Table4.2: Probabilitylevel that the numberof grain boundariesper mm across the ingot

listed in the row was greater than the number of grain boundaries per mm in the ingots

listed in the columns. The grain boundaries along the _l[ length of the ingots were compared

in this table. These ingots were solidified at 8 ram/day translation rate with or without

vibration of the ampoule.

ingo_

Dl(no vibration)

Vl(10Hz,0.Smm)

V2(20Hz.0.Smm!

V4 (30H z,0 .Smm )

V5(40Hz,0.1mm)

V6(]00Hz.0.05mm)

DI V 1 V2 V4 V5 \'6
=.,

0.99 0.99 0.99 0.99 0.99

0.99 0.55

0.99

0.99 0.99 0.9T

0.97 0.99 0.9T 0.59

Table 4.3: Probab]l]lylevel that the number oft_in boundaries per mm across theingol

listed in the row was greater than the number of twin boundaries per mm in the ingots ]is_ed

in the columns. The twin boundaries along the .full length of the ingots _ere compared in th]_

_ab]e. These ingots were solidified at S ram/day translation rate with or without vibration

of the ampoule.

Ingot D 1 V1 V2 V4 \'5 V6

D](no vibration)

Vl(10Hz,0.5mm) 0.99 0.99 0.72 0.99

V2(20Hz,0.5mm) 0.62 0.75

V4(30Hz,0.Smm) 0.95 0.95 0.93

VS(40Hz,0.lmm) 0.99 0.62 0.99 0.59 0.99

V6(100Hz.0.05mm) 0.52
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Table 4.4: Probabilitylevelthat the totalnumber of boundaries per mm acrossthe full

length of the ingot listedin the row was greaterthan the totalnumber of boundaries per

mm in the ingotslistedin the columns. The totalnumber of boundaries along the full

lengthof the ingotswere compared in thistable.These ingotswere solidifiedat 8 ram/day

translationratewith or without vibrationof the ampoule.

Ingot

Dl(no vibration)

Vl(10Hz.0.Smm)

V2(20Hz.0.Smm)

V4(30Hz.0.Smm)

V5(40Hz.0.lmm)

V6(100Hz.0.05mm)

D1 V1 V2 V4 V5 V6

0.93 0.99 0.99 0.68 0.99

0.99 0.71 0.99

0.99 0.99

0.87 0.99 0.76 0.99

0.99

Table 4.5: Probability level thai the number of grain boundaries per mm across the ingot

listed in the row was greater than the number of grain boundaries per mm in the ingot_

listed in the columns. The grain boundaries along the last half of the ingots, as showr_

in Figure 4.35. were compared in this table. These ingots were solidified a_ 8 ram/day

translation rate with or without vibration of the ampoule.

Ingot

Dl(no vibration)

V1 ( 10H z,0.Smm)

V2(20Hz,0.5mm)

V4(30Hz,0.Smm)

VS(40Hz.0.1mm)

VO(100Hz,0.05mm)

D1 V1 V2 V4 V5 V6

0.99 0.99 0.99 0.99 0.99

0.99 0.55

0.99

0.99 0.99 0.96

0.68 0.99 0.54

0.99
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Table 4.6: Probability level that the number of twin boundaries per mm across the ingot

listed in the rob was greater than the number of twin boundaries per mm in the ingots

listed in the columns. The twin boundaries =,long the last half of the ingots were compared

in this table. These ingots were solidified at 8 ram/day translation rate with or without

vibration of the ampoule.

Ingot

Dl(no vibration)

V](10Hz,0.5mm) 0.99

V2(20Hz.0.5mm) 0.92

V4(30Hz.0.5mm) 0.99

V5(40Hz.0.lmm) 0.99

V6(100Hz.0.05mm) 0.8_

D1 V1 V2 V4 V5 V6

0.96 0.73

0.9_R 0.99 0.60

0.55

0.99

0.54

0.86

0.99

Table 4.7: Probability level thai the _ota] number of boundaries per mm across the ingo_

listedin the row was greaterthan the iota]number of boundaries per mm in the Jngo,,_

listed in the columns. The total number of boundaries along the last half of the ingots v_ere

compared in this table. These ingots were solidified at $ mm/day translation rate wi_]_ or

wJthou_ vibration of the ampoule.

Ingot

Dl(no vibration)

Vl(10Hz,0.5mm)

V2(20Hz,0.5mm)

V4(30Hz,0.5mm)

VS(40Hz,0.1mm)

V6( 100H z,0.05mm)

DI V1

0.92

0.99

V2 V4 V5 V6

0.99 0.98 0.96

0.99 0.71 0.98

0.95 0.89

0.99 0.72 0.99

0.99
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(no vibration)amongall ingots,especially in the last half of the ingots, as shown in Figure

4.43. The total number of boundaries was lowest in ingot V2(20Hz,0.Smm) and highesl in

ingotV5(40Hz,0.1mm). The high number of totalboundaries in ingotV5 was due to large

number of twin boundaries.

E
E

•r 1.5

O

r--

c0.5

C;

DI - No vibration
Vl - 10Hz,0.5mm
V2 - 20Hz,0.5rnm
V4 - 30Hz,0.5rnrn
V5 - 40Hz,0.1mrn
V6- 100Hz,0,05mrn

I

i

I I _ I I J00 D1 VI V V4 V5 V6

Figure 4.39: Mean number of grain boundaries per mm width counted across the samples

at :2 mm interx-als a]ong full length of the ingots solidified with and without vibration at $

ram/day trans]ation rate. The error bars represent the standard error of the mean.

Figures 4.44 and 4.45 show the mean number of grain and twin boundaries pc;

ram of the ingots solidified with and without vibration versus the vibration-induced dynamic

acceleration. The acceleration was measured using an acce]erometer during application of

vibration. The q- acce]erations represent the maximum and minimum acce]eration va]ue:

measured at specific vibration conditions. The dynamic acce]eration _'ariations followed a

sinusoidal harmonic pattern (refer to Acceleration Measurement section in the Results chap-

tar for more detail). The mean number of grain boundaries was highest for lg(gravitationa]

acceleration without vibration). The mean number of grain boundaries decreased as the

dynamic acceleration increased up to -i-0.lS, for ingot V2(20Hz,0.Smm). A higher dynamic

acce]eration of ±0.25 (ingot \;4 - 30 Hz,0.5mm) showed an increase in the number of grains

compared to the other ingots grown with vibratiom still the number of grain boundarie._
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Figure 4.40:Mean number of t'xinboundaries per mm width counted across the samp]e._

at 2 rnm Jnterwa]s along full length of the ingots solidified with and without vibration at

mm,/da.v translation rate The error bars represent the standard error of the mean.
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Figure 4,41:

DI - No vibration

V1 - 10Hz,0.5mrr:
I V2 - 20Hz,0.Smm

[ \;4 - 30Hz,0.5mm
k V5 - 40Hz,0. lmm
i V6 - ]00Hz,0.05mm

_

-
ig

J ,I I I J ,I

D1 Vl V2 V4 V5 V6
Mean number of the total boundaries per mm width counted across the samples

at 2 mm intervals along the full length of the ingots solidified with and _]thout vibration

at 8 ram/day translation rate. The error bars Iepresent the standard error of the mean.
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Figure ,1.42: Mean number of grain boundaries per mm width counted across the samples

at 2 mm intervals along last half of the ingots solidified with and without vibration at 8

ram/day translation rate. The error bars represent the standard error of the mean.
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Figure 4.43: Mean number of twin boundaries per mm width counted across the samples

at 2 mm interxals along last half of the ingots solidified with and without vibration at 8

ram/day translation rate. The error bars represem the standard error of the mean.
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waslowerthan in the ingot grownwithout vibration.

The meannumberof twin boundariesin the ingots did not follow a well-

definedpattern with respectto the dynamicacceleration.However,the meannumberof

twin boundarieswaslowestfor ingot Dl(no vibration) ascomparedto ingots grownwi_h

vibration.
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Figure 4.44: Mean number of grain boundaries per mm of the ingots solidified with and

without vibration at 8 ram/day translation rate. The grain boundary counts are plotted

versus the dynamic acceleration induced by vibration during growth. For example, the

zero acceleration is for run D1 without vibration and :k0.05g represents the minimum and

maximum dynamic accelerations during growth of ingot V6.
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Figure 4.45: Mean number of twin boundaries per mm of the ingots solidified with and

without vibration at 8 ram/day translation rate. The twin boundary counts are plotted

versus tile dynamic acceleration induced by vibration during different growth runs. For

example, the zero acceleration is for run D1 without vibration and the :l=0.05g represents

the minimum and maximum dynamic acceleration during growth of ingot V6.
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4.2 Current-induced Perturbations Studies

In this section the results of a solidification run with passage of alternating current

through the ampoule, current interface demarcation of Te-doped I.no._Ga.0.sSb ingot, and

in.situ temperature measurements in the melt and in the vicinity of liquid-solid interface of

GaSb and InGaSb charge are presented and discussed.

4.2.1 Solidification with Alternating Current

An ingot with ].n0.2Ga0.sSb initial feed composition was directional]y solidified at 8

ram/day ampoule translation rate and 25-30°C/cm axial temperature gradient measured in

an empty ampoule) with application of alternating 15 amp/cm 2 current pulses The passage

of curren_ through the growth system was started after 72 hours of ampoule lov, ering. The

current was applied ahernatively with 25 sec (÷) and 25 sec (-) polarities during growth.

The 25 sec puse duration was similar to one of the ACRT experiments performed by Gra_

[20: at Clarkson. The original objective of this experiment was to compare an ingot solidified

wi:}, ACRT at 25 sec cycle time to an ingo_ grown with currenl pulses of 25 sec duratioi,.

The common poin_ between the ACRT and current-induced growth was the possibility of

backme}ting and regrowth behavior. The magnitude of periodic growth for ]nSb-GaSb

under application of ACRT or electric current is not available.

Figure 4.46 shows a photograph of the longitudinal section of this ingot. The

sample was sandblasted to reveal the microstructure. This ingot had a much finer grair_

structure with microcracks than the ingot shown in Figure 4.47, solidified without current

pulses under otherwise identical growth conditions.

The axia! and radial compositional profiles of ingots were measured using EDS

(details described in Experimental section). Axial composition profiles of the above two in-

gots are shown in Figure 4.48 and 4.49. The cross-sectional composition profiles of these

ingots are shown in Figures 4.50 and 4.51. The ingot solidified without current shows an

axial composhion profile corresponding to good mixing in the melt and uniform radial com-

position at different positions in the ingot. On the other hand. the ingot C1 solidified with

current shows significant axJal and radial compositional variations. The radial composition
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in the initial section, up to about g=0.12, of ingot C] is fairly uniform. This section of the

ingot was directiona]]y solidified without current.

The microcracks in ingot C1 were possibly due to stress induced by composi-

tional variations. The fine grain structure, microcracks, and compositional fluctuations in

ingot C1, which was solidified with current pulses, are indicative of morphological breakdown

caused by passage of current. The criterion for occurrence of constitutional supercooling in

a binary alloy with and without application of electric current is formulated and given in

"I12 114
Figure 4.46: Longitudinal section of an ingot with feed composition In0.2Gao.sSb frozen at

a translation rate of 8 ram/day with application of alternating 15 amp/cm 2 current. The

ingot was sandblasted to reveal the microstructure. The microstructure exhibits a fine grain

structure with microcracks. The growth direction was from left to right.

t
t

L

From Appendix A, a heat balance at the interface can be written with and

without current applied:

k,G, - ktGt = V,_H (No Current)

k,G, - ktGt = (Vnc + Vc)H + rcI (With Current)
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Figure 4.47: Longitudinal section of an ingot with feed composition In0.2Ga0.sSb direction-

all)' frozen at an ampoule translation rate of 8 ram/day without application of current. The

ingot was chemically etched in 1HF:IHNO3:IH20 solution for 20 sec at room temperature

to reveal the microstructure. This ingot consists of several twinned grains. The growth

direction was from left to right.
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Figure 4.4_: A.x.ia] compositional profi]e,, ,.-..Tan ingot directional]) solidified without appli-

cation of current. The profile corresponds _c. good mixi:,_ in the melt.

1.0

P

o

0.4_:_0.2 1

O_L _ , , J
0.00 0.2 0.4 0.6

Length

] .,,

0.8 1.0

Fraction Solidified

Figure 4.4g: Axial compositional profile of an ingot solidified with alternating 15 amp/cm _

current pulses. Current _'a.s applied after initial 4 days of ampoule lowering corresponding.
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plication of current. Here 9 is the longitudinal mole fraction down the ingot.
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Figure 4.51: Radial compositional profiles of the ingot CI solidified with appJJcatJon of

current. ]{ere 9 is the axial position expressed a.s mole fraction of the ingot solidified.
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where l'c is the interface velocity without current applied, G, and Gl are the axial tern.

perature gradientsin the solidand liquidat the interface,respectively,r is the Peltier

coefficient,H isthe heat of fusionper unit volume, and ! isthe currentdensity.The net

velocity'during passageof currentis(V,_+ l,_).The perturbationin temperature gradients

is negligibleat the instantof applicationof current. At that instantthe current-induced

change in growth rateis,from the above equations:

-Trl
v_ = -- (4.14)

H

Equations describingthe conditionsfor avoidance of constitutionalsupercoolingare given

as (see Appendix A for more details):

(.Yo Current) G_,,_,_l >_

At the first instant when current is turned on:

Xlm Cc

D c; [v,,_(k, - _i
(4.15_

G;c,,_,::I > .¥_rnC: rl . ,
- D _[(_k:- _-)(k,- 1)- _ (pl), (4_c,

_here rn is the slope ofiiquidus curve, k, is the interfacia] distribution coefficient determined

from phase diagram, Cc and C! are the total molar concentration of solute in the solid and in

the liquid at the interface, respectively. U is the electromobility, p is the electrical resistivity,

and ] is the current density.

The above equations were used to estimate the critical temperature gradient

Gtc,mc_t as a function of composition for InzGal_rSb.

In this work ln0aGa_.sSb feed composition was used for all directional solidi-

fication experiments both with and without current pulsations. Fitting the liquidus curve

for the phase diagram of lnSb-GaSb, shown in Figure 4.52, we obtain:

T = 709.5 - 93.1X: - 96.1X1: (4.17)

where X# is the mole fraction of lnSb. The slope of the liquidus is determined by differen-

tiation of the above equation as:
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Figure 4.53: Equilibrium distribution coefficient ko versus mole fraction X_ liqu]dus con-

centration of ].nSb for InSb-GaSb system. The circles are the data taken from the phase

diagram. The line is a polynomial fit given a.s ko = _ = 0.12+0.721X_-2.37.¥_+2.5-.\'13.
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tit
m = _ = -93.] - 192.2X1 (4.1__

dX_

From the phase diagram, the equilibrium distribution coefficient ko is determined as a

function of the liquidus composition of ]nSb, as shown in Figure 4.52:

ko = X._._,= 0.12+ 0.721X_ - 2.37X12 + 2.57X_ 3 (4.19)
Xl

where X, is the mole fraction of solute in the solid at the interface. Assuming that equi-

librium prevails at the interface, the interfacial distribution coefficient is the same as the

equilibrium distribution coefficient, i.e., k, = ko.

The thermoph.vs]ca] properties of lnzGaj_tSb are not known versus compo-

sitio_. The properties oflnSb and GaSb are fair]) well determined and are given in Ap-

pendix C. Here in our calculations we used properties for GaSh. such as Pe]_ier coe_cier_,_

(:'c,_s_=0.06 volt). ]aten_ heat of fusion (Hsos_=]300 J/cm3), and resistivity (p=0.00:

_.cn: :. l'or estimation of the critical G: the growth rate without application of current _as

se_ to the ampoule }owerJng rate of_ mm,lday, wh$ch Js 9.25 x]O -6 cm/s.

]r_ principle, e]ectromJgratJon ]n a ternar.v system, such as molten ]n-Ga-Sb.

car, no,, be described correctly using a formulation for a binary system. In molten In-Ga-

Sb. the s_ochiometric (In 4- Gt_)/Sb will not be maintained in the presence of diffusion

and e]ect_orn]gration. However, there is no information a_'ailab]e on electromigration or

dJffusio_ in molten ]n-Ga-Sb in the literature. In the absence of data on ternar.v transpor_

properties, we assumed that the stoichiometry is maintained as a pseudo-binary mixture

of ]nSb and GaSb, recognizing that the results are only approximate. ]nSb is considered

to be the solute. The electromobilit.v coefficient 1.'. is assumed to be the relative migration

between ]nSb and GaSb in the presence of an applied electric field. Values of D=2xl0 -s

cm_/s and U=lxl0 -4 cm_/s.volt were used. These are within the range of the _]ues for

metallic melts [801 .

]n Figure 4.54 the critical temperature gradient G_ ]s plotted versus the mole

fraction of ]nSb for the ]nSb-GaSb system. As noted above, this plot is not valid to quan-

tif.v the effect of electromigration in the ]nSb-GaSb system. It is used on]) to qualitatively
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demonstratethe effect of electromigration in a pseudo-binary system. Note that the electro-

migration induced by a current density of 15 amp/cm 2 is not predicted to show a significant

effect on the critical temperature gradient, especially at lower values of mole fraction.

Figure 4.55 shows a plot of critical temperature gradient including the Peitier

effect, induced by application of-15 amp/c: " current density. The electromigration term

b'as neglected. The negative polarity current results in Pe]tier cooling at the interface.

therefore momentarily increasing the rate of growth. Due to application of -15 amp/cm _

current, the in.ctantaneous current-induced growth increase is estimated to be:

-rl
1"_= _=0.0007 cm/s (4.20

H

Con-,:_ar]ng tl, e growtI, rate._ *ith and witlLout current-induced Peltier cooling we fir, d:

1 "_-,- 1"_: 0000=
- : ;'0 (4.2.: _

_',.: 0.000009

Titus at t)_e initial ins_.ant of Peltier cooling, the interracial velocity is estimated to be

abou_ .0 times hig[_er than before the current was applied. During applicat]ol_ ofcurre_.:

_]_e tl_erma] field in the melt and solid cha_ges. Consequenlly the inlerfacia] velocity s],ou'.d

decrease from its initial sudder, rise and approach the rate before application of current.

Brush et a]. [gl] calculated the interracial ve]ocilv for solidification of Ir, Sb

during application of electric current (discussed in detail in the section on Current-induced

Perturbations). £'or repeated current pulses of 9.5 amp/cm _ on for 20 sec and off for 40 sec.

as shown in Figure 4.56, the interracial velocity _'as predicted to suddenly increase from

]0 micron/see ampoule ]o_ering rate to 18.5 m]cron/sec. Due to thermal relaxation, the

interface velocity was predicted gradually to decrease and then suddenly to fall to below

the ampoule translation rate _'hen the current is turned off.

The estimated 70 fold increase in freezing rate caused by application of current

during solidification of InSb-GaSb alloy system _,'ould require a very high temperature

gradient to avoid constitutional supercooling. In our work an imposed temperature gradienl

of less than 25-30 °C/em was used in the directiona] so]}dification of ]nSb-Gagb ingots

(discussed in detail in the E×perimenta] section). Although th]s is below the gradient
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Figure 4.54: Plot of cridca] temperature gradient versus liquid composition for ]nSb-GaSb

system with current-induced electromigration. These parameters were used; D=2xl0 -s

cm2/s, HG,Sb=1300 ,]/cm 3, p=0.001 fl.cm, U=lxl0 -4 cm2/s.voh and V,_:=9.25 x 10 -G

cm/s (S ram/day). Only the e]ectromigartion term was considered. The Pe]tier term was

neglected. The curves represent the cases for 1) I=0 no current-induced effect, 2) I=+15

amp/cm 2 current density, and 3) I=-15 amp/cm 2 current density. Above the curves it is

stable condition and below the curves, it is unstable.

ORIGINAL PAQt

OF POOR (_IJAI.I'_t

]55



]000 -

,-- /

_-" "_,00 .

;_3 _
C I
_.- 3-

ql

- iC' =

- r
t2

'- /

@.0

| l I I I _ .,1,- -- _1 l

/

/

/

/

/

_ I-0
/

I--15

1

,/

I i I I I , r

0.2 0.4 0.6 0.8

Mole Fraction lnSb

1
I

i.0

]:'Jgure 4.55: A semi-log plot of crJtJca] temperature gradien_ versus liquid composition

for InSb-GaSb system with current-induced Peltier cooling. These parameters were used

b=2xl0 -s cm2/s, Hc=$6=1300 3/cm 3, p=0.001 fl.cm, I_=9.25xI0 -6 cm/s (8 mm/da.v),

and T,GaS6=0.06 volt. Only the Peltier term was considered. The electromigration term was

neglected. The curves represent the cases for; 1) I=0 no current-induced effect, 2) I=-15

amp/era 2 current density (Peltier cooling effect). Above the curves, interface is stable and

below the curve, it is unstab]e.
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Figure 4.56: Plot of ca]cttlated interracial ve]ocity as a function of time for InSb during

periodic application of 9.5 amp/era _ current for 20 sec on and 40 sec off [91].
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Tequired to avoid constitutionalsupercooling,the interfacemay no_ break down during a

pulse. Instead new grainsand twins may nucleatein the momenlari]y supercooled melt.

beforethe interfacecan change shape. This may resultinformation offinegrainstructure

and cellulargrowth. In our growth experiment with appliedcurrentthe microstructureof

the ingot consistedoffinegrainswith significantcompositionalfluctuations.
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4.2.2 Current Interface Demarcation ofTe-doped In0_Ga08Sb

A current interface demarcation experiment was performed with ln_Ga__rSb doped

with tellurium.A 7 cm long by 9 mm diameter charge of In0._G_o.8$bwas alloyedin the

rocking furnacefor9 hours at 820aC. The chargewas placedin an electrodedampoule and

]000 ppm by weight of six-ninespuritytelluriumwas added to the charge. The ampoule

was purged with argon and sealedunder a vacuum of10-6 torr.The ampoule was placedin

the Bridgman-Stockbarger furnacewith settingsof g00°C and 475"C forheaterand cooler.

respective]),and a 5 cm long adiabaticzone. The charge was allowed to melt down aand

left over night. The ampoule was occasionally shaken manual]) for homogenization of Te

dopant in the melt. The ampoule was lowered ar _ mm/da.v.

Afler solidification, the resulting ingot was sectioned longitudinally, cas', iL

a resin mold. and mechanically polished. These samples were chem]cal]yetched in ]HF :

:IH.NO3 : 1KMnO4 so]ut]or_ for 60-80 sec at room temperature, and rinsed in de-ior_ized

wa_er and me_hano]. The samples were examined using darkfle]d and Nomarski optical rr_i-

croscopy and scanning electron micro__copy. Current-induced growth rate variatJon._ mar.-

ifes_ed themselves in the Jngo_ as Te concentration bands known as pulse striations [2_ I.

The Te-r]ch regions _ere preferentially etched, resulting in bands with differen_ topograpl,y

compared 1o the regions solidified without current.

A series of :10 amp currenl pulses with l0 sec on-lime and 300 sec off-time

dura_]on were tried. The current was passed from solid (+) to melt (-). The currenl

puJses were passed d_ring _he Jast 5 days of growth. The ingo_ had a poor microstructure

with m]crocracks and man)" small grains. Striations were oberved in some grains and not

in others. Consequent])', it was difficult to trace these striations to determine the overall

shape of the liquid-solid interface at the time of a pulsation.

Figure 4.57 shows a scanning electron m]crograph of pulsed striations in ln0.2Ga0 sSb

feed composition ingot doped with te71urium. These striations were generated by passage of

10 amp current (15.7 amp/cm _) for l0 sec followed by no current for 300 sec. The currenl

was passed from solid (+) to melt (-). The groved boundary is a grain boundary _vilh

the interface demarcations crossing the boundary. ]nlerestingl.v, the demarcations were ir-
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regular in the vicinity of some boundaries. Figures 4.58 and 4.59 show photomicrographs

of striations across straight and curved boundaries. These photomicrographs were taken

using Nomarski optical microscopy with polarized light. A closer examination of the curved

boundary in Figure 4.58 shows that the boundary w_ wiggly. The frequency of striations

corresponded to the frequency of the wiggle. Some irregularities in demarcated regions were

observed in the vicinity of the wiggled, curved boundary.

Figure 4.60 shows a photomicrograph of striations crossing a twin boundary

in Te-doped In0.2Ga0 sSb generated b.v passage of 10 amp current from solid (+) to melt (-)

for 10 sec followed by no current for 300 sec. The striations were revealed by etching of the

samp]e in IHF:IH.XO3.IK.MnO3 so]ulion for ] rain at room temperature. The pho_omicro-

grap]_ was _aken using Nomarski oplica] microscopy _i_h polarized light. The demarcalioz_s

were regular across the twin boundaries. No sign of instabiliD or irregularity was observed

in the demarcation across the twin boundaries. A slightly shif_ of demarcation posi_ior_ was

observed wi_h ,winned regions, as seen in Figure 4.60.
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Figure 4.57:Scanning electronmicrogrpah of striationsin a Te-doped In0.=G_0.sSbingot.

A I0 amp current was passed from solid(+) to melt (-)for I0 sec followedby 300 sec

without current.The sample was etched in II'IF:IHNO3:IKMnO3 solutionforI rainat the

room temperature. The magnificationis500X. The long scalebar,poinled at with a small

arrow,isI0 micron. Directionof growth was as shown by the longarrow in the rightupper

righl-handcornerof the picture.
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Figure4.58: Photomicro_rpah of striationsin a Te-doped In0.=Gao.sSbingot generated by

passageof 10 amp currentfrom solid(+) to melt (-)forI0 sec followedby no currentfor300

sec. The striationswere revealedby etchingthe sample in lHF:IHNOs.IEMnO3solution

for I rainat room temperature. This photomicrograph was taken using Nomarski optical

microscopy with polarizedlight.Note that the striationscrossone curved and one straight

boundary. The magnificationwas 100X. The directionof growth was from bottom to top

of the picture.
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Figure4.59:Photomicrogrpah ofirregularstriationsina Te-doped In0_Ga0.sSb ingotgener-

ated by passageof10 amp currentfrom solid(+) to melt (-)forI0 secfollowedby no current

for300 sec. The striationswere revealedby etchingthe sample in IHF:IH.NO3.1K,X_n03

solutionfor I rainat room temperature. This photomicrograph was taken using Nomarski

opticalmicroscopy with polarizedlight.Note the irregularityin the striationsnear the

boundary. The magnificationis200X. The directionof growth was bottom to top of the

picture.
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Figure 4.60: Photomicrograph of striations crossing a twin boundary in Te-doped

In02Ga0.sSb generated by passage of 10 amp current from solid (+) to melt (-) for 10

sec followed by no current for 300 sec. The striations were revealed by etching of the sam-

ple in ]HF:IHNO3.1KMnO3 solution for 1 rain at room temperature. The Photomicrograph

was taken using Nomarski optical microscopy with polarized light. The direction of growth

was from bottom to top of the picture, magnification was 225X.
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4.2.3 In-situTemperature Measurements with Current

Passage of currentthrough a melt-solidsystem resultsin Pc]tierheatingor cooling

at the interface,Joule heating,and Thomson heating or cooling in the solidand melt.

These thermoelectriceffectscause transientthermal perturbationsin the melt and solid

The magnitude ofthe thermal perturbationsdepends on the magnitude and directionof the

current(forreversiblePc]tierand Thomson heatingor cooling).In semiconductor materials,

the Peltiereffectdepends on the electronicbehavior of materials.For example, in n-type

materialssuch as InSb (intrinsiclyn.type),passage of current from melt(+) to solid(-)

results in Peltier heating. By changing the direction of current. Peltier cooling results.

Whereas in p-type materials such as GaSb, the effect of application of current at the melt

- solid interface is opposite to n-type materials.

An alloy of InSb-GaSb changes from p-type to n-type at about 45_ mo',e

fraction lnSb concentration in the solid 136i. Generating current-induced Pe]tier heati_g

or cooling at the melt-solid interface in the InSb-GaSb system depends on the electro_,:,c

be],avior of the system. Due to rejection of lnSb at the interface, the growing ir_got contain.

less InSb initially and more near the end. It means that the materials changes from p-

type to n-type somewhere along the ingot. If continuous Peltier cooling pulses are needed

to demarcate the interface, the direction of current must be switched from one polarity

to another _hen the ingot changes from p-type to n-type. Te-doping also changes t},c

electronic behavior of the InSb-GaSb system.

In this work, we tried to determine the dependence of Peltier effect on the

current polarity in GaSb system. Also we tried to measure the thermal perturbations

induced in the melt and in the vicinity of the liquid-solid interface in GaSb. These results

were used to separate the effects of Joule heating, Thomson heating and cooling, and Peltier

heating and cooling in GaSb.

In this section we report results of in.situ temperature measurements in melts

oflnzGal__Sb and in GaSb during passage of electric current pulses. The temperature

measurement technique is given in Chapter 3. In brief, an ungrounded K-type sheathed

thermocouple was placed in a charge of in a vacuum sealed ampoule. The charge was
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contacted on top and bottom by two molybdenum-graphite electrodes used for passage of

electrical current. The a_'ailable programmable current generator could supply up to 10 amp

current. Current amplitudes of 2 to 10 amp were tried. Here we report the temperature

measurements for 10 amp current. The thermocouple was connected to a thermocouple

board of a data acquisition system and a Zenith 248 computer. Pulse durations of 5.30.

and 60 sec were used in these experiments.

Overall, seven individual ampoules were prepared for temperature measure-

ments. Only three experiments were successful. The other four were terminated due to

failure of the thermocouple sheath or by leakage of melt from the bottom electrode, resuh-

ing i1: loss of electrical contact between the electrodes and charge.

Temperature Measurements in Molten In0.2Ga0sSb

Several temperature measurements were performed in a molten charge of prea]]o.ved

]n0.._Ga0sSb. The charge _as 7 cm long and situated in a quartz ampoule of 9 mm inne:

diameter and l] mm outer diameter. An ungrounded K-type thermocouple with 0.41 mm

diameter 304 stainles._ steel sheath was placed 3.5 cm into the charge from bottom, lr_

these measurements a strip-chart recorder and digital thermometer were used to record

and monitor the thermocoup]e readings in the charge. The entire charge was situated in

the heater section of the furnace. The healer and cooler settings were 820°C and 450_C.

respectively. After melting the charge, the thermocouple reading in the charge was allowed

to reach steady-state before application of current.

Figure 4.61 shows the thermocouple readings in the melt of In0._Gao.Sb dur-

ing periodic passage of l0 amp current for 6{3 sec followed by no current for 30 off. ]'he

thermocouple reading was initially at 815.7°C before application of current. The tempera-

ture periodically varied between 815.7°C to 817.2_C. The temperature in the melt increased

gradually during current passage and decayed when it was off.

Figure 4.62 shows thermocouple readings in the In0._Ga_.gSb melt during peri-

odic passage of 10 amp alternating culrent pulses for 30 s with positive polarity and 30 with

negative polarity. The thermocoup]e reading was initial])' at 805.9°C before application of
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current.The temperature ofthe melt increaseddue toa net stead)"stateofabout 821.5°C.

The temperature remained fair])constant during alternatingcurrent pulses. Due to the

lot'resolutionof the strip-chartrecorder,the periodicThomson coolingand heatingwere

not detectable.
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Figure 4.61:Thermocouple readingsin molten hto.2Ga_.sSbduring p_sage of 10 amp cur-

rent for 60 sec followedby no currentfor 30 sec. The current was passed from the top

electrodeto the bottom electrode,The tipof the thermocouple was situated3.5 cm into

_he 7 cm longcharge.
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Figure 4.62: Thermocouple readings in molten Ino.2G_o.sSb during passage of 10 amp cur-
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situated 3.5 cm into the 7 cm long charge.
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Temperature Measurements in GaSb

Several in.situtemperature measurements were performed in GaSb during passa¢_

of current.The objectiveof theseexperimentswas to measure the current-inducedthermal

perturbationsin GaSb due to Jouleheating,Thomson heatingor coolingand Pehier effect.

GaSb was used insteadof In0._Gao.sSb. The freezingtemperature of InSb-GaSb _ries

along the ingot. It was difficultto determine the exact posJtionof the thermocoup]e tip

with respectto the freezingtemperatureof the lnSb-GaSb charge.By'knowing the freezing

temperature of GaSh, itwas possibleto positionthe tip of thermocouple junction in the

viciniLvof the interface.These measurements were performed usinga K-type thermocoup]e

with stainlesssteelsheath placedin a charge of GaSb. The tip of the thermocouple was

positioned3.5 cm intoa 7 cm long GaSb charge. The successof these experiments was

limited by the failure of the thermocoup]e in the melt. The melt soon damaged the sheatL

and the thermocouple junction. These measurements were performed with heater and cooler

settings of 800_C and 475_C, respectively, a 5 cm insulation layer, and a stationary ampoule.

Figure 4.63 shows the _hermocouple readings in the GaSh melt during passage

of l0 amp current alternating for 30 sec (÷) po]arhy and 30 sec (-) polarity. In recording T].

the molten charge was situated in the middle of the heater. Recording T2 was made af:er

the ampou]e containing the charge and thermocoup]e was moved ].5 cm down from _here

recording T1 had been taken. The axial temperature gradient was higher at the positior_

where T2 was taken than where T1 was taken. In TI, the passage of current was initia_ed

after 20 sec. The thermocouple reading showed a temperature rise from 780.5°C to 782.2_C.

and then the thermocouple reading remained at about 782°C throughout the remaining of

pulsations, indicating a new near-equilibrium was established. Small temperature fluctua-

tions were observed during the change of direction of current due to the contribution of the

Thomson effect.

In T2 the temperature increased from 774°C to 776.8 ° and afterward _aried

periodically by 0.7°C during positive and negative alternating current.

In both T1 and T2, the temperature rise was due to Thomson heating and

Jou]e heating. The periodic temperature rise and fa]] were due to the contribution of Thorn-
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_on heating and cooling as the direction of current was changed. The periodic Thomson

heating and cooling was less pronounced in T] as compared to T2. Such a difference was

probably due to the higher temperature gradient in the molten charge where the profile T2

was recorded as compared to the T1. The presence of liquid-solid interface was unlikely' in

these measurements. Ifany solidphase was present,the liquid-solidinterfacewould have

been about 3 cm away from thermocouple tipinrecordingT2. Peltiercoolingpossiblyhad

some effecton these thermal perturbations.

The Thomson effectisa reversiblephenomenon depending on the directionof

current.The Thomson heat isexpressedas:

Q_ = rl dT
d.\" ( -1 22,

_l_ere dT is the temperature gradient. 1 is the curren_ density and r is the Thomsor,
a._ • "

coefficient.Joule heatingisexpressedas:

Q: = pI _" (-1.23

where p is the electrical resistiviLv and ] is the current density. Joule heating is independer_t

of the direction of applied current.

A sJngJe pulse measurement was performed at the same position where profile

T2 was taken. Figure 4.6-1 shows the thermocoupie reading in the GaSh me]1 during passage

of 10 amp current. The pulse was passed for 60 sec from the lop electrode(-) to bottom

electrode (+), and then vice versa. The thermocoup]e readings when the pulse wax passed

from top electrode (-) to bottom electrode (+) showed a 0.6°C temperature difference

due to Thomson effect by passing different polarity current. In these measurements, the

temperature rise in the melt was due to Joule heating and Thomson heating when the

current was passed from top(-) to bottom(+). The reversed polarity resulted in Joule

heating and Thomson cooling in the melt. In these measurements, the presence of liquid-

solid interface was unlikely'.

Table 4.8 shows the power per unit volume generated in a GaSh me]_ for

]5.7 amp/cm 2 current density due to Joule healing and Thomson effect. Two lemperalure
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Figure 4.63: Thermocoup]e readings in the Gagb melt during passage of 10 amp eurrer, t

alternating for 30 sec (+) po]arJtv and 30 sec (-) polarity The Passage of current wa_

init;ated after 20 sec on the time scale. Recording T1 and T2 were taken at positions

with low and high axial temperature gradients, respectively. The temperature increase was

due to Joule heating and Thomson effects. Larger periodic thermal perturbations were

measured T2 as compared to T1 due to the periodic contribution of Thomson heating and

cooling because of larger temperature gradient in T2.
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Figure 4.64: ThermocoupIe readings in a GaSb melt during passage of 10 amp curren:

for 60 sec passed from top electrode(-) to bottom electrode(+), and the vice versa. Tile

thermocoup]e tip was in the same poshion a, T2 in Figure 4.63. The temperature increase

was due to Joule heating and Thomson effects. The temperature difference of 0.6 °C was

due to contribution of Thomson heating or cooling.
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gradientswere used in these ca]cu]ations; 2°C/cm for low temperature gradient region

in the melt, such that in the middle of the heater, and 20°C/cm a for high lemperature

gradient region, as in the vicinity of the liquid-solid interface. For 30 amp current, the power

generated by Joule heat is about l0 times larger than the Thomson power in a 2°C/era axial

temperature gradient.

Table 4._: Power generated in the melt of GaSb due to 15.7 amp/cm 2 current densJ_x.

Current Density

amp/era _

Joule

watt/cm 3

Thomson

watt/era 3

2°C/cm 20°C/cm

:]5.7 0.023 ±.00157 =0.0157

To measure the thermal perturbations in the vicinity of the liquid-so]id inter-

face. the ampoule was translated into the coo]er to promote so]idification. The thermocou-

pie reading was monitored, meanwhile. When the thermocouple reading reached 720_C the

translation was terminated.

This temperature reading was 2-5 ° above the me]ring temperature of GaSh.

i,e, 715°C to 718°C,, V_'Jth an axial temperature gradient of 20-25°C/cm in t3_e vjcJnJt.'c

of interface, the thermocoup]e tip at 720°C temperature reading was expected to be 2 to 3

mm away from interface into the melt.

The temperature was measured during application of l0 amp current passed

for 60 sec from melt to solid and vice versa. Figure 4.65 shows the thermocouple readings

in the viciaJty of the liquid.solid interface, 2 to 3 mm into the melt of GaSh. A 20 amp

current was passed for 60 sec from melt (+) to solid (-) for 60 sec. Initial]), the thermocoup]e

reading decreased from 720°C to 714°C within the first 5-6 sec of pulsation. Afterward,

the temperature starled increasing gradually. When the pulse was turned off, the cooling

173 ORIGINAL PAGE IS

OF POOR QUALITY



effectof the current w_ terminated and the thermocouple reading startedrisingto the

temperature reading beforepulsation.A slightovershoot was observed afterthe current

was turned off. This could have been due to volumetric Joule heating which had not

dissipatedcompletely,even afterterminationof the current.The initialcoolingbehavior

was due to Peltierand Thomson cooling.Although the coolingeffectremained throughout

the pulse.Joule heatingresultedin a gradual riseof temperature.
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Figure 4.65: Thermocouple readingsina GaSb melt in the vicinityof the liquid-solidinter-

faceduringp_sage of I0 amp currentfor60 sec passedfrom solid,i.e.bottom electrode(+)

to melt,i.e.top electrode(-).Beforecurrentpulsation,the thermocouple tipwas estimated

to have been 2 to 3 mm away from the interfacein the melt. The temperature risewa._

dominated by Peltier heating initially and followed by Joule heating and Thomson heating.

After termination of current the thermocouple reading returned to the initial steady-state

value.

Figure 4.66 shows the thermocoup]e reading in the melt of GaSh in the vicinity
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of the liquid-solidinterfacefor a 10ampcurrentpulsepassedfor 60 secfrom solid(+) to

melt (-). Thesetemperaturemeasurementswereperformedat the samepositionas the

profilegiven Jn the Figure 4.66, except with different polarity. ]nhJal]v, the temperature

started rising rapidly, most])" due to Peltier heating, from 720_C to ?26_C _'ithin the firs_

6-8 sec of current pulsation and then continued increasing up to 72K5°C. After termination

of current, the temperature decayed to its irdtial value.

Figure 4.67 shows temperature measurements similar to those in Figures 4.65

and 4.66. except the pulse duration was 5 sec. Similar temperature decay and rise was

observed as in Figures 4.65 and 4.66 during the first 5 sec of the pulsar)on.

In these measurements, the transient thermal perturbations in the vicinilv of

the interface was dominated b.v the Peltier effect and possib].v the Thomson effect. Joule

t, ea_ing was less pronounced initially. As the current pulsation was continued, the interface

would have moved to a ne_ position and the Joule heating-induced thermal rise became

n_ore pronounced.
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Figu]c 4.66: Thermocoup]e readings in a GaSb melt in the vicinity of the liquid-solid inter-

face during passage of ]0 amp current for 60 sec passed from so}id, i.e. bottom electrode(-)

to melt, i.e. top electrode(+). Before current pulsation, the thermocouple tip was esti-

mated to have been 2 to 3 mm away from interface in the melt. The temperature decay

was dominated by Pe]tier cooling initially, followed a slight increase due to Joule heating

and relocation of the interface position. After termination of the current the thermocouple

reading returned to the initial steady-state value.
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Figure 4.6T: Thermo¢ouple readings in the melt of GaSb charge in the vicinity of liquid-

_olJd interface during passage of 10 amp current for ,5 sec passed from solid, i.e. bottom

electrode(+) to melt, i.e. top electrode(-) and vice versa. Before pulsation, the thermo¢ou-

pie tip wa_ possibly 2 to 3 mm away from interface into the melt. The temperature rise and

fall for different polarities were mostly due to Peltier effect. After termination of current

the thermocouple reading returned to the initial steady-state value.
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