
OHIO
SIAM
UNIVERSITY

C7124 X//

P c 7
A Full Field, 3-13 Velocimeter
for Microgravity Crystallization
Experiments

Robert S. Brodkey and Keith M. Russ
Department of Chemical Engineering

NASA Lewis Research Center
Cleveland, Ohio 44135

Grant No. NAG 3-1039
Final Report

April 1991

JLLjIL,,
VELOCIMETER FOR MICRUGRAVITY CRYSTALLIZATION

EXPERIMENTS Final Report (Ohio State Univ.)
57 p	 CSCL 22A Uncl as

G3/29 0009037

https://ntrs.nasa.gov/search.jsp?R=19910013152 2020-03-19T17:49:53+00:00Z

OHIO
SIAM
UNIVERSITY

A Full Field, 3-1) Velocimeter
for Microgravity Crystallization
Experiments

Robert S. Brodkey and Keith M. Russ
Department of Chemical Engineering

ORIGINAL C0TAS

COLOR LWSTRATIONS

NASA Lewis Research Center
Cleveland, Ohio 44135

Grant No. NAG 3-1039
Final Report
RF Project No.

April 1991

767435/722039

Contents

1. Overview	 . 2

2. Basic experimental statement	 2

3. View configuration	 ...2

4. Hardware configuration ..3

5. Computer configuration3

6. Image processing ..5

7. Image analysis ...5

8. Conclusions ..7

Appendices

A. PART_ID.FOR ..21

B. DET_VECT.FOR ..31

C. Equipment Specifications47

PRECEDING PAGE BLANK NOT FILMED

2

Overview
In our proposal, we set forth to develop the programming and algorithms

needed for implementing a full-field, 3D velocimeter for laminar flow systems, and

to recommend appropriate hardware to fully implement this ultimate system.

Over the course of the project, we realized that these two steps are not as

distinctly separate as we once thought; the software solutions can be modified

to take advantage of various hardware configurations.

This summary indicates one possible hardware solution, already provided

in the informal report provided to NASA researchers in January, 1990. The current

state of our programming efforts is also provided, as well as such code as is

appropriate.

Basic experimental statement
The velocimeter should consist of two views of the flow system, in this case

the interface area of a crystallization experiment. These views are directly

digitized by the use of a video camera(s) and a computer digitizer board(s), and

the velocities determined by a combination of hardware image processing and

software image analysis.

View configuration

The simplest view configuration to visualize is a pair of video cameras

mounted at right angles to each other (orthogonal views), with a common field

of view in the flow system. This will require a synched pair of video cameras and

digitizer boards, as well as synched rails for camera motion. These views were

tested by NASA by simulating the flow in a crystallization ampoule (Plate [(a-b)).

Although it is not readily apparant in the image pair, some 50% or more of the

viewed volume is blocked for 3D analysis by the heater element images (after

simple processing). This blockage made 3D path matching an almost impossible

task, especially when the lack of registration points in the images and the

difference in the view magnification (obvious in Plate l(a-b)) are considered.

3

It is recommended that the orthogonal viewing (900 angle) be replaced

with a low to medium angle viewing, between stereo angle separation

(approximately. 100) and about 300. This will reduce blockage effects at the cost

of depth accuracy. As the flow system is laminar, depth accuracy should be

considered a minor point.

There has recently been developed a single camera 3D acquisition

technique. Such a technique holds significant potential for replacing low angle

stereo viewing, as well as reducing hardware costs without significantly degrading

software computational requirements.

pending further support.

We hope to investigate this option,

Hardware configuration

This is perhaps the most flexible area, although dependent on (and

instrumental in) the view configuration decided upon above. Two digitizer boards

(to avoid image capture sequencing) and two video cameras would be required

for stereo acquisition, each capable of 512x512 resolution (black and white). The

EPIX 1MEG VIDEO Model 10 digitizer board appears to be an excellent choice for

this work; it is capable of storing 4 images in its own memory, and has an

on-board digital processor that can be programmed to perform the image

processing we envision to be necessary. Such on-board processing should

provide significant reductions to computation time.

The video cameras each need to be of around 512x512 non-interlaced

resolution (either to the PS-170 resolution of 768x480 pixels, or perhaps the

European CCIP standard of 768x580 pixels). Such units are relatively inexpensive

($1,500 apiece and up, without lenses).. Of the two standards, the CCIR hardware

appears to be more attractive with its higher resolution.

Computer configuration

The host computer for the imaging hardware would dictate the speed at

which the images are analyzed for velocity, as well as any control actions one

4

may wish to take as a result of such data. For the computer, it seems necessary

to obtain the absolute best performance at the most reasonable cost. Currently,

this claim rests with Intel's 80486 processor, in whatever machine from whatever

vendor. The majority of machines available now are based on Intel's 80386,

which for similar clockspeeds operates up to 2 to 4 times more slowly than an

80486. Unfortunately, the 80486 is so recent that software availability is limited.

The minimum requirements are an 80386 machine, at whatever clockspeeds are

available (80386 computers can be found running at 16,20, 25 and 33 MHz; costs

start rising significantly with the 25 and 33 MHz models), using at the absolute

minimum 2 MB of RAM and preferably 4 MB. Video adapters and hard drives are

of secondary importance, since all of the grunt work will take place between the

CPU and the RAM. It is therefore essential that the RAM be of sufficient speed to

match the CPU.

The 80386 can run the MS-DOS or UNIX operating systems. UNIX is perhaps

the preferential system, especially when paired with the C programming

language. Since C and UNIX are still in standardization, however, it is perhaps

better to stick to the older FORTRAN language in MS-DOS, which provides all the

numerical routines you could ever wish for at the expense of data handling. Such

a compiler needs to run under a MS-DOS extension to allocate and utilize large

arrays 512x512 or larger), and should be specific for the 80386 instruction set (or,

if an 80486 is used it should be specific to H). A particularly inviting compiler and

related software that fits this description is marketed by MicroWay. Their NDP

Fortran-386, as illustrated by their data sheet, provides excellent

number-crunching facilities. When combined with the Phar-Lap DOS extender,

this PC-based compiler can access arrays limited only by the on-board RAM (in

this case, the recommended 2-4 MB); additionally, a virtual memory manage can

be added to utilize the hard drive as virtual RAM, thereby economically increasing

potential array size.

Finally, an Assembler linker would be needed to best utilize the EPIX boards.

The EPIX boards include an on-board digital signal processor, programmable in

5

Assembler. The EPIX people recommend the product of Avocet, at around $350.

Image processing
Our current technique is to take a sequence of images (at least 3, but it

could be up to 8), create a series of binary images from these, and add them

together to create one image for analysis. From this one image particle velocities

and paths can be calculated for each resultant frame. The combination of the

images can be accomplished by

SJ.k=E2	 (1)

for n=3,4,5,6,7, or 8, and for every (j,k)th point in the original images (I,). Three of

the NASA slides (of which Plate 1(a) is the first), digitized and added together by

the above equation, is given in Plate 11(a). This represents the final output of

image processing.

Image analysis
Image analysis of the particle paths, clearly visible in Plate 11(a-b), represents

three operations: particle identification, whereby the particles are located by

their centers, grey levels, and size; particle tracking, whereby the particles are

tracked within the image; and 3D track matching, which matches tracks within

the two views to determine the 3D information. The particle identification

algorithm, a modification of that by Chang et al. (1985)1, identifies the particles

from top to bottom, left to right, row by row. The identified particles are screened

to eliminate spurious anomalies left over from image processing (i.e. below a dmjn

or above a d,). The particles found from this for Plate 11(a) are given in Figure

1. The code is given in Appendix A, and a flowchart in Figure 2.

'Chang, T.P.K, Watson, A.T., and Tatterson, G.B., Image Processing of Tracer
Particle Motions as Applied to Mixing and Turbulent Flow - I. The Technique, Chem.
Eng. Sci. 40,269 (1985)

6

The particle tracking algorithm utilizes a. rudimentary form of path and

velocity coherence. The particles found from the previous step are sorted into

four lists, one for each frame. Due to the nature of the particle ID algorithm,

these particles are already approximately sorted in the lists from low to high y

values. Starting from the beginning, each 1st frame particle is compared with

candidate 2nd frame particles, and each 2nd frame with candidate 3rd frame

particles, until one of the following conditions is met:

Ay> EYmax	 (2a)

	

Ivi42''2.43I <to!	 and	 -e	 < to!0

	

v	 1-2 2	 (2b)
v1_'.2+v2_-,3

2

where 1 2, and 3 refer to frames, and e is the angle as if the particle pair were in

polar coordinates (of which the magnitude of the velocity is the other coordinate;

see Figure 3).	 is the maximum expected frame-to-frame particle movement
MW

in y, tol is the maximum change in average velocity between each pair of

frames, and to!0 is the maximum angular motion of the particle. This represents

the basic tracking algorithm; its implementation was modified by using a

simulated image.

Some of the particle paths in Figure 1 are clearly visible; others are not. It

is not easy to quantify the particle tracking algorithm in such a case. To help

determine the accuracy of the tracking algorithm, a test image was created

having 200 randomly determined velocity vectors (Figure 4).

It was found that the tracking algorithm (Eq.. 2) ran exceedingly fast. To

increase the tracker's accuracy, multiple passes (varying Ymax' tol, to!9) were

implemented. In addition the lists were matched in reverse order, i.e. from

bottom right to upper Ieft,and compared to the forward direction; particle tracks

that were found in both directions were kept, while the remaining were

7

discarded. The results of the tracking are given in Table I and Figure 5(a-b). The

tracker only utilizes three frames' data; fourth frame data could be used to

perhaps increase accuracy further.

Figure ó(a-b) represents the output of the tracker on the data from Figure

1. Not all particles represent a particle track, as some are the result of noise in the

original image. There are approximately 94 actual tracks in view; of these. 81

(86.2%) were correctly matched, while 4(4.3%) were mistracked. The code for the

tracker is given in Appendix B, and a flowchart is given in Figure 7.

3-D matching has not, as yet, been implemented due to the problems

mentioned in section 3. The identified particles and tracks for Plate 11(b) are given

in Figures 8 and 9(a-b), respectively.

Conclusions

It appears that imaging will provide a viable solution to the laminar tracking

problem. Certainly the algorithms given here are simple, which in turn should

speed processing. Accuracy is good, but processing times are unknown as we

haven't the hardware or software to properly test the code, as a result of not

being able to fully implement the second year of the proposed study. On a

heavily loaded VAXstation 3100 the particle identification can take 15-30 seconds,

and the tracking completed in under a second. It seems reasonable to assume

that 4 image pairs can be thus be acquired and analyzed in under 1 minute.

The remaining stumbling blocks in the project appear to be the choice of

tracer particle and two processing problems: 3-D matching and settling velocity

estimation (the extent of this problem is dependent on tracer particle choice,

obviously).

I

L

•Eii rr4rI '$ 1 'S..

	

S	
•

	

. I. I ••	 .	 .: /	 •.•....
•	 . S	 S.	 S ••	 •	 •i IS

	

•	 S•

•.	 •	 S	 5

-	 0• •
I• •	 .	 .,t,	

• :. •
5-	 • 0	 -I	 %.	 S •

-I	 •	
•	 -

•PI
lip'	

• I	
• .'

-	 •	 •0•%	 •	 I

	

5-'	 ••-	 I• •
S 	 i

-.	 V	 •..

.r. t
'.EhP .•-ri.

P	 I '
	 •	 .5 •&_

Ole##

	

•;rL '	
•	

S	 •	
m

p	 •	

0•	 S

•1 J: 1

 AL

I' •	 •

	

1.	 •iI	 •

'	
¶:' '
	 I	

i:.•
:'.' •.?

'

1

	

1'	 'CII

;;.	 -

,,,i,,Ir) •	 •'• p)' .41•(:1

$	 I

\	 srt;,.

•% j ,

i1*	 SI

rp

1	 I	
c'tY

I	 - t,I V..	

I	 II

	

I,'	 US

•1

I
.2?

q

• S
.5.

•
•

ps

*	 SI
•	 S

* 5
•	 .	 .

• ••S •

•

•	 •:
•	 t S.
:

•	 S •S.

•	 •
S

S
S

C
0

.5
I.)

2

	

.	 .
.•

•.•
S	 S	 •	

• I•	
••.

•	
.5

•	
•

S	
•	 •.•

S	 S	
•

•	 S	 S	 •	 S
•	 •S.	 •	

•• S.... •	 ••
I

	

.	 S
••
•	 S S	 S
•	 .	 4 •• S

•	 •	 S

•	 ••	 • • •	 •	 S •	 •	 •	 •	 .

	

•	 I	 • •
•	 S	 • •t

•	 S	 •	

:

0

U040001 IeX!d A

•10

c)

L Id Li

LAnd ni line
V2

(C(i.2))

(xcaa) -> G(X(i.2)))

check ICft
(X(i.I.2))

'A I I G(XCL2)

N

Oeck abo,e-Idk
(X(i.l,1))

An

N

check above
(X(LI))

_n =(42))	 y

N

check ove-flh&
QCO.I.1)

— line

N

AllPLzels	 Y

STOP

Pai*Ie hg

I
Rejeci bed

izne ned shapes

N

AllUnes	 Y
icaimed?

11

Y

	

All G(X(i.2)) 	 N	 Crenec new

	

mched?	 Parucic ID(s)

Y

llG(XCZ)	 N	 check X(i.2,l)
marched?	 ned X(i+l.2)

Figure 2: Flowchart for PARTJD.FOR.

IY

12

Figure 3: 3 point simplistic tracker.

13

I

I (-)
2

a)

0

•0

0.

0)'-

C 0

0
2

x

•.. C •
•

•,	 .$
•

I. •,
•	

+

•..:

.	 •

•	 •
:	

•+• •
•	 ._.•

• •

•+

4+.

•

•	 4.	
.S

•• : * •
.

.•
.

•
4

• * ••	 •' •	 •• • •
*

• I..• •• . S S.
• ••

S

•	 •	 .

• :

• * - I I	 I	 I	 I	 I	 I III 11111 I	 I	 I	 I	 I	 I
C

UO!40301 IGX!d A

Table I: Results of the tracker on The simulated image, Figure 4.

Iteration Ym TOLV TOL9 % Not Found % Wrong % Correct

1 5 1.0 1.0 81.00 1.00 18.00
2 10 0.8 1.0 12.00 4.50 83.50
3 15 0.5 1.0 5.00 5.50 89.50

14

0

UO!40301 I9X!d A

o

U0140301 IXd A

NN7
'	 I	 /	 \

A

IJ	 /'
4.9-

,

j:

/
/

I	 I	 I

	

Ill I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I -c

-'

'09

- 's--

-9-

Off

,# /,.,

-9

N N
\

-.9	 'p

9-

/	 -

I
7-7777T777; I 11111 III	 111111	 I I I	 I	 11111111111	 I	 III	 -

C
0
.5
() 2

0
)<

I

C) 2

8

0

15

* I1

.	 C

CC!)

•0.'-

(),a)
.4-. .-

.. r
'-'C

C

U040001 IGX!d A

C
0

2

a.
x

4-O

.4-

ED

C
.2

2

a.
>(

16

C

UO!40301 iexi A

SWW

Y

lUIPI.h.	 N
Seiloed?	 hi

Compare SM &SA2
Anan Fill SAC

y

Oange Liu	 N	 Grange det*ian
Düec*icn yet?

in U (SA2)

y

LtG1?
N	 Ire!

L:< S	 N
list.? AY?

aldled

N	 N

MeetlOL8?	 Meet 1Lv?

Ymax?

Load Particle
Liet mto Rred Amy

(SA1.SA2)

Loud Tracker
Parameters for

pan i

Set Forward & Rcvaic
in 11g . Forward (SAl)

Set Forward & Reverse
inSublig = Forward

Loop 	 I
1<. l-MAX(G1)

.____!L-' Is Particle

Y

Loop Grey :2
J <- Next-

Inc

 N

'I.

Inc K

Wunmawjw?

N

17

Figure 7: Flowchart for DET_VECT.FOR.

0
U0140301 IG!d A

CL

q

18

-I..

is

C
0
()
a)

*

a
U0140301 IeX!d A

C
0

.5
C-)

2

19

'J

Clio.3

co

c CD

U)

•

4-

'-'--C4-
(I	 •

'-0

o

C
0
.-
0
C-)

2

a.

a
UO!40301 IeX!d A

Appendix A

21

C
C PART_ID.FOR
C
C This program takes an ASCII image (formatted output
C from program XF11_TO_ASCII.FOR) and identifies and
C outputs particle locations by grey. It is meant to work
C with a 4-binary summed image, using 1, 2, 4, and 8 as
C the binary image multipliers. Output is directed to
C FOR008.DAT
C
C--
C
C The structure /AREA TYPE/ is used to hold the particle
C information. Particle centers are determined by presuming them
C to be reasonably shaped, ie average between mm & max
C extensions are used. NUM_PIX is used to count actual particle
C size. COLOR is actually grey level, ie 1, 2, 3, or 4.
C

STRUCTURE /AREA — TYPE /
INTEGER MINHOR,AXHOR
INTEGER MINVER, MAXVER
INTEGER NtJM_PIX
INTEGER COLOR

END STRUCTURE
RECORD /AREA _TYPE/ AREA(2000)
STRUCTURE /SORTED—AREA—TYPE/
REAL XC,YC
INTEGER NUN_PIX
INTEGER NEXT, AVAIL, LINK, ACT
END STRUCTURE

RECORD /SORTED—AREA—TYPE/ SA (4, 1000)
C
C IMAGE holds the 512x512 image array. Because of the size of
C this array, this program works significantly better on the
C VAX 8550 than on the MicroVAX. IMTE is temporary storage;
C this always contains the currect line and the line directly
C above it. Makes identification a lot easier.
C

INTEGER IMAGE(512,512),X,Y,JUNK(54),IMTE(2,512,5)
CHARACTER*20 FILENAME
INTEGER AREA_COUNT, JUMP, COUNT (4) , XEXTENT, YEXTENT
INTEGER I,J,12,J2,13,J3,PSEUDO_GREY
INTEGER ORIG(8),ORIG2(8),ORIG3(8),ORIG4(8)
INTEGER PSEUDO_AREA, MIN_PIX, MAX_PIX, COL, NUN

C
C Set some arbitrary tolerances on particle sizes, where
C MIN _PIX represents the minimum number of pixels to define a
C particle, and MAX_PIX defines the maximum number of pixels.
C

MIN_P IX = 4
MAX_PIX=150

TOL=0.5
TYPE*, 'Enter ASCII image Filename'
READ(5,1) FILENAME

	

1	 FORMAT(A20)
OPEN (UNIT=3, STATUS='OLD', READONLY,

1	 FILE = FILENAME, DEFAULTFILE='.I'
READ(3, *) LINES, PIXELS
DO 10 I=1,LINES
TYPE*, I
READ(3,5) (IMAGE(I,J), J=1,PIXELS)
READ (3, 5)
READ (3, 5)

	

5	 FORMAT(18I4)

	

10	 CONTINUE
AREA_COUNT=0

C
C Ii and 12 are switching parameters for IMTE, allowing us
C to only refill the row needed to be refilled.
C

11=1
C
C Main iteration loop. Since we check the line above the
C current line, start at line 2.
C

DO 100 I=2,LINES
IF (I1.EQ.2) GOTO 220
11=2
12=1
GOTO 230

	

220	 11=1
12=2

	

230	 CONTINUE
C
C Row iteration loop. Since we check to left and right of
C current particle position, loop so that these positions are
C occupied.
C

DO 200 J=2, (PIXELS-1)
C
C Set IMTE storage. IMTE at each point contains the original
C grey level (IMTE(any,any,5)), and particle id for each grey
C found in that pixel and identified (IMTE(any,any,l--4)).
C

IMTE(12,J, 5) =IMAGE(I,J)
IMTE(12,J, l)=0
IMTE(12,J, 2)=0
INTE(12,J, 3)=0
IMTE(12,J, 4)=0

C
C Check if background.
C

23

IF (IMAGE(I,J).EQ.0) GOTO 200
C
C DECOM_GREY takes the grey level and returns, in ORIG, a
C 1D matrix representing the original image flags.
C

CALL DECOM_GREY (IMAGE (I, J) ,ORIG)
C
C PSUEDO_GREY is a buildup of identified greys, which once
C it equals IMAGE(I,J), a full match has been found. This
C is needed since we could match in more than one direction
C correctly. Continue matching until PSEUDO_GREY is satisfied
C or all directions checked.
C

PSEUDO_GREY= 0
C
C Check left, same row...
C

IF (IMTE(12,J-1,5).NE.0) GOTO 140
C
C Check left, row above...
C
110
	

IF (IMTE(I1,J-1,5).NE.0) GOTO 150
C
C Check above, row above...
C
120
	

IF (IMTE(I1,J,5).NE.0) GOTO 160
C
C. Check right, row above...
C
130
	

IF (IMTE(I1,J-i-1,5).NE.0) GOTO 170
GOTO 400

C
C The following set JUMP parameters from the above checks,
C so that the next position can be checked if PSEUDO_GREY is
C unfulfilled.
C
140
	

13=12
J3=J-1
JUMP=1
GOTO 180

150
	

13=11
J3=J-1
JUMP= 2
GOTO 180

160
	

13=11
J3 =J
JUNP=3
GOTO 180

170
	

1:3=11
J3=J+1
JUNP=4

24

180	 CONTINUE
C
C Check, quick and dirty, if a complete match is made from
C checked pixel to the current one. If so, ignore all previous
C matches and substitute, on a one-for-one basis, the matches
C in IMTE(13,J3,x).
C

IF (IMTE(13,J3,5).EQ.IMAGE(I,J)) GOTO 190
C
C No quick and dirty. Decompose the grey in the appropriate
C pixel...
C

CALL DECOM_GREY(IMTE(13,J3,5) ,ORIG2)
C
C Now check the grey, matrix element by matrix element, against
C ORIG (ie the pixel greys to be added to some particle,
C somewhere).
C

DO 300 ICNT=1,4
IF (IMTE(12,J,ICNT).NE.0) GOTO 300
IF ((ORIG(ICNT) .EQ.0) .OR. (ORIG2 (ICNT) .EQ.0)) GOTO 300

C
C A match has been made; update PSEUDO_GREY, and set
C INTE(12,J,ICNT) equal to the new grey, IMTE(13,J3,ICNT).
C

PSEUDO_GREY=PSEUDO_GREY+2 * * (ICNT-1)
IMTE(12,J, ICNT) =IMTE(13,J3, ICNT)

300	 CONTINUE
C
C Quick; has PSEUDO_GREY been completed?
C

IF (PSEUDO_GREY.EQ.IMAGE(I,J)) GOTO 320
C
C Otherwise, jump back and check rest of directions.
C

IF (JTJNP.EQ.l) GOTO 110
IF (JUNP.EQ.2) GOTO 120
IF (JLTMP.EQ.3) GOTO 130

C
C OK, PSEUDO—GREY has not been completely filled, ie a
C new particle area must be created. Find out colors/areas
C that need to be created.
C
400	 CALL DECOM_GREY (PSEUDO_GREY, ORIG2)

DO 330 ICNT=1,4
IF (ORIG(ICNT) .EQ.0) GOTO 330
IF (ORIG(ICNT) .EQ.ORIG2 (ICNT)) GOTO 340

C
C One last check; two to right and above. A perfect sphere,
C when digitized, will have this sort of structure. If
C the grey being created already exists at (I1,J+2), then

25

C check at 12,J+1 for the same grey - ie a continuous path.
C Otherwise, ignore and create a new particle.
C

CALL DECOM_GREY(IMTE(Il,J+2,5) ,ORIG3)
IF (ORIG(ICNT) .EQ.ORIG3 (ICNT)) GOTO 301

302	 CALL START_NEW_.AREA (I, J, AREA_COUNT, ICNT, AREA)
C.
C Particle identification number...
C

IMTE(12,J, ICNT) =AREA_COUNT
GOTO 330

301	 CALL DECOM_GREY(IMTE(12,J+1,5),ORIG4)
IF (ORIG4 (ICNT) .NE .ORIG3 (ICNT)) GOTO 302
IMTE(12,J, ICNT) =IMTE(I1,J+2, ICNT)

C
C Matched that guy, so UPDATE that area.
C
340	 CALL UPDATE_AREA(I, J, IMTE (12, J, ICNT) ,AREA)
330	 CONTINUE

GOTO 200
C
C Update IMTE storage.
C
190	 DO 310 ICNT=1,4

IMTE(12,J, ICNT) =IMTE(13,J3, ICNT)
310	 CONTINUE
320	 CONTINUE
C
C Complete set of grey level matches, ie no new particles
C found for a pixel. Update appropriate areas.
C

DO 350 ICNT=1,4
IF (ORIG(ICNT) .EQ.0) GOTO 350
CALL UPDATE_AREA(I,J,IMTE(12,J,ICNT),AREA)

350	 CONTINUE
200	 CONTINUE

WRITE(6, 500)I,AREA_COUNT
500	 FORMAT(' After 1 ,14,' lines, ',14,' areas have been ',

1 'found')
100	 CONTINUE
C
C Image has now been reduced to identified areas. Check against
C some preliminary idea of what is being identified, ie against
C MIN _PIX and MAX_PIX (set at beginning of program), and for
C a roughly spherical shape...
C

DO 910 I=1,AREA_COUNT
IF ((AREA(I) .NUM_PIX) .LT. (MIN_PIX)) GOTO 911
IF ((AREA(I) .NTJM_PIX) .GT. (MAX_PIX)) GOTO 911

C
C PSEUDO_AREA represents area of square bounded by AREA's

C mm's and max's. This is comparable to NUMLPIX, knowing
C roughly what the expected shape is.
C TOL is used to set the value of the shape parameter;
C A perfect circle, for example, would be a TOL of
C 0.785 ((pi*d"2/4)/d"2, or (p1/4)). Since this is a
C finite world, a less restrictive TOL is required
C (I generally use 0.5, which would allow a 3x3 particle,
C identified as a '+', to pass (ie 5/9)).
C

PSEUDQ.,AREA= (AREA (I) . MAXHOR-AREA (I) . MINHOR)
PSEUDO_AREA=PSEUDO_AREA* (AREA (I) .MAXVER-AREA (I) .MINVER)
IF ((TOL*PSEUDO_AREA) .LT. (AREA(I) .NUM_PIX)) GOTO 911
XEXTENT= (AREA (I) . MAXHOR-AREA (I) . MINHOR+ 1)
YEXTENT= (AREA(I) .MAXVER-AREA(I) .MINVER+l)
IF ((MAX (XEXTENT, YEXTENT) /MIN (XEXTENT, YEXTENT)) . GT. 6)
1 GOTO 911

C
C OK, passes all tests... ready for output to FOR008.DAT
C

COUNT(AREA(I) .COLOR)=COtJNT(AREA(I) .COLOR)+1
XC=FLOAT(AREA(I) .MAXHOR+AREA(I) .MINHOR) /2
IF (AREA(I) .COLOR.NE.4) GOTO 202

202	 YC=FLOAT(AREA(I) .MAXVER+AREA(I) .MINVER)/2
X=AREA(I) .COLOR
Y=COUNT(AREA(I) .COLOR)
SA(X,Y).XC=XC
SA(X,Y).YC=YC
SA(X,Y) .NUM_PIX=AREA(I) .NUM_PIX
IF (X.EQ.1) GOTO 921
SA(X,Y) .NEXT=COUNT((AREA(I) .COLOR) -1)

921	 SA(X,Y) .AVAIL=1
SA(X,Y) .LINK=0
SA(X,Y) .ACT=I
MIH=AREA(I) .MINHOR
MXH=AREA (I) . MAXHOR
MIV=AREA (I) . MINVER
MXV=AREA(I) .MAXVER
COL=AREA(I) .COLOR
NUM=AREA (I) . NUM_PIX
WRITE(8, 945) I,COL,NUM,XC,YC,MIH,MXH,MIV,MXV

945	 FORMAT(' ',316,2F10.1,416)
GOTO 910

911	 XC=FLOAT(AREA(I) .MAXHOR+AREA(I) .MINHOR) /2
YC=FLOAT(AREA(I) .MAXVER+AREA(I) .MINVER) /2
MIH=AREA(I) .MINHOR
MXH=AREA(I) .MAXHOR
MIV=AREA (I) . MINVER
MXV= AREA (I) . MAXVER
COL=AREA(I) .COLOR
NtJM=AREA (I) . NUN_PIX
WRITE(9, 945) I,COL,NUM,XC,YC,MIH,MXH,MIV,MXV

26

27

920	 FORMAT(' 1,216,218)
930	 FORMAT(' 1,2F8.1)
940	 FORMAT(' ',216)
950	 FORMAT(' ',216,I)
910	 CONTINUE

WRITE(8, 945) 0,0,0,0.0,0.0,0,0,0,0
WRITE(8, 920)0,0,0
WRITE (8, 961)NUMP
WRITE(9, 920)0,0,0
WRITE(9, 961)NUMB

961	 FORMAT(' 1,16)
STOP
END

SUBROUTINE DECOM_GREY (GREY_LEVEL, ORIG)
C
C Subroutine to decompose the pixel value into its constituent
C grey level components, namely 1, 2, 4 and 8. These are
C returned as flags in the ORIG matrix.
C

INTEGER GREY _LEVEL, ORIG (8) ,GTEMP
GTEMP=GREY_LEVEL
DO 10 1=1,4
IF (GTEMP.LT.(2**(4_I))) GOTO 20
GTEMP=GTEMP_(2** (4-I))
ORIG (5-I) =1
GOTO 10

20	 ORIG(5-I)=0
10	 CONTINUE

END

28

SUBROUTINE START_NEW_AREA (I, J, AREA_COUNT, GREY, AREA)
C
C Subroutine to start a new area, and initialize its
C values.
C

STRUCTURE /AREA-TYPE/
INTEGER MINHOR, MAXHOR
INTEGER MINVER, MAXVER
INTEGER NUM_PIX
INTEGER COLOR

END STRUCTURE
RECORD /AREA—TYPE/ AREA(7000)
INTEGER AREA_COUNT, GREY
AREA_COUNT=AREA_COUNT+ 1
AREA (AREA_COUNT) . MINHOR=J
AREA (AREA_COUNT) . MAXHOR=J
AREA (AREA_COUNT) . MINVER= I
AREA (AREA_COUNT) . MAXVER= I
AREA (AREA_COUNT) NUM_PIX=1
AREA (AREA_COUNT) . COLOR=GREY
END

29

30

SUBROUTINE UPDATE_AREA (I ,J, AREA_NUN, AREA)
C
C Subroutine to update an area and its parameters.
C

STRUCTURE /AREA—TYPE/
INTEGER MINHOR, MAXHOR
INTEGER MINVER, MAXVER
INTEGER NUM_PIX
INTEGER COLOR

END STRUCTURE
RECORD /AREA—TYPE/ AREA(7000)
INTEGER AREA_NUM, IVAL
IVAL=AREA_NUM
IF ((AREA(IVAL) :MINHOR) .GT .J)
IF ((AREA(IVAL).MAXHOR).LT.J)
IF ((AREA(IVAL).MAXVER).LT.I)
AREA (IVAL) . NTJM_PIX=AREA (IVAL)
END

AREA (IVAL) . MINHOR=J
AREA (IVAL) . MAXHOR=J
AREA (IVAL) . MAXVER= I
NUN_PIX+1

Appendix. B

32

C
C DET_VECT.FOR
C
C This program takes particle location data (formatted output
C from PART _ID.FOR) and compiles likely vector matches.
C It reads sequential matching parameters from a file
C VECTCONTROL.DAT, and will attempt a 3 point match directly
C (l->2->3). Output is directed to FOR09O..DAT (vectors) and
C F0R099.DAT (summary).
C
C--
C
C The structure /SORTED _ AREA _TYPE/ is used to hold the particle
C information found from PART_ID.FOR. The array SA(4,1000)
C is of /SORTED _ AREA _TYPE/. The first element in the array (1-4)
C indicates the 'grey' of the particle, while the second is that
C particles relative location within its own sorted list. Because
C of the nature of the particle identification, the particles are
C already roughly sorted from top to bottom by Yc, where Xc and
C Yc are located particle centers.
C
C NEXT is an integer pointer to the element in the next grey
C that would be the particle immediately above the current Yc of
C the current color. AVAIL is a flag to indicate the particle
C has or has not been matched. LINK is an integer pointer at
C the next particle in a vector, ie to the next color. Because
C the algorithm is checking 1 --> 2 --> 3, if AVAIL is false
C (ie 0) for SA(1,any), then SA(l,,any).LINK has some non-zero
C value, and SA(1,SA(2,any) .LINK) .LINK also has some non-zero
C value (since a three-point match is required).
C

STRUCTURE /SORTED—AREA—TYPE/
REAL XC,YC
INTEGER NUM_PIX
INTEGER NEXT, AVAIL, LINK,ACT
INTEGER ICNWC

END STRUCTURE
RECORD ISORTED_AREA_TYPE/ SA(4,1000),SA_TWO(4,1000),
1	 SA_CORRECT(4,1000)
CHARACTER*20 FILENAME
CHARACTER*30 FILEVC
INTEGER I, J, 12, J2, 13, J3 , COUNT(4) ,MAXDIS, DIRECT, ICN'IVC
REAL TOLV, TOLR, BEST_TOLR, BEST_TOLV, BEST_TEST, BEST_XPTP, WF
INTEGER BEST_MAXDIS, SUPERPASS

C
C To prevent data corruption, data file outputs from PARTICLE—ID
C were renumbered to whatever seemed appropriate at the time.
C FOR008, FOR031, FOR041, and FOR051 were all commonly used;
C this program is not limited to these values.
C

WRITE (6, 671)

33

671 FORMAT(' Enter 10 number for particle data')
WRITE(6,672)

672	 FORMAT(' (8 for NASA, 51 for TURB, 31 for SIMLTLL',
1	 ' and 41 for SIMULR)')
READ(5,*) 102

C
C At one point, the various iterations were being sent
C to separate 10 values. These 10 values were being
C recorded in FOR001.DAT, so later consolidation could be
C done. This statement is almost useless without
C the separation of 10 values, but required for operation
C of the consolidation programs (ie, VECTORT.FOR).
C Writing 102 to FOR001.DAT lets VECTORT.FOR know what
C data file is being consolidated (changing output file names
C correspondingly).
C

WRITE(1, 1010)102
C
C Read in particle data.
C
C Note secondary arrays, SA_TWO and SA_CORRECT. SA_TWO is
C reserved for backwards (in the list) matching, and SA—CORRECT
C is reserved for matches between SA and SA_TWO
C

DO 1=1,4
DO J=1, l000

SA(I,J) .LINK=0
SA_TWO(I,J) .LINK=0
SA_CORRECT (I, J) . LINK=0
SA(I,J) . ACT= 0
SA_TWO(I,J) .ACT=0
SA_CORRECT(I,J) .ACT=0

END DO
END DO

C
C Read in data point (format given in PARTICLE_ID).
C
40	 READ(102,*)I,COL,XC,YC

IF (102.EQ.31) COL=COL-1
IF (I.EQ.0) GOTO 30
COUNT(COL)=COUNT(COL)+l
X=COL
Y=COUNT(COL)
SA(X,Y) .XC=XC
SA(X,Y) .YC=YC
SA(X,Y) .NUN_PIX=NUM
SA_TWO(X,Y) .XC=SA(X,Y) .XC
SA_TWO(X,Y) .YC=SA(X,Y) .YC
SA_TWO(X,Y) .NUM_PIX=SA(X,
IF (X.EQ.4) GOTO 20
SA(X,Y) .NEXT=COUNT(COL+1)

Y) .NUN_PIX

34

SA_TWO(X,Y) .NEXT=SA(X',Y) .NEXT
20	 SA(X,Y) .AVAIL=1

SA(X,Y) .LINK=0
SA(X,Y) . ACT= I
SA_TWO(X,Y) .AVAIL=SA(X,Y) .AVAIL
SA_TWO(X,Y) .LINK=SA(X,Y) .LINK
SA_TWO(X,Y) .ACT=SA(X,Y) .ACT
GOTO 40

30	 CONTINUE
C
C Vector determination. Tolerances are set by the
C file VECTCONTROL, which has one line per iteration.
C

10=90
WRITE(1,1010) 10
ITER=0
TYPE*, 'Do you want preset VECTCONTROL.DAT info? (1/0)'
READ(5,*) IVC
FILEVC=' VECTCONTROL . DAT'
IF (IVC.NE .1) THEN

TYPE*,iPlease enter control file data name',
1	 ' (usually VECTCONTROL .DAT or FOR003 .DAT)'

READ(5,5050) FILEVC
END IF

5050 FORMAT(A30)

Read in VECTCONTROL file, which contains the parameters
needed for particle vector matching. Each line in
vectcontrol is executed sequentially on the particle list.
Order of parameters is To1V, To1R, and MAXDIS. The
file must end with the line, p 0.0 0.0 0.

Sample VECTCONTROL.DAT file:

0.5 0.5 10
0.5 0.5 20
0.5 1.0 30
0.5 1.5 30
0.0 0.0 0

ICNTVC=0

Superpass is an integer counter; basically, VECTCONTROL.DAT
is opened twice; in the regular mode, the forward/backwards
error correction is in place. In the superpass mode, the
error correction is disabled. Superpass is implemented
after the error correction, under the premise that at that
point, the number of tracks are so few that overlap (and
hence error and the need for error correction) is diminished.

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C

734

5555

777

1010

SUPERPASS=0
SUPERPASS=SUPERPASS+ 1
OPEN (UNIT=2, FILE=FILEVC, STATtJS=' OLD')
TYPE*,'
TYPE*, 'Iteration ',ICNTVC+l
CONTINUE
ICNTVC=ICNTVC+1
READ(2,*) TOLV,TOLR,MAXDIS
FORMAT (14)
IF (TOLV.EQ.(0.0)). ThEN

IF (SUPERPASS.EQ.1) THEN
CLOSE (UNIT=2)
GOTO 734

ELSE
GOTO 778

END IF
END IF

ITER=ITER+1

35

C
C Main routine for matching. Every iteration reduces the
C eligible particles for matching, so VECTCONTROL can use
C less and less restrictive parameters.
C
C DIRECT=1 for forward match (SA), DIRECT=-1 for backward
C match (SA_TWO).
C

DIRECT=1
CALL DO_VECT(COUNT, SA, TOLV, TOLR, MAXDIS,
1 DIRECT, ICNTVC)

C
C Record keeping; for simulated images, accurate
C determination of correct and incorrect matching can
C be done. For non-simulated images, you can only gather
C matched/unmatched percentages.
C
C All percentages are based on the number of grey=l particles
C initially present.
C
C TALLYVECT output is sent to the appropriate file.
C

CALL TALLYVECT(SAA,COUNT(1),ICNWC,1,TOLV,TOLR,MAXDIS)
C
C Backwards matching (gA_TWO, DIRECT=-1).
C

DIRECT=-1
CALL DO_VECT (COUNT, SA_TWO, TOLV, TOLR, MAXDIS,
1 DIRECT, ICNTVC)

C
C Tally up number found
C

CALL TALLYVECT (SA_TWO, COUNT (1) , ICNTVC, 2, TOLV, TOLR, MAXDIS)

36

C
C Time to start filling SA—CORRECT. This is done by comparing
C vector matches made in SA and SA_TWO; if they agree, they are
C considered correct and the entry made in SA_CORRECT. If they
C do not agree, the particles are made available for further
C matching.
C

IF (SUPERPASS.EQ.1) THEN
DO I=1,COUNT(1)

C
C Check that the match was made in the most recent iteration
C (otherwise already accounted for)
C

IF (SA(1,I),ICNTVC.EQ.ICNTVC) THEN
C
C Check that Ith particle is matched...
C

IF ((SA(l,I).LINK.NE.0).AND.(SA_TWO(l,I).LINK.NE.0))
1	 THEN

C
C Check if Ith particles are equivalent... if so, update
C SA_CORRECT.
C

IF ((SA(l,I).LINK.EQ.SA_TWO(l,I).LINK).AND.
1	 (SA(2,SA(l,I).LINK).LINK.EQ.
2	 SA_TWO(2,SA_TWO(1,I).LINK).LINK)) THEN

SA_CORRECT(1, I) .LINK=SA(1, I) .LINK
SA_CORRECT(1,I) .ACT=SA(l,I) .ACT
SA_CORRECT(1, I) .ICNTVC=SA(l, I) .ICNWC
SA_CORRECT(2, SA(1, I) .LINK) .LINK=SA(2, SA(1, I)

1	 .LINK).LINK
SA_CORRECT(2, SA(l, I) .LINK) .ACT=SA(2, SA(l, I)

1	 .LINK) .ACT
SA_CORRECT(3,SA(2,SA(1,I).LINK).LINK).ACT=

1	 SA(3,SA(2,SA(1,I).LINK).LINK).ACT
SA_CORRECT(3,SA(2,SA(1,I).LINK).LINK).LINK=

1	 SA(3,SA(2,SA(1,I).LINK).LINK).LINK
END IF

END IF
END IF

C
C Update SA array for bad matches...
C

IF ((SA(1,I).LINK.NE.0).AND.(SA(1,I),ICNWC.EQ.ICNtIVC)
1	 .AND. (SA_CORRECT(1, I) .LINK.EQ. 0)) THEN

SA(3,SA(2,SA(1,I).LINK).LINK).AVAILl
SA(2,SA(1,I) .LINK) .LINK=0
SA(2,SA(1,I).LINK).AVAIL=1
SA(1,I).LINK=0
SA(1,I) .ICNTVC=0
SA(1,I) .AVAIL=l

37

END IF
C
C Update SA_TWO array for bad matches...
C

IF ((SA_TWO(1,I).LINK.NE.0).AND.(SA_TWO(1,I),ICNTVC
.EQ.ICNTVC).AND.(SA_CORRECT(1,I).LINK.EQ.0)) THEN

SA_TWO(3,SA_TWO(2,SATWO(1,I).LINK).LINK).AVAIL=1
SA_TWO(2,SA_TWO(1,I) LINK) .LINK=O
SA_TWO(2,SA_TWO(1,I) .LINK) .AVAIL=1
SA_TWO(1,I) .LINK=O
SA_TWO(1,I) .ICNTVC=O
SA_TWO (1, I) . AVAI L= 1

END IF
END DO

ELSE
DO I=1,COUNT(1)

IF (SA(1,I),ICNTVC.EQ.ICNWC) THEN
C
C Check that Ith particle is matched.
C

IF (SA_TWO(1,I).LINK.NE.0) THEN
SA_CORRECT(1,I) .LINK=SA(1,I) .LINK
SA_CORRECT(1,I) .ACT=SA(1,I) .ACT
SACORRECT(1, I) .ICNTVC=SA(1, I) .ICNWC
SA_CORRECT(2,SA(1,I).LINK).LINK=SA(2,SA(1,I)

1	 .LINK) .LINK
SA_CORRECT(2,SA(1,I).LINK).ACT=SA(2,SA(1,I).LINK)

1	 .ACT
SA_CORRECT(3,SA(2,SA(1,I).LINK).LINK).ACT=

1	 SA(3,SA(2,SA(1,I).LINK).LINK).ACT
SA_CORRECT(3,SA(2,SA(1,I).LINK).LINK).LINK=

1	 SA(3,SA(2,SA(1,I).LINK).LINK).LINK
ELSE IF (SA_TWO(1,I).LINK.NE.0) THEN
SA_CORRECT(1, I) .LINK=SA_TWO(1, I) .LINK
SA_CORRECT(1,I) .ACT=SA_TWO(1,I) .ACT
SACORRECT(1,I) .ICNTVC=SA_TWO(1,I) .ICNTVC
SA_CORRECT(2, SA_TWO(1,I) .LINK) .LINK=SA_TWO(2,

1	 SA_TWO(1,I).LINK).LINK
SA_CORRECT(2,SA_TWO(1,I) .LINK) .ACT=SA_TWO(2,

1	 SA_TWO(1,I).LINK).ACT
SA_CORRECT(3,SA_TWO(2,SA_TWO(1,I) .LINK) .LINK)

1	 .ACT=SA_TWO(3,SA_TWO(2,SA_TWO(1,I).LINK)
2	 .LINK).ACT

SA_CORRECT(3,SA_TWO(2,SA_TWO(1,I) .LINK) .LINK)
1	 .LINK=SA_TWO(3,SA_TWQ(2,SA_TWQ(1,I).LINK)
2	 .LINK).LINK

END IF
END IF

IF ((SA(1,I) .LINK.EQ.0) .AND. (SA(1,I) .ICNTVC.EQ.ICNTVC)
1	 .AND.(SA_TWO(1,I).LINK.NE.0)) THEN

SA(3,SA(2,SA(1,I).LINK).LINK).AVAIL=SA_TWO(3,

I;I

1	 SA_TWO(2,SA_TWO(1,I).LINK).LINK).AVAIL
SA(2,SA(1,I).LINK).LINK=SA_TWO(2,SA_TW0(1,I).LINK)

1	 .LINK
SA(2, SA(1, I) .LINK) .AVAIL=SA_TWO(2, SA_TWO(1, I)

1	 .LINK) .AVAIL
SA(l,I) .LINK=SA_TWO(1,I) .LINK
SA(1,I) .ICNTVC=SA_TWO(1,I) .ICNTVC
SA(1,I) .AVAIL=SA_TWO(1I) .AVAIL

END IF
C
C Update SA_TWO array for bad matches...
C

IF ((SA_TWO(1,I).LINK.EQ.0).AND.(SA_TWO(1,I),ICNTVC
1	 .EQ.ICNTVC).AND.(SA(1,I).LINK.NE.0)) THEN

SA_TWO(3,SA_TWO(2,SA_TWO(1,I).LINK).LINK).AVAIL=
1	 SA(3,SA(2,SA(1,I).LINK).LINK).AVAIL

SA_TWO(2,SA_TWO(1,I).LINK).LINK=SA(2,SA(1,I).LINK)
1	 .LINK

SA_TWO(2, SA_TWO(1, I) .LINK) .AVAIL=SA(2, SA(1, I) .LINK)
1	 .AVAIL

SA_TWO(1,I).LINK=SA(1,I).LINK
SA_TWO(1,I),ICNTVC=SA(1,I),ICNTVC
SA_TWO(1,I) .AVAIL=SA(1,I) .AVAIL

END IF
END DO

END IF
C
C Determine %'s based on cumulative tracking/combination.
C

CALL TALLYVECT (SA_CORRECT, COUNT (1) , ICNTVC, 3,
1 TOLV,TOLR,MAXDIS)

C
C Final piece of information: determine %'s based on most recent
C iteration/combination, non-cumul. Algorithm similar to
C TALLYVECT.
C

INOT_FOUND= 0
IWRONG=O
ITHREE_PT= 0
ICNTNEW= 0
DO I=1,COUNT(1)

IF ((SA(l,I),ICNWC.EQ.ICN'IVC).OR.(SA(l,I),ICNWC.EQ.0))
1	 THEN

ICNTNEW= ICNTNEW+ 1
IF ((SA_CORRECT(1,I).LINK).EQ.0) THEN

INOT_FOUND= INOT_FOUND+ 1
ELSE
IA=SA_CORRECT(1, I) .ACT
IB=SA_CORRECT(2, SA_CORRECT(1, I) .LINK) .ACT
IC=SA_CORRECT(3, SA_CORRECT(2, SA_CORRECT(1, I) .LINK)

1	 .LINK) .ACT

39

IX=SA_CORRECT (1, I) . LINK
IY=SA_CORRECT(2, IX) .LINK
WRITE(IO,120) I,IA,IB,IC,SA(1,I).XC,SA(1,I).YC,

1	 SA(2,IX).XC,SA(2,IX).YC,SA(3,IY).XC,SA(3,IY).YC
IF ((IA.EQ.IB).AND.(IB.EQ.IC)) THEN

ITHREE_PT= ITHREE_PT+1
ELSE
IWRONG=IWRONG+1

ENDIF
END IF

ENDIF
END DO

IF (ICNTNEW . NE. 0) THEN
XPNF=FLOAT(INOT_FOUND) *100 0/FLOAT(ICNTNEW)
XPTP=FLOAT(ITHREE_PT) *100 0/FLOAT(ICNTNEW)
XPWR=FLOAT(IWRONG) *1OOO/FLOAT(ICNflJ)
WRITE(99,561)ITER,MAXDIS,'IOLV,TOLR,XPNF,XPTP,XPWR,ICNTNEW
WRITE(6,561)ITER,MAXDIS,TOLV,TOLR,XPNF,XPTP,XPWR,ICNTNEW

END IF
GOTO 777

561	 FORMAT(' Iteration 1 ,13,'	 MAXDIS - 1 ,14,' TOLV - 1,F5.2,
1 ' TOLR - 1,F5.2,I,' Not Found - 1,F6.2,I,
2	 ' Three - 1,F6.2,/,' Wrong - 1,F6.2,
3 ' (Combined track),',' for 1 ,14, ' remaining tracks')

C
C Out of loop. Write final values to output and end.
C
778	 WRITE(1,1010) 0

C
C Final record-keeping is to output all non-matched particles to
C an output file (FOR02O.DAT is used here).
C

IO_NF=2 0
DO I=1,COUNT(1)

IF (SA(1,I).AVAIL.EQ.1) THEN
WRITE(IO_NF,320) I,3,SA(1,I).XC,SA(1,I).YC,SA(1,I).ACT

ELSE
WRITE(IO,120) I,SA(1,I).ACT,SA(2,SA(1,I).LINK).ACT,

1	 SA(3,SA(2,SA(1,I).LINK).LINK).ACT,SA(1,I).XC,
2	 SA(1,I).YC,SA(2,SA(1,I).LINK).XC,SA(2,SA(1,I)
3	 .LINK).YC,SA(3,SA(2,SA(1,I).LINK).LINK).XC,
4	 SA(3,SA(2,SA(1,I).LINK).LINK).YC

END IF
END DO

WRITE (10, 120) 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
120	 FORMAT(' 1,418,6F10.2)

DO I=1,COUNT(2)
IF (SA(2,I).AVAIL.EQ.1) WRITE(IO_NF,320) I,2,SA(2,I).XC,

1	 SA(2,I).YC,SA(2,I).ACT
END DO

DO I=1,COUNT(3)

40

IF (SA(3,I).AVAIL.EQ.1) WRITE(IO_NF,320) I,3,SA(3,I).XC,
1	 SA(3,I).YC,SA(3,I).ACT
END DO

WRITE(IO_NF,320) 0,0,0.0,0.0
320
	

FORMAT(' ',218,2F10.2,18)

STOP
END

41

SUBROUTINE DO_VECT (COUNT, SA, TOLV, TOLR, MAXDIS,
1	 DIRECT, ICNWC)

Subroutine that does the grunt work of particle matching,
using the parameters passed from the main program.

STRUCTURE / SORTED_AREA_TYPE!
REAL XC,YC
INTEGER NTJM_PIX
INTEGER NEXT, AVAIL, LINK, ACT
INTEGER ICNTVC

END STRUCTURE
RECORD /SORTED — AREA — TYPE/ SA (4, 1000)
INTEGER COUNT(4) , DJ, K, DL, DIRECT, DI, ICNTCV, ISWITCH

C
C Set tolerances and limits (passed variables)
C TOLR is maximal radial change in vector (in radians)
C TOLV is maximal magnitude change in vector (as fraction of
C
	 average vector magnitude)
C MAXDIS is maximum displacement frame-to-frame of particles
C
C
C Begin main loop, on grey=4. Start at 1 and go to end.
C Do not match grey=2 or above if grey=1 particle is not
C available.
C

ISWITCH=0
IF (DIRECT.EQ.1) THEN

ID1 = 1
1D2 =COUNT (l)
DI = 1

ELSE
ID1=COtJNT(1)
ID2=l
DI = -1

END IF
DO 110 I=ID1,1D2,DI

IF (SA(1,I).AVAIL.EQ.0) GOTO 110
C
C Switching parameters. A double-switching search is used;
C initial search is in the above direction (ie start at
C SA(1,I).NEXT and decrement back to 1), and switches to the
C below direction (start at SA(1,I).NEXT+1 and increment up
C to max) if no match is found.
C

IF (DIRECT.NE .1) GOTO 50
250	 DJ=-1

13=1
I2=SA(1,I) .NEXT+1
IF (I2.GT.COUNT(2)) 12=COUNT(2)
GOTO 60

42

50	 DJ=1
13=COIJNT(2)
12=SA(1,I) .NEXT
IF (12.LT.1) 12=1

C
C Main grey=2 loop.
C
60	 DO 20 J=12,13,DJ

C
C Check availability. Also check MAXDIS (quickest elimination).
C

IF (SA(2,J) .AVAIL.EQ.0) GOTO 20
DY1=(SA(1,I) .YC-SA(2,J) .YC)
IF (ABS(DY1).GT.MAXDIS) GOTO 10
DX1=(SA(1,I) .XC-SA(2,J) .XC)
IF (ABS(DX1).GT.MAXDIS) GOTO 20
DV1=SQRT(DX1*DX1+DY1*DY1)
IF (DV1.EQ.0) GOTO 20

C
C DV1 rep. 1->2 vector
C

IF (DJ.EQ.1) GOTO 80
C
C Switching parameters for the grey=3 loop, following the
C same procedure as for grey=2. It is likely that the
C grey=3 particle is in the same direction as grey=2, and
C this direction is checked first. ISWITCH is used to
C reverse the grey=3 track locally.
C
280
	

DK= -1
J3=1
J2=SA(2,J) .NEXT+1
IF (J2.GT.COTJNT(3)) J2=COtJNT(3)
GOTO 70

80
	

DK=1
J3=COUNT(3)
J2=SA(2,J) .NEXT
IF (J2.LT.1) J2=1

C
C Main grey=3 loop.
C
70
	

DO 30 K=J2,J3,DK
C
C Check availability. Check MAXDIS for quick elimination.
C

IF (SA(3,K).AVAIL.EQ.0) GOTO 30
DY2=(SA(2,J) .YC-SA(3,K) .YC)
IF (ABS(DY2).GT.MAXDIS) GOTO 31
DX2=(SA(2,J) .XC-SA(3,K) .XC)
IF (ABS(DX2) .GT.MAXDIS) GOTO 30
DV2 =SQRT (DX2 *Dx2 +DY2 *DY2)

C
C DV2 rep. 2->3 vector
C

IF (DV2.EQ.0) GOTO 30
C
C Check T01V...
C

IF (ABS ((DV2 -Dvi) I ((DV2 +DV1) / 2)) . GT . TOLV) GOTO 30
C
C Check To1R (note 'heavy' calculations).
C

IF (DY1.GT.0) THEN
DR1=ACOS (DX1/DV1)

ELSE
DR1=2*3 .14i59-ACOS(DX1/DVi)

ENDI F
IF (DY2.GT.0) THEN

DR2=ACOS (Dx2/Dv2)
ELSE
DR2=2*3 .14159-ACOS(DX2/DV2)

END IF
IF (ABS (DR2-DR1) .GT.TOLR) GOTO 30

C
C At this point a three-point match exists, 1 --> 2 --> 3.
C Set the appropriate linkages and availability flags, and
C check whether a fourth-point match is required. 4 point
C matching tends to significantly reduce matching, and is
C not used.
C

SA(3,K) .AVAIL=0
SA(2,J) .LINK=K
SA(2,J) .AVAIL=0
SA(l,I) .LINK=J
SA(l,I) .AVAIL=0
SA (1, I) . ICNTVC=ICNTVC
ISWITCH=0
GOTO 11

30	 CONTINUE
31	 IF (ISWITCH . EQ. 1) THEN

ISWITCH=0
GOTO 20

ELSE
ISWITCH=l
IF (DJ.EQ.1) THEN

GOTO 280
ELSE

GOTO 80
END IF

END IF
20	 CONTINUE
10	 IF (DIRECT.EQ.DJ) GOTO 11

43

IF (DJ.EQ.1) GOTO 250
GOTO 50

11	 CONTINUE
110	 CONTINUE

RETURN
END

44

45

SUBROUTINE TALLYVECT(SA, lEND, ICNTVC, NUMB, TV, TR, MD)
C
C Subroutine to output some simple stats on matched particles
C

STRUCTURE /SORTED—AREA—TYPE/
REAL XC,YC
INTEGER NUM_PIX
INTEGER NEXT, AVAIL, LINK, ACT
INTEGER ICNTVC

END STRUCTURE
RECORD /SORTED—AREA—TYPE/ SA (4, 1000)
INTEGER lEND, ICNTVC,NUMB,MD, 10
REAL TV, TR

INOT_FOUND=0
IWRONG= 0
ITHREE_PT= 0
IFOUR_PT= 0
DO I=l,IEND

IF ((SA(1,I).LIN'K).EQ.0) THEN
INOT_FOUND= INOT_FOUND+ 1

ELSE
IA=SA(1,I) .ACT
IB=SA(2,SA(1,I) .LINK) .ACT
IC=SA(3,SA(2,SA(1,I) .LINK) .LINK) .ACT
IX=SA(l,I) .LINK
IY=SA(2,IX) .LINK
IF ((IA.EQ.IB).AND.(IB.EQ.IC)) THEN

ITHREE_PT=ITHREE_PT+ 1
ELSE
IWRONG=IWRONG+1

END IF
END IF

END DO
XPNF=FLOAT (INOT_FOUND) *100 .0/FLOAT (lEND)
XPTP=FLOAT(ITHREE_PT) *100 OIFLOAT(IEND)
XPWR=FLOAT(IWRONG) *1000/FLOAT(IEND)
IF (NUMB.EQ.1) THEN
WRITE(99,571)ITER,ND,TV,TR,XPNF,XPTP,XPWR,IEND
WRITE(6,571)ITER,MD,TV,TR,XPNF,XPTP,XPWR,IEND

END IF
IF (NUMB.EQ.2) THEN

WRITE (99,572) ITER, MD, TV, TR, XPNF, XPTP, XPWR, lEND
WRITE(6,572)ITER,MD,TV,TR,XPNF,XPTP,XPWR,IEND

END IF
IF (NUMB.EQ.3) THEN

WRITE(99, 573) ITER,MD, TV, TR, XPNF, XPTP, XPWR, lEND
WRITE(6, 573)ITER,ND,TV,TR,XPNF,XPTP,XPWR, lEND

END IF
571	 FORMAT(' Iteration 1,13, ' 	 MAXDIS - 1 ,14, ' TOLV - 1,F5.2,

1 TOLR - 1 ,F5.2,/,' Not Found -

46

2 ' Three - 1 ,F6.2,/,' Wrong - 1,F6.2,
3 ' (Forward track),',' all ',14,' tracks')

572	 FORMAT(' Iteration 1 ,13,'	 MAXDIS - 1 ,14,' TOLV - 1,F5.2,
1 ' TOLR - 1 ,F5.2,I,' Not Found -
2 ' Three - 1,F6.2,/,' Wrong - 1,F6.2,
3 ' (Backward track),',' all 1 ,14,' tracks')

573	 FORMAT(' Iteration 1 ,13,'	 MAXDIS - 1 ,14,' TOLV - 1,F5.2,
1 ' TOLR - 1,F5.2,/,' Not Found -
2 ' Three - 1 ,F6.2,I,' Wrong - 1,F6.2,
3 ' (Combined track),',' all ',14,' tracks')
RETURN
END

Appendix C

A Kodak Company

CCD Camera
For High Resolution

Applications

The VIDEK MEGA PLUS"' Camera

Feature	 Benefit

• 1320 H x 1035 V pixel format

• Square pixels

• 100% fill
(No space between pixels)

• Digital output

4 times greater resolution than other
"Hi-Res" solid-state cameras

Accurate and simplified dimensional
measurements in any direction

5 to 10 times improvement in sub-pixel
measurement acuracy

Maximizes signal-to-noise ratio

4MEG VIDEO'Model 10
Flexible Image Processor and
Application Accelerator
For The- PCIAT

e	
-

\	
re

Nonstandard Sensor Interface
(up to 19 MHz)

• 10 MIPs Programmable Accelerator
• Up to 4 Megabytes of Reconfigurable

Image Memory

4MEaVIDEaMOdeI-IQ-Offers-a-fleXibleJmage -
processingplatformforOEMs and VARs. An
adaptablevide(riiming generator allows easy
integratiofrwittT image sources such-as line-scan-
cameras- high-resolution CCD. cameras, and medical
imaging equipment A- reconflgurable image memory
can beorganized:as.one or many images of arbitrary-
dimension. A programmable-on-board processor
accelerates imaging- unctions- including custom-
algorithms. All. of this functionality is available orr a.
single board: that Occupies one- slot- in a. PCIA-T(or
compatible) computen

EPI)r,. 	 1987
Successful: applications of theproduct Includer

Automated: Inspection;
MedicaL, Imaging.
Motion' Analysis

-	 - Document P'ocessing?
- •--•	 Milita,yffataAcquisitiOfl'

4MV!DE ModeklO is amemberof-acontlnually
llnft 	 1ff offers twice the-

processing speetofthe previous version-- Planned:
enhancementstOtheproduct family Include larger
Image! memory largeron-board prograar memory; C
complier support; higher resolutlon!bandidthafld

verp high-speed: mass storageaccess..

-	 - Fft!thle Video A

4MEG VIDEO Model 10 offers unparalleled flexibility in
video acquisition and display. Analog video signals can-
be digitized at up to 19 million samples per second.
Alternatively, the board can accept direct 8-bit digital
data. The pixel clock can be derived from an external
source or generated internally. 4MEG VIDEO Model 10
can genlock to composite video, composite sync, or
horizontal and vertical drive signals from a variety of
video formats. Likewise, a variety of output formats can
be-generated-

Programmable video resolution is provided by a unique
Horizontal Control Memory (HCM) that allows pixel-by-
pixel control over image memory transfers. during
acquisition and display. Integer zoom and subsampling-
are supported. Sampling resolution can vary across a.
given line of video. The vertical resolution is also
programmable.

-
	 EPIX

310 Anthony Trail, Northbrook, 1L60062
(312) 498-4002

ORIGINAL PAGE Is

4MEG VIDEO""'Model 10
	

OF POOR cJALJrY

Flexible Image Processor and Application Accelerator For The PC/AT
Fast Li-Board Processor
4MEG VIDEO Model 10 facilitates acceleration of image
processing functions with a 10 MIPS Texas Instruments
TMS320C25 Digital Signal Processor. In addition to
performing math-intensive Image processing functions at
high speed, the TMS320C25 can function much like a
general-purpose microprocessor. This facilitates the
Implementation of custom image processing and inspection
algorithms.

The TMS320C25 Is programmed In assembly language. The
8K word on-board program memory is ample for most image
processing functions. Programs may be downloaded rapidly
via the PC/AT bus.

Recontlqurable Image Memory	 .
Pixel data is stored in Image memory as sequential 8-bit
values. Using the HCM, this memory can be organized as
one large image, or many smaller images. Portions of the
memory can also be used to store intermediate results,
menues, or overlays. A bit-plane write protect feature allows
text and overlays to be written over image data.

Image memory is accessed by the PC/AT or the TMS320C25
In 64K byte blocks. A Memory Offset Register allows this
window to be located on any 16 Kbyte boundary.

The memory has data paths for video acquisition, video
display, and processing. One of these paths is utilized at any
given time. During image acquisition the display is driVen
with live video. Image processing can be performed during
video blanking intervals to maintain an uninterrupted display.

4ME9 VIDEO Model 10 Softwaro Support
4MEG VIDEO Model 10 Is supported by driver software that
allows easy application development by OEMs and VARs.
A driver subroutine library (4MDRIVER) simplifies control of
the board from programs written in C or other high-level
languages. The library is easy to use; familiarity with
structures, pointers, etc. is not required for fundamental
operations.

An optional, interactive, menu driven program (4MIP) allows
Immediate access to 4MEG VIDEO Model 10 functionality.
4MDRIVER functions and Image processing routines can be
Invoked via a mouse Interface. 4MIP also allows the user to
save sequences of operations in command files that can be
re-executed on demand.

To develop loadable routines for the TMS320C25, standard
macro-assembler development tools from Texas Instruments
or Avocet Systems, Inc. can be employed. 4MDRIVER and
4MIP facilitate downloading of user-developed programs.

,M*G MMORV
4 UWASYM

00
I IGAYTE

1989 EPIX INC.	 EPIX and 4MEG VIDEO are trademarks of EPIX, INC.
PC/AT is a trademark of IBM CORP.

Speclticatlons

4MEG VIDEO NOW 10 Hanlware

Video Acquisition/Display 	 .

• Up to 19 MHz sampling/display rate

	

• .	 • Up to 1984 pixels per line
. RS-170, RS-330, and CCIA input/output

	

• -.	 • Analog or digital inputs
• Variable timing for nonstandard formats
• Gen lock to external timing sources

	

•	 • Generates master video timing
• Software programmable timing/resolution
• External input/output for event synchronization
• Pseudocolor display

	

•	 • Nondestructive cursor

	

• : .	 • PC or AT bus compatible 	 .-. .

	

• :	 On-Board Processor

• TMS320C25 digital signal processor

	

-	 • 10 million instructions per second
• 16-bit fixed point arithmetic W/ 32-bit accumulation

	

•	 • 8K word program memory
• Direct Image memory access

Image Memory

• 1 meaabvte or 4 megabyte Image memory options
• 8-bits per pixel
• Selectable bit plane write protect
• Configurable as one or many Images
• Programmable Image size

Options

• VIDEK MEGAPLUS camera Interface card
• 16 Input video multiplexor card
• Reticon camera interface (third party)

*MEG VIDEO Model 10 Softwase

4MDRIVER and 4MIP

• Simple-to-use functions/subroutines
• Image capture and display
• Adjustable video formats

resolution	 - blanking intervals
- Interlaced/noninterlaced 	 - Serration/equalization

• Selectable timing source
• Split screen digitize/display
• Integer zoom (1-30X)	 • Pan, Scroll
• TMS320C25 convolution, image sequence average

and difference

4MIP Only

• PC-based Image processing
Arithmetic/logic functions - Convolution
Temporal average	 - Inter-image operations

- Contrast enhancement
• Real-Time motion analysis
• Histogram display	 • Command file training/replay
• Disk, File i/O	 • Image Printing

PIX
310 Anthony Trail, Northbrook, Illinois 60062 U.S.A.
Phone (312) 498-4002	 Fax (312) 498-4321

1 APR 89

(17MS) 10 M/BITS
CACHE BUFFER
(17MS) 10 M/BITS
CACHE BUFFER
18MS) 10 M/BITS
CONTROLLER
10 M/BITS DTR
CACHE BUFFER
10 M/BITS DTR

CONTROLLER
10 M/BITS DTR

CONTROLLER
10 M/BITS DTR

CONTROLLER

SUBTRACT: $ 525.00

SUBTRACT: $ 400.00

SUBTRACT: $ 200.00

SUBTRACT: $ 300.00

ADD: $ 250.00

ADD: $ 750.00

ADD: $1250.00

SUBTRACT: $ 425.00
SUBTRACT: $ 250.00

ADD: $ 225.00
ADD: $ 250.00
ADD: $ 800.00
ADD: $1900.00

DTR

DTR

DTR

GATEWAY 2000
33MHZ 486 CACHE

DESKTOP
64K SRAM CACHE (25NS)

8 MB DRAM (70 NS S IMMS)
EXPANDABLE TO 64MB

1.2 MB 5 1/4" DRIVE (EPSON)
1.44 MB 3.5" DRIVE (EPSON)

200 MB IDE WESTERN DIGITAL (15MS) 10 M/BITS DTR
W/64K MULTI SEGMENTED CACHE BUFFER

DIAMOND SPEEDSTAR 16 BIT VGA BOARD W/1MB (1024 X 768)
14" GATEWAY 2000 NON—INTERLACED 1024 CRYSTAL SCAN MONITOR (1024 x 768)

1 PARALLEL PORT/2 SERIAL PORTS
GATEWAY 2000 101 KEY KEYBOARD

MICROSOFT WINDOWS 3.0/MICROSOFT MOUSE
DOS 4.01 OR 3.3

WEITEK SOCKET/CLOCK/CALENDAR
PHOENIX BIOS

PRICE:	 $3995.00

HARD DRIVE OPTIONS:
40 MB IDE WESTERN DIGITAL

W/32K READ—LOOK—AHEAD
80 MB IDE WESTERN DIGITAL

W/32K READ—LOOK—AHEAD
110 MB ESDI MICROSCIENCE (

W/32K ULTRASTOR CACHE
120 MB IDE SEAGATE (18MS)

W/32K READ—LOOK—AHEAD
150 MB ESDI SEAGATE (17MS)

W/32K ULTRASTOR CACHE
300 MB ESDI SEAGATE (17MS)

W/32K ULTRASTOR CACHE
650 MB ESDI SEAGATE (17MS)

W/32K ULTRASTOR CACHE
MONITOR OPTIONS:
12" SAMSUNG MONOCHROME
14" SAMSUNG VGA MONOCHROME
14" NEC 3D
14" SONY 1304
16" NANAO 907OU
20" MITSUBISHI 6935
OTHER OPTIONS:
VERTICAL CASE
120 MB TAPE BACK UP

ADD: $ 150.00
ADD: $ 295.00
ADD: $ 100.00
ADD: $ 600.00
ADD: $ 295.00
ADD: $ 425.00

2400 BAUD ATI INTERNAL MODEM
UPGRADE TO 16 MB
KX—P1124 PANASONIC PRINTER (INCLUDES CABLE)
KX—P1624 PANASONIC PRINTER (INCLUDES CABLE)

MASTER CARD, VISA, AMERICAN EXPRESS, DISCOVER (NO SURCHARGE)
C.O.D. CASHIER'S CHECK ACCEPTABLE (CONTINENTAL USA)
SHIPPING: (2 DAY DELIVERY) $95.00 IN THE CONTINENTAL USA
APO SHIPPING: $125.00
FULL LINE DISTRIBUTOR - PLEASE CALL FOR OTHER CONFIGURATIONS

610 Gateway Drive • North Sioux City, South Dakota 57049
Telephone 605-232-2000 . Fax 605-232-2023 . Toll Free 800-523-2000

NDP-386

ay ®
	

COMPILERS

NDP Fortran-386TA Optimized FORTRAN 77 with VAX/VMS, UNIX BSD 4.2, and MIL
STD-1 753 Extensions for 80386-based Systems

NDP Fortran-386 is a globally optimizing compiler that
has been developed at MicroWay for the Intel 80386. It
generates native 80386 code that runs in protected mode
under UNIX 386 System V Release 3, SCO XENIX Release
2.3, and Phar Lap extended DOS. Separate releases are
available for each operating system. The execution speed of
code generated by NDP Fortran-386 is exceptionally fast.
Recompiling existing 16-bit 80286 compiler code with the 32-
bit N D P For1ran-386 can increase the speed of execution by
200-500%. When the M icroWay mWl 167 orthe Weitek 3167
numeric coprocessor is added, performance of the NDP
Fortran-386 equals that of a VAX 8600, or 60 times the speed
of an IBM PC.

NDP Fortran-386 makes it possible to port mainframe
FORTRAN applications to your 80386 machine that use as
much memory as your system will hold: the upper limit on
segment size in the linear address mode is 4 gigabytes I

NDP Fortran-386 v.2.0 Features:

98% compatible with VAX/VMS extensions, including
"NAM ELIST."
Incorporates several new optimizations, including loop
unrolling, repeat common subexpression elimination,
register caching, and peephole optimization.
Includes a command line switch to allow the compiler to
run in virtual memory.
NDP-386 Virtual Memory option allows executable
programs to run in virtual memory using the Phar Lap
Virtual Memory Manager.
Generates programs, procedures, and arrays limited
only by the amount of memory in the system, up to 4
gigabytes.
Exceptional runtime speed due to global optimizations,
sophisticated register utilization to store 32-bit entities,
use of inline 32-bit arithmetic instead of library calls, and
the effective doubling of the system data bus.
Simplifies the porting of existing applications by fully
implementing FORTRAN 77 (full language) as specified
by ANSI X3.9-1978, the D.O.D. supplement to
FORTRAN 77 (MIL STD-1753), and the documented
and undocumented extensions to the Berkeley 4.2 BSD
UNIX 1`77 compiler for VAX/VMS.
Generates inline code for coprocessors which makes
excellent use of all numeric registers.
Supports full 80387 and mW1167/3167 numeric
instruction sets, including 80387 inline transcendentals.

The compiler generates code which optionally utilizes
the Phar Lap Virtual Memory Manager, making it possible for
a two megabyte 80386 system to n.m programs that are as
large as the free memory on your hard disk! The compiler also
supports any of five possible coprocessors for which your
80386 system is socketed, including the MicroWay mWl 167,
Weitek 3167, Intel 80387 and 80287, and Cyrix 83D87. The
mW1167 provides two to four times the throughput of an
80387 as measured by popular benchmarks.

NDP Fortran-386 is a full implementation of FORTRAN
77 and includes the extensions needed to write new
applications or port existing ones. These include the popular
FORTRAN 66 extensions to FORTRAN 77, plus features
added by the UNIX f77 portable FORTRAN compiler
(including UNIX BSD 4.2 features), D.O.D., and DOS
FORTRAN compilers. NDP Fortran-386 compiles most
FORTRAN 66 and 77 applications without modification.

• Allows customized coprocessor exception handling
procedures to be designed and implemented by the user.
(examples are provided)

• Includes a library of graphics and keyboard routines with
enhanced features that supports the CGA, MDA, EGA
VGA, and Hercules adapters. (DOS version Only)

• Includes mouse support.
• Provides a trace facility to aid in debugging.
• Memory mapped devices and physical memory can be

mapped into the program's linear address space.
• NDP Fortran-386 can call or be called from NDP C-386

or NDP Pascal-386 programs. Assembly language
routines can be interfaced with compiled output.

• The f77 compiler driver makes
it

possible to use the same
switches for compiling, assembling, and linking when
working with DOS, UNIX V, or XENIX 2.3.

• Fast I/O feature in DOS version makes it possible to
specify the size and number of runtime buffers, resulting
in an I/O speed up that ranges up to 15 times faster.

• Can be used with the newest generation of Phar Lap tools
to produce embedded and ROMable code.

• NDP Plot is an optional Calcomp-compatible package
including high-level plotting and 3-0 graphics routines.

• NDP to Halo '88 Interface is an optional graphics
interface to Media Cybernetics Halo '88'.

• NDP Hoops is an optional advanced object-oriented
graphics library.

P.O. BOX 79 . KINGSTON • MA 02364	 .	 TELEPHONE (508) 746-7341 	 •	 FAX (508) 746-4678

Optimization Features:
The compiler converts the ASCII FORTRAN text one

procedure at a time into a memory-based operator tree.
During global optimization, this tree is traversed from 5 to 50
times depending upon the options selected and the structure
of the code. The primary goal of the global optimization is to
store variables in registers as opposed to memory.
Eliminating stores and loads to memory, on average, results
in code that runs a factor of3 faster while taking only 1/3 the
space of code which stores variables in memory. The global
analysis takes into account variable lifetime, activity, size,
and the benefits of using faster running 16-bit addressing
modes overthe slower running 32-bit modes where possible.
The optimizer produces code which takes maximum
advantage of the registers available in the numeric
coprocessors that the compiler supports. The generation of
very high quality inline numeric code is one of the outstanding
features of the compiler.

The process of traversing the tree includes the
application of code transformations to the tree. These
transformations include numeric strength reduction, dead
code elimination, removal of loop invariant code from loops,
hoisting of common code out of blocks, constant propagation,
elimination of stack frame setup on procedure entry where
possible, conversion of small procedures into inline code
where possible, and a numberof processor-related peephole
optimizations. Loop optimizations which make the code
larger but taster can also be optionally performed. These
optimizations rearrange loops so that array base values are
computed outside of loops, and then stored in registers where
they are used indirectly for addressing, and incremented,
when necessary. The optimizer also performs global
common subexpression elimination, caches array elements
in registers, and unrolls short "hot" loops into inline code.

VAXNMS FORTRAN Extensions:
• Symbolic Names may be 31 characters long and contain

the $ character.
• Nested INCLUDES are allowed up to 10 levels.
• IMPLICIT UNDEFINED (A-Z) turns off IMPLICIT typing.
• All MIL STD-1753 Binary and bit functions are supported

including IOR, lAND, IEOR, NOT, ISHFT, ISHFTC,
ISHFTL, ISHFTR, BTEST, IBSET, IBCLR, and MVBITS.
Bessel, Gamma, and error functions are also included.

• Z and 0 field descriptors allow octal and hexadecimal
editing of I/O list items.

• Hollerith, hexadecimal, binary, and octal constants are
supported.

• One trip DO LOOPs compatible with FORTRAN 66 can
be optionally turned on.

• Free formatted input using commas is supported.
• The $ can be used to eliminate the carriage return that

normally follows a read or write.
• Conditional compiles are signaled in column 1 by x, X, d,

or 0. Continuation lines in free format are indicated by &.
• The mixing of numeric and character data types in

COMMON and EQUIVALENCE statements is allowed.

INTERNAL files are expanded from SEQUENTIAL only
to include DIRECT.
Types include REAL-4, REAL-8, INTEGER-1,
INTEGER2, INTEGER4, LOGICALI, LOGICAL-2,
LOGICAL4, COMPLEX8, and COMPLEX16. Default
of LOGICAL and INTEGER is 4 but can be changed to 2.

Other Key Words:
ACCEPT statement NAMEUST
ASSOC lATE VAR IABLE NOSPAN BLOCKS
BUFFERCOUNT OPTIONS statement
BYTE data type ORGANIZATION
CARRIAGECONTROL PARAMETER statement
DATE and IDATE 0 Edit descriptor
DEFAULTFILE RAN
DEFINE FILE READONLY
DELETE statement RECOROSIZE
DISPOSE RECORDTYPE
DO ... WHILE, extended range REWRITE statements
ENCODE and DECODE SECNDS
EXIT STRUCTURE declaration
EXTENDSIZE TIME
FIND statement TYPE statement
%LOC, %REF. %VAL USEROPEN
MAXREC VOLATILE and VIRTUAL
NAME statements

UNIX/C-Like Features:
• Command line processing using getarg, iargc, and

getenv are supported.
• Strings may be declared with quotes or apostrophes, and

internal string members may be defined using backslash
editing identical to C.

• Upper and lower case are supported. For compatibility
with C, the compiler converts upper to lower except in
strings; a compile time option shuts off this conversion.

• AUTOMATIC and STATIC variables in procedures make
recursive procedures possible.

• Programs written with NDP Fortran-386 can call or be
called from NDP C or Pascal-386. Assembly language
routines can also be interfaced with the compiled output.

System Requirements:
• Any 80386-based system; or any PC, XT, AT, or

compatible with an Intel Inboard/386 or MicroWay
Number Smasher-386.

• A numeric coprocessor is not required to compile.
However, an Intel 80287 or 80387, Cyrix 83087,
MicroWay mW1167, or Weitek 3167 coprocessor is
necessary to execute programs containing floating point
routines.

• Double-sided high density floppy drive.
• Hard disk drive with a minimum of two free megabytes.
• Two megabytes of extended memory (four megabytes

recommended).
• DOS version 3.2 or later as extended by Phar Lap

Development Tools (version 2.0 or later), UNIX 386
System V Release 3, or SCO XENIX Release 2.3.

G&225-129

Micro
	

NDP-386
Way ®	 COMPILERS

NDP C-3861M:	 Globally Optimizing,Native Code C Compiler
for the Intel, Cyrix, and Weitek Coprocessors

NO C-386 is a globally optimizing compiler developed
at MicroWay for the Intel 80386. It generates native 80386
code that runs in protected mode under UNIX 386 System V
Release 3, SCO XENIX Release 2.3, and Phar Lap extended
DOS. NDP C-386 makes it possible to port mainframe C
applications to your 80386 that use as much memory as your
system will hold: the upper limit on segment size in the linear
address mode used is 4 gigabytes. The compiler also
supports the following coprocessors: Intel 80287 and 80387,
Cyrix 83D87, MicroWay/Weitek mWl 167, and Weitek 3167,
which have two to four times the throughput of an 80387.

The compiler generates code which optionally takes
advantage of the Phar Lap Virtual Memory Manager. The

NDP C-386 v.2.0 Features:
Passes 98% of the Plum Hall Validity Suite for ANSI
System V UNIX C.
Incorporates several new optimizations, including loop
unrolling, repeat common subexpression elimination,
register caching, and peephole optimization.
Includes a command line switch to allow the compiler to
run in virtual memory.
NDP-386 Virtual Memory option allows executable
programs to run in virtual memory using the Phar Lap
Virtual Memory Manager.
Generates programs, procedures, and arrays limited
only by the amount of memory in the system, up to 4
gigabytes.
Exceptional runtime speed due to global optimizations,
sophisticated register utilization to store 32-bit entities,
use of inline 32-bit arithmetic instead of library calls, and
the effective doubling of the system data bus.
Ports existing applications by fully implementing AT&T's
PCC and its K& R subset.
Generates inline code for coprocessors which makes
excellent use of all numeric registers.
Supports full 80387 and mW116713167 numeric
instruction sets, including 80387 inline transcendentals.
Supports customized coprocessor exception handling
procedures to be designed and implemented by the user
(examples are provided).
Allows function and variable names of 31 characters
which may include the $ character.
Includes the following types: 32-bit pointer and enum
types along with 8 byte double, 4 byte floats, 4 byte longs,
4 byte int, 2 byte short int, 1 byte char.

latter makes
it

possible for a two megabyte 80386 system to
run programs as large as the free memory on your hard disk!

The compiler is a full implementation of PCC (the Bell
Labs Portable C Compiler, whose syntax is a superset of
Kemighan and Ritchie C). It includes all standard PCC
extensions as well as the December, 1988, draft of ANSI C
and many Microsoft C v;5.0 functions. Among these new
extensions are a set of graphics and BASIC-like screen
handling functions, in addition to hooks to the operating
system. These features make NDP C-386 compatible
enough to compile most existing 16-bit applications,
regardless of the source environment, provided they conform
to standard techniques for portability between computers.

• An extended error function gets (and optionally prints)
DOS errors, mapping them separately through errno.

• Incorporates a library of graphics and keyboard routines
with enhanced features that supports CGA, MDA, EGA,
VGA, and Hercules adapters. (DOS version only)

• Includes mouse support.
•	 Provides a trace facility to aid in debugging.
• Memory mapped devices and physical memory can be

mapped into the program's linear address space.
• NDP C-386 can call or be called from NDP Fortran-386

or NDP Pascal-386 programs. Assembly language
routines can be interfaced with compiled output.

• The CC compilerdriver makes it possible to use the same
switches for compiling, assembling, and linking when
working with DOS, UNIX V, or XENIX 2.3.

• Command line processing includes the name of the
current process.

• Fast I/O feature in DOS version makes it possible to
specify the size and number of runtime buffers, resulting
in an I/O speed up that ranges up tol 5 times faster.

• Can be used with the newest generation of Phar Lap tools
to produce embedded and ROMable code.

• NDP Windows is an optional library for creating menus
and storing, moving, or saving windows. It runs on MDA,
CGA, EGA, and Hercules adapters.

• NDP to Halo '88 Interface is an optional graphics
interface to Media Cybernetics Halo '88'.

• NDP Hoops is an optional advanced object-oriented
graphics library.

• M icroWay also has a port of the AT&T C++ preprocessor
v.1.2 that runs in protected mode with the NDP C-386
compiler.

P.O. BOX 79 • KINGSTON • MA 02364	 •	 TELEPHONE (508) 746-7341	 •	 FAX (508) 746-4678

Optimization Features:
NDP C-386 converts the ASCII C text, one procedure at

a time, into a memory-based operator tree. During global
optimization, this tree is traversed from 5 to 50 times
depending upon the options selected and the structure of the
code. The primary goal of the global optimization is to store
variables in registers as opposed to memory. Eliminating
stores and loads to memory, on average, results in code that
runs a factor of 3 fasterwhile taking only 1/3 the space of code
which stores variables in memory. The global analysis takes
into account variable lifetime, activity, size, and the benefits
of using faster running 16-bit addressing modes over the
slower running 32-bit modes where possible. The optimizer
produces code which takes maximum advantage of the
registers available in the numeric coprocessors that the
compiler supports. The generation of very high quality inline
numeric code is one of the outstanding features of the NOP
compilers.

The process of traversing the tree includes the
application of code transformations to the tree. These
transformations include numeric strength reductions, dead
code elimination, removal of loop invariant code from loops,
hoisting of common code out of blocks, constant propagation,
elimination of stack frame setup on procedure entry where
possible, conversion of small procedures into inline code
where possible, and a number of processor related peephole
optimizations. Loop optimizations which make the code
larger but faster can also be optionally performed. These
optimizations rearrange loops so that array base values are
computed outside of loops and then stored in registers where
they are used indirectly for addressing and incremented
when necessary. The optimizer also performs global
common subexpression elimination, caches array elements
in registers, and unrolls short "hot" loops into inline code.

Numeric Coprocessor Support:
The NDP C-386 compiler provides different code

generation for the following numeric coprocessors: Intel
80287,80387, and 80387SX; Cyrix 83D87; and Weitek 1167
and 3167. NDP C-386 generates code to use the Weitek
3167 multiply and accumulate instruction.

NOP C-386 supports IEEE-754 floating point arithmetic.
The compiler provides a complete set of functions which
allows the programmer to read and change any value in the
numeric coprocessor control register.

The NDP C-386 compiler contains a general purpose
numeric exception handler. Under DOS, users can change
the response characteristics of the default handler, or write
their own customized handlers. The user manual includes
two examples of user-written handlers: one traps division by
zero and substitutes a very large number for infinity on the
NDP stack; the other traps undert lows and substitutes zeros
for the result in memory.

Inline Assembler Feature:
An inline assembler is included in NDP C-386 which

helps in the development of embedded code, device drivers,
and applications which take advantage of the underlying

hardware. The NDP C-386 inline assembler is unusual in
that it makes it possible to write assembly language in Cl For
example, to increment the EAX register in assembly
language, you could write INC EAX. In NDP C-386, you
simply declare EAX to be a register aliased variable of type
unsigned, and use the conventional C statement, EAX++.
The compiler translates this C code into its corresponding
assembly language, INC EAX.

Register aliased variables come in very handy for
reading and writing ports inline as well as setting up and
using software interrupts inline. The following example puts
the current directory path into the string "string":

char string[64];
reg$eax unsigned eax;
reg$edx unsigned edx;

reg$esi char *esi;
eax - 0x4700;
edx i" 0;
esi=string;
asm (eax, edx, esi, "it 21h");
printf ("Current directory is \"%sV'\n",string);

The code that results is inline, as opposed to the MS-
DOS 1NT386 technique. The latter, which is also supported
for compatibility, requires two data structures to be set up
and a 50 line procedure (INT86) to be called.

Graphics Support:
The DOS version of the ND P C-386 compiler comes with

a library of over 100 functions to draw pixels, lines, ellipses
and text, move images and graphics cursors, read and write
ports, and execute interrupts. Special routines are included
to provide compatibility with the Microsoft C graphics library.
The NDP C-386 graphics library works with the MDA, CGA,
EGA, VGA, Super VGA, and Hercules graphics adapters. It
includes routines to automatically detect the hardware
configuration and determine the best graphics mode.
Complete documentation is provided, including simple,
clear examples.

System Requirements:
• Any 80386-based system; or any PC, XT, AT, or

compatible with an Intel Inboard/386 or MicroWay
Number Smasher-386.

• A numeric coprocessor is not required to compile.
However, an Intel 80287 or 80387, Cyrix 83087,
MicroWay mWl 167, or Weitek 3167 coprocessor is
necessaryto execute programs containing floating point
routines.

• Double-sided high density floppy drive.
• Hard disk drive with a minimum of two free megabytes.
• Two megabytes of extended memory (four megabytes

recommended).
• DOS version 3.2 or later as extended by Phar Lap

Development Tools (version 2.0 or later), UNIX 386
System V Release 3, or SCO XENIX Release 2.3.

G&2.129

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58

