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Surface pitting fatigue life tests were con-

ducted with five lubricants, using spur gears made

from a single lot of consumable-electrode vacuum

melted (CVM) AISI 9310 steel. The gears were case
carburized and hardened to a Rockwell C-60 and fin-

ish ground. The gear pitch diameter was 8.89 cm
(3.5 in.). The lot of gears was divided into five

groups, each of which was tested with a different
lubricant. The test lubricants can be classified
as synthetic polyol-esters with various viscosities

and additive packages. Test conditions included a

bulk gear temperature of 350 K (170 °F), a maximum
Hertz stress of 1.71 GPa (248 ksi) at the pitch

line, and a speed of 10 000 RPM. The following
results were obtained. The lubricant with a vis-
cosity that provided a specific film thickness
greater than one and with an additive package pro-

duced far greater gear surface fatigue lives than
lubricants with a viscosity that provided specific
film thickness less than one. A low viscosity

lubricant with an additive package produced gear
surface fatigue lives equivalent to a similar base

stock lubricant with 30 percent higher viscosity
but without an additive package. Lubricants with
the same viscosity and similar additive packages
gave equivalent gear surface fatigue lives.

Introduction

The transmission for helicopters, turboprop,

and geared fan aircraft are required to have high
reliability and provide several thousand hours of

operation. In addition, they should be lightweight
and have very high efficiency to minimize operating

costs for the aircraft.

Most of the aircraft operating today are using
turbine engine lubricants to lubricate the trans-
missions. While these lubricants provide good

lubrication, thermal stability, and low operation

temperatures for the turbine engines they are less
than optimum for good reliability and long life for

transmissions.

Tests with rolling element bearings 1,2 have
shown that bearing life is affected by the lubri-

cant elastohydrodynamic (EHD) film thickness. when
the EHD film thickness divided by the composite
surface roughness h/O is less than 1 the life of

rolling element components is considerably reduced.

In gearing the effect of operating with an
h/O of less than one is more pronounced than it is
with bearings. This is because of the higher slid-

ing conditions encountered with gearing which
causes increased surface heating and higher fric-

tion coefficients resulting in reduced surface
fatigue life" and increased wear or scoring risk.

Gear tests conducted with several lubricant

and additives' have shown that the gear surface

fatigue life can be improved somewhat with the
right choice of additives. Lubricants with the
same viscosity but with different additives pro-

duced gear surface fatigue lives with a difference
of five to one. The above mentioned tests indicted

the necessity of having the proper additive in the

lubricant but did not determine what affect differ-

ent lubricant viscosity of the same base stock
would have on gear fatigue life.

The effect of the EHD film thickness on scor-
ing and wear under various slide to roll ratios was

determined in Ref. 5 using rolling sliding cylin-
ders. When the specific film thickness or h/O

was less than or equal to 0.3 the rolling sliding
cylinders experienced wear and scoring, and indi-
cated an increase in friction coefficient and tem-
perature. These tests also showed an increase in

scoring load capacity with EP additives in the
lubricant.

Lubricant suppliers have recognized the need

for supplying better lubricants for the modern

gearboxes that operate at increased power density.6

Tests have shown that lubricants with the proper

base stock, viscosity, and additives can improve

the load capacity and efficiency of transmissions.

The research work reported herein was under-

taken to investigate the effects of lubricants with
the same base stock bu with different viscosities
on the surface fatigue life of AISI 9310 spur
gears. The objectives were: (1) to investigate the

effect of five different lubricants on the surface
fatigue life of hardened steel spur gears, (2) to
compare the gear fatigue life with four of the five
lubricants to a reference lubricant, and (3) to
determine the effects of lubricant viscosity on the
surface fatigue life of spur gears.

To accomplish these objectives, one lot of
spur gears was manufactured from a single heat of

(CVM) AISI 9310 material. The test gears were case



carburized, hardened and ground to the same speci-

fications. The gear pitch diameter was 8.89 cm
(3.5 in.). The lot of gears was divided into five
groups, each of which was tested with a different
lubricant. The test lubricants can be classified

as synthetic polyol-ester with different viscosity

properties. Test conditions include a bulk gear

temperature of 350 K (170 °F), a maximum Hertz

stress of 1.71 GPa (248 ksi) at the pitch line and
a speed of 10 000 RPM.

chemical composition of the material is given in

Table 1. All sets of gears were case carburized

and heat treated in accordance with the heat treat-
ment schedule of Table 2. Figure 2 is a photomi-
crograph of an etched and polished gear tooth

showing the case and core microstructure of the

AISI 9310 material. This material has a case hard-
ness of Rockwell C60 and a case depth of 0.97 mm

(0.038 in.). The nominal core hardness was
Rockwell C38.

Gear Test Apparatus

The gear fatigue tests were performed in the
NASA Lewis Research Center's gear test apparatus.

The test rig is shown in Fig. 1 and described in
Ref. 7. This test rig uses the four-square prin-

ciple of applying the test gear load so that the

input drive only needs to overcome the frictional
losses in the system.

A schematic of the test rig is shown in Fig.
1(b). Oil pressure and leakage flow are supplied

to the load vanes through a shaft seal. As the oil
pressure is increased on the load vanes inside the
slave gear, torque is applied to the shaft. This

torque is transmitted through the test gears back

to the slave gear where an equal but opposite
torque is maintained by the oil pressure. This
torque on the test gears, which depends on the

hydraulic pressure applied to the load vanes, loads
the gear teeth to the desired stress level. The

two identical test gears can be started under no

load, and the load can be applied gradually, with-

out changing the running track on the gear teeth.

Separate lubrication systems are provided for

the test gears and the main gearbox. The two

lubricant systems are separated at the gearbox
shafts by pressurized labyrinth seals, using

nitrogen as the seal gas. The test gear lubricant
is filtered through a 5-µm nominal fiberglass

filter. The test lubricant can be heated electri-

cally with an immersion heater. The skin temper-

ature of the heater is controlled to prevent
overheating the test lubricant.

A vibration transducer mounted on the gearbox

is used to automatically shut off the test rig when
a gear-surface fatigue spall occurs. The gearbox

is also automatically shut off if there is a loss

of oil flow to either the main gearbox or the test
gears, if the test gear oil overheats, or if there
is a loss of seal gas pressurization.

The belt-driven test rig can be operated at
several fixed speeds by changing pulleys. The
operating speed for the tests reported herein was
10 000 rpm.

Test Gears

Dimensions for the test gears are given in

Table 3. All gears have a nominal surface finish
on the tooth face of 0.406 µm (16 µin.), rms, and a

standard 20° involute profile with tip relief. Tip
relief was 0.0013 cm (0.0005 in.), starting at the
highest point of single tooth contact.

The test gears were manufactured from

consumable-electrode vacuum-melted (CVM) AISI 9310

steel from the same heat of material. The nominal

Test Lubricants

Five lubricants were selected for surface

fatigue endurance tests with the CVM AISI 9310

steel gear test specimens. Lubricant A is an

unformulated base stock lubricant with no lubricant
additives and with a viscosity in between the

MIL-L-7808) and MIL-L-23699 specifications and does
not meet either specification. Lubricant A was

used as the reference lubricant to compare the

results with the other lubricants. Lubricant B is
a 5 cSt lubricant meeting the MIL-L-23699 specifi-

cation. Two batches of this lubricant were used

because of an error in determining how much would

be required to conduct the testing. However, both

batches were nearly identical in every respect.
Lubricant C meets the MIL-L-7808) specification and
had the lowest viscosity of all the lubricants
tested. Lubricant D was a lubricant developed for

helicopter gearboxes under the specification
DOD-L-85734 and was also a 5 cSt lubricant. Lubri-

cant E was a 7.5 cSt lubricant meeting a special

development specification DERD-2487. All five of

the lubricants could be classified as synthetic

polyol-ester base stock lubricants.

The pitch line elastohydrodynamic (EHD) film
thickness was calculated by the method of Refs. 8

and 9. It was assumed for this film thickness

calculation that the gear surface temperature at
the pitch line was equal to the oil temperature
measured at the outlet of the gearbox and that the

oil temperature entering the EHD contact zone was

equal to this gear temperature even though the tem-
perature of the oil jet lubricating the gear was
much lower. It is most probable that the gear sur-

face temperature was higher than the oil outlet

temperature based on temperature measurements made
in Ref. 4.

The computed EHD film thicknesses are given in

Table 4 as are initial A ratios (film thickness
divided by composite surface roughness (h/O)) at
the 1.71 GPa (248 ksi) pitch line maximum Hertz
stress.

m„« nom.... e.^••,-.,

The test gears were cleaned to remove a pre-
servative, and assembled on the test rig. The test
gears were run in an offset condition with a
0.305 cm ( 0.120 in.) tooth-surface overlap to give
a load surface on the gear face of 0.28 cm
(0.110 in.), thereby allowing for the edge radius
of the gear teeth. Therefore if both faces of the
gears were tested, four fatigue tests could be run
for each pair of gears. All tests were run-in at a

load of 1225 N /cm (700 lb/in.) for 1 hr. The load
was then increased to 5784 N /cm (3305 lb/in.),
which gives a 1.71 GPa (248 000 psi) maximum Hertz
stress at the tooth pitch line. At the pitch-line
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load the tooth bending stress was 0.21 GPa (30 000

psi) if plain bending is assumed. However, because
of the offset load, additional stress is imposed on

the tooth bending stress. Combining the bending
and torsional moments gives a maximum stress of

0.26 GPa (37 000 psi). This bending stress does
not include the effects of tip relief which would

also increase the bending stress. In general, 20

tests were run for each lubricant.

Operating the test gears at 10 000 rpm gave a
pitch-line velocity of 46.55 m/sec (9163 ft/min).

Lubricant was supplied to the inlet mesh at

800 cm 3 /min (0.21 gal/min) at 320±6 K (116±±10 °F).
The lubricant outlet temperature was nearly con-

stant at 350±3 K (170± °F). The tests ran continu-

ously (24 hr/day) until they were automatically
shut down by the vibration detection transducer,
located on the gearbox adjacent to the test gears.

The lubricant circulated through a 5-gym fiberglass
filter to remove wear particles. After each test

the lubricant and filter element were discarded.
Inlet and outlet oil temperatures were continuously
recorded on a stripchart recorder. After each set
of lubricant tests the system was partially disas-

sembled, flushed with trichloroethane and then with
alcohol, dried, and reassembled before a new lubri-
cant was used in the system.

Results and Discussion

roar r;F.

The surface pitting fatigue lives of the AISI

9310 gears run with all five lubricants are shown

in Fig. 3 and Table 5. These data are shown on
Weibull coordinates and were analyzed by the method
of Ref. 10. The life shown is the life of gear

pairs in millions of stress cycles or millions of
revolutions. A failure is defined as one or more

spalls covering more than 50 percent of the width

of the Hertzian contact. Typical fatigue spalls

for each lubricant along with cross sections of the

fatigue spalls are shown in Figs. 4 to B.

Lubricant A (Fig. 3(a)) is the reference oil
for these lubricant tests. The 10- and 50-percent
system (two gears) lives (the life at 90- and
50-percent probability of survival) were 5.1 mil-
lion and 20.4 million revolutions or stress cycles,

respectively. The failure index was 30 out of 30

which is the number of failures out of the number

of tests conducted. A typical fatigue spall with
lubricant A is shown in Fig. 4.

The surface pitting fatigue lives of the AISI
9310 gears run with lubricant B are shown in
Fig. 3(b). A typical fatigue spall for lubricant B

is shown in Fig. 5. Lubricant B is a 5 cSt lubri-
cant meeting the MIL-L-23699 specification. The
10- and 50-percent system lives of the gears run
with lubricant B were 12.1 million and 76 million
revolutions or stress cycles, respectively. The
failure index for this lubricant was 20 out of 20.
These data indicate that the fatigue life of 9310

gears run with lubricant B is approximately 2.4
times that for lubricant A. The confidence number

for the life difference between lubricant B and
lubricant A was 84 percent which indicates that the
difference is statistically significant. The con-

fidence number indicates the percentage of time the
order of the test results will be the same. For a
confidence number of 84 percent, 84 out of 100

times the test is repeated the gear life with

lubricant B will be higher than lubricant A.

Experience has shown that a confidence number of

80 percent or greater would indicate a meaningful

life difference.

The life difference between lubricant A and

lubricant B of over two to one would no be expected
based on the small difference in lubricant viscos-

ity and specific film thickness. However, when it
is considered that lubricant A does not have an

additive package that would include an EP additive,
then the life difference is more in line with
expected results based on the test conducted in

Ref. 11.

The surface pitting fatigue Lives obtained

with lubricant C are shown in Fig. 3(e). Lubri-

cant C is a 3 Cst lubricant meeting the MIL-L-7808J
specification. A typical fatigue spall for lubri-

cant C is shown in Fig. 6. The 10- and 50-percent
systems lives of the 9310 gears run with lubri-
cant C were 5.67 million and 20.7 million revolu-

tions or stress cycle, respectively. The failure
index for this lubricant was 20 out of 20. These

data indicate that the fatigue life of 9310 gears
run with lubricant C was nearly equivalent to that

with lubricant A. The confidence number for the
life difference between lubricant C and lubricant A

was 55 percent which indicates that the difference

is not statistically significant. The gear life
with lubricant C would not be expected to equal the

gear life with lubricant A based on the lubricant
viscosity alone. However, lubricant C is a formu-

lation which contained some EP additives while
lubricant A is a base stock lubricant without EP
additives. Since the tests with both lubricant A
and C were run with soecific film thickness in the
mixed or boundary regime then the EP additives in

lubricant C would improve the gear life over that

for lubricant A. This points out the need for EP

additives in lubricants used for gears operating
with specific film thickness less than one as dem-

onstrated in other tests.4

The gear surface pitting fatigue lives

obtained with lubricant D are shown in Fig. 3(d).
The 10- and 50-percent system lives of the 9310

gears tested with lubricant D were 11.75 million
and 50.8 million revolutions or stress cycles,

respectively. The failure index for this lubricant

was 17 out of 20 and there were three suspended

tests that completed 300 million stress cycles
without failure. A typical fatigue spall for

lubricant D is shown in Fig. 7. The life for

lubricant D was 2.3 times that for the reference
lubricant A and was nearly identical to the life
for lubricant B. Lubricant D has nearly the same
viscosity as lubricant B and a similar additive
package that includes an EP additive. It is,
therefore, expected that the two lubricants B and D
should have nearly identical lives. Lubricant A,
on the other hand, has only slightly less viscosity
than lubricant D but does not have an additive
package or EP additive which is the most probable
reason for the shorter life of lubricant A. The
confidence number for the life difference between
lubricant D and A was 83 percent which means that

the life difference is statistically significant.

The gear surface pitting fatigue lives

obtained with lubricant E are plotted on Weibull
coordinates shown in Fig. 3(e). A typical fatigue
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spall for lubricant E is shown in Fig. 8. The 10-
and 50-percent system lives of the 9310 spur gears
tested with lubricant E were 46.5 million and 152

million stress cycles or revolutions, respectively.
The failure index for lubricant E was 15 out of 19
with four tests that were suspended after 500 hr or

300 million stress cycles without failure. The
confidence number for the life difference between

lubricant E and A was 99 percent which shows that
the life difference is statistically significant.

These life results are summarized in Fig. 3
and Table 5. The life of lubricant E was more than
nine times that for lubricant A and nearly four
times that for lubricant B and D. Lubricant E is a

7 cSt lubricant and had a calculated specific film
thickness of 1.15. It was, therefore, expected

that lubricant E would produce longer fatigue life
than the other less viscous lubricants. However,
it could not be analytically determined just how

much improvement in surface fatigue could be
obtained with this higher viscosity lubricant. The

surface fatigue testing was, therefore, necessary
to determine gear life with these lubricants. The

test results are very conclusive in showing that

when gears are operated with lubricants that pro-
vide specific film thickness around one or greater,

the surface fatigue will show large improvements
over some of the turbine engine lubricants that
provide lower EHD specific film thickness. The

above results also point out the need to provide

separate lubricants from the engine lubricants for

power transmissions such as turboprop or turbofan
reduction gearboxes and helicopter gearboxes to

provide increased life and reliability of these

systems.

Lubricant Effects on Gear Life

There are many cases where gears are lubri-
cated with a low to moderate viscosity lubricant,

providing a specific film thickness considerably
less than one. In these cases, based on the

results presented here and other lubricant tests
with gears, several things could be done to provide
better protection or increased gear life. The

lubricant should have an additive that will provide

a low friction boundary film on the surface to
prevent metal contact and to reduce the traction

forces. Good cooling should be provided so that

the viscosity of the lubricant is not further
reduced resulting in lower film thickness and

reduced life. The surface finish of the gears

should be as small as in practical to improve the
specific film thickness, thereby increasing the

fatigue life. If it is not practical or possible
to accomplish the above mentioned conditions, then
a more viscous lubricant should be specified. The

result of not using conditions of lubrication that
provide boundary film and good specific film thick-
ness is a reduced life of the gear system.

Summary

Spur gear surface pitting fatigue life tests
were conducted with five lubricants, using a single
lot of consumable-electrode vacuum melted (CVM)
AISI 9310 steel spur gears. The gears were case
carburized and hardened to a Rockwell C-60 and

finish ground. The gear pitch diameter was 8.89 cm

(3.5 in.). The lot of gears was divided into five
grou ps, each of which was tested with a different

lubricant. The test lubricants can be classified
as synthetic polyol-esters with various viscosities
and additive packages. Test conditions included a

bulk gear temperature of 350 K (170 °F), a maximum

Hertz stress of 1.71 GPa (248 ksi) at the pitch
line, and a speed of 10 000 RPM. The following

were obtained:

1. The lubricant with a viscosity that provide

a specific film thickness greater than one and with
an additive package produced far greater gear sur-
face fatigue lives than lubricants with a viscosity
that provided specific film thickness less than

one.

2. A low viscosity lubricant with an additive
package produced gear surface fatigue lives equiv-

alent to a similar base stock lubricant with
30 percent higher viscosity but without an additive
package.

3. Lubricants with the same viscosity and sim-

ilar additive packages gave e quivalent gear surface

fatigue lives.
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TABLE 1. - NOMINAL CHEMICAL COMPOSITION OF AISI 9310 GEAR MATERIAL

C	 Mn	 Si	 Ni	 Cr	 Mo	 Cu	 P	 S

Composition, Wt

0.10	 0.63	 0.27	 3.22	 1.21	 0.12	 0.13	 0.005	 0.005

TABLE 2. - HEAT TREATMENT FOR AISI 9310

Step Process Temperature Time,
hr

K °F

1 Preheat in air ---- ---- ------
2 Carburize 1172 1650 8

3 Air cool to room temperature ---- ---- ------

4 Copper plate all over ---- ---- ------

5 Reheat 922 1200 2.5

6 Air cool to room temperature ---- ---- ------

7 Austenitize 3.117 1550 2.5

8 Oil quench ---- ---- ------
9 Subzero cool 180 -120 3.5

10 Double temper 450 350 2 each

11 Finish grind ---- ---- ------
12 1 Stress	 relive 450 1	 350 1	 2

TABLE 3. - SPUR GEAR DATA

(Gear tolerance per ASMA class 12.]

Number	 of	 teeth	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 28
Diametral	 pitch	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 8
Circular	 pitch,	 cm	 (in.)	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 0.9975 (0.3927)
Whole	 depth,	 cm	 (in.)	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 0.762 (0.300)

Addendum,	 cm	 ( in. )	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 0.318 (0.125) 

Chordal tooth thickness reference, cm	 (in.)	 .	 .	 .	 .	 .	 .	 .	 0.485 (0.191)

Pressure angle,	 deg	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 20

Pitch	 diameter,	 cm	 (in.)	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 8.890 (3.500)
Outside diameter,	 cm	 (in.)	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 9.525 (3.750)
Root	 fillet,	 cm	 (in.)	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 0.102	 to	 0.152	 (0.04 to	 0.06)

Measurement over pins,	 cm	 (in.) .	 .	 .	 9.603	 to	 9.630	 (3.7807	 to 3.7915)
Pin	 diameter,	 cm	 (in.)	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 8.549 (0.216)
Backlash reference,	 cm	 (in.).	 . .	 .	 .	 .	 0.0254 (0.010)

Tip	 relief,	 cm	 (in.)	 .	 .	 .	 .	 .	 . .	 .	 0.001	 to 0.0015	 (0.0004	 to 0.0006)
Surface	 finish,	 #m	 (pin.)	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 0.406 (16)
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TABLE 4. - LUBRICANT PROPERTIES

Lubricant

NASA identification A B C D E

NAPC code number PE-5-L1274 PE-5-1,1307 PE-5-1,1553 PE-3-L1316 PE-5-L1304 PE-7.5-

L1310

Kinematic viscosity at -

311	 K	 (100	 °F) 21.0 30.27 29.11 ----- ------ 34.7
313 K	 (104	 °F) ------ ----- ----- 12.16 24.98 7.37

372	 K	 (210	 °F) 4.31 5.46 5.32 ----- ------ -------

373	 K	 (212	 °F) ------ ----- ----- 3.13 5.04 -------

Flash point,	 K	 (°F) 516	 (470) 539	 (510) 539	 (510) 489	 (420) 482	 (407) 519	 (475)
Pour point,	 K	 (°F) <200	 (<-100) 220	 (-64) 213	 (-76) --- --- 216	 (-71) 214	 (-75)

Specific gravity at -

298	 K	 (77	 °F) .998 ----- ----- ------ -------

289 K	 (60	 °F) ------ 1.000 ----- 0.995 0.9465

Total acid number	 (tan

Mg KoH/g oil 0.07 0.03 0.15 0.40 0.06

Elastohydrodynamic film
thickness,

h #m	 (din.) 0.43	 (17) 0.52	 (20.4) 0.34	 (13.2) 0.50	 (19.7) 0.66	 (26)
A ratio	 (h/Q) 0.75 0.90 0.58 0.87 1.15

Specification - None - MIL-L-23699 MIL-L-7808J DOD-L-85734 DERD-2487
base stock

no additive

TABLE 5. - SURFACE PITTING (ROLLING-ELEMENT) FATIGUE LIVES

[NASA spur gear test apparatus; material, CVM AISI 9310; gear bulk temperature, 350 K (170 °F);

maximum hertz stress, 1 GPa 1248 000 psi); speed, 10 000 rpm.)

Lubricant code Lubricant

basestock

Gear system life,

millions of stress cycles

Weibull

slope

Failure

index'

Confidence

number,'

percent
NASA 10 percent 50 percent

A PE-5-L1274 Polyol-ester 5.1 20.4 1.36 30 out of 30 --

B PE-5-1,1307
and

PE-5-L1553

Polyol-ester 12.1 76 1.02 20 out of 20 84

C PE-3-L1316 Polyol-ester 5.67 20.7 1.46 20 out of 20 55

D PE-5-1,1304 Polyol-ester 11.75 50.8 1.29 17 out of 20 83

E PE-7.5-1,1310 Polyol-ester 46.5 152 1.59 15 out of	 19 99

'Number of failures out of number of tests.

bPercent of time that 10 percent life obtained with - each lubricant will have the same relation

to the 10 percent life of lubricant NASA A.
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Figure 1.- NASA Lewis Research Center's gear fatigue test apparatus.

(a) Case.	 (b) Core.

Figure 2.— Photomicrographs of case and core of CVM AISI

9310 spur gears.
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(d) Lubricant D.
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(b) Lubricant B.	 (e) Lubricant E.

2
2

99
95

80

60

40

20

10
6
4

2
2 4 6 10 20 40 100	 1 2 4 6 10 20 40 100 200 600

(c) Lubricant C.	 (f) Summary.

Specimen life, millions of stress cycles.

Figure 3.—Surface pitting fatigue lives of AISI 9310 spur gears run with five different
lubricants. Pitch diameter 8.39 cm (3.5 in); speed 10 000 RPM; maximum Hertz
stress 1.71 GPa (248 ksi); gear temperature 350 K (170 °F).
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(a) Typical fatigue spall. (a) Typical fatigue spall.

(b) Cross section of typical fatigue spall. 	 (b) Cross section of typical fatigue spall.

Figure 4.— Fatigue spall for lubricant A.	 Figure 5.— Fatigue spall for lubricant B.
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(a) Typical fatigue spall.

(b) Cross section of typical fatigue spall.

Figure 7.— Fatigue spall for lubricant D.

F:

AM

r	 c

10



(a) Typical fatigue spall.

(b) Cross section of typical fatigue spall.

Figure 8.— Fatigue spall for lubricant E.
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