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Prototyping Distributed Simulation Networks

Dennis L. Doubleday

Software Engineering Institute

Abstract

Durra is a declarativelanguage designedto supportapplication-levelprogramming. Inthis paper we
illustratethe use of Durra to describea simpledistributedapplication:a simulationof a collectionof
networkedvehicle simulators. We show how the language is used to descdbe the application, its
components and structure,and howthe runtimeexecutiveprovidesforthe executionofthe application.

1. Programming at the Application-Level
Many distributed applications consist of large-grained tasks or programs, instantiated as processes,

running on possibly separate processors and communicating with each other by sending messages

of different types.

Since the patterns of communication between the processes can vary over time and the speeds of

the individual processors can differ widely, the developers may need explicit control over the

allocation of processors to processes in order to meet performance or reliability requirements.

Processors are not the only critical resource. The resources that must be allocated also include

communication links and message queues. We call this network of various processor types, links,

and queues a heterogeneous machine.

Currently, users of a heterogeneous machine network follow the same pattern of program

development as users of conventional processors: Programmers write individual tasks as separate

programs, in the different programming languages (e.g., C, Lisp, Ada) supported by the processors,
and then hard code the allocation of resources to their application by explicitly assigning specific

programs to run on specific processors at specific times. This coupling between the component

programs and the built-in knowledge about the structure of the application and the allocation of

resources often prevents the reuse of the programs in other applications or environments.

Modification of the application during development is often expensive, time-consuming, and error-

prone. The problem is compounded if the application must be modified while running in order to deal

with faults or mode changes. We claim that developing distributed applications for a heterogeneous

machine is qualitatively different from developing programs for conventional processors. It requires

different kinds of languages, tools, runtime support, and methodologies. In this paper we address

some of these issues by presenting a language, Durra. We briefly describe the language and its

distributed runtime support environment and then present, as an example distributed application, a

simple simulation of a network of vehicle simulators.

The rest of this paper is organized as follows. Section 2 briefly describes the Durra language and
runtime environment. Section 3 discusses the problem we are attempting to address in the realm of
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networked simulation devices. Section 4 describes the work we have done to date toward that end.

2. Introduction to Durra

Durra [2] is a language designed to support the development of distributed, large-grained concurrent

applications running on heterogeneous machine networks. A Durra application description consists of

a set of task descriptions and type declarations that prescribe a way to manage the resources of the
network. The application description describes the tasks to be instantiated and executed as

concurrent processes, the types of data to be exchanged by the processes, and the intermediate

queues required to store the data as they move from producer to consumer processes.

2.1, The Durra Language

Task descriptions are the building blocks for applications. A task description includes the following

information (Figure 1): (1) its interface to other tasks (ports); (2) its attributes: (3) its functional and

timing behavior; and (4) its intemal structure, thereby allowing for hierarchical task descriptions.

task task-name
ports

port-declarations
-- Used for communication between a process and a queue

attrlbutal
attribute-value-pairs

-- Used to specify miscellaneous properties of the task

behavior
functionalspecification
timingspecification

Used to specify task functional and timing behavior

structum -- A graph describing the internal structure of the task

process-declarations --Declaration of instances of internal subtasks

bind-declarations -- Mapping of internal ports to this task's ports

queue-declarations -- Means of communication between processes

reconfiguration-statamants -- Dynamic modifications to the structure
end task-name

Figure 1: A Template for Task Descriptions

The interface information declares the ports of the processes instantiated from the task. A port

declaration specifies the direction and type of data moving through the port. An in port takes input

data from a queue; an out port deposits data into a queue:

ports
inl: In heads;
outl, out2: out tails;

The attribute information specifies miscellaneous properties of a task. Attributes are a means of

indicating pragmas or hints to the compiler and/or runtime executive. In a task description, the

developer of the task lists the actual value of a property; in a task selection, the user of a task liststhe

desired value of the property. Example attributes include author, version number, programming

language, file name, and processor type:
attributes --.,,

author = "jmw";

implementation = "program_name";

Queue_Size = 25;



The behavioral information specifies functional and timing properties of the task. The functional

information part of a task description consists of a pre-condition on what is required to be true of the
data coming through the input ports, and a post-condition on what is guaranteed to be true of the data

going out through the output ports. The timing expression describes the behavior of the task in terms

of the operations it performs on its input and output ports. For additional information about the syntax
and semantics of the functional and timing behavior description, see the Durra reference manual [1].

The structural information defines a process-queue graph and possible dynamic reconfiguration of the

graph.

A process declaration of the form

process_name : task task_se/ection

creates a process as an instance of the specified task. Since a given task (e.g., convolution) might

have a number of different implementations that differ along different dimensions such as algorithm

used, code version, performance, or processor type, the task selection in a process declaration

specifies the desirable features of a suitable implementation. The presence of task selections within

task descriptions provides direct linguistic support for hierarchically structured tasks.

A queue declaration of the form

queue_name [queue_size]: port_name_1 > data_transformation> po__name_2

creates a queue through which data flow from an output port of a process (port_name_l) into the

input port of another process (port_name_2). Data transformations are operations applied to data

coming from a source port before they are delivered to a destination port.

A port binding of the form

task_port = process_port

maps a port on an internal process to a port defining the external interface of a compound task.

A reconfiguration statement of the form

if conditionthen
remove process-names
process process-declarations
queues queue-declarations

end If;

is a directive to the executive. It is used to specify changes in the current structure of the application

(i.e., process-queue graph) and the conditions under which these changes take effect. Typically, a

number of existing processes and queues are replaced by new processes and queues, which are

then connected to the remainder of the original graph. The reconfiguration predicate is a Boolean

expression involving time values, queue sizes, and other information available to the executive at
runtime.

2.2. The Durra Runtlme Environment

There are two classes of active components in the Durra runtime environment: the application

processes and the Durra executives. As shown in Figure 2, an instance ofthe executive runs on

each processor while the processes are distributed across the processors in the system.
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Figure 2: The Durra Runtime Environment

The executives interpret the resource allocation commands produced by the Durra compiler, monitor

reconfiguration conditions, and implement the necessary changes in the application structure.

The component processes making up ,a Durra application are instances of independent tasks

(programs) that can be written in any language for which a Durra interface has been provided
(currently, there are Durra interfaces for both C and Aria). The Durra interface is a collection of

procedures that provide communication and control primitives. The component processes use the

interface to communicate with the Durra executives and, indirectly, with other application processes.

For a more detailed discussion of the Durra runtime environment, see [3].

3. Distributed Simulation Networks

The development of large networks of heterogeneous simulation and training devices often presents

problems related to the performance and interconnectivity of the network components. There is a

need to evaluate various design alternatives before committing to a specific implementation.
Problems arise in several areas:

• Multiple protocols. Cooperating devices are often written using different communication
protocols because they rely on predetermined standards or technologies. When
communicating devices use different protocols, it is necessary to translate messages in a
way that is transparent to the communicating agents. This meS_'age translation
consumes time and reduces performance.



Multiplelevelsof fidelity. When developing hierarchical networks of simulation and
training devices, it is often the case that the time scales (i.e., granularity), amount of
data, and level of detail in the data are not compatible between levels or devices. Thus,
there is a need to filter (i.e., reduce) data moving up in the hierarchy and to pad (i.e.,
augment) data moving down the hierarchy. This is a different type of lranslation' from the
protocol translation described above. The translating programs in this case need to have
a thorough understanding of the application to compensate for the mismatch in the levels
of detail.

Multiple technologies. When connecting devices that use different hardware technology,
the developers of the distributed application need to compensate for differences in
speed, performance, and fault-tolerance requirements.

This collection of problems is just an illustration of the issues that must be addressed by the

developers before implementing the network. A useful technique is to develop prototypes using

emulators of the component software and hardware devices. The emulators are easier to implement

than the real devices and can more easily be reconfigured into alternative structures. Experiments

can be conducted under various load conditions and measurements of performance can be derived

from these experiments.

4. Using Durra to Prototype Simulation Networks
We are using Durra to develop a tool for testing and evaluating various network configurations. We

are implementing the tool as a distributed application consisting of clusters of emulators. These

emulators are responsible for interpreting specifications of hypothetical application tasks. We use the

Durra language to describe the various components of the system, their ports and message queues,

and the types of messages exchanged between components. We use the Durra runtime environment

to execute the application and perform dynamic reconfigurations of the application, to emulate mode

changes, and to evaluate their impact on performance.

The final version of our tool will include at least four types of emulators:

1. Generic simulation device emulators: These programs will mimic the I/O behavior of
a generic networked simulation device. Scripts specifying the behavior of the emulated
device(s) will be developed. Differences in I/0 behavior between different types of
simulation devices can be emulated through variations in these scripts. The initial
scripts consist simply of position updates and timing instructions. Eventually they
should be more representative of actual networked simulation sessions; this could be
accomplished by adaptation of I/O logs of an actual simulation session.

2. LAN emulators: These emulators will model communications delay in the network
(e.g., token ring delay). This kind of emulation can likely be accomplished via buffer
tasks in the Durra runtime, which would mean that no executable version of these
emulators need be developed.

3. Intelligent gateway emulators: These programs will model the effect of various
message-filtering and protocol translation techniques on the networked simulation's use
of processor and communications resources.

4. Console emulator: This program will provide an interactive user interface to the
simulation environment, allowing the experimenter to change emulation parameters,
inject faults, and collect data.



4.1. Example: A Simple Network Specification
Inthissectionwepresenta Durraspecificationof asimplenetworkof simulators.Inthisexample,we
instantiatea userconsoleandtwoLANemulators,eachconsisting of a group of three simulators and

one gateway process. The reader should note that there is nothing special about this configuration--
another version consisting of some other grouping could just as easily have been constructed from

the same primitive building blocks.

The following is the Durra description of the message type used for communications between the

application components. The message type description is purposely a very general one. A generic

description of the message type allows us in the actual implementation of the type to use a variant

record to represent both simulator position updates and command messages and easily combine
both types of messages in a single data stream.

type mlssag@ ks array of byte;

At the lowest level of the structure we have the descdptions of the primitive tasks, the simulator, the

gateway, and the console. The simulator task has one output pert, through which it emits its position

updates, and one input port, through which it receives position updates and user commands. The

gateway task has one input port and two output ports; port to_wan sends messages outside the LAN

and port to_/an distributes remote messages to the simulators in its LAN. The console task is the

application user's interface to the tool; it accepts a set of user commands and forwards them to the

gateway task for each LAN in the configuration. The gateways may in turn forward those messages

to the simulators in their respective LANs if the nature of the command requires it.
task simulator

ports

inl : in message;

outl : out message;

attributes

version = "2";

implementation ,= "simulator" ;

end simulator;

task gateway

ports

inl : in message;

to_lan : out message;

to wan : out message;
attributes

version = "2";

implemlntation = "gateway" ;

end gateway;

task console

ports

to lan : out message;

attributes

xwindow = "-geom 80x24+0+0 -title CONSOLE";

implementation = "console";

end console;

The Durra task/an encapsulates the internal structure of the LAN itseff. Thi'_instantiation of a LAN

includes one gateway task and three simulator tasks, as well as three built-in Durra buffer tasks. The



buffertasksimplementthemutingofmessagetrafficbetweenthecomponenttasksof theI_AN.Task
gate_merge merges local and remote messages intended for the local gateway. Task gate_rob

merges messages from the local simulators and then distributes them to both the gate_merge task

and the /an_mb task. The lan._rnb task merges those local messages with the remote messages

forwarded from the gateway and distributes them all to each of the local simulators. Note that, given

this structure, each simu/ator will receive its own updates; these can either be ignored by the

simu/atoror used as a check to ensure that its own updates are being distributed properly.

task lan

ports

in1 : in mlssage;

outl : out message;

structure

process

gate : task gateway attributes version = "2"; end gateway;

siml, sire2, sire3 :

task simulator attributes version = "2"; end simulator;

gate_merge : task merge

ports

from_lan, from_wan: in message;

to_gate : out message;

attributes mode - fifo;

end merge;

gate_rob : task merge_broadcast

ports
froml, from2, from3 : in message;

to_gate, to lan : out message;
attributes mode = fifo;

end merge_broadcast;

lan_mb : task merge_broadcast

ports

from_gate, from_lan : in message;

tol, to2, to3 : out message;

attributes mode = fifo;

end merge_broadcast;

: gate merge.to_gate >> gate. inl;

: gate.to fan >> fan mb. from_gate;
: lan mb._ol >> s4_.inl;

queues

qgate_ in [10 ]

c/gate..out [I0 ]

qs iml_in [i0]

qsim2_in [I 0 ]

qsim3_in [10 ]

qsiml_out [i0]

qs im2_out [I0]

qsim3_out [I0 ]

qmb_t o._gat e [10 ]
qmb_t o_lan [ 10 ]

bind

inl =

outl =

end lan;

Q

: lan mb.to2 >> sim2.inl;

: lan mb.to3 >> sim3.inl;

: siml.outl >> gate__mb.froml;

: sim2.outl >> gate_mb.from2;

: sim3.outl >> gate_mb.from3;

: gate_mb.to_gate >> gate_merge.from_lan;

: gate_mb.to_lan >> lanmb.from_lan;

gate_merge.from_wan;

gate.to_wan;

At the highest level of abstraction, the Durra task intemet provides the view of the application as a

console process controlling two connected, but independent, local area'_etworks. These LAN

simulators may be distributed to separate physical processors. Figure 3 shows a graphical view of



thestructureof theapplication.
task inte_et

structure

process

lanl: task fan attributes processor = net1;

lan2: task fan attributes processor = net2;

uc

end lan;

end fan;

: task console attributes version = "xterm"; end console;

uc b : task broadcast

ports
from uc : in mJssage;

to_lanl, to_lan2 : out message;

end broadcast;

lanl_m, fan2 m :

task merge

ports

from_uc, fEom_lan
to fan

attributes mode = fifo;

end merge;

: in message;

: out message;

queues

quct ob

qucbtol

quc.bto2

q'ttomrlo]
q2tom[lO)

q=_.oZ [10]
q_to2 [I0]

end internat;

: uc.to lan >> uc b.from uc;

: uc_b.to_lanl >> lanl_m, from_uc;

: uc b.to fan2 >> lan2.m, from_uc;

: la_l.out--i >> lan2_m, fro__lan;

: lan2.outl >> lanl m. from_lan;

: lan2_m.to_lan >> lan2.inl;

: lanl_m.to_lan >> lanl.inl;

Only three of the aforementioned Durra tasks, the simulator, the gateway, and the console have

actual implementations associated with them. The/an task's behavior is defined constructively from

the behavior of the simulator and the gateway, the three buffer tasks (whose behavior is implemented

in the Durra executive), and the connections between them all. Similarly, the behavior of the internet

task derives from the connections between its components, the two instantiations of the/an task and
the console.

5. Conclusions

Application-level programming, as implemented by Durra, separates the structure of an application

from its behavior. This separation provides developers with control over the evolution of an

application during application development as well as during application execution. During

development, an application evolves as the requirements of the application are better understood or

as they change.

This evolution takes the form of changes in the application description, modifying task selection

templates to retrieve alternative task implementations from the library, and connecting these

implementations in different ways to reflect alternative designs. During exSCution, an application

evolves through mode changes or in response to faults. This evolution takes the form of conditional,
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Figure 3: Slrucfure of lhe Application

dynamic reconfigurations, removal of processes and queues, and instantiation of new processes and

queues without affecting the remaining components. This approach to application-level programming

is similar in spirit to the constructive approach of CONIC [4]. We illustrated this method for

developing distnl)uted applications by descn13ingthe implementation of a simple prototyping tool for

modelling various configurations of networked simulators. We wrote Durra task and application

descriptions and used them to control the evolution of the application, both during the development

and during the execution.
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Ov_r'vklw " Megaprogramming Motivation

"Currently, sollware is put together'one statement at

a time. Whal we need is Io put software together

one componenl at • _me." - Beery lklehm, at fhe

Domain Speclc 8oltware/bchlltm:tm_ (DSSA)

Workshop, July 11-12, tWO.

"Megaprogrammmg ts the type of thing you can go

into a 3.11at genorarl offCe lind use to explain what

DARPA is going Io do k)r _ lo make their

lofty/ate less expensive and have better quality." -

Barry Boehm, at the ISTO Software Technology

Community Meeting. June 27-29, 1990.

Topics

•- Darpa,lSTO tl_

,, Domain Analylis and Modelling

• Rapid Prolotyping

• Software Understanding

• Formal Methods

,- Recent Workshops

• Realities of Reuse - January 1990

• Melhods and Tools for Reuse - June 1990

,- 3-C Model for Soltware Components

"Soflwere productivity improvements m the past

have been aoctden_l because they allow us to

"work faster". DARPA wants people to "work

smarter" or to avoid work altogelher." - Barry

Boehm, at the Domain Specif'K: Software

Architecture (DSSA) Workshop, July 11-12. 1990.

13M

Mega_ng Vision

._ Megaprogramming is a "grant step'" toward

increasing

• "¢levekCm_proOuctMty,
• maintenance _lvtty,

• reliability,

• availabillly,

• security,

• portability,

• inlefoperabiltty and

• operational capability ."

Megaprogramming will incorporate proven,

well-defined components whose quality will evolve.

Megaprogramming requires the modification of the

traditional sc4tware deveiol)ment process,

DomaipPspeciflc llO4tlrare architectures need to be

defined and implemented with open interfaoes

according to so4twilre composition prsncil)_._. 8nd

open interface specirw, ations.

Additmnal environmental capabilltk-.s are needed to

prov_e software understanding

Megawogramming Software Team

*_lion .. Compot_nts + Interfaces +

Documentation

Soffwue Team = Cott_lguration + Process +

Audomatk_ + Condm/." - BIH Scherlis, at the ISTO .

Soltware Technology Community Meeting, June

27-29. 1990.

Megaprogramming Software Team Goal

To create an environment to:

1. "manage systems as configurations ol components,

Interfaces, specifications, etc.,

2. tncrealm the scale of units of sottware construction

(to modules), and

3. increase the range of scales or t,nits ol software

interchange (algorithms to subsystems)"
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Key Elements of Megaproc3ramming Software

Team

• C_qll_Im# m -- currently, components under

consk:lemtlon are from reuse libraries (e.g.,

SIMTEL20 or RAPID) or COTS (Commercial

Ofl'-The-Shelf) soltware (e.g., GRACE or Booth

components). APC_catlon generator techno_ ts

desirable to provide for IKlaptable modules.

Re-englneered components (e.g.. CAMP) could

provide additKxml resources.

totedace de(bdtmw -- currently,' there ex_s an ad

hoc standard consisting o_ Ada package

speciltcaliorts and informal documentation. It is

clesirabie to dmmtop • Module interconnect

Formalism (MIF) with hlddeh Implementations

supported by fon_l analysis and validation tools.

System _ -- currently, simple hypertext

syslems are supporting the textual documentation

associated with software components It is desirable

to creale a repository-based, hypermedia

emnronment that provides traceability between

artifacts and supports the caplure, query, and

navigation of domain knowledge

u,=,,,,,, IS]< 5

Key Elements of Meg•programming Software

Team

,- _ _ -- currently, there exists no

predlctlbie _oltware devek)pment process. It Is

desirable to devek)p lln evolutionary beve_opment

life cycle with supporl to domain engineering,

integrated requirements aCClUlmtk)n, and

re',,_'nlelre-engtr teerlng.

_ -- currently, CASE tools are

elmer stand-alone or federated (e.g., Unix'). It Is

desirable to Integrate the toots and create a

mela-programmtng environment to support process

dmcrlp(Ion and refinement.

ContrM/Amelmmlnt -- curl"ently, only a priori

ao_ware metrics and process inalrumentalion exists.

It is desirable to integrate trm measl,rement process

with tool support and to create an cosl-estimation

capability.

' U_d]l II I tri61wwi k OI AT& T Ikl#l Lmtl

u,,_ /.gM !

Rlmoulcel

• STAIRS (Software Technok_y for Adaptable Rettabie

Systems) SEE (Sot•ware Engineenng Environment)

• Arca¢l_a

CPS/CPL (Common Prototyping System/Common

Prototyr.ng Language)

.. DSSA (Domain Specific Software Architectures)

.- PO8 (PenUstent Ot_ect Bases)

• SWU (Software U_nding)

- REE (Re-Engineering)

Interface and architecture codifw, alK>n will be supported

by a Module Intercormect Formalism (MIF), which is an

outgrowth of the CPS/CPL program.

Goal of MIF

To adequale_y pasc_be • aof_ware compollenl SUCh lhal

tt= mtect_ and use can be accompkshed without

Component Interface

*' entry points,

" type dehnitlons

.- data formats (e.g. Ada package specification),

,- a cilaK:ril_ion of Its functionality,

,- side effects,

.- performance expectations,

,- degree and kind o( •llStR'sf'JCe of consi._tency

belween specificalkm and Implemenlalion

(reliability), aM

app¢opriale test cases.



SWUDesignRecord

Thedesignrecordwillprovidea"commondata_ructure

for Syslem documentation and libraries".

The suggested data elements in a design record Include:

•" code,

" teSt cases,

,- libraryand DSSA links,

•- design structure,

," access rights,

•- conliguration and version data.

" hypertext paths,

•- metric data,

,- requirement speclf'matlon fragments,

•- PDL texts,

,- inlertace and architecture specificalions,

,- design rationale.

," c_talog information, and

,. search points.

Megaprogramming Software Interchange

"Software Interchange - Software Team +

Cocwent_n + Reposilory + Exchange" - Bill

Schedis. at the ISTO Sottware Technok:x'jy

Community Meeting, June 27-29, 1990.

Megaprogramming Software Interchange Goal

To "enab/e wide-area commerce in software

components"

_,_,,,,_ 18]" ,o

Element/of MegaprogrammJng Software

interchange

p C_ -- currently, conventions are

emerging. It is desirable to creele a cooperative

decision and congensus mechan_rn that supports

adaplabie, multi-configuration litJ_anes, which

present a s4andarcl =march capability.

Reixxdtoryllnventmy-- currently, reposilorlas support

code storage only. It is desirable to retain, assess,

and va#dale o_her software assets such as

architectures, lesl cases, specifications, designs, and

design rationales.

ExchangeiBrokera_ -- current intelleclual property

rights end governmenl acquisition reg.talions ere

slili,)g a soltware component industry It is

desirable to populate certain apptica|io, domains

(via DSSA) and to support the creation of an

electronic soflwere component commelce by

• defining mechanisms for access co.trol,

• authentcationlcertificalion, and

* estabitshing composition conventions

Realities o| Reuse Workshop

JmamW 4-5 1990

Syracuse, NY

The goal of _ workshop was to

"... serve as • forum for shanng practical exr)erietces

end methodologies

,. for specifying and o_signing software for reuse,

,. for defining the level and kinds of components that

can be reused, and

•. for incorporating reuse philosophies mlo

organizations'.



Highlights

Soflware Reuse: Representing a Rausab4e Software

Cokcl_on

Wililam Frakel, Softwm Productivity Consortkam

IR approach is the Dest way to go about organizing

a hbrary.

oflmr approacl_es (keyword, faceted, semantic net,

hyperlext) require significant amounts of effort to set

up and to catalog
J

Roailties el Language Support for Rouse: What we

desire. What we have.

Lan'y Lalow, Unlvendty of Maine

,,- Code and lype inherilance

l)arameterization

•_ granularity of change

,. algorithm parametenzat_on

u.c,........ IB_,_ 13

Highlights

ReuNbie 8pectEcatlone Io4"Requirements Pmtolyphtg

andSymm_
Donald Hanma_ Intomatkx_ 8oRware Systems, inc.

,* Prolo system mat ISSI built for RADC

," Graphical input language for drawing data flow

rhagrams, Ihen simulating them (if the contents of

ti)e nodes is real code).

,. Oom can also watch the dale Ilow nodes fire.

Design/rig Ior Reuse: Is Ada Clast Conscious?

St_m Cohen, Software Engineering Inoftlute

Foal,re Analysis

Con;monalily Analysis to develop a (J_e/lc
ancl,leclures

Highlights

Libwary-ilase 8oRware Design Mel_

David Mtmler, RPI

The following ere myths:

I, generic software Is not efficient,

2. generic software is hard to find, and

3. software libraries only address Ihe

implementation level.

Rationale:

I. algorithms can be more complex at_l efficient

than any simple ones that a programmer wouM

tend to write from scratch.

2. Library can be organized into a se.manlic net

that a user could easily nawgale In find what

was needed.

3. 80% of the effort to build a library is writing the

specificabons that could he reuse.d at high level

design irma.

ORIGh'W_L P'AGE IS

OF POOR j rry

Highlights THIRD ANNUAL WORKSHOP:

METHODS & TOOLS FOR REUSE

June 13-15 1990

Syracuse, NY

p. If you are not teaching software reuse, you are not

leaching software engineering (Bob Cook -

University of Virginia)

=. The (throw everything into a) "Bag" approach was

the slyle of software reuse in the 80's, the "Generic

Architecture" approach is the style for the 90's

,* "Clonmg" (a new-to-me term/is a for_. of unplanned

reuse (salvaging) popular at HP m_rt nlher

companms

," What is needed to sfimulale soltwntP i(,.se are

handl3ooks that describe the alchllec.h .,_s of

at)p/icaholrs along with Iheir rleSi_ltl r,'_l.)nale

GOTO's were lolmd bad in tile 70's h_1 lho same

reason lhal Top DOwn Oecotp)l)(>_lh(_H wfl/ be found

bad m the 90's -- faihlre In n)r_rhd.'_,,7,, t _,,,_/=.,0,,



Highlights THIRD ANNUAL WORKSHOP:

METHODS & TOOLS FOR REUSE

,, A good thferface specification has enough

information so the (re-) user doesn't have to look at

the code fo figure out what it does and how to use

if.

One (large) problem that people have failed IQ,

reafize is that soflware reuse doesn't stop at

refrmval.

Data flow diagrams provide too much information to

be included in the functional specificahon of a

reusable software component.

,, Domain Analysis research projects are actively

being addressed at TRW, Bell Labs. UNISYS,

ESPRIT. Magnovox, CONTEL, MCC a_)rl SPS.

Highlights THIRD ANNUAL WORKSHOP:

METHODS & TOOLS FOR REUSE

IP SPS (Software ProductiWty Solutions) speculated that

in 6 years they have increased their programmer

productivity an order of magnitude throtlgh

1. simple black box reuse (function libraries)

2. paramelarized black box reuse (Ads generics)

3. large component reuse (modules/Ada packages)

4. inheritance (required objact-orionfed

programming language)

5. parametarized application generalors

NOTE: they indicated the switct_ Io OOPL was the

greatest facilitator of reuse.

,. Best malaprop: "Generics are sometlm_FI you use

when you can't afford the name brand."

u_<,...,.a IBM ,e

ORIGINAL PAGE IS

OF POOR QUALITY

Paper Summaries

KAPTUR: KNOWLEDGE ACQUISmON FOR

PRESERVATION OF TRADEOFF5 AND UNDERLYING

RATIONALES

Sidney C. BaUin, CTA INCORPORATED

Roll-your-own hyperfexl system for capluring o_sign
decisions.

An impressive domain analysis case stucly in tools

to support reuse.

REUSE OF SOFTWARE KNOWLEDGE: A PROGRESS

REPORT

Prem Devanbu, AT&T BELL LABORATORIES

Knowledge Base to assist in software reuse.

tlYPERBOLE: A RETRIEVAL-BY-REFORMULATION

INTERFACE THAT PROMOTES SOFTWARE VISIBILITY

Pab-icm Carando, Schlumberoe r Laboralory for

Computer Science

* Getmrtc user ,)lerface and data analy._s architecture

to analyze well dais.

" Glaphtcal workstahon tool (500-600 cla_ses)

Paper Summaries

AN EMPIRICAL FRAMEWORK FOR SOFTWARE REUSE

RESEARCH

Bill Frakes, S_ltware Productivity Consortium

*. Determine the relationships between the dependent
variables in model

1. quality,

2. produclivily, and
3. reuse

THE 3C MODEL OF REUSABLE SOFTWARE

COMPONENTS

Stephen Edwards, InsUtufe for Defense Analyses

Emphasis on the maintenance paybach hom using
the 3C model

THE THREE CONS OF SOFTWARE REUSE

WUl Tracz, IBM Corporalio,

The gospel according to Will



t
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Paper Summaries

DESIGNING FOR 8OFTWARE REUSE IN ADA

Simlom Cohen, SEI/Camegle_elton University

* Implementation implications of using the 3C model

m regards to hierarcl_ies of parameterized models.

• Coupfing inversion - where context is fixed for
implemeniebon efficiercies within the generic
archileClura.

THE PRACTIrTK)ICR REUSE SUPPORT SYSTEM (PRESS):
A TOOL SUPPORTING SOFTWARE REUSE

Come4k Bolidyf_l, Bnmel University

* ESPRIT 10#4 Pr_cttfioner Project (one of many reuse
pro?eelsfunded by ESPRIT).

,. Cal)ttlra and reuse software concepls from designs
thrO(Igh code.

,. (Jtle$llonnaire was passed oul to the Inam company
to assist in domain analysis

," "cal_onlcal" form for describing software components

(tevetoped

u...... ,,.d IIM _,

Conceptual Model

Reusable Software Components

• Context

• Concepts

• Content

- Context

- Concepts

- Content

Paper Summaries

REUSE AT HEWILLrrT-PACKARD LABORATORIES

MMIM L _ HewlMl-Packard Laboratod_

• Hyperlext tools.

,. Object.Oriented Design.

BEYOND RETRIEVAI. UNDERSTANDING AND
ADAPTATION IN SOFTWARE REUSE

Kamn Hull & Ronlde _, GTE Labo,alodel Inc.

• SATURN (Software Adaptation Through
Understandable Reuse Notation)

THE STARMTE INTELLECTUAL REUSE PROJECT

Ro41erl P. Cook, _iy ol Virginia

,. Reusable operating system.arid sysl_.m modelling

componenls

.m,-... IB__

Conceptual Model

Context

• "Lm_m,l_ shapes thought"

- Inheritance

- Genericity/Parametcri/_ttion

- Importation

• Binding time

- Compile time

- Load/Bind time

- Run Time



Conceptual Model

Concepts

• Concept: - What

• Content: - How

• Context:

I. Conceptual - re/alio.sh//_

2. Operational - with�to what

3. Implementation - trade- otis

Context: what is nccdcd to complcte the
definition of a concept or content within an
cnvironment. (L_llom')

Software Components

Formal Foundations

• Horizontal Structure

I. type inheritance

2. code inheritance

• Vertical Structure

- implemcntation dcpcndcncics

- virtual interfaces

• Generic Struet.re

- variations/adaptations

WJT-}C P*lmlk4 3 IqltMI.fltp 1O WJT.3C It4ed_

Conceptual Model

Example

• Concept: Stack

- Operational Context: Element/Type

- Conceptual Context: Deque

- hnplementation Context: Sequence

Conceptual Model

Example

• Stack implementation

i. Inherit Deque

2. Use an array

3. Use a linked-list

• memory managemcnt

• no memory management

• concurrent access



Megaprogramming Example

Stack - > Deque

make Deque [ Tray ] is
Stack ( Triv'J

* ( rename ( Push = > Push Right )
( Pop = :; Pop Right )
(Stack => Dcque)

* ( add Push_Left, Push_Right )

end;

Hyperprogramming Example

Make with View

make lntcgerSet is
LI L_Set ("I ntegerView ]

end;

view integer_View :: Triv = > Standard is
types (Element = > Integer):

end;

_, JT- t( &ledd
WJT.]C" &lMIrl

tc¢ct _ oJ

i

Megaprogramming Example

Make with Vertical Composition

make Short Stack is
LIL_S_ack

- - horizontal composition
needs (List_Theory = > List_Array)

vertical composition
end;

LILEANNA Example

Package Expressions

Ill_Ill. LII I C_ I lit Irl I¢! l|

lent I ( iIr.PICUI_ *
¢ltltl PleklII*IIINI Cally) *

_bv, t _tit t I_IL I_t kIt_t, *

DIIIIIII. INl¢kmli *

iblfy.Plclllge*|Mi |IIIIMt liuery FJil (_: Clause:

L: List Of_C|_set)

retlml IM_leln )

i:



Ada Net
John McBride

Planned Solutions

Paper not available at time of printing.





Session 4

Software Engineering: Issues
for Ada's Future

Chair: Rod L. Bown, University of Houston-Clear Lake

Assessment of Formal Methods
for Trustworthy Computer

Systems
Susan Gerhart

Microelectronics and Computer Technology Corp. (MCC)

Paper not available at time of printing.





Issues Related to Ada 9X
John McHugh

Computational Logic, Inc.

Paper not available at time of printing.





Session 4 1:30 - 3:00 Nov. 8

POSIX and Ada Integration In The

Space Station Freedom Program

Dr. Robert A. Brown

The Charles Stark Draper Laboratory, Inc.

This paper discusses the integration of real-time POSIX and

real-time, multiprogramming Ada in the Space Station Freedom

Data Management System. Use of POSIX as well as use of Ada

has been mandated for Space Station Freedom flight software.

However, POSIX and Ada assume execution models that are not

always compatible. This becomes particularly true once Ada

has been extended to support multiprogramming. This paper

points out the conflicts between POSIX and Ada multiprogramming

execution models and describes the approach taken in the Data

Management System to resolve those conflicts.





Session 5

Ada Run-Time Issues

Chair: Alan Burns, University of York (U. K.)




