-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by NASA Technical Reports Server

Session 2 8:30 - 10:00 a.m. Nov. 8

N91-22727

Prototyping Distributed Simulation Networks

-

Dennis L. Doubleday
Software Engineering institute

https://core.ac.uk/display/42818386?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Prototyping Distributed Simulation Networks

Dennis L. Doubleday
Software Engineering Institute

Abstract

Durra is a declarative language designed to support application-level programming. In this paper we
illustrate the use of Durra to describe a simple distributed application: a simulation of a collection of
networked vehicle simulators. We show how the language is used to describe the application, its
components and structure, and how the runtime executive provides for the execution of the application.

1. Programming at the Application-Level

Many distributed applications consist of large-grained tasks or programs, instantiated as processes,
running on possibly separate processors and communicating with each other by sending messages
of different types. '

Since the patterns of communication between the processes can vary over time and the speeds of
the individual processors can differ widely, the developers may need explicit control over the
allocation of processors to processes in order to meet performance or reliability requirements.
Processors are not the only critical resource. The resources that must be allocated also include
communication links and message queues. We call this network of various processor types, links,
and queues a heterogeneous machine.

Currently, users of a heterogeneous machine network follow the same pattern of program
development as users of conventional processors: Programmers write individual tasks as separate
programs, in the different programming languages (e.g., C, Lisp, Ada) supported by the processors,
and then hard code the allocation of resources to their application by explicitly assigning specific
programs to run on specific processors at specific times. This coupling between the component
programs and the built-in knowledge about the structure of the application and the allocation of
resources often prevents the reuse of the programs in other applications or environments.
Modification of the application during development is often expensive, time-consuming, and error-
prone. The problem is compounded if the application must be modified while running in order to deal
with faults or mode changes. We claim that developing distributed applications for a heterogeneous
machine is qualitatively different from developing programs for conventional processors. it requires
different kinds of languages, tools, runtime support, and methodologies. In this paper we address
some of these issues by presenting a language, Durra. We briefly describe the language and its
distributed runtime support environment and then present, as an example distributed application, a
simple simulation of a network of vehicle simulators.

The rest of this paper is organized as follows. Section 2 briefly describes the Durra language and
runtime environment. Section 3 discusses the problem we are attempting to address in the realm of

1

This work is sponsored by the U.S. Department of Defense. The views and conclusions contained in this document are
solely those of the author(s) and should not be interpreted as representing official policies, either expressed or implied, of
Camegie Melion University, the U.S. Air Force, the Department of Defense, or the U.S. Government.

networked simulation devices. Section 4 describes the work we have done to date toward that end.

2. Introduction to Durra

Durra [2] is a language designed to support the development of distributed, large-grained concurrent
applications running on heterogeneous machine networks. A Durra application description consists of
a set of task descriptions and type declarations that prescribe a way to manage the resources of the
network. The application description describes the tasks to be instantiated and executed as
concurrent processes, the types of data to be exchanged by the processes, and the intermediate
queues required to store the data as they move from producer to consumer processes.

2.1. The Durra Language

Task descriptions are the building blocks for applications. A task description includes the following
information (Figure 1): (1) its interface to other tasks (ports); (2) its attributes; (3) its functional and
timing behavlor; and (4) its intemal structure, thereby allowing for hierarchical task descriptions.

task task-name

ports -- Used for communication between a process and a queue
port-declarations

Ittflbl:lt‘. . -- Used to specify miscellaneous properties of the task
attribute-value-pairs

behavior -- Used to specify task functional and timing behavior
functional specification
timing specification

structure -- A graph describing the internal structure of the task
process-declarations --Declaration of instances of internal subtasks
bind-declarations -- Mapping of internal ports to this task’s ports
queue-declarations -- Means of communication between processes
reconfiguration-statements -- Dynamic modifications to the structure

end task-name
Figure 1: A Template for Task Descriptions

The interface information declares the ports of the processes instantiated from the task. A port
declaration specifies the direction and type of data moving through the port. An In port takes input
data from a queue; an out port deposits data into a queue:

ports
inl: In heads;
outl, out2: out tails;

The attribute information specifies miscellaneous properties of a task. Aftributes are a means of
indicating pragmas or hints to the compiler and/or runtime executive. In a task description, the
developer of the task lists the actual value of a property; in a task selection, the user of a task lists the
desired value of the property. Example attributes include author, version number, programming
language, file name, and processor type:

attributes
author = "4imw";
implementation = “program_name";

Queue_Size = 25;

The behavioral information specifies functional and timing properties of the task. The functional
information part of a task description consists of a pre-condition on what is required to be true of the
data coming through the input ports, and a post-condition on what is guaranteed to be true of the data
going out through the output ports. The timing expression describes the behavior of the task in terms
of the operations it performs on its input and output ports. For additional information about the syntax
and semantics of the functional and timing behavior description, see the Durra reference manual [1].

The structural information defines a process-queue graph and possible dynamic reconfiguration of the
graph.

A process declaration of the form

process_name : task task_selection
creates a process as an instance of the specified task. Since a given task (e.g., convolution) might
have a number of different implementations that differ along different dimensions such as aigorithm
used, code version, performance, or processor type, the task selection in a process declaration
specifies the desirable features of a suitable implementation. The presence of task selections within
task descriptions provides direct linguistic support for hierarchically structured tasks.

A queue declaration of the form
queue_name [queue_size): port_name_1 > data_transformation > port_name_2

creates a queue through which data flow from an output port of a process (port_name_1) into the
input port of another process (port_name_2). Data transformations are operations applied to data
coming from a source port before they are delivered to a destination port.

A port binding of the form
task_port = process_port
maps a port on an intemal process to a port defining the external interface of a compound task.

A reconfiguration statement of the form

if condition then .
remove process-names
process process-declarations
queues queus-declarations

ond If;

is a directive to the executive. It is used to specify changes in the current structure of the application
(i.e., process-queue graph) and the conditions under which these changes take effect. Typically, a
number of existing processes and queues are replaced by new processes and queues, which are
then connected to the remainder of the original graph. The reconfiguration predicate is a Boolean
expression involving time values, queue sizes, and other information available to the executive at
runtime.

2.2. The Durra Runtime Environment

There are two classes of active components in the Durra runtime environment: the application
processes and the Durra executives. As shown in Figure 2, an instance oLthe executive runs on
each processor while the processes are distributed across the processors in the system.

?ﬁ%cossor 1 Processor 2 Processor 3
: H
C
A
B8 —1 F G
a -- Process Graph with Processor Allocation
{ Processor 1 Processor 2 Processor 3
H \
Executive Executive Executive
(master) ;

b -- Actual Communication Patterns

Figure 2: The Durra Runtime Environment

The executives interpret the resource allocation commands produced by the Durra compiler, monitor
reconfiguration conditions, and implement the necessary changes in the application structure.

The component processes making up .a Durra application are instances of independent tasks
(programs) that can be written in any language for which a Durra interface has been provided
(currently, there are Durra interfaces for both C and Ada). The Durra interface is a collection of
procedures that provide communication and control primitives. The component processes use the
interface to communicate with the Durra executives and, indirectly, with other application processes.
For a more detailed discussion of the Durra runtime environment, see [3].

3. Distributed Simulation Networks

The development of large networks of heterogeneous simulation and training devices often presents
problems related to the performance and interconnectivity of the network components. There is a
need to evaluate various design alternatives before commitling to a specific implementation.
Problems arise in several areas:

* Muttiple protocols. Cooperating devices are often written using different communication
protocols because they rely on predetermined standards or technologies. When
communicating devices use different protocols, it is necessary to translate messages in a
way that is transparent to the communicating agents. This mesSage translation
consumes time and reduces performance.

e Mutltiple levels of fidelity. When developing hierarchical networks of simulation and
training devices, it is often the case that the time scales (i.e., granularity), amount of
data, and level of detail in the data are not compatible between levels or devices. Thus,
there is a need to filter (i.e., reduce) data moving up in the hierarchy and to pad (i.e.,
augment) data moving down the hierarchy. This is a different type of ‘translation’ from the
protocol translation described above. The translating programs in this case need to have
a thorough understanding of the application to compensate for the mismatch in the levels
of detail.

« Multiple technologies. When connecting devices that use different hardware technology,
the developers of the distributed application need to compensate for differences in
speed, performance, and fault-tolerance requirements.

This collection of problems is just an illustration of the issues that must be addressed by the
developers before implementing the network. A useful technique is to develop prototypes using
emulators of the component software and hardware devices. The emulators are easier to implement
than the real devices and can more easily be reconfigured into atternative structures. Experiments
can be conducted under various load conditions and measurements of performance can be derived
from these experiments.

4. Using Durra to Prototype Simulation Networks

We are using Durra to develop a tool for testing and evaluating various network configurations. We
are implementing the tool as a distributed application consisting of clusters of emulators. These
emulators are responsible for interpreting specifications of hypothetical application tasks. We use the
Durra language to describe the various components of the system, their ports and message queues,
and the types of messages exchanged between components. We use the Durra runtime environment
to execute the application and perform dynamic recontigurations of the application, to emulate mode
changes, and to evaluate their impact on performance.

The final version of our tool will include at least four types of emulators:

1. Generic simulation device emulators: These programs will mimic the I/O behavior of
a generic networked simulation device. Scripts specifying the behavior of the emulated
device(s) will be developed. Differences in /0 behavior between different types of
simulation devices can be emulated through variations in these scripts. The initial
scripts consist simply of position updates and timing instructions. Eventually they
should be more representative of actual networked simulation sessions; this could be
accomplished by adaptation of 1/0 logs of an actual simulation session.

2. LAN emulators: These emulators will model communications delay in the network
(e.g., token ring delay). This kind of emulation can likely be accomplished via buffer
tasks in the Durra runtime, which would mean that no executable version of these
emulators need be developed.

3. Intelligent gateway emulators: These programs will model the effect of various
message-fittering and protocol translation techniques on the networked simulation’s use
of processor and communications resources.

4. Console emulator: This program will provide an interactive user interface to the
simulation environment, allowing the experimenter to change emulation parameters,
inject faults, and collect data.

P

4.1. Example: A Simple Network Specification

In this section we present a Durra specification of a simple network of simulators. In this example, we
instantiate a user console and two LAN emulators, each consisting of a group of three simulators and
one gateway process. The reader should note that there is nothing special about this configuration--
another version consisting of some other grouping could just as easily have been constructed from
the same primitive building blocks.

The following is the Durra description of the message type used for communications between the
application components. The message type description is purposely a very general one. A generic
description of the message type allows us in the actual implementation of the type to use a variant
record to represent both simulator position updates and command messages and easily combine
both types of messages in a single data stream.

type message is array of byte;

At the lowest level of the structure we have the descriptions of the primitive tasks, the simulator, the
gateway, and the console. The simulator task has one output port, through which it emits its position
updates, and one input port, through which it receives position updates and user commands. The
gateway task has one input port and two output ports; port to_wan sends messages outside the LAN
and port to_/an distributes remote messages to the simulators in its LAN. The console task is the
application user’s interface to the tool; it accepts a set of user commands and forwards them to the
gateway task for each LAN in the configuration. The gateways may in turn forward those messages
to the simulators in their respective LANSs if the nature of the command requires it.

task simulator
ports
inl : in message;
outl : out message;
attributes
version = "2";
implementation = "simulator";
end simulator;

task gateway
ports
inl : in message;
to_lan : out massage;
to_wan : out message;
attributes
version = "2";
implementation = "gateway";
end gateway;

task console
ports
to_lan : out message:
attributes
xwindow = "-geom 80x24+0+0 -title CONSOLE";
implamentation = "console";
end console;

The Durra task /an encapsulates the internal structure of the LAN itself. This instantiation of a LAN
includes one gateway task and three simulator tasks, as well as three built-in Durra buffer tasks. The

buffer tasks implement the routing of message traffic between the component tasks of the LAN. Task
gate_merge merges local and remote messages intended for the local gateway. Task gate_mb
merges messages from the local simulators and then distributes them to both the gate_merge task
and the /an_mb task. The Jan_mb task merges those local messages with the remote messages
forwarded from the gateway and distributes them all to each of the local simulators. Note that, given
this structure, each simulator will receive its own updates; these can either be ignored by the
simulator or used as a check to ensure that its own updates are being distributed properly.

task lan
ports
inl : in message’
outl : out message;
structure
process
gate : task gateway attributes version = "2"; end gateway;
siml, sim2, sim3 :
task simulator attributes version = "2"; end simulator;
gate_merge : task merge

ports
from_lan, from wan : in message;
to_gate : out message;

attributes mode = fifo;

end merge;
gate mb : task merge_broadcast

ports
froml, from2, from3 : in message;
to_gate, to_lan : out message;

attributes mode = fifo;
end merge_ broadcast;

lan_mb : task merge_broadcast
ports
from _gate, from lan : in message;
tol, to2, to3 : out message’

attributes mode = fifo;
end merge_broadcast;

queues .
qgate_in[10] : gate_merge.to_gate >> gate.inl;
ggate_out[10] : gate.to_lan >> lan_mb.from gate;
gsiml_in[10] : lan_mb.tol >> siml.inl;
gsim2 in[10] : lan_mb.to2 >> sim2.inl;
gsim3 in{10] : lan_mb.to3 >> 8im3.inl;
gsiml out[10] : siml.outl >> gate _mb.froml;
gsim2 ocut[10] : sim2.outl >> gate_mb.from2;
gsim3 out[10] : sim3.outl >> gate_mb.from3;
qub_to_gate[l0] : gate_mb.to_gate >> gate_merge.from lan;
gmb_to_lan[10] : gate_mb.to_lan >> lan_mb.from lan;
bind

inl = gate_merge.from wan;
outl = gate.to_wan;

end lan;

At the highest level of abstraction, the Durmra task internet provides the view of the application as a
console process controlling two connected, but independent, local area networks. These LAN
simulators may be distributed to separate physical processors. Figure 3 shows a graphical view of

the structure of the application.

task internet
structure
process
lanl: task lan attributes processor = netl; end lan:
lan2: task lan attributes processor = net2; end lan:

uc : task console attributes version = "xterm": end console;
uc_ b : task broadcast
ports
from uc : in message;

to_lanl, to_lan2 : out message;
end broadcast;

lanl_m, lan2 m :

task merge
ports
from uc, from lan ! in message;
to_lan ! out message;
attributes mode = fifo;
end merge:;
queues
quctob : uc.to_lan >> uc_b.from uc;
qucbtol : uc_b.to_lanl >> lanl_m.from uc;
qucbto2 : uc_b.to_lan2 >> lan2 m.from uc;
qltom[10] : lanl.outl >> lan2 m.from lan;
gq2tom{10] : lan2.outl >> lanl_p.frcq_lnn;

gqmtol [10] : lan2_m.to_lan >> lan2.inl;
‘ qmto2[10] : lanl_m.to_lan >> lanl.inl;
end internet;

Only three of the aforementioned Durra tasks, the simulator, the gateway, and the console have
actual implementations associated with them. The /an task's behavior is defined constructively from
the behavior of the simulator and the gateway, the three buffer tasks (whose behavior is implemented
in the Durra executive), and the connections between them all. Similarly, the behavior of the internet
task derives from the connections between its components, the two instantiations of the /an task and
the console.

5. Conclusions

Application-level programming, as implemented by Durra, separates the structure of an application
from its behavior. This separation provides developers with control over the evolution of an
application during application development as well as during application execution. During
development, an application evolves as the requirements of the application are better understood or
as they change.

This evolution takes the form of changes in the application description, modifying task selection
templates to retrieve alternative task implementations from the library, and connecting these
implementations in different ways to reflect alternative designs. During ex®cution, an application
evolves through mode changes or in response 1o faults. This evolution takes the form of conditional,

merge

console

LAN
focal
message
merge
simulators
gateway
merge merge
bcast bcast

remote
messa

merge
LAN
local
message
merge
gateway

simulators

Figure 3: Structure of the Application

dynamic reconfigurations, removal of processes and queues, and instantiation of new processes and
queues without affecting the remaining components. This approach to application-level programming

is similar in spirit to the constructive approach of CONIC [4].

Wae illustrated this method for

developing distributed applications by describing the implementation of a simple prototyping tool for
modelling various configurations of networked simulators. We wrote Durra task and application
descriptions and used them to control the evolution of the application, both during the development

and during the execution.

References

(1]

[2]

(31

[4]

M.R. Barbacci and J.M. Wing.

Durra: A Task-Level Description Language.

Technical Report CMU/SEI-86-TR-3 (DTIC AD-A178 975), Software Engineering Institute,
Carnegie Melion University, December, 1986.

M.R. Barbacci and J.M. Wing.

Durra: A Task-Level Description Language Reference Manual (Version 2).

Technical Report CMU/SEI-89-TR-34, Software Engineering Institute, Carnegie Mellon
University, September, 1989.

M.R. Barbacci, D.L. Doubleday, C.B. Weinstock, M.J. Gardner.
Developing Fault-Tolerant Distributed Systems.
Technical Report, Software Engineering Institute Technical Review 1989, 1990.

J. Kramer and J. Magee.

A Model for Change Management.

In Proceedings of the IEEE Workshop on Trends for Distributed Computing Systems in the
1990's, pages 286-295. IEEE Computer Society, September, 1988.

Session 3

Software Reuse

Chair: Robert Angier, /IBM Corp.

Session 3 10:15 - 11:45 a.m. Nov. 8

Research Directions in Software Reuse

November 8, 1990

Will Tracz

MD 0210
IBM Federal Sector Division
Owego, NY 13827
(607) 751-2169
net: OWEGO@|BM.COM

Unclassified

Session 3

Software Reuse

Chair: Robert Angier, IBM Corp.

Session 3 10:15 - 11:45 a.m. Nov. 8

Research Directions in Software Reuse

November 8, 1990

Will Tracz

MD 0210
IBM Federal Sector Division
Owego, NY 13827
(607) 751-2169
net: OWEGO@I|BM.COM

Unclassified

Overview Megaprogramming Motivation

“Currently, soflware is put together one statement al :

a time. Whal we need Is to pul sofiware together “Megaprogramming is the type of thing you can go

one component at a lime." ~ Barry Boshm, at the into a 3-star general’'s office and use lo explain whal

Domain Specific Software Architecture (DSSA) - DARPA is going o do for them to make their

Workshop, July 11-12, 1880. ‘ software less expensive and have belter quality.” —
Barry Boehm, at the ISTO Software Technology
Community Meeling, June 27-29, 1990.

Topics

> Darpa/iSTO Megaprogramming “Software produclivity improvements in the past
* Domain Analysis and Modelling have been accidenial because they allow us (o
e Rapid Prototyping “work faster”. DARPA wanis people lo “work
¢ Sofiware Understanding smarier” or to avoid work al.logelher, * — Barry
* Formal Methods Boehm, at the Domain Specific Software
Architecture (DSSA) Workshop, July 11-12, 1990.
» Recent Workshops

* Realities of Reuse - January 1990
e Methods and Tools for Reuse - June 1990

» 3-C Model for Software Components

Unclassihed liM 1 Unciassifisd !B 1‘ 7{
Megaprogramming Vision , Megaprogramming Software Team
> Megaprogramming is a “giant step” toward “Configuration = Components + Interfaces +

increasing Documentation

o “development productivit

e maintenance suctivity ! Software Team = Conliguration + Process +

o reliability ' Automation + Control.” — Bill Scherlis, at the ISTO

. availabmt'y Software Technology Community Meeting. June

. security, 27-29, 1900.

¢ portability,

* interoperability and

* operational capability ." Megaprogramming Software Team Goal

* Megaprogramming will incorporate proven, .
well-defined ts wi quality wil . To create an environment to:
1. “manage systems as configuralions of components,

* Megaprogramming requires the modification of the inlert specifications, etc

lraditional soitware development process.
2. increase the scale of units of software construction

» Domain-specific software architectures need to be {to). and

defined and impiemented with open interfaces
according to software composition principies. and 3. increase the range of scales of unils of software
open inlerface specifications. interchange (aigorithms to subsysiems) "

» Additional environmental capabilities are needed to
provide software understanding

v

Key Elements of Megaprogramming Software

Team

+ Component sources — currently, components under

consideration are from reuse libraries (e.g.,
SIMTEL20 or RAPID) or COTS (Commercial
Off-The-Shelf) software (e.g.. GRACE or Booch
components). Application generator technology is
desirable to provide for adaptable modules.
Re-engineered components (e.g., CAMP) could
provide additional resources.

interiace definitions — currentty.' there exists an ad
hoc standard consisting of Ada package
specificalions and informal documentation. It is
desirabie to deveiop a Module interconnect
Formalism (MIF) with hiddeh implementations
supported by formal anatysis and validation tools.

System documentstion — currently, simple hypertext
sysltems are supporting the textual documentation
associated with software components. It is desirable
1o creale a repository-based, hypermedia
environment that provides traceability between
artifacts and supports the caplure, query, and
navigation of domain knowiedge.

Unclassired ‘liM §

Key Elements of Megaprogramming Solftware

Team

Megaprogramming Resources

STARS (Software Technology for Adaplable Reliabie
Systems) SEE (Software Engineering Environment)

Arcadia

CPS/CPL (Common Prototyping System/Common
Prototyping Language)

DSSA (Domain Specific Software Architectures)
POB (Persisient Object Bases)

SWU (Software Understanding)

REE (Re-Engineering)

L d

Process structure — currently, there exists no
predictable software development process. it is
desirable to develop an evolutionary deveiopment
life cycie with support to domain engineering,
integrated requirements acquisition, and
reverse/re-engineering.

Process Aulometion — currently, CASE tools are
elther stand-alone or federated (e.g.. Unix). Iitis
desirabie to integrate the tools and create a
metla-programming environment o support process
description and refinement.

Control/Assessment — currently, only a priori
software metrics and process instrumentalion exists.
It is desirabie to integrate the measurcment process
with tool support and to create an cost-estimation
capability.

' Uniz ie & trademad of ATAT Bell Laborstories

Uncisssified j‘M

Goal of MIF

To adequately describe a software component such that
its selection and use can be accomplished without
looking at its impiementation.

Component interface

>

»>

»

entry points,
type definitions
data formats (e.g. Ada package specification),

Interface and architeciure codification will be supported ; '
by a Module Interconnect Formalism (MIF), which is an "o ption of lts functionality.
oulgrowth of the CPS/CPL program. »~ side eflects,

* performance expectations,

= degree and kind of assurance of consislency
between specification and implementation
(reliability), and

> appropriate test cases.

SWU Design Record ' Megaprogramming Software Interchange

The design record will provide a “common data structure '

for sysiem documentation and libraries”.

. “Soflware Interchange = Soflware Tean +

The suggested data elements in a design record include: Convention + Repository + Exchange.” — Bil
» code,) Scheriis, at the ISTO Software Technology

test cases, Community Meeting, June 27-29, 1990,

library and DSSA links,

design structure,

access rights,

» configuration and version data,

- hypertext paths. Megaprogramming Software Interchange Goal

= metric dala, :

> requirement specification frggmems. : To “enable wide-area commerce in software

» PDL texts, ' components.”
interface and architecture specifications,

>
» design ralionale,

» c¢7talog information, and
» search points.

LA 2N

v

»

x
Unclassitied !B}'{ 9 Unclasmtied IBM o

Elements of Megaprogramming Software Realities of Reuse Workshop

interchange
> Conventionalization — currenlly, convenlions are January 4-5 1990
emerging. Il is desirable io creale a cooperative Syracuse, NY

decision and consensus mechanism thal supports
adaptabie, mulli-configuration libraries, which
present a slandard search capability.

> Reposilory/inventory— currently, reposilories support
code storage only. It is desirable (o relain, assess,
and validale other software assels such as
architeclures, lest cases, specifications, designs, and
dasign rationales. i

The goal of the workshop was to

“... serve as a forum for sharing praciical experiences
and methodologies

» for specifying and designing software for reuse,

= for defining the level and kinds of components that
can be reused, and

» Exchange/Brokerage — current intelleciual property .
rights and government acquisition regulations are
slifling a soflware component industry. Il is
desirable (o populale certain application domains
{via DSSA) and lo supporl the crealion of an
elecironic soflware component commerce by

for incorporaling reuse philosophies inlo
organizations”.

* defining mechanisms for access comnrol,
¢ aulheniication/certification, and
¢ @establishing composition conventions.

Highlights

Sofiware Reuss: Representing a Reusable Soltware
Collection
William Frakes, Soltware Productivity Consortium

> IR approach is the best way lo go about organizing
a hbrary.

+ other approaches (keyword, faceled. semantic net,
hyperiext) require significant amounts of effort lo sel
up and fo cataiog .

Realities of Language Support for Reuse: What we
desire - What we have.
Larry Latour, University of Maine

» Code and lype inherilance
» paramelerization
* granularity of change

* algorithm parameterization.

Highlights

Library-Base Soltware Design Melhodology
David Musser, RPI

The following are myths:

1. generic software is not eflicient,

2. generic soflware is hard to find, and

3. software libraries only address ihe
impiementation leve!.

» Ralionale:

1. algorithms can be more complex and efficient
than any simple ones thal a programmer would
tend to wrile from scratch.

2. Library can be organized inlo a scmanlic net *
that a user could easily navigale io find what
was needed.

3. 80% of the effort to build a library is writing the
specifications that could he reused al high level
design time.

Unclessified IBM 7 4

ORIGINAL page
is
OF POOR QuaLTY

Unclassitied lﬁ}'{ k]
Highlights
Reusable Specifications for Requirements Profotyping
and Sysiem Construction

Donaid Hartman, intemationa) Soltware Systems, Inc.
~ Prolo sysiem that ISS! built for RADC.

> Graphical input language for drawing dala flow
thagrams, then simulaling them (if the contents of
the nodes is real code).

» One can also walch the dala flow nodes fire.

Designing for Reuse: is Ada Class Consclous?
Sholom Cohen, Soitware Engineering Institute

> Fealure Analysis

> Conunonality Analysis to deveiop a yeneric
archieciures

Highlights THIRD ANNUAL WORKSHOP:
METHODS & TOOLS FOR REVSE

June 13-15 1890
Syracuse, NY

Highlights

i you are nat leaching sofiware reuse, you are not
teaching software engineering (Bob Cook -
Universily of Virginia)

The (throw everything into a) "Bag” approach was
the style of soflware reuse in the 80's. the “Generic
Archilecture™ approach is the style for the 90's.

“Cloning” (a new-to-me lermy} is a form of unplanned
reuse (salvaging) popular at HP and oiher
companies.

What is needed lo stimulale soltware 1ouse are
handbooks that describe the arcinteciunes of
applicatrons along with their design ralionale.

GOTO's were found bad in the 70's i ihe same
reason (hal Top Down Decomposition will be found
bad in the 90°'s — failtire 1a nyeediinr o omsimembeo s,

Highlights THIRD ANNUAL WORKSHOP:
METHODS & TOOLS FOR REUSE

» A good interface specificalion has enough
information so the (re-) user doesn’l have (o look at
the code to ligure out what it does and how lo use
it.

= One (large) problemn that people have failed la
realize is that soflware reuse doesn’l stop at
retrieval.

» Dala flow diagrams provide loo much information lo
be included in the functional specification of a
reusable software component.

» Domain Analysis research projects are actively
being addressed al TRW, Bell Labs, UNISYS,
ESPRIT. Magnovox, CONTEL, MCC and SPS.

Unclassified IBM v

ORIGINAL PAGE IS
OF POOR QUALITY

Paper Summaries

KAPTUR: KNOWLEDGE ACQUISITION FOR
PRESERVATION OF TRADEOFFS AND UNDERLYING
RATIONALES
Sidney C. Ballin, CTA INCORPORATED

* Roll-your-own hypertext system for capluring design
decisions.

An impressive domain analysis case sludy in tools
lo support reuse.

REUSE OF SOFTWARE KNOWLEDGE: A PROGRESS
REPORY
Prem Devanbu, AT&T BELL LABORATORIES

Knowledge Base lo assist in software reuse.

HYPERBOLE: A RETRIEVAL-BY-REFORMULATION
INTERFACE THAT PROMOTES SOFTWARE vISIBILITY
Patlricia Carando, Schiumberger Laboratory for
Computer Science

»

fo analyze well dala.

* Graphical workstation tool {500-600 classes)

Generic user inlerface and dala analysis architecture -

Highlights THIRD ANNUAL WORKSHOP:
METHODS & TOOLS FOR REUSE

» SPS (Software Productivily Solutions) speculated that

in 6 years they have increased their programmer
productivity an order of magnitude through

1. simple black box reuse (function libraries)

2. paramelerized black box reuse (Ada generics)

3. large component reuse (modules/Ada packages)

4. inheritance (required object-oriented
programming language)

5. paramelerized application generalors

NOTE: hey indicated the swilch io OOPL was the
greales! facilitator of reuse.

» Bes! malaprop: “Generics are somelling you use

when you can’l afford the name brand.”

Unciassilied IBI"‘ 18

Paper Summaries

AN EMPIRICAL FRAMEWORK FOR SOFTWARE REUSE
RESEARCH
Bill Frakes, Soitware Productivity Consortium

* Determine the relationships between the dependent

variables in model

1. quality,
2. productivily, and
3. reuse

THE 3C MODEL OF REUSABLE SOFTWARE
COMPONENTS
Stephen Edwards, institute for Defense Analyses

» Emphasis on the maintenance paybaci from using

the 3C model.

THE THREE CONS OF SOFTWARE REUSE
Wil Tracz, IBM Corporation

The gospel according to Will

"¢ A

Paper Summaries

DESIGNING FOR SOFTWARE REUSE IN ADA
Sholom Cohen, SEV/Carnegie-Melion University

> Implementalion implications of using the 3C mode/
n regards to hierarchies of parameterized models.

> Coupling inversion — where context is fixed for
implementation efficiencies wilhin the generic
architecture.

THE PRACTITIONER REUSE SUPPORT SYSTEM (PRESS):

A TOOL SUPPORTING SOFTWARE REUSE
Comedia Boldyrefl, Brunel University

ESPRIT 1004 Practitioner Project (one of many reuse
projects funded by ESPRIT).

v

= Caplure and reuse software concepls from designs
through code.

> Gueslionnaire was passed oul lo the tcam company
{o assist in dormnain analysis

> “canonical” form for describing soflware componenis
developed

Unciassihied IBM 21

Conceptual Model
Reusable Software Components

* Context
¢ Concepts
¢ Content
— Context
- Concepts

- Content

Paper Summaries

REUSE AT HEWLETT-PACKARD LABORATORIES
Martin L Griss, Hewlett-Packard Laboratories

» Hyperiex! lools.
> Object-Oriented Design.

BEYOND RETRIEVAL: UNDERSTANDING AND
ADAPTATION IN SOFTWARE REUSE
Karen Hulf & Ronnie Thomson, GTE Laboratories inc.

> SATURN (Software Adaptation Through
Understandable Reuse Notation)

THE STARLITE INTELLECTUAL REUSE PROJECT
Robert P. Cook, University of Virginia

* Reusable operating system. and sysien modelling
componenls

Unclassilied IEM

22

Conceptual Model
Context

* “Language shapes thought”
— Inheritance
- Genericity/Paramelcrization
— Importation
® Binding time
— Compile time
= Load/Bind time

— Run Time

Conceptual Model
Concepts

o Concept: — What

e Content: — How

o Context:
1. Conceptual — relationship
2. Operational — with/to what
3. Implementation — rrade — offs

Context: what is needed to complcte the
definition of a concept or content within an
cnvironment. (Latour)

Software Components
Formal Foundations

¢ Horizontal Structure
1. type inheritance
2. code inheritance
e Vertical Structure
— implementation dependencics
— virtual interfaces
° Ge.ncric Structure

— variations/adaptations

WIT3C Aloddd 3 1990 Sep 10

Conceptual Model
Example

e Concept: Stack
— Operational Context: Element/Type
— Conceptual Context: Dequc

= lmplementation Context: Sequence

WIT-I3C Madet 4 1990 Sep 13

Conceptual Model
Example

e Stack Implementation
1. Inherit Deque
2. Use an array
3. Use a linked — list
® memory managemcnt
® no memory management

® concurrent access

Megaprogramming Example
Stack — > Deque

make Decque { Triv] is
Stack [Triv])
* (rename (Push = > Push_Right)
(Pop = 3 Pop_Right)
(Stack = > Deque)
* (add Push_Left, Push_Right)

end;

Hyperprogramming Example
Make with View

make Integer_Set is
LIL_Set (Integer_View}

end;

view Integer View :: Triv = > Standard is
types (Element = > Integer):
end;

WIT-M Aledd 7 1999 Sep 10

WIT-3C Aedd 8 1990 Sep 11

Megaprogramming Example
Make with Vertical Composition

make Short_Stack is
LIL_Stack
— — horizontal composition
needs (List_Theory = > List_Array)
= — vertical composition
end;

LILEANNA Example

Package Expressions

ke New_Ade_Legic_interface 1y
ldentifier_Package +
Clawse_Pockoge* (hige Capy) o
Substitution Package
Database_Pockoge ¢
Query_Pactsge® {asd functfon Query_fail (C: Clause:
LooList_Of_Clauses)
retere §oolean)
*({revene { Query_Answer o Query_Results })

‘Ada Net

John McBride
Planned Solutions

Paper not available at time of printing.

Session 4

Software Engineering: Issues
for Ada's Future

Chair: Rod L. Bown , University of Houston-Clear Lake

Assessment of Formal Methods
for Trustworthy Computer
Systems

- Susan Gerhart
Microelectronics and Computer Technology Corp. (MCC)

Paper not available at time of printing.

Issues Related to Ada 9X

John McHugh
Computational Logic, Inc.

Paper not available at time of printing.

Session 4 1:30 - 3:00 Nov. 8

POSIX and Ada Integration In The
Space Station Freedom Program

Dr. Robert A. Brown
The Charles Stark Draper Laboratory, Inc.

This paper discusses the integration of real-time POSIX and
real-time, multiprogramming Ada in the Space Station Freedom
Data Management System. Use of POSIX as well as use of Ada
has been mandated for Space Station Freedom flight software.
However, POSIX and Ada assume execution models that are not
always compatible. This becomes particularly true once Ada
has been extended to support multiprogramming. This paper
points out the conflicts between POSIX and Ada multiprogramming
execution models and describes the approach taken in the Data
Management System to resolve those conflicts.

O
Session 5

Ada Run-Time Issues

Chair: Alan Burns, University of York (U. K.)

