
EXPERT SYSTEM: EXA
E EXPLORER PLATFORM

David R. McLean and Alan Tuchman
Bendix Field Engineering Corporation

William J. Potter
NASNGoddard Space Flight Center

ABSTRACT

Recently, many expert systems have been developed
in a LISP environment and then ported to the real
world C environment before the final system is
delivered. This situation may require that the entire
system be completely re-written in C and may
actually result in a system which is put together as
quickly as possible with little regard for
maintainability and further evolution. With the
introduction of high performance UNIX and X-
windows-based workstations, a great deal of the
advantages of developing a first system in the LISP
environment have become questionable. This paper
describes a C-based AI development effort which is
based on a software tools approach with emphasis on
reusability and maintainability of code.

The discussion starts with simple examples of how
list processing can easily be implemented in C and
then proceeds to the implementations of frames and
objects which use dynamic memory allocation. The
implementation of procedures which use depth first
search, constraint propagation, context switching and
a blackboard-like simulation environment are
described. Techniques for manamg the complexity
of C-based AI software are noted, especially the
object-oriented techniques of data encapsulation and
incremental development. Finally, all these concepts
are put together by describing the components of
planning software called the Planning And Resource
Reasoning (PARR) shell. This shell has been
successfully utilized for scheduling services of the
Tracking and Data Relay Satellite System for the
Earth Radiation Budget Satellite since May of 1987
and will be used for operations scheduling of the
Explorer Platform in November of 199 1.

INTRODUCTION

The issue of “doing Artificial Intelligence (AI) in C”
has been a topic of debate for a number of years now

(Schildt, 1987). The primary motivation of this
paper is not to demonstrate that it is possible to do AI
in C but to demonstrate that there are definite
advantages of doing AI in C. Because traditional
approaches of sohare development (waterfall) have
not emphasized its reusabiiity, the products of this

only be utilized within a narrow range

does not accommadate the sort of evolutionary
development made possible by rapid prototyping
capabilities and forth-generation languages (Booch,
1991). Recently, NASA has been taking the software
reusability issue seriously (Truszkowski, 1989) and
there are those who argue that software reuse should
be at the heart of the strategy for software
maintenance (Longstreet, 1990). A related issue of
concern is the need for software to accommodate
change (Watson, 1990).

of approach applicati “r ns. This is because the waterfall model

Because reusable software must accommodate
changes in the desired behavior through easy
reconfiguration, it also ensures that it is to some
extent maintainable through the reconfiguration
process. However, reusable software must also be
fully integrated so that components can be added or
deleted easily. Characteristics which improve
maintainability include: use of a standard high-level
language, modularity and standard coding
conventions, which use meaningful names
(Longstreet, 1990). Recently, object oriented
languages have gone a long way toward allowing the
software engineer to obtain the reusability goal.

Object oriented software development has evolved
from the user interface technology which is often
associated with AI (Goldberg, 1984). The
availability of today’s high performance workstations
has allowed the software engineer to take advantage
of some of the AI technology and put it to practical
use. To the software engineer, AI technology is just
another set of tools available to implement the
requirements which eventually accomplish the
desired software goals. However, it is easy to

59

https://ntrs.nasa.gov/search.jsp?R=19910013461 2020-03-19T17:57:48+00:00Zbrought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42818374?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

imagine the process of converting a LISP-based
system to a C-based system as one being done as
quickly as possible, without regard to the evolution
of the C-based system. In any case, it is a major
undertaking (Martin, 1990). Relying on vender
support for modifications to an off-the-shelf AI shell
may be undesirable and maintaining software which
is composed of a mix of different kinds of languages
is expensive (Schildt, 1987). Other developers and
users of AI technology at JPL (Durham, 1990) have
reported similar experience with software tools. To
be more useful to the software engineer, AI tools
should be part of an integrated set of software tools.
Therefore, if a team of software engineers is to take
full advantage of the new “AI technologies” it is
desirable that the AI tools be directly accessible and
written in the same language as the current tools.

Because maintaining software usually includes
responding to new requirements and hence support of
software evolution (Booch, 1991), the software
reusability issue is even more important. Ideally, the
software maintenance engineer will use existing
software tools to modify a given system and change
its capabilities. Therefore, the software tools should
become part of the language through which new
requirements are implemented. Because all software
must eventually change or become obsolete, rhis kind
of extensibility should be a primary goal of all
software development projects. Software
engineering teams which utilize this approach must
become intimately familiar with existing software
tools and libraries. This takes time and experience
because gaining a working knowledge of the existing
tools is similar to learning a new language.
However, once this is accomplished, the engineers
are in a position to develop systems in a fraction of
the time that would otherwise be required. Thus,
managers need to allocate time for new members of
a software reuse team to learn the “new language”
and also to value this expertise once it becomes
available. There is a world of difference between an
off-the-street C programmer and one who has learned
to utilize software tools. It is important that a major
effort toward this end be made so that generic
software tools and reuse methodologies can be
identified and utilized.

Getting started with the software tools approach may
require that developers re-think some of their
development paradigms because initial development
may proceed from the bottom up. Some bottom up
development is r e q d because the lower level tools
must exist before they can be utilized. Thus, the

developers need to learn to think in terms of using
and designing for reuse. This also means that
software managers need to allow for reuse
development and note that there is no need to
generate an entire system from scratch. Also,
because reusability developers will be using tools
written by others, they will require some of the traits
of the traditional maintenance engineers; humility
and adaptability to the style and ideas of others
(Parikh, 1986). With time, many of the distinctions
between developers and maintainers may disappear.

This paper describes some of the development effort
which has resulted in generic software tools, which
include AI technologies, for use in solving
scheduling problems. These tools are written in the
C programming language (Kernighan, 1978) with an
emphasis on object-like development methodology.
C was chosen because of the primary maintenance
goal of portability. When C++ (Stroustrup, 1986)
class libraries become generally available (and
reasonably standard), these tools will be re-written to
takeadvantage of full fledged object oriented
development methodology. The emphasis here will
be on integrated AI tool development with examples
which demonstrate how AI technology can be
utilized with a traditionally non-AI language, such as
C. Readers who are not interested in the
implementation details may skip those p m without
loss of continuity of the general methodology
description. On the other hand, the detail reader will
note that many of the AI paradigms which seem so
exotic to the uninitiated can be implemented in a
straight-forward manner.

GETTING STARTED

In 1985 a group of software engineers from Bendix
Field Engineering Corporation, called the Interactive
Experimenter Planning System (IEPS) group, were
tasked with investigating AI tools and techniques to
be utilized for a satellite planning system(McLean,
1987). The task started by looking for tools which
might be useful, such as the language support
libraries and other software currently available.
Eventually, the IEPS software engineers created
libraries for file YO, string manipulation, date and
time conversion and user interface tools. These user-
defined libraries were written on top of the more or
less standard language support libraries and have
evolved continuously since their initial creation. The
IEPS application developers, in turn, utilized these
user-defined libraries (tools) to create prototypes and

60

applications such as the Earth Radiation Budget
Satellite System (ERBS) Tracking and Data Relay
Satellite (TDRS) contact planning system (EvlcLean,
1987).

For those readen who are fanniliar with LISP but not
with C, the following example will demonsmte how
some of the behavior of LISP can be simulated in C.
In particular, this example shows how to simulate
some of the behavior of the LISP primitives CAR
and CDR. First consider a string which contains
three tokens as follows:

first second third

In LISP, the first token is obtained by invoking the
string with CAR and the remainder are returned by
invoking CDR.

(CAR (first second third)) --> first
(CDR (first second third)) --> (second third)

Now consider a module written in C called
“get-tok” which takes a pointer to a character string
as the first argument, a string token buffer as the
second argument and a character delimiter as the
third argument. Get tok also returns a pointer to the
remainder of the strkg:

sptr = “first second third”;
sptr = get-tok(sptr,token,BLANK);

Before invocation:

sptr -> “first second third”

After invocation:

token --> “first”
sptr --> “second third”

Because get tok returns a NULL token when the end
of the strin; is reached, it also provides iterative
control as follows:

for(sptr =get-tok(sptr,tok,BLANK);
tok; / while tok not empty *I
sptr = ge t-tok(sp tr ,tok,BLANK))
do-some thing(tok) ;

All of the tools described in the subsequent sections
utilize get - tok for string processing.

The IEPS user interface tools were designed to be
used independent of the application and to be as
portable as possible between the PC and workstation
hardware platforms. The bulk of these tuols reside in
a library called MEXLIB (Menu-based Executive
LIBrary) (NASA-GSFC, 1988) which was designed
to uhlize an AI technology called Menu-based
Natural Language Understanding (Tenant, 1983).
These tools allow the application developer to
describe the grammar, through which the user
interacts with the application, in terms of menus,
forms and other user interface objects (widgets).
Thus, an application need only read the grammar file
in order to know how to interact with a user and
invoke the appropriate objects for command line
building. Other user interface tools, such as the
Transportable Applications Environment (NASA-
GSFC, 1990) and others which utilize X Windows
MOTIF or Openwindows, create C source code
which then must be compiled and linked to the
application. MEX technology avoids this by
dynamically creating the objects which are specified
by the grammar file.

The LISP DEFSTRUCT data abstraction mechanism
allows the user to create data structures. C also
provides this capability and h4EXLIB is built on
these structures. When a user interface grammar file
is read, MEX tools dynamically allocate these
internal structures and fill in the slots of information
specified by the file. For example, if the internal
structure is of type menu then the options of the
menu are read into a linked list and the appropriate
interactive widget is assigned to the method slot. As
each MEX structure is built, it is put into a hash table
so that it can be looked up quickly by name. Once
all the h4EX structures have been built, the structure
whose name is “main“ displays itself to the user and
initializes the interaction. After the “main” object
has completed its interaction with the user it adds
information to a command line which is then parsed.
The parser examines each token in the command line
and uses a depth first search to “expand” those tokens
which match MEX structure names. Expansion is
done by invoking the appropriate object which adds
more information to the command line.

In a way similar to deriving new classes from base
classes, C lets the developer derive new structures
from more primitive structures. A simplified MEX
data structure can be built upon two other structures,
list and form. List represents a linked list of

61

character strings and is used to hold the options of a
menu or the default values of a form. Form
represents a template with fields to be displayed to
the user. Form, in turn, is built upon another
structure called fo nt. Each form element
has a field name, valu; mw and column infomation.
Form uses an array of form elements to repment the
various fields on the form, a template (character
page) which is displayed to the user and an index
which represents the current field being processed.
Examples of the list, form-element and form data
structures are given below:

struct list {
char *line;
struct list *next;
I;

struct form-element {
char "field-name;
char *value;
int row, column;
I;

struct form {
struct form-element QMAXF];
char *temp[MAXLINE];
int current-field;
I;

In addition to the these structures, the mex structure
also contains the name of the structure, a title, the
menu option selected, the row and column position
and a pointer to the interface widget to be invoked.

struct mex {
char *name;
char *title;
int i j ;
char *selected;

struct list *list;
struct form *form;

char *(*interface)();
I;

As a mex grammar file is read, mex data structures
are dynamically allocated by invoking mexalloc
which uses the standard C library malloc tool. Some
of the members are then set to default values until
more detailed information is read.

struct mex *mexalloc()

{
struct mex "object;

object = (struct mex *) malloc(sizeof (struct mex));
object->name = NULL;
object->title = NULL;
object->list = list-alloc();
object->form = NULL;
object->i = object->j = EMPTY;
object->selected = NULL;
return(object);

I

Notice that the list member invokes a user defined
list d o c to allocate its initial dynamic space but that
the3orm member is set to NULL until it is known
that it will be used. (Forms use the list structure for
default values but simple menus do not use the form
structure.) Because dynamic memory is allocated
only on an as needed basis, it is conserved.

Much of the work of parsing the MEX grammar file
is accomplished by use of the get-tok tool.
However, once the mex structures have been built
and put into the hash table, the main MEX parser can
be invoked to build command lines. A simplified
version of the MEX parser is given below and
described in the following paragraph:

char *parse(line)
char * h e ;
{
char head [SO] ;
char *tail;
char "select;

if(!*line)

tail = get-tok(line,head,BLANK);
if(object = mex-get(head)) {

if(object->l->next->line)

else

object->selected = select;
parse(se1ect);

return(NULL);

select = object->interface(object);

select = object->l->line;

I
else

add-tok(head);
return(parse(tai1));

1

Parse is given a character string (line) and if it is
empty, the value NULL is returned. Otherwise,
get-tok is invoked to obtain the first token in the
string (head). Next, the value of head is looked up

62

in the hash table to see if it is the name of a mex
structure. If so, then the structure (object) is
retrieved and its linked list is examined to see of
there is more than one option (which would require
user interaction). If this is the case, then object’s
user interface is invoked to r e m the option selected.
(In the case of a form, all fields are returned.) Once
the option has been selected, a pointer to its value is
placed in the “selected” slot of object and parse is
invoked again (depth first) with that selection. If
head is not the name of a mex structure then it is
added to the command line being built by invoking
add tok. Finally, parse is again invoked on the
remhder of the original string (tail).

The inference engine developed by the IEPS group
is called the Transportable Inference Engine version
1 (”El), (McLean, 1986). TIEl utilizes PAEXLIB
tools for its user interface and is frame based
(Minsky, 1975). Each frame represents a goal or
concept which has a default value and a value which
is to be sought by application of the rules of inference
associated with the frame. The attributes which are
referred to in the rules must be specified in the frame
attribute list. Thus, frames consist of a frame name,
a value, a default value, an attribute list and a rule
list. A TIEl Knowledge Base (KB) consists of a set
of frames, one of which represents the goal and the
remainder which represent subgoals.

Each simple rule represents a hypothetical instance
of the goal or concept and is composed of a rule
name which represents a potential value for the frame
and attribute-relation-value triplets. For example:

- eyes It 8

(The number of eyes is less than eight.)

The attributes which make up the rules may be
primitive (not decomposable) or they may represent
other frames. Primitive attributes obtain their values
by interacting with the user or by querying data
bases. When a KB is to be used interactively, the
KB engineer can specify the MEX-style user
interfaces to be utilized for each attribute.
Decomposable frame attributes obtain their values
from the inference rules associated with its frame and
thus represent the backward chaining component of
the TIE1 architecture. Complex rules have additional
attributes which are set to specified values when the

rule is fired and thus provide the forward chaining
capability of TlIE1.

When TIEl is invoked, the user specifies the KB to
be used and the goal to be sought. TIE1 then reads
and parses (via get-tok) the specified KB and
dynamically allocates the data structures which
represent each frame. After each frame is allocated,
it is filled with the attribute and nile information
specified in the KB and then placed in a hash table to
allow quick look up by frame name. Finally, TIE1
considers the goal frame and starts the search for its
value by testing each rule in this frame. In the
simplified version of TEl, the name of the first true
rule is returned as the value of the goal being sought.

Because TIE1 uses MEX -style user interfaces for the
primitive attributes, its frame data structures utilize
a list of mex structures with their respective values to
be sought:

struct alist {
struct mex *ma;
char *value;
struct aliit *next;

I;

A rule list structure is also used and contains the
name of the rule, a flag which is used during rule
testing and an associated list of attribute-relation-
value triplets:

struct rlist {
char *name;
int flag;
struct list *triplet;
struct rlist *next;

I;

In addition to the attribute list and the rule list, each
TIEl frame structure also contains the name of the
frame, its value (when known) and a default value:

struct tie {
char *name;
char *value;
char *default;
struct aliit *alist;
struct rlist *rlist;

I;

A simplified TEE 1 search algorithm, implemented in
module “infer”, which uses the TIEl frame data
structure is given below and described in the

63

following paragraphs:

infer(tieobj)
struct tie *tieobj;
{
struct alist *a;
struct rlist *r;
struct mex *ma;
struct k *known;
int nhypots;

if(known = get-known(tieobj->name)) {
tieobj->value = known->value;
return;

1
r = tieobj->rlist;
for(nhypots=O; r->name; nhypots++, r = r->next)

r->flag = TRUE;

for(a=object->aliit; a->ma; a = a->next) {
ma = a->ma;
if(known = get-known(ma->name))

a->value = known->value;
else
if((newobj = tie_get(ma->name)) ?= UNKNOWN)
{

1
else
a->value = user-seleet(ma);

infer(newobj);
a->value = newobj->value;

put-known(ma->name,a->value);
nhypots=test-hypots(tieobj,ma->name,nhypots);

if(nhypots == 0) {
tieobj->value = tieobj->default;
break;

3
3
if(nhypots != 0) {

for(r=tieobj-xlist; r->name; r = r->next)
if(r->flag == TRUE)

tieobj->value = r->name;
break;

3
put - known(tieobj->name,tieobj->value);

1

Infer is passed the TIE1 frame data structure (tieobj)
whose name is the goal being sought. Module
get known is invoked first to see if the value of that
go2 (attribute) is already known and if it is, it sets
tieobj’s value to that known value and returns.
Otherwise, tieobj’s rule list is accessed and the

values of all the flag slots are set to TRUE. This has
the effect of treating all the rules as contending
hypotheses which are initially assumed to be true.
Then, the frames attribute list (alist) is accessed and
each attribute’s (a) value is sought according to the
following ordered strategies:

Look up the attribute’s name in the known facts
hash table via module get-known and then
return the value found there.

Look up the attribute’s name in the frame
hash table via module get tie and then invoke
module infer again (bacEward chaining) to
obtain the value.

/

Ask the user or a data base for the value of the
attribute.

Once a value is obtained for an attribute, its value is
put into the facts hash table via module put-known.
Then module test-hypots is invoked to test each rule
in light of the new information obtained. Module
test-hypots sets each rule’s flag according to the
success or failure of each rule and returns the total
number of true rules (hypotheses). If the number of
true hypotheses is zero, then the goal value of the
frame is set to the default value and the attribute
check loop is exited. Otherwise, the search and test
strategy is continued for the remaining attributes in
the list.

When the attribute search and test loop is exited, a
check is made to see if the number of true hypotheses
is zero. If this is not the case, then a search is made
to find the first true hypothesis and when found this
rule’s name is assigned to the frame value. Finally,
the frame’s value is added to the facts hash table.

HEURISTIC SCHEDULING

The heuristic scheduler developed by the IEPS group
is called the Planning And Resource Reasoning
(PARR) shell (McLean, 1989). PARR’S interactive
mode utilizes MEXLIB tools for user interaction and
acts like an intelligent assistant to the user. In the
batch mode, it simulates the behavior of an expert
human scheduler which has heuristics for where
activities are to be placed on a timeline. These
heuristics include specifications for the priorities,
durations and how often the activities are to be
scheduled. In addition, the ~sources, coIlstraints and
conflict resolution strategies may be specified. AU

64

of these specifications are placed in a KB which
describes the way the expert human scheduler would
schedule each general activity type (activity class).

PARR'S architecture is somewhat like a blackboard
model (Engelmore, 1988) which builds an activity
timeline on a global blackboard and utilizes agents to
perform constraint checking, resource management
and conflict resolution. When PARR reads the KB,
it dynamically allocates internal structures which
represent each activity class and fills the slots with
the appropriate generic values, thus PARR is also
considered a frame based system. PARR'S activity
class structure is given below:

typedef struct {
int type;
char *name;
int priority;
int repeat;
long duration;
int offset;
int shiftable;
struct list *resources;
struct list *constraints;
struct list *strategies;
char "subnames;
struct list *mist-info;

} ACLASS;

Given the background of examples discussed so far,
most of the members of ACLASS should be self
explanatory and have been explained in detail
elsewhere (McLean, 1989,1990). An exception is
subnames which is a string of optional subactivity
names.

When PARR creates an instance of an activity class
(ACLASS) it dynamically allocates a different
internal structure which wil l contain the detailed
scheduling information about that particular instance.
Among other things, the EVENT structure, as it is
called, consists of a new structure (t) which represent
time (start and stop) and also a pointer to the KB
structure (ACLASS) which is used to generate the
instance. The additional members are label and flag
which are used to store associated information such
as orbit numbers, reslist which is a resource list and
subacts which is an array of optional subactivities.
The last and next members are used to link the
instances of a given class so that they can be kept in
time order.

long seconds:
int date;

1;

typedef struct event {
ACLASS *ac;
struct t start;
struct t stop;
char *label;
char flag;
struct list *reslist;
struct event *subacts[MAXSUBS+l];
struct event *last;
struc t event *next;

} EVENT;

When an instance (EVENT) is to be created, the
information in the activity class is examined so that
the start and stop time of the activity can be set. The
PARR controller then consults as many as three
agents; the constraint checker, the resource manager
and the conflict resolver. When invoked, each agent
examines the appropriate slot in the activity class
structure and performs its specific task. Status
messages are then returned after each of the agents
has performed its task and the controller makes a
decision as to how to proceed with the scheduling of
that particular activity. When the activity has passed
all its constraint checks and all its resources have
been allocated, it is placed on the timeline. The
internal representation of this timeline is an array of
EVENT structures:

EVENT *timeline[MAXCLASSES];

The constraint checker uses a rule representation
similar to "El (attribute-relation-value triplets) but
does not include the implicit backward and forward
chaining capabilities because of the simplicity of this
type of constraint check. If any rule is violated, a
message is constructed which states the constraint
rule that was violated and specifies the conflicting
value, otherwise a status of OK is returned.

If constraint checking has been passed and resources
are required then the resource agent is consulted
which, in turn, consults the appropriate resource
model. At present, PARR supports a simplified
power model and two different types of tape recorder
models. If any of the resource models consulted
return a status other than OK, a message is built
which explains why the resource allocation failed.

struct t { If either the constraint checker or the resource

65

allocation agent returns a status other than OK then
the conflict resolution agent is consulted. This agent
consults the status message and the conflict
resolution slot of the activity class and tries to resolve
the conflict by either rescheduling the current activity
or rescheduling the conflicting activities. To describe
the implementation of all of these strategies is
beyond the scope of this paper. However, a
description of the general approach to conflict
resolution may give some insight into how PARR
manages conflict resolution by consulting the
strategies list and the conflict messages returned from
the constraint checker and the resource manager.

THE CONFLICT RESOLUTION AGENT

The following is a simplified version of the conflict
resolution agent which is discribed in the following
paragraphs:

resolve-con flict(ew)
EVENT *ew;
{
EVENT *rwndo;
struct list *strat;
int status;
int strategy;
char *duration, *newact;

strat = ew->ac->strats;
rwndo = get-resources(ew);
strat = next-strat(strat,&strategy);

for(status = NOTOK;
status == NOTOK && startegy != EMPTY;
strat = next-strat(strat,&strategy)) {

if(context(s tra tegy,conflie t-msg) ! = OK)
continue;

switch(strategy) {
case START:

start(&ew,rwndo);
break;

case END:
end(&ew,rwndo);
break;

case BEFORE:
if(before(&ew) == EMPTY)

break;
case AFTER:

continue;

if(after(&ew) ==
continue ;

break;
case DELETE

if(delete(ew,conflict-msg) == EMPTY)

break;

if(!next(&ew,rwndo))

break;

if(! prior(&ew,rwndo))

break;

duration = get-duration(strat->line);
next-time(&ew->stop,ew->start,duration) ;
break;

duration = get-duration(strat->line);
bump-time(&ew->start,duration);
bump-time(&ew->stop,duration);
break;

newact = get-newact(strat->line);
if(activity(ew,newact) == NOTOK)

else
return(0K);
break;

if(shift(ew,conflict-msg) == NOTOK)

break;

continue;

case NEXT:

continue ;

case PRIOR.

continue;

case DURATION:

case BUMP:

case ACTMTY:

continue;

case SHIFT:

continue;

1
status = do-insert(ew);

1
J

if(status == OK)

return(status);
report-success(ew->start,ew->stop) ;

1

Resolve conflict is passed the activity's data
structurt?(ew) that contains its activity class (ac)
with the list of conflict resolution strategies (strats).
Initially, get resource is invoked to return the event
data structu~(rwndo) which is the primary resource
window (for example, Daylight view) used by this
activity. Then, a loop is initialized which processes
the strategies list while the status of each try is
unsuccessful and strategies remain. In this loop,
module context is invoked to determine the
suitability of the strategy to be tried in view of the

66

conflict message. For example, if the
strategy is to be used and the conflicting activity is a
tape dump and the activity to be scheduled uses tape
then the strategy may not be suitable because there
probably won’t be enough tape remaining just before
a tape dump. If the context is not suitable then the
strategy is skipped.

On the other hand if the strategy is suitable, the
appropriate strategy handler is invoked so that the
event structure can be modified accordingly. This
modification usually includes changing the start and
stop times of the activity. If this adjustment is not
successful then the strategy is abandoned and control
returns to the next strategy. If the strategy is
successful then module do-insert is invoked with
the adjusted start and stop times. Do-insert consults
the constraint checker and the resource manager
again and adds the activity to the timeline if all goes
well. The status of do-insert is returned and
processing continues depending upon its value. If
the status is not OK then the next strategy is tried. If
the status is OK then the loop is exited, a message is
logged and resolve-conflict returns the final status.

The following is a brief description of the conflict
resolution strategies used by PARR:

START

Reschedule the activity at the start of a specific
resource window by setting the start time of the
activity to the start time of the resource window.
Alternatively, reschedule the activity at the start of
the specified time.

END

Reschedule the activity at the end of a specific
resource window by setting the start time of the
activity to the end (stop time) of the resource
window.

BEFORE

Reschedule the activity before the conflicting activity
by adjusting the stop time accordingly.

AFTER

Reschedule the activity to occur after the conflicting
activity by adjusting the start time accordingly.

NEXT, PRIOR

Reschedule the activity in the next or prior resource
window by adjusting the start and stop times
accordingly.

~ELETE

Delete the conflicting activities. Start and stop times
of the current activity are not adjusted. Care is taken
not to delete an activity of higher priority or a
required resource replenishment.

DURATION

Shorten the duration of the activity.

BUMP

Bump the start and stop times by a specified amount
(plus or minus) to avoid the conflicting region.

ACTIVITY

Schedule an alternative activity instead of the current
activity type. This strategy temporarily abandons
trying to schedule an instance of the current activity
class and tries to schedule an instance of another
class. When successful, module resolve-conflict
~tum immediately with a success status. When not
successful, the next strategy in the current activity
class is tried. Switching to another activity class
amounts to a context switch for controlling the
behavior of PARR because each activity class
contains its own heuristics which are used to create
instances of a particular class. Thus, when module
activity returns, the context of the current activity
class (and strategies list) is restored.

SHIFT

Reschedule the conflicting activities. This strategy
also does not change the current activity’s start or
stop times. When shifting is attempted, the activity
class of the conflicting activity is examined to make
sure that shifting is allowed. If shifting is allowed
then the conflicting activity is temporarily deleted
and the start and stop times are adjusted so that it
may be rescheduled out of the conflicting range of
the current activity. Then module do-insert-resolve
is invoked with the conflicting activity’s adjusted
event structure. Do-insert-resolve, in turn, checks
the constraints and resources for this adjusted activity
and also consults with the conflict resolution agent if

67

required. The case may be that more conflicts will
occur and that the shifting strategy be applied again
to resolve those conflicts. Thus, this type of conflict
resolution demonstrates the constraint propagation
problems which PARR attempts to solve by use of
recursive application of context dependent strategies.

CONCLUSIONS

The C-based AI technology presented here is not
only clearly possible but is in actual use (McLean,
1987). Because this AI technology is part of an
integrated set of tools, the experienced software
engineer can readily make use of it to build new
applications. It is this merging of the AI technology
with the standard tools and techniques of experienced
software engineers which makes the AI technology
so readily usable.

Traditional software development efforts take years
to accomplish their goals and start the process by
building the system components from scratch. The
future requirements for NASA missions will be even
more demanding in terms of the number, complexity
and configurability of software. In order to solve
these problems, software engineers and managers
need to get serious about the software reuse issue.
This means that not only do the engineers need to be
aware of and design for reuse but also that managers
allow for a methodology which supports this effort.
This methodology includes building systems through
reuse of existing software tools, through iterative
refinement and prototyping.

The ERBS scheduling system has demonstrated the
utility of the software tools approach to maintain an
expert planning system (McLean, 1991). This
software reuse approach is also being used to develop
the Explorer Platform Planning System (EPPS)
(McLean, 1990) which will be used by the flight
operations team to schedule mission support
activities. EPPS is being built by reusing and
enhancing the ERBS scheduling system software
tools. Although much of the engineering
methodology for reuse technology has been defined,
the management methodology is lagging and needs
further exploration and development.

ACKNOWLEDGEMENT

The authors wish to thank Patricia Lightfoot at
NASA-GSFC/Code 514 and Ellen Stolarik at Bendix

Field Engineering Corporation for their support of
this work. This work was supported by NASA
contracts NAS5-31000 and NAS5-27772.

REFERENCES

Booch, G. (1991), Object Oriented Design With
Applications, BenjamWCummings.

Durham, R., Reilly, N. B. and Springer, J. B. (1990),
“Resource Allocation Planning Helper (RALPH):
Lessons Learned,” Proceedings of the 1990
Goddard Conference on Space Applications of
Artificial Intelligence. Engelmore, R. and
Morgan, T. (1988), Blackboard Systems, Addison-
Wesley.

Goldberg, A. (1984), Smalltalk-80: The Interactive
Programming Environment, Addison-Wesley.

Kernighan, B. W. and Ritchie, D. M. (1978), The C
Programming Language, Prentice-Hall.

Longstreet, D. (1990), “Introduction,” Software
Maintenance and Computers, IEEE Computer
Society Press.

Martin, R. G. (ed.), D. J. Atkinson, M. L. James, D.
L. Lawson, H. J. Porta (1990), “Spacecraft Health
Automated Reasoning Prototype (SHARP),” A
Report on SHARP and the Voyager Neptune
Encounter, JPL Pulbication.

McLean, D. R. (1986), “The Design And
Application Of A Transportable Inference Engine
(TIEl),” Telematics and Informatics, J. Liebowitz
(ed.), Vo13 No. 3.

McLean, D. R., Littlefield, R. G., and Macoughtry,
W. 0. (1987), “Defining and Representing Events in
a Satellite Scheduling System: the IEPS (Interactive
Experimenter Planning System) Approach,”
Proceedings of the 1987 International
Telemetering Conference Vol23.

McLean, D. R., Littlefield, R. G., and Beyer D. S.
(1987), “A Exper Syste fo Schedulin Request fo
Communication Link Betwee TDR an ERBS,”
Telematic an Informatics J. Liebowitz (ed.), Vo14
No 4.

McLean D R. Yen W L (1989), “PS PARR Pla
Specificatio Tool An Plannin An Resourc Reasonin

68

Us I Satellit Missio Planning,”
1989 Goddard Conferenc

App~~cations of Artificial Intelligence.

McLean, D. R., Page, B. J. Potter, W. J. (1990), “The
Explorer Platform Planning System: An Application
of a Resource Reasoning Planning Shell,”
Proceedings of the First International Symposium
on Ground Data Systems for Spacecraft Control.

McLean, D. R. (1991), “Maintaining An Expert
Planning System: A Software Tools Approach.” To
be published in Institutionalizing Expert Systems:
A Short Handbook for Managers, J. Liebowitz
(ed.).

Minsky, M. (1975), “A Framework for Representing
Knowledge,” Psychology of Computer Vision, P.
H. Winston (ed.), McGraw-Hill.

NASA-GSFC (1988), MEX Portabl Menu-Base
Executive.

NASA-GSFC (1990), TAE Plus User Interface
Developer’s Guide.

Parikh, G. (1986), Handbook of Software
Maintenance, John Wiley & Sons.

Schildt, H. (1987), Artificial Intelligence Using C,
McGraw-Hill.

Stroustrup, B. (1986), The C++ Programming
Language, Addison- W esle y .

Tenant, H. R., Ross, K. M., Saenz, R. M.,
Thompson, C. W., and Miller, J. R. (1983), “Menu-
based Natural Language Understanding,”
Proceedings of the Association for Computational
Linguistics, MIT.

Truszkowski, W. (1989), “Prototype Software Reuse
Environment at Goddard SFC,” Software Reuse
Issues, Proceedings of a workshop sponsored by
NASA Langley Research Center.

Watson, W. (1990), “Introduction,” Space Network
Control Conference on Resource Allocation
Concepts and Appmaches Presentations at GSFC,
NASA.

69

