
resenting Functions/Procedures and rocesses/Stru~
for Analysis of Effects of Failures on Functions and Q ~ ~ ~ a t i Q n s

Jane T. Malin
Automation and Robotics Division - ER2
NASA Lyndon B. Johnson Space Center

Houston, Texas 77058

Daniel B , Leifker
The MITRE Corporation
1120 NASA Road One
Houston, Texas 77058

Abstract

Current qualitative device and process
models represent only the structure and
behavior of physical systems. However,
systems in the real world include goal-
oriented activities that generally cannot be
easily represented using current modeling
techniques. We propose an extension of a
qualitative modeling system, known as
functional modeling, which captures goal-
oriented activities explicitly, and we show
how they may be used to support intelligent
automation and fault management.

Background

Artificial intelligence (AI) technology for
intelligent automation of monitoring,
control, and fault management of space
systems will result in significant reductions
in operational costs of manned and
unmanned systems, as well as increased
capability to carry out new types of
unmanned missions. In addition, more
robust fault management performance will
reduce costs for space system maintenance
and repair and can potentially reduce risks
from undetected failures.

An important goal of work in AI is to
produce software that can respond
constructively to a wide class of problem
scenarios. At the same time, however, the
software should operate in ways that reflect
human thought and reasoning patterns.
Representations have therefore been
developed that either correspond to or mesh

with conventional human perspectives of the
problem domain. Understandable rule-
based and object-based systems have been
successfully developed and used by flight
controllers in the Space Shuttle program
(Muratore, 1990).

Additional types of representations are
needed to capture key concepts and
strategies that are used for fault management
by mission controllers, system designers,
and safety personnel. They use mental
models of the function and structure of
designed systems and their interrelated
components. These models require more
expressive power and an enlarged scope
before they can be added to the set of AI
representations that are now successfully
used.

Modeling Structure, Behavior, and Function

Computer simulations and models are used
to represent, to any desired level of detail,
the structures and actions of physical
systems. Modeling is done primarily to
understand certain dynamic principles
related to the given system that cannot be
analyzed in closed form and cannot be
studied in the system itself without great
cost, danger, or inconvenience.

A number of researchers have developed a
rich simulation theory known as qualitative
modeling (see, for example, Forbus, 1984;
Davis and Hamscher, 1988). The concept
we present here, functional modeling, is an
outgrowth of recent attempts to merge

141

https://ntrs.nasa.gov/search.jsp?R=19910013467 2020-03-19T17:57:57+00:00Z

qualitative modeling and discrete event
simulation into a single unified paradigm.
Malin, Basham, and Harris have
implemented this paradigm in a system
known as CQNFIG (Malin et al., 1990), a
modeling and simulation tool prototype for
analyzing normal and faulty qualitative
behaviors of engineered systems. Like other
device modeling systems, CQNFIG has
relied on component structures and
processes to represent real-world systems.

However, current structure and process
approaches rarely provide a way to represent
system functionality. In fact, there have
been admonitions to not mix function into a
model of system structure and behavior.
Nevertheless, since devices are systems
designed to be used in goal-oriented activity,
functionality is important to model and
analyze. Modelers need representations of
functionality to evaluate the success of a
design, that is, to analyze how well the
device will perform its functions. We argue
that the "functionality" of the device is a
concept that captures how
activities (the operations/acts of the
device/structure in time) produce a set of
effects that are goals the device is designed
to achieve. The structure of the device is a
set of components and their
interrelationships. The behavior of the
device consists of what it does, and can
include internal processes that cause
changes in itself or in things it operates on.
Thus, to model functionality, one must
model structure, behaviors, goals and time --
the principal constituents of a goal-oriented
activity. Since procedures are used by
human and machine controllers to sequence
and structure goal-oriented activities,
representing function also provides the basis
for representing procedures and controllers.
Goals reside in controllers and in designers
of devices and procedures, and are not
ordinarily part of the physical device itself.
Nevertheless, they must be combined with
representations of device structure and
behavior to model and analyze the
functionality of the design.

'

The Space Shuttle Remote Manipulator
System (RMS) can be used to illustrate this.
Its structure, as shown in Figure 1, is made

up of components such as the manipulator
arm, manipulator retention latches (MRL),
manipulator positioning mechanisms
(MPM), and payload capturing subsystems.
Its behavior consists of various movements
and capture and release operations. The
system has been designed to perform
functions such as deploying a payload while
avoiding collisions and remaining
operational. These serve goals of safety and
transport.

Clearly, fault management systems can be
made more useful if they embody models
that represent the entire scope and range of
the monitored physical systems. Such a
system for the RMS, for example, would be
totally integrated with RMS procedures
(which, being goal-oriented, are not a part of
RMS designed structure and behavior) and
thus support RMS fault management
activities at new levels of operation. To
make these ideas more precise, we turn now
to a detailed discussion of real-world
systems and how they may be modeled in
terms of function as well as behavior.

Functional Systems

Figure 2 depicts the organization of a real-
world designed system and its relationship
to real-world goals. It is tempting at first to
view the entire designed system as a
physical device with a given structure and
behavior. Using the RMS example,
however, it is easy to see that this is not the
case: the entire RMS designed system
encompasses not only the physical device
but also a collection of related procedures
that govern the (presumably judicious) use
of the RMS device to achieve goals. A
procedure is an information structure whose
purpose is to help a controller successfully
carry out and monitor plans. A procedure
also contains information to support impact
assessment or even fault management
replanning and recovery.

The bridge between the procedure and the
device is the controller, which (a) consults
the procedure and decides on an action, (b)
determines the true state of the device by
requesting specific monitoring information,

1 42

I

MPM

Figure 1: Manipulator Arm

(c) decides if the true state of the device is
appropriate for the desired action, (d)
executes the action by issuing appropriate
commands to the device, and (e) confirms
success of the action. This is the normal
sequence for the careful monitoring of
physical systems, and we will revisit this
sequence later. In the meantime, we use the
ternfunctional system to refer to the
combination of a designed system and its
goals in the real world.

Several things should be noted from Figure
2. First, the notion of controller of quite
general; in the real world it could be a
human or an expert system. Second, we use
the term procedure' rather loosely, and it
should not be confused with or compared to
an algorithm. As will be described later,

lTerms such as "Shuttle Operations Procedure"
illustrate OUT usage of procedure.

procedures are realized as networks of goal-
oriented activities that have no counterparts
in conventional algorithms. Third, the
goals of the functional system are not a part
of the designed system. Some goals may be
clearly implied by the procedures of a
designed system, but they have a separate
and detached existence. There is obviously
a close relationship between the two in the
sense that one can, to some extent, imply or
describe the other, but they are distinct
entities. In fact, two different designed
systems may have identical goals.

Behavioral Models

As shown in Figure 3, most device models
contain interconnected components that
simulate the structure of a target device. For
example, an RMS latch is modeled by a
software "latch" whose possible operational

143

I

Guides Design of c_?
Commands 1 1 Monitoring

Information

Physical Device

Designed System
I

Achieves

4
Guides Design of

Figure 2: Real-World Functional System

It"---ll Components/Connections

Device Model

Figure 3: Behavioral Model

Controller
4

Commands I I Monitoring
Informauon

Device Model

Goals

~ e 0 I Regulated Process, C,, E, 1 _ _ - - - _ _ - - - _ _ - - - _ _ _ - - - - _ _ - -
Achieves c

.
Guides Design of

Goal Structures

Figure 4: Functional Model

144

modes mimic the modes of the physical
latch (open, closed, or in transition). Hence,
during simulation, a component must have
some sort of memory to distinguish its
current mode from its potential modes.
Such a memory is typically implemented as
a collection of state variables. They may be
used to remember not only component
modes but also any relevant information that
supports the purpose of the simulation.
Conventional models could manage state
variables that represent things such as
temperatures, pressures, rates, oscillations,
and even acceleration.

Similarly, the behavior of the target device
is represented by processes. Each
component has associated with it a set of
processes that simulate device dynamics by
changing the values of state variables in the
model. A change in a state variable may
activate one or more processes, which
themselves can change other state variables.
In this fashion the entire structure and
behavior of a device can be simulated
efficiently. Of course, depending on the
exact combinations of state variable values,
a model may rest in any one of a very large
number of possible states. However, most
of these states can be grouped into
configurations that denote the general
condition of the system (e.g., deployed, not
deployed, nominal, off-nominal, etc).

Such models, which we call behavioral
models, only simulate the device portion of
the functional system and thus ignore the
issues of commanded behavior, goal-
oriented activities, procedures, and goals.
Having no explicit links to outside
regulation or intention, the behavioral model
is primarily used to generate potential
outcomes that would occur by starting the
device from a given state. It can be started,
halted, analyzed in detail, and then restarted
as often as desired, but, in the absence of
constant manual intervention, it remains
largely insulated from outside influences.
Thus users of behavioral models are more
observers than controllers.

CONFIG is an example of a behavioral
model. Qualitative component models are
defined in terms of normal and faulty modes

and processes, which are defined by
invocation statements and effect statements
with time delays. System models are
contructed graphically by using instances of
components and relations from object-
oriented model libraries. System failure
syndromes are simulated in CONEIG using
a modified form of discrete event
simulation. Yet despite these capabilities,
CONFIG only models device structure and
behavior. Extending CONFIG to model
goals as well is the chief purpose of our
research into functional modeling.

Functional Models

Figure 4 shows how an entire functional
system may be modeled by what we term a
functional model. Corresponding to the
physical device is a device model with
components and processes, just as with
behavioral models. In addition, however,
the functional model contains procedure
structures and goal structures that
correspond to procedures and goals in the
real world. A controller executes the
procedure structure on the device model.
Goal structures are important for modeling
complete functional systems. However,
since they are separate from the designed
system, goal structures will not be
considered further in this paper.

There is an important difference between a
functional device model and a behavioral
device model: the functional device model is
constantly interacting with the controller.
Explicit connections are required to pass
commands from the controller to the device
model and to transmit data from the model
to the controller for use in monitoring.

Hence processes in functional device models
are extensions of processes in behavioral
device models. We call the resulting
extension a regulated process. The
functional model also contains a procedure
structure to model procedures in the
functional system. These procedures consist
of networks of goal-oriented activities.
These three concepts are key features of
functional modeling, and each will now be
discussed in detail.

1 45

Regulated Processes

Regulated process are models of device
behavior in real-world functional systems.
They are analogous to ordinary processes in
behavioral models such as CONFIG except
that they have explicit mechanisms for
communicating with controllers. This
communication may be from the controller
to the regulated process (commands) or
from the regulated process to the controller
(control information). This section will
describe these mechanisms in detail.

The general layout of a regulated process is
given in Figure 5 . There four parts: the
regulator, the invocation, the outcome, and
the effector.

Regulator (command from controller)
Start Switch

Inhibit On (default)
Inhibit Off

Terminate Switch
Halt at Completion (default)
Abort Immediately

Invocation (conjunction of conditions)
Component (self)

System

Mode
State variable values

Other system components and their

Other system state variable values
Component connections

Subcomponent and their modes
Submodel state variable value
Subcomponent connections

Supercomponent modes
Supermodel state variable values
Supercomponent connections

modes

Subsystem

Supersystem

Outcome (Iist of effects)
Results of process (changes to mode

Delay

Pointer to procedure in submodel

and state variables)

Effector (means of achieving effects)

I

Figure 5: The Regulated Process

The regulator may be regarded as two
optional switches that control when the
process starts and terminates.

The start switch, if present, has two modes:
inhibit on and inhibit off. The regulated
process may not begin execution if the start
switch is inhibit on. The default mode is
inhibit on. There are thus two scenarios for
initiating a regulated process: (1) there is no
start switch present, in which case the
regulated process proceeds normally
whenever the simulation triggers it; and (2)
there is a start switch, in which case the
regulated process emerges in the simulation
in a "waiting" state, and the controller
explicitly commands a "start?" by toggling
the start switch from inhibit on to inhibit off.
(Switching back to inhibit on at this point
has no effect whatsoever on the running
process.)

The terminate switch, if present, also has
two modes: halt at completion and abort
immediately. The default is halt at
completion. The two scenarios for use are
as follows: (1) there is no terminate switch
present, in which case the process runs as
expected and terminates when its outcome is
completed; and (2) there is a terminate
switch, in which case the process halts as
soon as the controller an abort (or runs until
expected completion if the controller never
switches to abort).

The invocation is a conjunction of state
expressions2 required for the process to
begin. An invocation (denoted C) may be
formally decomposed as (cI AND c2 AND ...
AND c?) where ci is a state expression called
a condztion. It is stressed that conditions
merely denote the requirements necessary

2Device models, both in behavioral and functional
models, rely on state variables. It is assumed that
these variables are visible throughout the entire
system and that their values may be examined and
tested at any time. We define a stuk expression as
any Boolean expression built from these state
variables. The only requirement for state expressions
is that they be well-defined @e., ultimately evaluate
to true or false) at all times. Thus state expressions
may be as simple as a comparision between a state
variable and some value, or it may be a very complex
expression involving many of these comparisons or
nested subexpressions joined by Boolean operators.

146

for the process to be physically executed and
they imply nothing else. For example, the
MRL process "release arm" would have as
part of its invocation a condition that the
motors are operating nominally, and a
condition that the terminating rnicroswitches
are operational, among other things. For
convenience, these conditions are grouped
according to their "location" within the
model hierarchy. A given regulated process
is associated with a specific component.
Conditions using the modes and state
variables of that component are given first,
followed by conditions using modes,
connections, and state variables of other
components at the current level within the
model. But some conditions may also use
modes and state variables from a subsystem
or a supersystem of this component, and
they appear last. This grouping, or
"invocation typing," is merely a form of
semantic clustering and is done solely to
mirror human perspectives.

The outcome is a list of state expressions
which become true during the process or
when the process terminates. An outcome
(denoted E) may be formally decomposed as
(el:d,, e2:d2, e3:d3, ..., e,:d,) where ei is a
state expression called an eflect and di is the
delay, or the time lapse between the start of
the process and the point when the effect
becomes true. Effects are counterparts to
conditions in the invocation. However,
instead of specifying physical requirements
for process execution, they represent
expected states of the model that result
during or after process execution.

The efector, another optional part of the
regulated process, names the procedure(s) in
the submodel which actually implement the
outcome. A given component S may consist
of n subcomponents sl, s2: ..., s,. A
regulated process R associated with S
achieves its outcome simply by resetting S's
state variables and ignoring S's
subcomponents. However, the controller
may wish to explicitly simulate the activities
of all subcomponents si and not just assume
that they will produce the outcome in R. In
this case, a procedure must be created at the
submodel level (the si level) to achieve these

goals explicitly.
procedure is named by the effector of R.

Hence controllers may issue commands to
the regulated process by setting the regulator
switches, and they may retrieve control
information from the regulated process
simply by referencing the appropriate state
variables.

henever this occurs, that

Goal-Oriented Activities

As controllers, humans can never monitor
every facet of a real-world functional system
at every moment. We are forced to monitor
only a subset of the system and simply to
make assumptions about the unmonitored
parts. Unfortunately, a real-world functional
system is not obligated to obey our
assumptions, and disasters can occur
whenever it does not. Hence good
controllers are fundamentally suspicious
when following plans. They do not blindly
execute the specified steps, but instead will
view each step as a separate goal with
distinct conditions and expected effects.
Furthermore, whenever possible, they will
independently prove selected conditions and
confirm the effects even if the system gives
no hint of a failure.

Goals such as these must be reduced to
formal objects before they can be
manipulated by computer-based systems.
We next show how goals and regulated
processes are related.

Balkanski (Balkanski, 1990) defines activity
as a triple containing an act-type, an agent
which performs the act-type, and the time
interval over which the act-type is
performed. This formalism is useful in
modeling collaborative activities, but it also
coincides with regulated processes in the
sense that a regulated process embodies an
activity of the type Balkanski describes. We
extend this notion to capture the concepts of
monitoring and fault management. A goal-
oriented activity (GOA) with respect to
device model M is a a triple (R, CG, EG)
where

147

R is a regulated process in N (with an
invocation C and an outcome E)

CG, the goal conditions, is a conjunction
of conditions contained in C

,, EG, the goal eflects, is a list of effects
contained in E

Note that CG may equal C, it may be a
"subset" of Cy or it may be null. A similar
relationship holds between E G and E.

An example helps to clarify these ideas. As
will be described later, the designer of a
procedure usually expresses the steps of the
procedure as distinct GOAs and not as
simple commands. The device model
contains a library of regulated processes3,
each with preset invocations and outcomes.
Using the outcomes as a guide, the designer
selects a regulated process which best
accomplishes the intended purpose. It is
important to note that a given regulated
process may have many effects in its
outcome, but not all of them may be
intended effects of the designed procedure.
The designer must therefore select a set of
intended effects, EG, which deserve special
attention during procedure execution.

Although all the conditions must be true to
begin execution of the regulated process, the
designer may not wish to "suspect" them all
for monitoring and fault management
purposes. Analogously, the designer
constructs a set of critical "contended"
conditions, CG, which must be reconfirmed
as true (even if the model gives no
indication to the contrary) before the
regulated process is started.

Thus a goal-oriented activity is a "cross
section" of the invocation and outcome of a
selected regulated process. More precisely,
a GOA is simply a view of a regulated
process. This feature lets the system
designer create general regulated processes

3Shictly speaking, a process with neither a start
switch nor a termination switch is not truly regulated,
but we still refer to them as "regulated because the
switches can be installed at any time.

that can be customized by a GOA in a
procedure.

After the system has been designed, the
controller encounters a GOA while using the
system (i.e., executing a designed
procedure). The controller notes the
contended conditions CG and takes steps to
confirtn their truth before attempting to
initiate the regulated process. If any
conditions in CG are proved false, then there
is a discrepancy between the controller's
assumptions and the true state of the world.
At this point, executing the regulated
process would fail. A comparison with
behavioral models will illustrate this critical
concept. In a behavioral model, the process
simply fails with no indication of why. In a
functional model, the failure is likely to be
intercepted before it occurs, and the
controller, having tested CG explicitly, now
enjoys considerable insight into the reasons
for the averted failure.

Procedure Structures

We have shown that procedures are used to
achieve goals using devices whose current
states are only assumed by the controller.
For this reason, procedures cannot be
expressed in terms of conventional
algorithms; they must be expressed in terms
of more abstract goal-oriented activities.
This section describes the methods for
constructing procedures out of GOAs.

The most straightforward approach is to
implement the procedure as a sequence of
independent GOAs. The controller is never
forced to choose which GOA to execute
next, and, furthermore, each GOA can
ignore the results of previous GOAs in the
procedures. This may suffice for simple
procedures, but in general it seems clear that
(1) procedures must have a memory, and (2)
mechanisms must exist for combining
COAs in complex ways.

The first requirement may be satisfied easily
by introducing data stores, called procedure
variables, whose purpose is identical to
variables in conventional computer
programs. They may be set, reset, and

148

tested by the procedure. Their purpose is
simply to remember whatever the procedure
chooses to remember, and they assist the
controller by making available the results of
previous steps in the execution of the
procedure.

The second requirement is more difficult.
We adapt Kant's proposals (Kant, 1988) for
algorithmic control of goal-like entities.
This approach allows GOAs to be chained in
control networks that support classical
programming control structures such as
branching and iteration.

The general layout of a procedure structure
is given in Figure 6.

Preamble
Processes that point to this procedure
Required resources
Time estimate
Global preconditions
Procedure variable declarations
Names of GOAS

Results
Intermediate effects (temporary)

Final effects (permanent)

MatY

primary

Side

Side

Control
GOA control network

Figure 6: Procedure Structure

Procedures consist of three parts. The
preamble contains documentation
information such as: the names of the
regulated processes (presumably from one
level higher in the model) that point to this
procedure, a summary estimate of resources
required to execute the procedure (e.g.,
fuel), a summary estimate of how long the
procedure takes to execute, a set of global
preconditions that describe the required
general state of the system before the
procedure may be executed, the declarations
for procedure variables, and the names of all
goal-oriented activities contained in the
procedure. The results document the effects
of the procedure and are classified by time

(intermediate or final) and by intention
(desired effect or side effect). Finally, the
control section contains the control network
of GOAs described above.

Having described regulated processes, goal-
oriented activities, and procedure, we now
present an example of how they might be
used.

Sample RMS Application

Preparation of the Shuttle RMS arm for
mission tasks involves deploying the arm
away from the Shuttle Payload Bay to its
operational position. This includes the RMS
Powerup and Deploy procedure, which uses
the Manipulator Positioning Mechanisms
(MPM) to swing the arm outboard from the
Shuttle, uses the Manipulator Retention
Latches (MRL) to unlatch the arm from the
MPM, and then uses normal joint-driving
commands to move the arm away from the
MPM and its latches.

The f i s t portion of this procedure consists
of the following sequence of goal-oriented
activities:

1.

2.

3. MPM Deploy

4. MRL Release

5.

Select RMS: Supply power to the RMS control
sensors and actuators

Configure power: Supply power to the RMS
control sensors and actuators

Configure Power: Deactivate power supply to
MPMMRL motors

A more detailed representation of the MRL
Release GOA (number 4) is provided. This
unlatching process includes the following
detail:

1.

2.

Check whether the MRL drive motors are
operational

Check that the Shuttle Digital Autopilot is in
free drift or the vernier navigation jets are
selected

Start the MRL release of the latches 3.

149

Goal Conditions

Subsystem Subsystem

Shuttle Shuttle

At least one operational
drive motor per latch

Digital autopilot mode free
drift or vernier jet selected

NOT (At least one operational
drive motor per latch)

NOT (Digital autopilot mode free
drift or vernier jet selected)

Figure 7: Controller commands for the MRL Release Process

Goal Effects

4, Monitor the MRL release, and abort the release
if it has not terminated properly after 18
seconds

Self Self
NOT (MRL Released) MRL released

This procedure step exhibits much of the
detail that the GOA view of a regulated
process is designed to capture. There are
two types of regulation commands used:
start! (set inhibit off) and abort! (set abort
switch on).

Figure 7 shows how information about
selected conditions and effects of the MIU
Release process determines whether each
command should be issued by the controller.
This information is at various levels of detail
within the shuttle system, from the
operational status of motors that are
subcomponents of the MRL subsystem to
modes of the Shuttle guidance system. Note
that much of the information about the
changes that occur in an MRL release
process is not captured in this GOA (e.g.,
power consumption effects are not of
interest).

Conclusions

Functional models extend the power of
behavioral models because they can express
system goals as well as structure and
behavior. Their properties make them
especially useful for supporting the
development and validation of fault
management procedures. Three points
deserve special emphasis.

qualitative process definition of Forbus.
Individuals, preconditions, and quantity
conditions of a Forbus process correspond to
system components, connections, and state
variables that are conditions in the regulated
process. Influences and qualitative
proportionality relations in a Forbus process
will correspond to modulators in the
regulated process, but this is an area for
future research.

Second, the concept of a controller as a
verifier of contended conditions and
intended goals sheds new light on concepts
of coordinated action among teams, gained
from analysis of the heterogeneous human-
machine team in a designed system. Here,
the "suspicion" is not an adversarial one
about whether goals are shared between the
human and the device, as described by
(Levesque, 1990). Instead we provide a
general framework for representing
monitoring of goal-oriented activities based
on selected conditions and outcomes.

Finally, functional models can support goal-
directed simulations with explicit
mechanisms to react to changing events.
Nilsson (Nilsson, 1989) calls this
teleoreactivity and uses it to make "smart"
processes whose preconditions include the
negated goal (e.g., if a process has a goal g,
then -g must be true for the process to
begin). Functional modeling extends this
notion to conditions as well as effects and
does so in a fault management environment.

First, types of conditions in the regulated
process correspond to some parts of the

150

References

Balkanski, Cecile T. (1990) Modeling Act-Type Relations in ColIaborative Activity, TR-23-90, €Iarvard University
Center for Research in Computing Technology.

Davis, Randall, and Walter Hamscher (1988). "Model-based Reasoning: Troubleshooting." Exploring Artificial
Intelligence: Survey Talks from the National Conferences on Artijkial Intelligence (H. Shrobe, ed.) Morgan
Kaufman Publishers, San Mateo, California, pp. 297-346.

Forbus, Kenneth D. (1984). "Qualitative Process Theory." Artificial Intelligence, 24 (1984) pp. 85-168.
Kant, Elaine (1988). "Interactive Problem Solving Using Task Configuration and Control,'' ZEEE Expert, Winter

Levesque, H. J., P. Kohen, and J. Nunes, (1990). "On Acting Together." Proceedings ofthe Eighth National

Malin, J. T., Bryan D. Basham, and Richard A. Harris (1990) "Use of Qualitative Models in Discrete Event

1988, pp. 36-49.

CoMerence on Art@cial Intelligence, pp. 94-99.

Simulation for Analysis of Malfunctions in Continuous Processing Systems." Artificial Intelligence in Process
Engineering (M. Mavrovouniotis, ed.), Academic Press, pp. 37-79.

Mission Control." Communications of the ACM, December 1990, Volume 33, number 12, pp. 19-31.
Muratore, J., T. Heindl, T. Murphy, A. Rasmussem, and R. McFarland (1990). "Real-Time Data Acquisition at

Nilsson, N. J. (1989) Teleo-Reactive Agents. Computer Science Department, Stanford University (forthcoming).

151

