
- v -

DESIGN OF AN INTELLIGENT INFORMATION SYSTEM
FOR IN-FLIGHT EMERGENCY ASSISTANCE

Stefan Feyock
Stamos Karamouzis

Computer Science Department
College of William & Mary
Williamsburg, VA 23 185

Abstract

The present research has as its goal the development of AI tools to help flight
crews cope with in-flight malfunctions. The relevant tasks in such situations
include diagnosis, prognosis and recovery plan generation. Investigation of
the information requirements of these tasks has shown that the determination
of paths figures largely: what components or systems are connected to what
others, how they are connected, whether connections satisfying certain crite-
ria exist, and a number of related queries. The formulation of such queries
frequently requires capabilities of the second-order predicate calculus. We de-
scribe an information system that features second-order logic capabilities, and
is oriented toward efficient formulation and execution of such queries.

1. Introduction
The research described in this report was performed in conjunction with the
Intelligent Cockpit Aids (ICAT) project conducted by the Vehicle Operations
Branch at NASA Langley Research Center. The goal of this project is to develop
artificial intelligence (AI) techniques and systems to assist flight crews in the
performance of their tasks. Such assistance can become particularly crucial
when malfunctions occur; a significant portion of the project is accordingly
devoted to the development of tools that will help flight crews cope with in-
flight fault s.

The design possibilities for such software tools range from passive systems to
be used as information resource by the flight crew, through systems that au-
tonomously determine and suggest appropriate actions, to software that takes
complete control of the aircraft in case of emergency*. We begin by consid-
ering the low-autonomy end of this spectrum, with systems that confine them-
selves to producing answers to queries posed by the flight crew. Once the
functions of such systems are understood, we can consider what aspects of the
system's user can be automated.

The questions that arise are:

1. what type of information is likely to be required in case of in-flight
malfunctions, and

The set of pilots who consider the latter class of systems to be a good idea is
essentially null; nonetheless, certain recently developed aircraft types exhibit
a disquieting degree of autonomy in deciding how to reconfigure themselves
after a malfunction.

*

295

https://ntrs.nasa.gov/search.jsp?R=19910013479 2020-03-19T17:56:51+00:00Zbrought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42818356?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. how is it to be produced?

As regards item (l), it is clear that the most critical issues to be determined, are: .

1. diagnosis: what is the nature of the fault?

2. prognosis: how will this fault affect the subsequent operation of the
aircraft, in terms of flight characteristics as well as fault propagation to
additional components?

3. recovery planning: what is the appropriate response to the ,malfunc-
t i on?

Ongoing research by members of the ICAT group has resulted in a number of
sophisticated AI tools appropriate to the task of producing in-flight diagnoses
[1,7]. The research described in this paper has concentrated on the production
of prognoses , given a diagnosis produced by such diagnostic systems. In the
course of our work we have come to the following conclusions:

1. traditional information (Le. database) systems technology is inade- ,

quate for the task of prognosis. For example, we have found that the un-
derlying database system must be able to respond to queries of the type
"is there an electrical path between components A and B? A hydraulic
connection? Any sort of connection? Such queries involve quantifica-
tion over paths and relations, and thus belong to the realm of the see-
ond-order predicate calculus, beyond the capabilities 'of traditional
database systems.

2. Standard rule-based expert systems also fail to meet the requirements
of the task. The rules within such systems are to a large extent distilla-
tions of experts' responses to familiar problem situations. Malfunctiqns
by their very nature create chaotic conditions rife with unforeseen
consequences that may interact in unexpected ways. The brittleness of
rule-based systems in the face of such situations is well-kriown; a
deeper kind of reasoning is required to generate adequate responses.

Our approach to these problems has been to embed a variety of models in our
information system to allow deep reasoning to take place, and to develop a
database system capable of the second-order operations that occur frequently
in the course of such reasoning. Fig. 1 depicts the overall organization of the
resulting system.

As can be seen, the model-based information system (MBIS), consists of a num-
ber of submodels of a quite diverse nature, coordinated by an entity which
may be an in-the-loop human, or may be an "automated flight engineer" that
assumes the human user's functions to the extent feasible. The LIMAP utility is
the second-order database discussed above, while the semantic net serves as a
central information resource helping to tie the submodels of MBIS together. In
this paper we describe the LIMAP submodule of the MBIS system, and how it
interacts with the other components to fulfill its role.

296

Geometric Model

Fig. 1 The Model-Based Information System

2. SecondtOrder Spstem: Rationale
We will introduce LIMAP by describing a typical situation in which the need
for a second-ordet database system arises. As indicated above, ICAT researchers
have developed a number of diagnostic tools to assist the flight crew with the
task of determining the cause of in-flight malfunctions. One of the most im-
portant of these is the DRAPHYS system El], a model-based reasoner that deter-
mines which components' malfunction best accounts for the observed symp-
toms. DRAPHYS uses a digraph model of an aircraft system, with nodes repre-
senting ' primitiqe components*, and the arrows connecting nodes represent-
ing functional and physical dependencies. Component B is said to be f u n c t i o n -
al ly dependent on component A if the proper functioning of B depends on the
proper functioning of A. Component B is phys ica l ly dependent on component
A if damage to A can propagate through space to component B. For example,
the control surfaces of an aircraft are functionally dependent on the hy-
draulic system, since they will cease operating if the latter fails. On the other
hand, if a hydraulic line can be severed by a disintegrating turbine, the line is
phykically dependent on the turbine. While functional dependencies can gen-
erally be determined by considering causal relationships in the physical sys-
tem, physical propagation is typically the result of leakage of some substance
or forin of energy '(e.g. as in an explosion), and is inherently unpredictable.
Reference [51 contains a discussion of model-based reasoning about physical
fault propagation.

We will illustrate the concepts involved by means of an example: a jet engine.
Fig. 2 show a schematic of a dual-fan jet engine, while Fig. 3 gives the func-
tional dependency graph for this engine. (we ignore physical dependencies
for the sake of simplicity)

A component is deemed to be primitive if it is considered to be atomic, i.e. to
have no subcomponents, with respect to the model. This property clearly
depends on the granularity of the model; thus, an entire engine could be
treated as primitive if we are content with the diagnosis "engine malfunction"
rather than, say, "compressor stall".

*

297

INLET DUCT FAN BURNERS COMBUSTION
CHAMBER

Fig. 2 Jet Engine: Schema

COMPONENTS S!3lSORs

-+
t

JET ENGINE: FUNCTIONAL DEPENDENCIES

Fig. 3 Functional Dependency Model of Jet Engine

When a malfunction occurs, the DRAPHYS model-based diagnostic system ex-
tracts information from this model by means of the following procedure:

Suspect every possible component*;
Use model to determine consequences of each failure;
Eliminate suspects inconsistent with model predictions;

More precisely:

for each C in SET-OF-PRIMITIVE COMPONENTS do
if "C has failed" is a valid hypothesis
then add C to SET-OF-VALID-HYPOTHESES;

end for;

Heuristics are used to prune the set of "possible" components. 9

298

With luck, SET-OF-VALID-HYPOTHESES will contain only one element. If it
contains more, DRAPHYS waits for more symptoms to develop and disambiguate
the diagnosis.

We must specify how it is determined that "C has failed" is a valid hypothesis
(possible diagnosis). Here is an informal description of how this is done:

Primitive component C is a valid hypothesis iff
there is a POSSIBLE PROPAGATION PATH from C

to every symptomatic sensor

A path is a POSSIBLE PROPAGATION PATH iff every instrumented component on
the path has at least one symptomatic sensor

Here is a predicate calculus formulation of this stipulation:

valid-hypothesis(component) <=>

is-primitive(component) &
(A s) { is-sensor(s) & is-symptomatic(s) =>
(E p) [(path(p, /*from*/ component, /*to*/ s) &
(A n)[is-node(n, /*on path*/ p) => not is-ok(n) or is-unknown(n)]])

is-ok(n) <=> (A s)[is-sensor(s) & instruments(s,n) =>
not is-symptomatic(s)]

is-unknown(n) <=>
not (E s)[is-sensor(s) & instruments(s,n)]

/* instruments(s,n) is true if s is a sensor measuring some attribute of n */

This definition contains the construct "does there exist a path from x to y such
that every node on that graph fulfills certain constraints?". The node con-
straint in this case is that every instrumented node on the path must be
symptomatic. The wff states that a primitive component C is a valid hypothesis
iff there is such a path from C to every symptomatic sensor. Such quantifica-
tions are difficult to express in the first-order predicate calculus; if each edge
of a graph can denote a distinct arbitrary relation, a second-order formulation
is required, since it must contain (among other things), a passage such as this:
"...for all nodes m and n on path p there exists relation R such that R(m,n) ...".

Queries of the form "is there a relation R such that nodes a and b are in rela-
tion R? "is there a path from x to y? a path fulfilling constraint C? where can I
go from x? how can I get to x?" arise frequently both in AI and out of it. Such
queries, which involve quantification over relations, correspond to statements
in the second order PC. The question is: how can such queries be implemented
efficiently? In the following section we describe the structure and imple-
mentation of an information system appropriate to the requirements we have
outlined.

3. LIMAP
The second-order operations that have been discussed raise the question of
whether existing languages, particularly Prolog (31, already fulfill all the

299

stated requirements. Some Prolog implementations do allow predicates to be
variables, permitting at least existential quantification. Furthermore, it is
straightforward to construct Prolog procedures that determine the possible
paths between nodes in an arbitrary network, as well as allowing the user to
stipulate constraints on these paths, to browse through them, and to perform a
variety of similar operations. The problem is that such capabilities can easily
become prohibitively inefficient. This is the motivation for the creation of
LIMAP, which offers a number of Prolog-like capabilities, but whose imple-
mentation is oriented toward storage and execution efficiency.

Most AI searchhepresentation techniques are oriented toward a potentially
infinite domain of objects and arbitrary relations among them.
Experience has shown that in practice much of what needs to be
represented in AI can be expressed using a finite domain and unary
or binary predicates. Even in cases where large relations are involved, they
are almost invariably sparse as well. A major subassembly of an aircraft, for
example, may have thousands of subcomponents, but the relations of interest
among them, such as IS-A, PART-OF, functional dependency, etc., each involve
only a small proportion of the full set of components.

As regards the arity of predicates, the most widespread and useful representa-
tions of AI are semantic nets, frames, schemas, inheritance hierarchies, and
related constructs. All of these can be expressed by means of predicates of at
most two arguments .
3.1. Representations of Predicates
Since most of the relations of interest will be sparse and have no more than
two arguments, specialized techniques for representing and manipulating
such relations may be used. Unary predicates over a finite fixed domain are
well represented by bit strips (boolean vectors), while adjacency matrices
(AMs; see Appendix) are appropriate for binary predicates. A representation
based on (optionally sparse) vectors and adjacency matrices accordingly forms
the basis of the LIMAP implementation.

*

By way of example, Fig. 4 depicts the adjacency matrix representing the jet
engine functional dependency predicate** FD(x,y) of Fig. 3 over the domain
D = [fan, compressor, combustor, fwd-turbine, aft-turbine, N1-sensor,
N2-sensor, EGT-sensor]. By definition of adjacency matrices, a "1" in row i, col-
umn j denotes an arrow from node i to node j.

Boolean vectors are equally useful for representing unary predicates. The
vector IS-SENSOR = <O, 0, 0, 0, 0, 1, 1, 1>, for example, represents the IS-SENSOR
predicate; a "1" in position i denotes the fact that element i is a sensor.

There are, of course, well-known techniques for expressing any n-ary (n > 2)
predicate in terms of binary predicates. Most knowledge can be expressed
using unary and binary predicates without performing such a decomposition.

y, i.e. iff y is functionally

*

The notation is somewhat misleading: FD(x,y) iff x functionally determines **
dependent on x.

300

1 2 3 4 5 6 7 8

1. fan 1 1
2 compressor 1 1
3 combustor 1
4 fwd-turbine 1 1
5 aft-turbine 1
6 N1 sensor
7 N2 sensor
8 EGT sensor

1

Fig. 4

Given an AM representation, many useful second-order operations can be ex-
pressed concisely and efficiently:

(EXISTS X) X(a,b)?
(FORALL X) X(a,b)?
(EXISTS P) P a path from node a to node b?

Such queries correspond to finding parents, siblings, descendants, routes be-
tween nodes, etc. For example, we can obtain the set of instrumented compo-
nents simply by performing the boolean matrix mult ipl icat ion
F D x IS-SENSORT. Similarly, the question of whether a path exists between,
say, the fan and the EGT sensor is trivially answered by noting whether
FD*[1,8] contains a 1.

It is frequently necessary, however, to determine not only the existence of a
path, but the path itself, as ordered set of nodes. In addition, if the problem
representation requires a large number of predicates over D or D x D, main-
taining a separate AM for each predicate becomes unwieldy.

A straightforward extension of the adjacency matrix representation allows di-
graphs with labeled edges to be represented. Under this extension, the ele-
ments of the AM are sets of labels, rather than 0 or 1. Element ij contains label
P iff the semantic net contains an arrow from di to dj representing (labeled
with) predicate P; the empty set denotes the absence of an edge. Such extended
AMs are termed symbolic adjacency matrices (SAMs).

It is worth noting that SAMs provide a mechanism for implementing second-
order queries. The wff (EXISTS X) X(a,b), for example, can be decided simply
by determining if row a, column b is the empty set.

3.2. PSAMs
A straightforward extension of Warshall's Algorithm to symbolic adjacency
matrices allows efficient computation of a path symbolic adjacency matrix
(PSAM; see Appendix), a matrix whose ij entry contains the set of all paths
from node i to node j. It is this capability that makes quantification over paths
feasible.

4. The LIMAP language
The current version of LIMAP is an experimental test bed for determining
what facilities are required, and how to implement them most efficiently. In
this section we describe the language features that have been implemented to

30 1

date, and plans for future.development. The prototype version of LIMAP is im-
plemented in Common LISP.[8]. A C implementation, oriented toward optimiz-
ing the bit level representations and operations on which the efficiency of
LIMAP depends, is under way.

4.1. The
Every language has an underlying implementation model. As we have seen,
the LIMAP implementation model is based on a representation that employs
boolean and symbolic vectors and adjacency matrices to represent unary and
binary predicates, as well as an efficient transitive closure computation capa-
bility that allows boolean or symbolic path matrices to be computed and ma-
nipulated.

As is the case for an ordinary first-order database system, LIMAP capabilities
are invoked via a language interface that consists of two parts. One is the data
definition language (DDL) for specifying both the data the system is to contain
as well as "metadata", i.e. information about the structure and constraints that
govern the data contained in the system. The other is the data manipulation
language (DML), the subset of the language concerned with the specification
of queries and updates on the the data. We will categorize.the LIMAP functions
accordingly. A brief summary of the LIMAP DDL and DML follow; [4] contains a
complete listing.

4.1.1. DDL operations
The basic DDL operations are

DEFREL <name> <specification> <type> <representation>
<specification> ::= (<number>) or (<number> <number>)
<type> ::= boolean I symbolic
<representat ion> ::= sparse 1 dense

a n d

to define, respectively delete, a relation. DEFREL creates a new array according
to the values of the parameters, and binds this array to <name>. <specification>
stipulates whether the array will be a vector or matrix, as well as the index
range(s). <type> specifies whether the declared relation will be represented by
a boolean o r symbolic array, whereas <representation> allows the user to
choose a sparse or dense array representation. Defaults are provided for the
SPECS and REP parameters. The attributes of an array, as well as a pointer to
the data structure representing the array elements, are inserted into an in-
ternal symbol tables. As might be expected, the effect of DELREL <name> is to
unbind <name>, effectively deleting the array.

DELREL <name>

4.1.2. DML operations
The major DML operations are

STORE r e l n a m e
RETRIEVE r e l n a m e
MLOSE relname
PATHS r e l n a m e
MULT r e l n a m e
TRANSPOSE r e l n a m e

v a l u e [row] c o l u m n Store value
[row] c o l u m n Retrieve contents

Transitive closure
r o w c o l u m n All paths
re1 n am e Mult iply
r e l n a m e Transpose

302

STORE and RETRIEVE perform the indicated operation on the specified array
position, in accordance with the array's type and representation, while
MULT and TRANSPOSE typify a variety of standard matrix operations made
available by LIMAP. Except in DEFREL it is transparent to the user whether the
array representation is sparse o r dense. This transparency extends to the
other attributes of the array wherever possible.

4.1.3. Path Operations
The TCLOSE and PATHS operations form the core of LIMAPs path manipulation
capability. TCLOSE computes the transitive closure or the PSAM of the indicated
array, depending on its type. A pointer to the resulting closure array is stored
in the symbol table for relname, and may henceforth be accessed by queries
referencing paths. In particular, PATHS[i j] retrieves the set of all paths from
node i to node j, enabling quantification over paths. The LIMAP implementa-
tion of DRAPHYS, shown below, contains an example of this capability.

The distinction between procedural and non-procedural predicate calculus
specifications blurs if the underlying domain is finite, since the FOR ALL and
EXISTS quantifiers map in an obvious way to loops ranging over the domain el-
ements. It has been our goal to give the LIMAP DML as non-procedural a char-
acter as possible. In particular, LIMAP notation is an adaptation of the
(function-less) predicate calculus, with extensions to allow data retrieval in
addition to data specification", .Perhaps surprisingly, we have found that
minimal modifications of the control macros described in [2] were suitable for
the task of expressing the required quantifications. Here is a summary of the
general form of the controI structure implemented by these macros:

rol structures

(FOR ((<variablel> :IN <setl>)

(<variablen> :IN <setn>))
[:WHEN <when-expression>]
<FOR-keyword> <expression 1> ... <expressionn>)

The construct (<variablei> :IN <seti>) causes the variable to iterate over the el-
ements of the set, which may be specified as a list, a vector, or a matrix row or
column. Unless a false when-expression is present, the FOR-body is evaluated
and a result is produced as governed by the FOR-keyword. Iteration then pro-
ceeds to the next set of variable values.

FOR-keywords

:ALWAYS true if all the values of body are true
:FILTER
:FIRST produce the first non-NIL value of body
:SAVE

produce a list of the non-NIL values of body

produce a list of all values of body

While the description of these constructs is procedural in form, the effect
when programming in this notation is that of writing FORALLs and EXISTS,
with the proviso that any variable values that are found to "EXIST" are col-

~~

For example, a "yes" answer to (EXISTS X)(FORALL Y)P(X,Y) is insufficient; the *
actual X-value must be retrieved.

303

lected in accordance with the FOR-keyword and returned as value. The fol-
lowing section contains an example application of LIMAP: a LIMAP specifica-
tion of DRAPHYS.

5. DRAPHYS in LIMAP
The operation of DRAPHYS has been described previously, both in informal
terms and by means of predicate calculus wffs. Here is a LIMAP version; since
the notation bears strong analogies to the predicate calculus specification, we
present it without further explanation.

; DRAPHYS in LIMAP

; The list COMPONENTS contains all engine components, including sensors
9

(defun determine-hypotheses (components symptomatic-sensors)
; components =def set of all components to be considered as hypotheses
(for (c :in components) :when (is-valid-hypothesis c) :filter c)
1

(defun is-valid-hypothesis (c symptomatic-sensors)
(for (s :in symptomatic-sensors) :always (exists-bad-path c s))
1
(defun exists-bad-path (c s)

(for (p :in (paths 'engine c s)) ; paths from c to s
:first (for (c :in p) :always (not-known-ok c))

(defun not-known-ok (c)

) ; symptomatic is a boolean vector
(or (null (instrumentation c)) (symptomatic e))

(defun instrumentation (c) ; returns list of sensors associated with c
(for (s :in components)
:when (and (is-sensor s) (retrieve 'engine c s)) :save s)
)

6. Conclusion
We have described a programming system oriented toward efficient informa-
tion manipulation over fixed finite domains, and quantification over paths and
predicates. The initial motivation for the creation of such a system was the fact
that the need for such operations arose frequently in the diagnosis/prognosis
generation problem domain. Since then it has become apparent that the facil-
ities provided are useful and applicable over a much wider range of problems,
both within and outside of AI.

LIMAP's predicate-oriented DDL and DML are reminiscent of another predi-
cate-oriented language: Prolog. There is, however, an important omission:
Prolog contains a built-in inference engine for processing rules, while LIMAP
does not. As it happens, since SAM entries can be arbitrary s-expressions,
rules are easily added to LIMAP. This is an artifact of the fact that the current
implementation language is LISP, and does not generalize to other (planned)
implementation vehicles such as C. Addition of a rule capability and inference

304

engine forms a major area of current research, as does optimizing
implementation efficiency.

Our experience to date has shown that LIMAP is applicable to a wide range of
problems. While LIMAP, if abused, is as capable of inefficient operation as any
other misused programming system, we have found that for every problem yet
attempted there has existed a LIMAP formulation that was concise, comprehen-
sible, and for which LIMAP's facilities constituted a highly efficient problem
representa t ion .

APPENDIX

We present a brief review of graph-theoretical terminology occurring in the
text; see [6] for a detailed discussion.

D i g r a p h s
A directed graph (digraph) is 2-tuple <N,E>, where N is a finite set of nodes, and
E a finite set of edges. An edge is a member <a,b> of NxN. A labeled digraph is a
3-tuple< N,E,L>, where N is as before, L is a finite set of labels, and E is a finite
set of labeled edges, with labels in L. A labeled edge (with label in L) <a,l,b> is a
member of NxLxN.

It is easy to see that digraphs are a graphic representation of binary predi-
cates over finite domains If P(x,y) is a predicate over domain DxD, then di-
graph G = <N,E> represents P if P(a,b) iff <a,b> in E.

Whereas an unlabeled digraph can represent a single predicate, labeled di-
graphs whose label set is a set of predicate names can represent multiple bi-
nary predicates over the same domain DxD simply by letting edge <a,p,b> denote
the fact that predicate p(a,b) is true; the absence of such an edge denotes that
p(a,b) is false. Extending the notation, we allow edges to be labeled with sets of
predicate names; an edge <a,{pl, ...,pn}, b> is an abbreviation for the set of edges
<a ,p l ,b>, ... <a,pn,b>. Labeled digraphs thus correspond to the familiar semantic
net construct of AI.

Predicate Representat ions
Given the problem of representing a unary predicate P(x) over a finite domain
D of fixed size n, an obvious and familiar solution is to use boolean vectors,
a.k.a. bit strips: for any di in D, P(di) is true (false) iff the i'th component of
the vector representing P is a 1 (0). Boolean operations such as AND, OR, and
NOT on predicates over D are then representable by the corresponding opera-
tions over bit strips, which are efficient on most computers. Similarly, binary
predicates Q(x,y) over D x D can be efficiently represented by adjacency mu-
trices, i.e. n x.n matrices whose ij element is 1 if Q(di,dj) is true, else 0.

Symbolic Adjacency Matrices
Boolean adjacency matrices can in principle represent labeled digraphs: a
separate matrix is assigned to each label, and represents the subgraph of nodes
connected by edges bearing that label. In practice this representation can be-
come unwieldy. The number of different labels may be large, resulting in
proliferation of adjacency matrices. Moreover, queries such as "is there any
path (regardless of labels) from node a to node b?" require that the matrices

305

€or all labels be ORed together. An answer to the follow-up query "what are
these paths?" is even more difficult to generate from this representation. Such
considerations motivate the adoption of symbolic adjacency matrices (SAMs) as
representation for labeled digraphs. Element ij of a SAM is P iff the arrow
from di to dj in the semantic net has label P, else NIL.

Warshall's Algorithm
Let G be a digraph; then the transitive closure G* of G is a digraph containing
an edge <a,b> iff G contains a path (of length 0 or greater) from a to b. War-
shall's Algorithm (see [6]) is an efficient method for computing G*, given an
adjacency matrix representing the G. Intuitively, the algorithm scans the
matrix top to bottom, left to right. If a 1 is encountered, say in row i, column j ,
then row i is replaced by row i OR row j , and the scan continues from posi-
tion ij.

A straightforward extension, described in [4], of Warshall's Algorithm to sym-
bolic adjacency matrices produces a matrix, termed the path symbolic adja-
cency matrix (PSAM), whose ij entry contains the set of all paths from node i
to node j. It the generation of the PSAM matrix that makes the quantification
over paths feasible.

REFERENCES

[l] Abbott, K., Robust Fault Diagnosis of Physical Systems in Operation, Ph.D.
Dissertation, Computer Science Department, Rutgers University, New
Brunswick, NJ, May 1990.

[2] Charniak, E., et al., Artificial Intelligence Programming, 2nd ed., Lawrence
Earlbaum Associates, 1987.

[3] Clocksin, W., and C. Mellish, Programming
1981.

[4], Feyock & S . Karamouzis, LIMAP, Technical
College of William & Mary, in preparation.

in Prolog, Springer-Verlag,

Report, Computer Science Dept.,

[5] Feyock, S . , and Dalu Li, Simulation-Based Reasoning About the Physical
Propagation of Fault Eflects, Proc. of the 1990 Goddard Conference on Space
Applications of AI, May, 1990.

[6] Horowitz, E., & S . Sahni, Fundamentals of Data structures, Computer Science
Press, 1976

[7] Schutte, P., Real-time Fault Monitoring for Aircraft Applications using
Qualitative Simulation and Expert Systems, in Proc. of the AIAA Computers in
Aerospace VI1 Conference, Monterey, CA, October 1989.

[8] Steele, Guy, Common LISP: the Language, Digital Press, Bedford, MA, 1984.

306

