
ills, Lui Wang 
NASA Johnson Space Center 

Houston, TX 77058 

ABSTRACT 

The ONAV (Onboard Navigation) Expert System is being developed as a 
real time console assistant to the ONAV flight controller for use in the Mission 
Control Center at the Johnson Space Center. Currently the entry and 
rendezvous systems are in verification, and the ascent is being prototyped. To 
arrive at this stage, from a prototype to real world application, the ONAV project 
has had to deal with not only AI issues but operating environment issues. The 
AI issues included the maturity of AI languages and the debugging tools, what is 
verification, and availability, stability and size of expert pool. The environmental 
issues included real time data acquisition, hardware suitability, and how to 
achieve acceptance by users and management. 

INTRODUCTION AND PROBLEM STATEMENT 

What follows is a description of the development of the ONAV expert 
system. This project could aptly be titled the Agony and the Ecstasy. The 
ecstasy being the privilege of working with a group of highly talented and 
dedicated people, who persevered through some very trying times. Of working 
on the state of the art project that would enhance the quality and reduce costs of 
mission support. The agony portion of the project consisted of attempting to 
develop an real-time operational system when the state of the art of the 
supporting technology was still in its infancy and when; for the most part, there 
existed institutional pressures not conducive to change and innovation. This 
paper will trace out the development of the ONAV system and hopefully 
highlight some of the pitfalls to avoid in development of such a system. 

The idea of the ONAV Expert system was conceived in the summer of 
1986 by the Mission Support Directorate (MSD); now Information Systems 
Directorate (ISD), at the Johnson Space Center. MSD's goal for this project 
was to develop and implement a real-time expert system in the Mission Control 
Center. The ONAV position was selected for this purpose because it provided a 
well defined and relatively small problem domain. Also several of the software 
engineers at MSD had previous ONAV experience. However, to develop this 
project MSD needed to elicit the support of the ONAV flight controllers, who 
work in the Mission Operations Directorate (MOD) . At the beginning there was 
some opposition from MOD since we had flown 25 flights previously without 
such a system, therefore we could and can fly future missions without such 
support. But as with many projects, it was through the perseverance of several 
people that the project stayed on course. 

31 7 

https://ntrs.nasa.gov/search.jsp?R=19910013481 2020-03-19T17:57:05+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42818354?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ONAV FUNCTlO 

The Onboard Navigator (ONAV) is a back room position that supports the 
Guidance and Procedures Officer (GPO) in the Mission Control Center. The 
ONAV's principal responsibilities are to monitor the health of the onboard state 
vector and navigational aids that are used to update the state vector and make 
recommendations to the GPO for actions to maintain the state vector. The state 
vector represents the orbiter's position and velocity at a given time and is used 
in various guidance and control functions on the orbiter. The state vector is 
propagated using the inertial measuring units (IMU's) and is updated by a 
variety of navigation sensors through a kalman filtering scheme. The sensors 
used are dependent on the phase of flight. ONAV supports three phases of 
flight; ascent, entry and rendezvous. During ascent only the IMU's are used; 
during entry the IMU's along with the tactical air command and navigation 
system (TACAN), air data transducer assembly (ADTA), a drag altitude model 
and the microwave scanning beam landing system (MSBLS) are used. 
Rendezvous uses the IMU's, star trackers and the rendezvous radar. Basically, 
the ONAV job entails monitoring several digital displays that provide information 
on the status of the various navigation sensors and the onboard state vector. 
Approximately 180 parameters are normally monitored. The ONAV, based on 
this information, makes recommendations ranging from incorporating the 
sensor data into the onboard filter to recommending a ground derived state 
vector be uplinked to the onboard system. To be able to perform this function 
an ONAV must have an understanding of how the onboard software operates, 
how the sensors function, crew procedures and knowledge of kalman filtering. 
In addition the ONAV must be able to rapidly determine what information on the 
displays is important, which varies as a function of time, what failures have 
occurred, and what sensors are available. 

OBJECTIVES AND GOALS OF SYSTEM 

The objective of the system is two fold; one is to use the system as a 
console assistant and the other is as a training tool. Currently each phase of 
the mission requires two ONAV's for support; a lead and an ONAV2. The 
lead's responsibilities are to coordinate all information from the console, 
communicate with the GPO and make all pertinent calls. ONAV2 logs 
information and provides backup to the lead. As the system matures and both 
the GPO's and ONAV's become more confident with it, the goal is to eliminate 
the ONAV2 position. Also the system should enhance the quality of mission 
support. This is being accomplished in a variety of ways. The first method is the 
automatic logging capability of events and recommendations with both an 
altitude and a time tag that the system generates. Previously the ONAV's would 
log these events by hand and if several critical problems occurred at once it 
became difficult to keep up. The system will eliminate that problem. Another 
enhancement is the incorporation of color graphics in the user interface. This 
provides an easier to read screen and significantly aids in problem recognition 
and resolution by providing trending analysis. 

31 8 



Probably the most critical enhancement provided by the system lies in its 
ability to monitor all of the sensors at all times. At certain periods, one sensor 
may be more critical than others. As a result, the ONAV's attention tends to 
focus on the status and the functions of that one sensor and loses track of the 
others. The expert system, however, has the ability to continuously monitor all 
of the available sensors while still providing increased focus on the specific 
sensor that is providing critical data. Over 600 parameters are monitored by the 
entry system and 425 parameters for the rendezvous system. We expect the 
ascent system will be required to monitor approximately 400 parameters. This 

on has already proven to be highly valuable during flight simulations 
conducted by MOD, when the system alerted controllers to a secondary 
problem. 

The second objective for the system is to use it as a training tool. 
Currently, training an ONAV2 takes over a year. An additional nine months is 
then required for ONAVl certification. A major impact to the length of time that 
the training process takes is the number of simulation hours available. A new 
trainee can expect, at most, four hours a week in simulation time. The expert 
system will lessen the trainee's dependance on simulations by providing the 
capability of running training cases in an office environment. The biggest 
advantage of the use of the expert system as a training tool, however, lies in the 
establishment of the rulebase and its knowledge capture feature. When 
running as a training tool, the expert system will be equipped with a knowledge 
browser and rulebase rationale. This will allow the trainee to assimilate the 
information at his own pace and as a result he will not be as dependent on 
having an experienced person available to answer questions. Finally, by 
establishing a single set of agreed to rules the certified rulebase will provide a 
source of consistent training. 

IMPLEMENTATION 

The development of the rules for the ONAV expert system was a joint 
effort between the domain experts of MOD and knowledge engineers from 
MSD. The ONAV domain knowledge was captured through a series of 
meetings where the ONAV experts presented information to the knowledge 
engineers in a classic classroom setting. Initial meetings focused on the 
system functional overview. The results of the meetings were converted to 
different design strategies and prototypes, which could be critiqued by the 
experts. Prototype development then, served as the feedback mechanism for 
the meetings. During the development phase, when the knowledge engineer 
understood the basic operations, they would generally develop the agenda for 
the meetings on a particular topic and the experts provided the detail 
knowledge. The meetings were scheduled once a week two to three hours for 
the first three months, and after were held less frequently. By the end of six 
months we had the first prototype with a minimum user interface. But the overall 
system design structure had been selected and tested. 

It turned out that the ONAV normal task functions were fairly straight 
forward; however, detecting anomalies in the subsystems and component 

319 



failures recommending proper response required detailed expert knowledge. 
The overall system design was completed in the first year of the development 
phase. This structure resulted from the basic nature of the ONAV task and from 
the modularity guidelines of any good system engineering approach. Four 
functional components of the expert system can be identified: (1) Fact assertion, 
(2) monitoring, (3) analysis, and (4) output. In addition, there is a fifth non- 
expert system component that is a part of the overall ONAV system called "data 
preparation". 

The data preparation (data prep) component receives information from 
the operational environment and performs three functions: 

* Collects the information required by the expert system 
Performs any computations required on the data 
Filters and transforms that data into a form suitable for the expert system. 

In short, the data prep component converts the numeric instantaneous data 
points to a set of symbols which reflect the environment. The fact assertion 
component simply takes the prepared data and puts that data required by the 
expert system into the fact base. The monitoring component generates 
intermediate conclusions and statuses of the individual subsystems that ONAV 
observed and manages. This component simply detects environment state 
changes and pass them on to the next component. The analysis component 
performs an overall assessment of the current status, (i.e., makes use of the 
data from the monitoring phase) confirms the subsystems status, and/or 
recommend actions to prevent further degradation of the state vector. The 
analysis phase is the heart of the knowledge base, because this component 
captured the ONAV expertise. Specific knowledge implementation such as 
letting TACAN take out the state error rather than doing an uplink to the orbiter, 
or deselecting the line replaceable unit (LRU) when the onboard data bus has a 
commfault, are programmatically captured, and kept. The output component 
controls the sending of the notices and/or recommendations to the ONAV expert 
system console. 

As for the look and feel of the system, our philosophy was to keep it as 
simple and clean as possible. To achieve this we employed the pop and shoot 
method. This method consisted of a series of pop-up menus or toggle switches 
activated by the mouse. This provides a format that is easy to read and allows 
the operators to keep their eyes on the screen, a required feature in the highly 
dynamic environment of orbiter high speed operations. Messages appear in 
windows that can contain up to 20 messages and are scrollable. Status and 
quality lights take full advantage of color and also contain text to insure that the 
operator understands the meaning. 

As a real time console assistant, the expert system requires real time 
telemetry and trajectory data from the Mission Operations Computer (MOC), 
using a data stream called Generalized Data Retrieval (GDR). The GDR data is 
actually retrieved by a program called GDRdriver, which reads the data from 
the MOC and writes it into a shared memory segment. This shared memory 

320 



interface is based on a model developed at JSC for use by real time 
applications (ref. Workstation Application Interface to Data Source Interface 
Agreement). This model is generic and modular and it provides a standard 
mechanism to access different data sources. 

CERTIFICATION 

The certification/validation scheme we devised for the system was 
established at three different levels. The first level consists of the component 
level; data acquisition (GDR), data prep, rulebase, plots and the interface. Its 
intent is to insure that the program is functionally correct, ie. that data is correctly 
gathered, that the rules fire if presented with appropriate actions and events, 
and that results are correctly displayed to the screen. The second level consists 
of integrated system testing and overall certification. The intent of this level of 
testing is to insure that the various constituent parts of the system function in an 
integrated manner and, more importantly, that the recommendations made by 
the system accurately model the expert's mental concepts of the state of the 
system and are the correct responses to environmental changes. The third 
level consists of an integrated workstation certification. This last level is 
accomplished because of the critical nature of the workstations and is to insure 
that this application will not interfere with any other workstation or mainframe 
applications. 

For the GDR certification, we collected data during a sim at several time 
points. We took hardcopies of the data from the mission operations computer 
(MOC). For each time point we then compared the data from the MOC to the 
data we received at the workstation. Once we were certain that we were getting 
good data from GDR, we then went through the same process with data prep. 
The next step in component testing has been the verification and validation of 
the rulebase, which has been the most difficult of the tasks. 

To attack the problem of verification, we first had to start by deciding what 
verified meant. The existing literature, at the time, on verification and validation 
we found to be lacking for a rulebase of this size, approximately 300 rules for 
entry and 500 rules for rendezvous. The final decision, after much debate, was 
the construction of an error matrix that contains 48 errors that a certified ONAV 
would have to be able to deal with to be certified. For the rulebase to be 
declared verified, the system must act correctly at least twice for each of the 
errors. 

The method that we have been using to verify the rulebase has largely 
been dictated by the source of test data. The optimum method would have 
been to run a nominal case and then introduce a specific error in each of the 
following runs. Due to the complexities of the problem environment, the only 
source of data for the system is simulations or missions. However, the goal of 
simulations is to train flight controllers, therefore we are at the mercy of the 
training area as to what errors occur in a sim. Consequently the verification is 
somewhat of a hit or miss operation. We log and evaluate testcases when they 
are available, not necessarily in a controlled, selected fashion. 

321 



When a sim run is selected, it is first delogged. In this manner actual 
copies of the controllers screens are obtained from the run. Next, an expert will 
go through the delog and determine what occurred in the case and what calls 
and events the ONAV flight controller would have made and noted. The next 
step is for the expert to run the testcase through the expert system. At this time, 
any errors or discrepancies are noted. The expert then writes a log with the 
errors and discrepancies and what the correct action should have been. This is 
then passed to the software engineers, who in conjunction with the experts, 
work on correcting the problems. After the software engineers are done, then 
the corrected rulebase is passed back to the experts. The testcase is then 
replayed, and if all errors have been corrected and no new ones appear then 
the new rulebase is used in replaying all previous testcases. If everything 
checks out then the that testcase is signed off by all parties. 

In the event any questions arise that concern procedures or 
requirements, the action is referred to the ONAV working group. The ONAV 
working group was formed, with representatives from all the functional ONAV 
and software engineering areas, to focus the collective knowledge of the ONAV 
community and provide an authoritative method of resolving requirement 
conflicts or procedural debates. In this fashion controllers were provided input 
into the generation of the rulebase and a feeling that they know and understand 
what corrections have been made and the methodology that is incorporated in 
the rulebase. In addition the working group minutes serve to document the 
decisions made and provide the knowledge engineers a paper trail that they 
can refer to when creating/modifying the rulebase. 

Once all the various components have been verified, the system will be 
ready for full certification. At this point the system will be treated just as any 
flight controller for certification. To obtain final certification, the system will be 
run through a full set of entry sims with an GPO and ONAVI monitoring. The 
GPO and ONAVI will then evaluate and determine final certification. Also 
during this phase the system will be checked to verify that it will not interfere 
with any other workstation application. 

Since not only expert systems but also workstations represent a new way 
of console operations, the system will be implemented in three phases. The first 
phase, which is going on during rulebase verification, is for a third controller to 
monitor the system behind the current operator. This allows us to run the 
system during actual sims and flights without conflicting with console 
operations. Once the rulebase is verified, the system will then be moved on 
console and be monitored by the ONAV2. This phase will allow us to do the 
final interface work and answer questions such as, is the system easy to read 
and does it convey all the information necessary for console operations. Once 
all operators become comfortable with the system then at that point it will be 
ready to replace the ONAV2. 

322 



PROBLEMS 

From our experience on the project, time is the most critical element on 
the project. Time provides the luxury of careful scrutiny of the system but if time 
is not carefully allocated it can rob the project of its momentum. The following 
problems represent areas that forced the project off its path and consequently 
slowed the development of the project. 

As the name expert system implies, an expert is an integral part of 
developing an expert system. When this project first began, there were two 
ascent/entry experts and no certified rendezvous experts. For the projected 
flight rate at the time, six ascentlentry controllers were needed and two 
rendezvous controllers. Due to the low numbers, the priorities of the available 
experts were flights, training, analysis and finally expert system development. 
So not only were there a limited amount of experts, their availability was 
extremely limited also. At one point the only expert working on the entry system 
quit, leaving roughly a year and a half where no expert was available. These 
factors stretched the development out over a considerable length of time. This 
led to problems in the software engineering side, in that the programmers 
became restless with the lack of progress on the system. It consequently 
contributed in the decision by several programmers to leave the project. The 
expert system, in fact, had fallen prey to the very thing the system was trying to 
protect against, that of a lack of a knowledge base. Due to this problem, the 
luxury of time for a quick development of a prototype, at the start, was denied 
the project, consequently robbing the project of its needed momentum. 

Due to the drawn out development time and turnover problems several 
different groups of experts worked on the entry system over time. This meant 
that the rulebase represented an inconsistent set of methodology and at times 
without documentation a lack of understanding of why things were done the 
where they were. It was in response to this, that the ONAV working group was 
formed. Its function is to try to reach a consensus among current operators and 
document that methodology. The working group concept brought a sense of 
stability into the project because it as a organization remained constant and left 
a documented trail. 

Another obstacle faced by the project was the uncertainty over the 
platform that would be used for the final product. One of the goals of the project 
is to be used as a console assistant. The system is to reside on a Mission 
Control Center Upgrade (MCCU) workstation. Unfortunately, our project and 
the MCCU project have been developed in parallel. During the evolution of 
MCCU the final platform went from MASSCOMP to SUN back to MASSCOMP, 
from a two MIP's to an eight MIP's machine and from a non-color to a color 
graphics terminals. Through it all we tried to keep the system as portable as 
possible and tried to get our requirements into the MCCU project. As a result of 
our philosophy of portability, the project did end up with some throw away code. 
The interface was done in four different versions; Curses, MC-Windows, 
SunView, and X-Windows versions. Even at this time, the MCCU's lack of 
robustness has caused the expert system setbacks in gaining controller 

323 



confident since 90% of our sim failures can be attributed to workstation 
problems. It is difficult to avoid this type of problem when working in a high tech 
environment, on what might be called the bleeding edge of technology. The 
best that we can do is be alert to changes and try to influence any changes to 
our environment. We believe the fact that the systems were worked in parallel 
helped since our system was ready to move on to the configured workstation. 
Consequently we were able to evaluate workstation performance. The time lost 
working workstation problems, though, stole valuable time from user 
performance time. 

As for any system data is the life blood of the system. There existed two 
data problems for the ONAV expert system, availability and access. As 
previously stated the only acceptable data source, due to the size of the 
problem environment, is from simulations and flights. This proved to be a 
constraint on our development from the start. The main problem, however, was 
in getting access to the data required. The system requires telemetry data from 
the orbiter, for onboard systems and state vector evaluations, and data from the 
MOC for output of high speed ground filter data. Several source existed from 
which telemetry data could be obtained. GDR, however, was the only source for 
the ground filter. A longer delay in achieving access to GDR data than 
anticipated occurred due to MOC integrity concerns. This caused an even larger 
delay between prototype development and rulebase verification. Possibly if we 
had tried to get a better understanding of the system's data requirements closer 
to the start of development; we may have been able to piece together a set of 
nominal testcases from some analysis tools. This would have given us a leg up 
on verification but not solved the whole problem. Also from our experience with 
verification the system's data requirements can expand through this process. 
This one factor stole the most momentum from the project and was one of the 
most frustrating experiences to endure. The system was all dressed up with no 
place to go. 

The C-language Integrated Production system (CLIPS) expert system 
shell was used in the development of the expert system. The ONAV project 
received one of first beta copy of CLIPS (release 3.0) for the prototype of the 
ONAV project. Even in the beta software, CLIPS inference engine was very 
robust. However, as the expert system development continued, more rules 
were added to the system. The rule based interactions became more complex. 
CLIPS at this time did not provide adequate debugging methods to deal with 
large knowledge bases, but in fact the state of the art for expert systems in 
general was lacking in this area. This was a particular problem because the 
expert system has to be embedded with other modules, such as the real time 
data acquisition, and user interface modules which added another layer of 
complexity. For a long time, tracking down a typographical error was very 
difficult. Since then, CLIPS development team has developed additional tools 
such as the cross-reference, style, and verification (CRSV) tool, CLIPS window 
interfaces e nvi ro n me and also added additional syntax to the pattern 
language to deal with some of the problems. Finally, much research is still 
focusing on finding the appropriate methodologies to perform verification and 
validation on expert systems. Certainly, CLIPS will also evolve along with the 

324 



technology. Those are some of the costs that one has to realize and eventually 
justify for its value of the project. 

One area of particular concern was the acceptance of the system by 
users and management. One criticism from management was that the system 
would erode controllers skills, that a reliance on the system would eventually 
cause destruction of the ONAV knowledge base. However, our response was if 
the certification process for a controller is adequate then there should not be 
any erosion in skills. Users were also reluctant to use the system because the 
system did represent change and would require new training. Our attempt was 
to bring in the users at the beginning, keep them involved and place the 
interface design in their control. Also all rulebase changes had to be blessed 
by the expert. In these ways the user community became totally involved in 
development and responsibility for the project thus increasing acceptance by 
the users. The major factor in acceptance, however, is simply time. Time for the 
flight controllers to use the system and watch as the system's performance 
proves itself worthy of confidence. Time for management to accept that the 
system will not be death of flight controllers as we know them. Time for the 
system to become fully integrated into console operations. 

CONCLUSIONS 

To arrive at this point in time, where users are beginning to use the 
system, where it is actually being of benefit to operators, has been, as 
chronicled in the preceding passages, somewhat a tortuous path. In hindsight, 
a critical element in the development of the project was the length of time 
between rulebase development and data flow. The length of time for our project 
proved to be much longer then the ideal, causing us severe problems but, 
ultimately, not disastrous ones. What we should have done was have the 
assurance of the availability of experts and a first cut of data before starting 
rulebase development. Without this, a rapid development of a realistic 
prototype proved impossible, which prevented the users from actually using the 
system. Time on the system and with the system, by the users, as we have 
experienced is crucial for the development of the system. The working group 
concept should also have been used from the start of the project to facilitate 
documentation and provide stability for the system. 

Time, it turned out was an enemy of this project. Too much was spent 
waiting; waiting for experts, waiting for workstations and waiting for data. As 
previously concluded, prototyping quickly, and keeping everyone involved is 
critical. Luckily, however, time will come to our rescue. We have spent a large 
amount of time on certification. This time has only increased the confidence of 
the controllers. And the more time spent in console operations, the greater the 
acceptance. Hopefully the opportunity will present itself that some of these 
lessons can be applied to other systems and in time, we can learn from the past 
and not just ignore what we have learned. 

325 



Ref e re nces : 

Giarratano, J., The CLIPS User's Guide. NASA Document, June 1988 

Riley, G., CLIPS Architecture Manual. NASA Document, JSC-23047, 
June, 1988 

Guidelines and System Requirement for the Onboard Navigation 
Console Expert /Trainer System. NASA Document, JSC-22433, June 
1986 

Liebowitz, Jay, Expert Systems with Applications Volume 1 November 
1990 

AAAI-90 Workshop on Knowledge Based System Verification, Validation 
and Testing Boston, Massachusetts July, 1990 

Knowledge Requirements for the Onboard Navigation (ONA V) Console 
Expertflrainer System: Entry Phase. NASA Document, JSC-22657, 
September, 1988 

326 


