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1. INTRODUCTION 

A software application to assist end-users of the Link Evaluation Terminal (LET) for 
satellite communications is being developed. This software application incorporates artificial 
intelligence (AI) techniques and will be deployed as an interface to LET. The high burst rate 
(HBR) LET provides 30 GHz transmitting/20 GHz receiving, 220/110 Mbps capability for 
wideband communications technology experiments with the Advanced Communications 
Technology Satellite (ACTS). The HBR LET and ACTS are being developed at the NASA 
Lewis Research Center in Cleveland, Ohio. The HBR LET can monitor and evaluate the 
integrity of the HBR communications uplink and downlink to the ACTS satellite. The uplink 
HBR transmission is performed by bursting the bit-pattern as a modulated signal to the satellite. 
By comparing the transmitted bit pattern with the received bit pattern, HBR LET can determine 
the bit error rate (BER) under various atmospheric conditions. An algorithm for power 
augmentation will be applied to enhance the system's BER perfomance at reduced signal 
strength caused by adverse conditions. 

The HBR LET terminal consists of seven major subsystems (Fig. 1): 

* Antenna subsystem 
* Radio frequency (RF) transmitter subsystem 
* RF receiver subsystem 
* Control and performance monitor (C&PM) computer subsystem 
0 Local loopback subsystem at RF 
* Modulation and BER measurements subsystem 
* Calibration subsystem 

The C&PM computer controls and monitors all the other subsystems through an IEEE488 
interface. HBR LET experiments with the ACTS satellite will be initiated by users through the 
C&PM experiment control and monitor (ECN) software. The ECM software was developed on a 
Concurrent 3205 minicomputer in FORTRAN, which provides the end-user with the following 
capabilities: 

0 Individual instrument control 
* Interactive interface used to communicate with the digital ground terminal 
* Ability to conduct BER measurements 

339 

https://ntrs.nasa.gov/search.jsp?R=19910013483 2020-03-19T17:57:00+00:00Zbrought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42818352?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


e User-controlled data acquisition 

Programming scripts, defined by the design engineer, set up the HBR LET terminal by 
programming subsystem devices through IEEE488 interfaces. However, the scripts are difficult 
to use, require a steep learning curve, are cryptic and are hard to maintain. The combination of 
the learning curve and the complexities involved with editing the script files may discourage 
end-users from utilizing the full capabilities of the HBR LET system. In the following sections, I 
describe an intelligent assistant component of SCAILET that addresses critical end-user needs in 
the programming of the HBR LET system as anticipated by its developers. We will then take a 
close look at the various steps involved in writing ECM software for a C&PM computer and at 
how the intelligent assistant improves the HBR LET, system and enhances the end-user's ability 
to perform the experiments. (Although a hypertext documentation module plays an important 
role in familiarizing end-users with all the LET HBR subsystems, the description of this module 
is beyond the scope of this paper.) 

Antenna Control 

antenna 

To RF Drive I 
RF Drive Control 

75 WA'ITS Other 

7.7 Figure 1. HBR LET Block Diagram 
2. DILEMMA OF SOPHISTICATED INTERFACES 

The fundamental dilemma in designing practical software is how to provide more power 
to the user without sacrificing ease of use. By designing intelligent interfaces the gap between 
the novice user who is a domain expert and the software can be bridged. In my research, I view 
the user as a "planner." Planning is a problem-solving technique, the process of finding a 
sequence of steps to accomplish some goal. In the system described here the computer user 
manipulates knowledge structures called plans. Plans are bundles of knowledge about the 
standard subtasks in a domain and are designed and organized from a typical user's point of 
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view. 

There are many different approaches that address planning in artificial intelligence. Two 
major approaches are hierarchical planning (e.g., Sacerdoti, 1974) and script-based planning 
(Shank, and Abelson, 1977). Most traditional planners try to generate a plan of action for a 
specific task in a domain. In contrast, my planning system is designed to provide a framework in 
which executable forms of domain tasks can be speczed by using a planning hierarchy. A 
planning hierarchy provides a view of a procedural specification (a sequence of actions) that 
achieves a domain task which includes an explicit notion of levels of detail. Therefore, the 
novice user can be supplied with a portfolio of functionality - predefiied high-level plans that 
omit many details - for using the software in each task domain. 

Level 1: 

Level 2: 

Level 3: ECM Software 

Level 4: FORTRAN 

John Doe's BER.Back to Back terminal Only 

Generic BER, Generic Loopback, Generic Calibration 

Figure 2. Implementation Hierarchy for SCAILET Software. Each level represents a 
specialization built out of the primitives provided at the next lower level. 

Figure 2 uses the example of SCAILET software to illustrate the application of a 
planning hierarchy to intelligent interfaces. The SCAILET development environment is a 
Gateway 486 personal computer and uses the Choreographer graphical user interface tool. 
SCAILET communicates with the Concurrent computer through a TCP/IP link. At the top level 
there is experiment-specific software for a particular project. The second layer is general 
categories of software (e.g., BER, calibration,and loopback). The third layer is the ECM 
software developed on the Concurrent computer. Finally, the fourth layer is FORTRAN. Each 
layer has its own "primitives," which encapsulate a sequence made up from prhitives at the next 
level down. 

I divide my computer users into three categories: domain expert, computer novice 
(DECN); domain novice, computer expert (DNCE); and domain expert, computer expert 
(DECE). For instance a DECN would be an experienced satellite operator who wants to use 
HBR LET to test video transmission on the ACTS satellite but has no previous experience on the 
Concurrent computer. A DECE could be an experienced communications engineer who uses our 
software applications to get data. A DNCE could be a computer scientist who knows how to use 
software applications but knows nothing about communications. 
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Currently, a researcher (DECN) begins with the ECM software layer (level 3); the two 
upper levels only exist in his or her mind. Occasionally, the only DECE has enough time to 
actually create a version of level 2 or level 1 for use by a DECN. More likely, the DECN must 
learn the ECM software's commands - which are the primitives for level 2 - that are necessary to 
perform actions at the higher levels. The highest level, which is customized to the needs of a 
specific user, can only be built by a DECE user who is proficient in levels 2, 3, and 4 and can 
make proper use of the primitives at each level. The point is to provide an environment that 
allows these higher levels - levels 1 and 2 - to be created by a DECE for use by a DECN. 

2.1 Barrier Between DECN and DECE 

This general model of software use represents domain tasks by nodes at the top level of a 
tree. These tasks are gradually "unpacked" by each subsequent level below, so that at some level 
the nodes describe a sequence of how the task domain is accomplished by using the ECM 
software. The specific goal of this research is to build a system that allows a DECN to start at 
level 1 and then facilitate his or her movements through the first 3 levels. 

In using a general-purpose application a DECN user must first learn the commands and 
the macro language of the software. This step lacks context; the DECN is forced to deal with an 
abstract formalism divorced from his or her expertise. In the context of this example, typically 
force researcher John Doe (DECN) to use the ECM package. After mastering the ECM package's 
commands, John Doe has to mentally create intermediate plans that are primitive relative to his 
domain of expertise. Using these intermediate plans, John Doe must then create overall plans 
that are specific only to his situation. 

The operators at level 1 are overall goals - they resemble goals in the task domain; while 
the operators at level 3 are data specialized goals - they are the commands of a general purpose 
applications package. The goal of this research is a framework and an environment in which the 
general purpose software can be specialized by a DECE, allowing the DECN to draw analogies 
between the task domain and his or her own knowledge at the overall goal level and initially 
avoiding abstract formalisms of the data specialized level. 

2.2 STANDARD APPROACH TO BARRIER 

Most intelligent interfaces that have tried to break down this barrier attempt to monitor 
user actions and try to infer an overdl plan (e.g., Johnson, 1986). These systems are usually 
partial matching schemes, based on a plan catalog. The inferences made by partial matches allow 
the system to correct mistakes, to complete actions, and to infer "higher" plans. Since these 
systems mainly monitor low-level user actions and infer higher level plans, I refer to these 
intelligent interfaces as plan-matcher systems. One drawback of these systems is that matching 
always requires a detailed understanding of the user's goals - something that is not typically 
available. Also, since a novice's actions are erratic, plan-matchers that try to infer the overall 
plan from a novice's actions are often brittle. In the example a plan-matching system would have 
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to monitor the ECM package primitives used by the user, refer to a standard set of novice goals, 
and infer plans that the novice is using to accomplish those goals. In most domains this a very 
difficult approach. 

Besides the implementation difficulties, the overall approach, of necessity, focuses on 
helping a novice select a set of primitive steps in using the software. In contrast, the plan 
language of SCAILET will focus on the organizational and intermediate steps that allow the user 
to achieve an overall plan in the software domain. The actual primitive steps provided by the 
software package typically are never used by a novice. For instance, an engineer knows that he 
wants to transmit and receive video signals to and from the ACTS satellite but does not know the 
first thing about how to use the ECM application and how to structure his domain knowledge to 
achieve this high-level goal. Given the standard howledge that has to be in the system 
explicitly, the traditional bottom-up approach makes the engineer work much harder than 
necessary. The traditional approach makes the engineer learn the low-level ECM commands and 
then tries to infer that all the engineer wants to do is to transmit and receive a signal. Since 
explicit knowledge for this task already exists, SCAILET plan language gives the engineer a 
transmitting and receiving plan directly and lets him specialize it. The SCAILET approach is 
explained in detail in the following section. 

3. THE SCAILET PLAN LANGUAGE 

3.1 Related Work 

Programmer’s Apprentice (PA) Project (Waters et. al., 1985) was one of many automatic 
programming research projects that had the goal of improving programmer productivity by 
developing tools based on AI techniques. This project also studied human-problem solving 
behavior by using the programming domain. The long-term goal of the PA Project has been to 
develop a theory of programming (i.e., how expert programmers understand, design, implement, 
verify, modify, and document programs). Although the Emacs knowledge-based editor 
(KBEmacs) in the PA project falls well short of the long-term goal, it offers interesting insight 
into the task of program construction. This knowledge-based editor is tightly integrated with a 
standard Emacs-style editor. This integration allows the programmer to freely intermix 
knowledge-based program editing with text-based and syntax-based program editing. 

The most dramatic development in programming has been the development of high-level 
languages. Now, automatic programming is attempting to perform middle-level programming 
decisions automatically, and hence is, bringing about a second improvement. AI techniques 
make it possible to represent knowledge about programming in general and use this knowledge 
to understand particular programs. There are three main ideas that were implemented in 
KBEmacs: 

(1) The assistant approach: Since fully automated programming is too hard to implement 
with what is now known, Waters et al., (1985) decided on an assistant approach, a division of 
labor between the programmer and his or her assistant, the KBEmacs. The assistant wiU take 
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care of the low-level operations, in order to make a human programmer more productive. This 
approach can also serve as a research ground for fully automated programming. 

(2) Cliche: A cliche is a standard method of dealing with a task, a lemma or partial 
solution. Cliches are aggregates of code that achieve a stereotypical operation (e.g. searching a 
one-dimensional structure). When a cliche is used, it is instantiated by fiuing in the roles (i.e., 
input or output variables) with appropriate computational tasks. This creates a cliche that is 
specialized to the task. 

An important aspect of cliches is reuse. Once something has been thought out and given 
a name, it can be used as a component in future thinking. Cliches provide an appropriate 
vocabulary for relevant intermediate and high-level concepts. Both man and machine are limited 
in the complexity of the lines of reasoning they can develop and understand. h order to deal 
with more complex lines of reasoning, intermediate-level vocabulary can be used that 
summarizes parts of the line of reasoning. 

cliche EQUALITY - WITHIN-EPSILON 
Primary roles X, Y, EPSILON; 
comment "determines whether {the x} and {the y} 

constraints 

end constraints; 

return abs({the input x) - {the input y}) < {the epsilon}; 

differ by less than {epsilon}"; 

DEFAULT ( {the epsilon}, 0.00001) ; 

begin 

end EQUALITY - WITHIN - EPSILON; 

Figure 3. The Cliche EQUALITY-WITHIN-EPSILON From the PA Project. 

A corollary of the cliche idea is that a library of cliches can be viewed as a machine- 
understandable definition of the vocabulary programmers use when talking about programs. In 
KBEmacs a large portion of the knowledge that is shared between the programmer and the 
computer is in the form of a library of algorithm cliches. 

Figure 3 is a simple example of a cliche in KBEmacs. The EQUALITY-WITHIN-EPSILON 
cliche compares two numbers and returns a boolean value that specifies whether or not the 
numbers differ by less than a given epsilon. The roles that be filled are X and Y, which are 
numbers to be compared with one another. A constraint is used to specify a default value for 
epsilon, but the user can specify his or her own. When cliches are used, they can be specified as 
an indefinite noun phrase (e.g. "an EQUALITY-WITHIN EPSILON of A and B"). The 
primary roles definition lists the roles that must be specifiedaand the order in which they must be 
specified. When this cliche is instantiated in a program the roles in braces(i.e., (.....)) are 
replaced with actual numbers. For example, if two values, A and B, were passed to this cliche, 
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the comment would read *’ determines whether A and B differ by less than 
0.00001. ” 

(3) Plans: Many use of plans as a way of dealing with complex 
operations. As a representation, plans can deliberately ignore some aspects of a problem in order 
to make it easier to reason about other aspects of a problem. Plans are designed to represent two 
kinds of information in KBEmacs: the structure of the particular programs, and the knowledge 
about cliches. The two basic operations performed by KBEmacs are simple reasoning about 
programs (i.e., the source of data flow) and combining cliches together to create programs. The 
plan formalism is particularly designed to handle these operations (e.g., explicit arcs to show 
data flow make it easy to determine the source of the data). The user can construct programs by 
specifying the cliches that will be used within that program and specializing the roles of those 
cliches. 

The plan formalism abstracts away from the syntactic features of a programming 
language and allows the programmer to focus directly on the semantic features of a program. 
This also has the added advantage of making the internal operations of KBEmacs language 
independent. 

The major advantages of KBEmacs claimed by Waters et al. (1985)are: 

* Programs can be constructed more quickly. 

Since programmers are limited in the amount of code they can produce per day, it is 
more productive to specify which cliches and what roles are used in a program than to write the 
code for each program. Since cliches are intended to be reused, the time invested making cliche 
libraries is worth while. 

0 A program built out of cliches is more reliable. 

The major disadvantage of programming in cliches claimed by Waters et al. (1985) is 
that to get the full benefit of cliches, the programmer has to think in terms of them as much as 
possible. 

KBEmacs was only a research prototype fraught with bugs. It was a 40,000 line Lisp 
program that had only a dozen cliches. Designing exact cliches to be used was a lengthy task. 

The idea of plans as a method of program construction was studied by Soloway and 
Ehrlich (1985). Soloway’s empirical studies suggest that expert programmers use two types of 
programming knowledge: (1) programming plans, which are generic program fragments that 
represent stereotypical action sequences in programming; and 2) rules of programming 
discourse, which capture the conventions in programming and govern the composition of the 
plans into programs. Experts seem to have a portfolio of these plans that can be used in problem 
solving. 

As a representation, plans can deliberately ignore some aspects of a problem (Le., 
syntactic structures) in order to make it easier to reason about other aspects of a problem (e.g., 
program design). One of the most powerful ideas in AI is the idea of a representation shift 
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(shifting from text representation to plan representation). Initially, the novice would have to 
learn which language structures (Le., to use syntactic choices) and then code those structures 
correctly (i.e., syntactic structures). Kurland et al. (1986) see the stage of learning the syntactic 
structures of a programming language as a barrier that poses sisnificant difficulty for the novice. 
By removing or reducing the syntactic structures, it possible to reduce the cognitive load on the 
novice and allow him or her to focus on design issues. It is important for the novice to build a 
model of the computational process, so that he or she can predict actions and debug programs. 
When the cognitive load resulting from the syntactic structures of the language is reduced, the 
novice can focus on the flow of control and build his or her computation model. 

3.2 The SCAILET Approach to the Barrier between DECN and DECE 

The SCAILET approach provides a plan language with which to specify the layers of 
plans that make up a hierarchy for a range of tasks and goals. The plan language provides a 
knowledge-structuring scheme that will house a DECE's understanding and structuring of 
domain knowledge in a form usable by a DECN. Although this is much like an object hierarchy, 
but it includes enough information for the plan language to help a DECN use the hierarchy at 
multiple levels. 

The DECE users will be provided with an environment where they can build domain 
knowledge into layers, so that the coded knowledge will not just be visible to another 
programmer, but will also be usable and visible to a DECN who wishes to achieve domain tasks. 
The top level of the SCAILET application will be goal driven: A DECN will be able to draw 
analogies between this level and domain tasks and will then use the top-level plans to achieve 
domain tasks. The application will be provided to the DECN as a set of plans that represent the 
tasks and subtasks which are of interest to him or her. 

3.3 Current ECM Program Structure 

A typical ECM program contains the following modules: 

(1) Instrument definition software 
(a) Specifies instrumentation to be included in the experiment or test 
(b) Provides initial configuration and control parameters for each instrument 

(a) Encodes the experiment as a sequence of commands 
(b) Distinguishes between the main sequence and subsequences 

(2) Sequence definition software 

(3) Sequence execution software 

BER sequence commands are given in the appendix. As you can see, it is very cryptic 
and requires a steep learning curve. 

3.4 Formalizing SCAILET Programming Plans 

The plan language system provides HBR LET system designers with an easy and 

346 



structured way to construct plans as bundles of programming code with data and control links to 
other plans. Using this mode, a designer will be able to build his or her portfolio of 

' g plans that can be reused in various problems. 

The plan language has the following design goals: 

(1) Support the system designers in developing a portfolio of plans. 

(2) Support the use of a plan-like composition of programs. 

(3) 

(4) 

Allow a distinct mechanism for data flow between plans. 

Allow a distinct mechanism for the flow of control within a program. 

The plan formalism is based on object-oriented programming. For each plan there is a class that 
specifies the local data and operations of that plan. Plan class can then be specialized into 
instances, each with its own copy of local data. The DECE can sequence these instances into a 
particular execution order. Each plan object consists of four parts: 

(1) PARENTCLASS - This is a hierarchical link that is part of the inheritance of the plan 
language. 

(2) SLOTS - Each plan can have zero or more slots that specify data or plan links. Data 
slots are used to store data that are used during the execution of a plan. A plan slot is viewed as a 
component within the owner plan. 

(3) INITIALIZATION - This part contains executable code that is performed once when 
control first flows through the plan. 

(4) EXECUTION - This part contains executable code that is performed whenever 
control flows through the plan. 

3.5 An example: BER testing 

SCAILET plan language envelops procedural commands of ECM software in a declarative 
subplan that can be referenced by the end-user. Using ECM software, the user can conduct BER 
testing, loopback, and calibration. Figure 4 is a specialized BER plan language interface with 
three subplans for create files, instrument definition, and develop sequence. The structure of the 
program is intuitively apparent. ECM commands are bundled in subplans at the lowest level. The 
user does not have to know specific ECM commands. He or she only has to choose among 
various subplans. I intend to deploy SCAILET with a large number of typical plans. The user 
can then specialize or modify any of the SCAILET plans for his or her specific needs. Subplans 
h o w  their parent plans, and hence tell the user when they are being misused. The system can 
also detect if there are any initial values missing for any subplans. Plans and subplans are 
designed by using graphical screens. 
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Enter Account Number 

Enter Instrument File Name 

Enter Sequence File Name 

Sequence File Type 

BER back to back terminal only ~ ~ 1 ~ 1  Instrument Definition 

-Develop Sequence 

Figure 4. Specialized BER Plan Language Interface With Three 
Subplans (The user can click on a plan and "open up" its subplans). 

4. FUTURE DIRECTION 

By 1992, a complete portfolio of typical plans will be developed by using the system developers. 
Since the system wiU also have a completed hypertext documentation system, links between the 
plan language subplans, and their corresponding documentation will be established. 
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