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ABSTRACT

A new flux splitting scheme is proposed. The scheme is remarkably simple and

yet its accuracy rivals and in some cases surpasses that of Roe's solver in the Eu-

ler and Navier-Stokes solutions carried out in this study. The scheme is robust and

converges as fast as the Roe splitting. We propose an appropriately defined cell-face

advection Mach number using values from the two straddling cells via associated

characteristic speeds. This interface Mach number is then used to determine the

upwind extrapolation for the convective quantities. Accordingly, the name of the

scheme is coined as Advection Upstream Splitting Method (AUSM). We also intro-

duce a new pressure splitting which is shown to behave successfully, yielding much

smoother results than other existing pressure splittings. Of particular interest is the

supersonic blunt body problem in which the Roe scheme gives anomalous solutions.

The AUSM produces correct solutions without difficulty for a wide range of flow
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conditions as well as grids.

1. INTRODUCTION

Maximizing both accuracy and efficiency has been the primary goal for design-

ing an algorithm in numerical analysis. This is especially important for solution

of complex 3D problems described by the Navier-Stokes equations which may in-

clude equations for a turbulence model and/or chemical species. Recently upwind

schemes have become well-received for the sound theoretical basis of characteristic

theory for hyperbolic systems and thus for their capability of capturing discontinu-

ties. Furthermore, many advanced shock capturing techniques such as TVD are

based on upwind schemes.

Several prominent flux splitting schemes have been compared in the literature.

Liou and Van Leer [1] tested three techniques, namely the Steger-Warming (SWS),

Van Leer (VLS) and Roe splittings (RS), for a variety of problems regarding their

accuracy and efficiency. Osher's splitting (OS) has recently been compared with

Van Leer's by Koren [2] and extended to both equilibrium and non-equilibrium

chemistry by Suresh and Liou [3,4]. Flux-vector splitting (FVS) such as VLS and

SWS has proved to be a simple and useful technique for arriving at upwind dif-

ferencing and is pre-eminently suited for use in implicit schemes. Unfortunately,

the simplicity of these two splittings comes at a price of reduced accuracy due to

numerical diffusion. Flux-difference splitting (FDS) such as RS and OS, however,

has shown to be very accurate and particularly well suited for explicit upwind for-

mulations. Nevertheless, the increased accuracy is accompanied with an increased

operation count and complexity in arriving at the complete linearization of flux

formulas for the implicit schemes. Hence, the simplicity of FVS is still motivating

researchers to investigate new ways of splitting and combinations of FVS and FDS

that do away with the problem of numerical diffusion with only a small (if any)
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increase in complexity.

In SWS, glitches exist at a point where eigenvalues change sign, such as sonic

or shock point. Although fixes have been proposed, it is generally agreed that the

other three splittings are preferred within the framework of upwind discretization.

As pointed out by Van Leer himself [5], the Van Leer splitting fails to recognize

the contact discontinuity, leading to excessive numerical diffusion. As a result,

significant error appears in the viscous region which can not be simply cured by

reducing grid size and/or using higher-order differencing. This fact had largely gone

unnoticed until 1987 when Van Leer again brought this deficiency to the attention

of researchers [6]. Subsequently, several efforts have been attempted to improve

the original Van Leer scheme, in particular by HKnel and Schwane et al [7,8]. Van

Leer, recently based upon [8], has made a drastic improvement [O], in which the

temperature distribution of a hypersonic conic flow is predicted as accurately as

using Roe's splitting. However, a pressure glitch is accompanied with this new

scheme. Another approach was suggested by Liou and Steffen [11] and Coirier and

Van Leer [18] to include higher order polynomial expansions in the split fluxes in

order to yield vanishing value at M -_ 0. However, this is found to be less stable or

oscillatory.

Hence, the current research is motivated by the desire to combine the effciency

of FVS and the accuracy of FDS. In this paper, we will present a new flux splitting

scheme (details given in the next section) that is remarkably simple and accurate,

yielding vanishing numerical diffusivity at the stagnation. In a variety of Euler and

Navier-Stokes calculations performed, the accuracy of the present scheme is shown

to be rivaling that of Roe's splitting. Also, the scheme has no matrix operation, is

much simpler to construct and thus more efficient. Futhermore, unlike Roe's split-

ting, the scheme does not involve differentiation of fluxes, hence it is smoother. This

is desirable for the general equation of state where a stiff variation of thermody-

namic states may occur in certain transitional states, such as the case of chemically



reacting flows. The scheme is a mixture, but has the advantages of both flux-vector

and flux-difference splittings.

2. ANALYSIS

Motivation:

To exemplify the concept, let us consider the quasi two-dimensional system of

equations for conical flows:

aU 0(F,.. + F.)

-_ + r00 = S (1)

where U T = (p, pu, pv, pE), the inviscid flux FT. v = (pv, pvu, pv 2 + p, pvH), and

the specific total energy E = e + 1/2(u 2 + v 2) = H -pip. The viscous flux

F_ = -(0, rr0, too, vres + UrrO - qe), with:

and

2p. 0%
rse= +. - ct = cot0,

t: OT
qe-- r 00"

The source term S includes both inviscid and viscous contributions:

S - --P u(2u +vct) - v 2 1 rrr -- roe -- re÷ + rreCt
- r |v(2u+vct)+uv +- r 2rrs + (roe - r¢÷)ct

H(2u + vet) V(rrO + rood) + U(rrr + rroCt) - qoct

where

and

2pC 0% u + 2vct),
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rr,- = 3r "oq8 + 2u + vc_).

Since both longitudinal and transverse momentum equations are included, this

system can serve as a model equation for dealing with flux terms in multidimensions.

Furthermore, the supersonic conical viscous flow that consists of a very thin shear

layer at the wall and a shock wave away from the wall is an ideal problem for testing

the capability of capturing a shock discontinuity together with a sharp gradient

boundary layer. Thus, an algorithm must be designed to minimize the numerical

smearing (diffusion) at the locations where an eigenvalue changes sign or approaches

zero. For example, Van Leer's splitting [5] can represent a shock profile well, while

it greatly diffuses the boundary layer. It is precisely this original intent for making

a smoother transition at sonic points that creates enormous diffusion at M = 0; see

Fig. i for the split mass distribution. The split flux deviates the most from the true

flux at M = 0. As a result of this nonvanishing flux at M = 0, the boundary layer is

significantly broadened, yielding incorrect pressure and temperature distributions,

as seen in Figs. 9.(a) and (b). The theoretical value 13.6405 of the wall temperature

is obtained under the assumptions of adiabatic wall, P, = 1.0 and O(R_) _ 1.

Several fixes for the Van Leer splitting have been proposed to resolve this issue

of nonvanishing mass diffusion. Two types, in particular, have proved the most

successful to date:

1. High Order Polynomial Expansions (HOPE) of the flux vector given by the

authors [11], and a slight variation by Coirier and Van Leer [18], and

2. Hybrid FVS technique first proposed by H/inel et al [7-8] and later extended

by Van Leer [9].

The former, while capable of generating a vanishing mass diffusion and produc-

ing excellent results for the conical 1D model problem, yields nonphysical oscillatory

solutions in 2D problems. This is primarily due to the improper sign of the eigen-

values of the flux Jacobian in a small region in -1 < M _< 1. The latter, while
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predicting correct boundary-layer thickness and wall temperature (see Fig. 3b),

inflicts glitchs in the pressure near the edge of the boundary layer (see Fig. 3a),

and incorrect sign of the normal velocity component near the wall, as will be seen

later in Fig. 5. Clearly both improvements are still unacceptable.

The Roe splitting has been commonly accepted as one of the most accurate

techniques available today. However the setup cost of this method requires O(n 2)

operations per grid point in each iteration, where n is the number of equations.

Thus a heavy price is paid for the accuracy obtained. Similar effort for reducing the

computational cost has also been pursued in the Roe splitting. Roe [19] proposed to

replace the dissipation matrix by the scalar amplitude-square weighted wave speed

of Harten and Lax. Unfortunately, the scheme suffers from a stability problem in

which the Loo norm of the residual can be driven down only an order of magnitude

on this test problem. One scheme essentially equal to the RS in accuracy is the

Osher scheme. The major computation cost in this scheme lies in the determination

of the intermediate states connecting the two states of the neighboring grid points.

Again, O(n 2) operations are required.

Based on the conclusions drawn from many past researches, one wonders whether

it is possible to arrive at an upwind scheme with the following properties: (1) ac-

curate; (?.) simple, requiring only O(n) operations; and (3) stable, for a wide range

of problems. It is this question that motivates the research reported in the present

paper.

A New Upwind Scheme--AUSM:

Now we present a new formulation of the numerical flux function which is nei-

ther a FVS nor a FDS technique. Simply put, the new scheme treats the convective

and pressure terms separately. The convective terms are upstream-biased using a

properly defined cell-interface velocity, while the pressure term is strictly dealt with

by using acoustic waves. Accordingly, the name of the scheme is coined as Advec-
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tion Upstream Splitting Method (AUSM). The method retains the simplicity and

efficiency of a FVS scheme, but achieves the high level of accuracy attributed only

to FDS methods. Furthermore, it has proven thus far to be a robust formulation

as a variety of EuJer and Navier-Stokes calculations will bear out.

We turn now to the detailed derivation of the method. The first step is to

recognize that the inviscid flux vector, Fi,_ consists of two physically distinct parts,

namely convective and pressure terms:

Fi,,,= ;u v + = F(._) + . (2)

pV --$nU

pH

The convective terms can be considered as passive scalar quantities convected by a

suitably defined velocity v at the cell interface. On the other hand, the pressure flux

terms are governed by the acoustic wave speeds. Thus we propose to discretize the

two components separately. The interface flux for supersonic flow is simple and set

as usual by taking either the 'left' or 'right' state depending on the sign of the Mach

number M "- via. Thus, hereafter we will concentrate on the subsonic situation

only, i.e., -1 _< M < 1. At an interface L < ½ < R, the convective terms can be

effectively written as:

where

= vl/2 , (3)

\pH L/R

if vl/2 >_ O;

otherwise. (4)

Notice that this development opens up a whole new family of schemes based

upon the formulation chosen for the advective velocity vl/2. One successful choice

is to represent this velocity as a combination of the wave speeds (v :t= a) traveling

7



towards the interface (1/2)

written as:

from the adjacent L and R cells.

t_l/2 _--"aL/RMll2,

This is formally

(5)

where M1/2 is defined by combining the contributions from both the 'left' and

'right' states, i.e.,

MI: = M+L+ MR. (6,,)

Various ways of defining the split Mach numbers M ± exist. In this paper we choose

to use the Van Leer splitting [5]. For example, if IMI _<1, then

M ± -- 4-1(M 4- 1) 2.

Hence, the convective flux (3) becomes:

L/R

("°1
F !_) = M1/2 pau

'"",1, I pay I
\ pall /

(6b)

All of the AUSM calculations performed for the four different experiments in this

paper were completed using this formulation of the convective flux vector.

We turn now to the pressure term by writing:

pl/_= p++p_. (7)

Again considering the subsonic region, the pressure splitting is weighted using the

polynomial expansion of the characteristic speeds (M 4-1). As observed in reference

[10], the pressure splitting can be expressed in terms of second-order polynomials

(M 4- 1) 2 as:

Ps: p± = P(M :t= 1)2(2 =[=M). (8a)

The other expansion is the simplest possible form of the lowest order:

Pl: p_ = 2(1 4- M). (Sb)
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In fact, a whole host of choices are possible for the pressure splitting. Having tested

these two splittings thoroughly, we conclude that both perform admirably. However,

upon close examination of the region downstream of a shock discontinuity, the third

order pressure splitting/)3 can generate a small oscillation affecting the data by one

cell. This will be discussed further in the next section. It is interesting to note that

the above formulas can Be recast in the following form:

pvu 1 pau pau 1 pau

pvv -t- p I "- M1/2 _ pay Jr IMml Am +

\ pvH /1/2 L R

(9)

where A1/2{') = {')R--{'}L. Here the first term on the RHS is clearly not a simple

average of 'L' and 'R' states, hut rather a Mach-number-weighted average. More-

over, the dissipation term is merely a scalar IM1/2 [, requiring only O(n) operations,

in contrast to O(n 2) operations By the Roe matrix.

Thus, the above splittings of both the advective term and pressure term com-

pletely define the Euler flux vector. For the viscous terms, the usual central-average

representation is used at the interface.

0)0

•
0

3. RESULTS AND DISCUSSION

Four sets of problems were used to measure the performance of the new splitting

technique. First there is the quasi 2-D viscous conical flow patterned after the

experiments of Van Leer et al [6]. The second set of investigations involved the 2D

inviscid calulation about a NACA 4-digit series airfoil. These tests were conducted

under regimes similiar to the GAMM Workshop on the Numerical Simulation of

Compressible Euler Flows [12]. The third problem was the shock wave and laminar

boundary-layer interaction in which experimental measurements [13] were available

for comparison. Finally, the fourth set dealt with a supersonic flow over a circular

9



cylinder for which the Roescheme is shown to yield anomalous solutions, depending

on the Mach number and computation grid.

Case I:

Let us consider a cone of 10-degree half angle with a computational domain

spanning five degrees out from the surface of the cone. The freestream is defined

by a Mach number of 7.95, Reynolds number of 4.2 x 105, stagnation temperature

of 775.56 K, and Prandtl number of 1.0. The case of unity Prandtl number was

chosen so that the validation of the present scheme can be performed against the

theoretical solution for the adiabatic wall temperature given by:

Twall =1+ Moo 2.

First we present first-order results by four techniques. Comparison of the re-

suits will clearly show the clue as to why some schemes fail. Next, second-order

accurate calculations, using a two-step flux extrapolation procedure [14], were made

to prove the stability of the present scheme and the further improvement in accu-

racy.

In Figs. 4 (a) and (b), the pressure and temperature distributions demonstrate

the dramatic improvement by the AUSM from the VLS and related modifications

in [8,91, which were shown earlier in Figs. 3 (a) and (b). It is gratifying to see that

while extremely simple, the present AUSM results are essentially indistinguishable

from that of the Roe splitting. Close analysis reveals, in Fig. 5, that the Van

Leer scheme and subsequent modifications predict the normal velocity component

near the wall with improper sign or value, in comparison with the ROe solution.

The pressure irregularity is related to the strong change in the gradient of advective

velocity component at the edge of the boundary layer. This suggests that consistent

treatment ought be applied to all fluxes, especially the mass flux so that proper

balance of velocity components is enforced.
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The second-order scheme, shown in Figs. 6 (a) and (b), further eliminates

any remanent of the glitch in the pressure profile. As usual, the oscillation of

the second-order result at the shock can be made to disappear by incorporating a

standard TVD scheme. Note that the AUSM gives only very mild oscillations near

the shock in the second-order result, weaker than the Roe solution.

In Figs. 7 (a) and (b), convergence history of the first- and second-order calcu-

lations for three splittings are shown. They all have more or less the same behavior

and slope. However, it seems to indicate that the RS and AUSM are more simi-

lar. Also, the convergence rate does not appear deteriorated in the second-order

calculations.

The NACA 0012 airfoil was chosen for inviscid calculations. The computational

domain extends ten chord lengths out from the half-chord point, and is composed

of O-type 97 x 33 cells. The code uses an explicit, six-stage Runge-Kutta integra-

tion scheme [15]. The finite volume formulation is second-order accurate, but does

not include flux limiters. The experiment was conducted under two separate flow

conditions: (a) Moo = 0.85 and angle of attack (AOA) = 1.0 degree; (b) Moo = 1.20

and AOA = 0.0 degree.

Both cases demonstrate the AUSM as a robust flux splitting technique. In

Figs. 8 (a), (b), and (c) we present the pressure contours and grid for case 2a by

the AUSM and RS. There is virtually no visible difference between the two solutions;

both have accurately captured the upper and lower surface shocks. The solutions

have converged at least four orders of magnitude.

The pressure coefficient at both surfaces for case 2a has also been plotted

in Fig. 9 for both schemes; the lines are for the RS and the symbols for the

AUSM. The AUSM appears to be slightly more accurate than Roe's by capturing

the inviscid singularity, so called the Zierep singularity, at the foot of the shock
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on a curved surface. This is manifested by the overcompression followed by an

expansion. However, both shocks are defined in the same number of cells.

The entropy plots for case 2a are displayed in Figs. 10 (a) and (b). It is

interesting to note that the entropy generated at the leading edge is about three

times weaker in magnitude and confined in a narrower region for the AUSM than

the RS.

The pressure plots for case 2b were presented merely to demonstrate the capa-

bility of the AUSM to capture the bow shock and the fish-tail shock; the accuracy

is evident in Figs. 11 (a) and (b). Here, both results are essentially identical.

Up to this point, the cases 1 and 2 prove that the AUSM is as accurate as the

RS. In the next two cases, we will begin to see significant differences, especially in

the last case.

CgSe 3:

The experiment by Hakkinnen et al. [13] at Moo = 2.0, Reoo = 2.96 × 105 and

shock angle--32.58 ° was chosen for calculation using both the AUSM and RS. The

computational domain consists of 75 × 65 grid points. While many calculations

have been reported, there are substantial variations among these results as well

as from the measurement. In the surface pressure and friction coefficient plots of

Figs. 12 (a) and (b), we also see significant differences between two splittings. The

AUSM gives very good agreement with the data [13] in C! in the separation as

well as reattachment regions (solid dots are the separated region in which C! was

not measured). For the surface pressure plotted in Fig. 12(a), the AUSM again

produces good agreement with the measurement in the reattachment region, but

under-predicts in the separation region. This point is particularly puzzling since

the pressure rise and the drop in skin friction should go hand in hand. There is no

apparant reason that a prediction coincides with the C1, but not with P. However,

the ability of obtaining good agreement of the reattachment with the data is worth
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noting since it is usually harder to achieve this than to predict separation. Further

investigation of the experiment is clearly useful, but this is beyond the scope of the

present paper. Insofar as the uncertainty in the measurements, it is hard to draw

definitive judgment regarding the accuracy of both schemes. Figures 13 (a) and (b)

display the Mach contours; the AUSM results seem to give a sharper definition of

the incoming oblique shock as well as the complex expansion/compression waves in

the interaction region. We note that residuals have dropped five orders of magnitude

in both caculations.

The 2D supersonic flow over a circular blunt body was chosen to demonstrate

the ability of the AUSM to correctly resolve the strong bow shock and the accelera-

tion of stagnant flow through sonic point to supersonic speed. The same code used

for case 2 was used here, but only with the first-order option to test the scheme's

minimum capability for this type of problem. A range of free-stream Mach num-

bers from 2 to 20 were calculated along with the study of grid effect on the solution.

The results presented were obtained from two types of grids: (1) 57 × 33 circular

grid with stretching in the radial direction, and (2) 45 × 43 shock-aligned grid with

uniform radial spacing; they are displayed together with the Mach number contours

for the calculations to be presented.

As reported recently by Peery and Imlay [16] and Lin [17], Roe's splitting pro-

duced anomalous solutions that were manifested by odd-shaped bow shocks. This

nonphysical solution, sometimes referred to as the "carbuncle phenomenon", is not

completely understood yet. In our calculations, three types of "carbuncle phenom-

ena" have been observed in the contours. They are nonsymmetric, protuberant, and

indented. The solutions appeared to be grid and Mach number dependent. Several

different Mach numbers were examined on several different grids. In the following,

we show some typical results obtained by the Roe splitting and AUSM.
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Fi_zres 14 (a) and (b) give the comparison of Mach contours for Moo = 6.0

along with the grid in Fig. 14(c). For the RS, a protuberant shock is stopped

at the outer boundary and a nonsymmetric flow is developed near the stagnation

point. A velocity vector plot in this enlarged region, Fig. 13(d) shows a complex

but nonphysical flow pattern. The AUSM on the other hand results in a smooth

shock profile. It is noted that all results reported for this case have been obtained

with residual dropped more than five decades for both schemes.

Figures 15 (a) and (b) display the results for Moo = 4.0. The RS yields a

nonsymmetric flow while the AUSM converges to a completely symmetric solution.

However, a slight irregularity seen on the sonic line was attributed to the use of the

pressure splitting, Ps in (Sa). Close investigation of the staircase contours in the

curved part of the shock revealed that they are largely due to the nonalignment of

the shock with the circular grid (Fig. 15(c)). This effect disappears as the grid is

aligned with the shock, as seen in the previous test, Figs. 14.

A change of the Mach number to Moo = 3.0 on the same grid resulted in a

differenttype of contour in the RS calculation.Indented but symmetric contours,

Fig. 16(b), were developed. This shows the sensitivityof the RS solution to the

flow condition. Again, the AUSM gives correct behavior, except a slightglitchon

the sonic line due to the Ps splitting.

Next, we show the effect of the grid on the solution while the Mach number

Moo = 6.0 is kept the same as that in Figs. 14. In Figs. 17, the RS solution changed

to the indented type from the opposite, protuberant type. Once again, the AUSM

behaved rather remarkably.

Finally, we show the effect of pressure splittings, (8a) and (8b), on the AUSM

solution. Shown in Fig. 18 is the pressure distribution along the cells immediately

next to the symmetry line, with which the cell interface coincides. One post-shock

overshoot is seen. It must be stressed that this overshoot is different from the
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oscillations seennormally either from the central differencing or higher-order upwind

differencing, for there is no noise ahead of the shock. This shows that in this problem

the AUSM captures the normal shock in two cells. Thus, inaccuracy (smearing) of

the shock profile lies in these two cells and whether they are under- or over-shoot

should be regarded as equally inaccurate. The Pl splitting is seen to give a much

milder overshoot and a different shock location by one cell. Furthermore, the shock

location is more accurately predicted by pa, as compared with the result from the

grid refinement study.

4. CONCLUDING REMARKS

As guided by physical intuition and mathematical property, we propose a new

flux splitting formula, AUSM, that uses a properly defined advection velocity to

determine an upstream extrapolation at the cell interface. The scheme is remarkably

simple, requiring only O(n) operation, and renders itself for an easy implementation

in a code. Furthermore, it is at least as accurate as the Roe solver for the problems

tested. In the blunt body problem, the AUSM resulted in correct solutions without

difficulty in every test in a wide variation of flow conditions and grids where the Roe

splitting failed. The above promising features should make the new scheme very

suitable for a calculation requiring both efficiency and accuracy, e.g., in the case

of Navier-Stokes or chemical reacting flows. Our search for an alternative splitting

that will meet the goals of efficiency, accuracy, and robustness does suggest that

there are sufficient possibilities for further success.
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